$V_{DRM} = 2500 V$

 $I_{TGQM} = 2000 A$

 $I_{TSM} = 16 \text{ kA}$

 $V_{T0} = 1.66 V$

 $r_T = 0.57 \text{ m}\Omega$

 $V_{DClin} = 1400 V$

Gate turn-off Thyristor

5SGA 20H2501

Doc. No. 5SYA1205-01 Jun. 04

- Patented free-floating silicon technology
- Low on-state and switching losses
- Annular gate electrode
- · Industry standard housing
- Cosmic radiation withstand rating

Blocking

	J						
V_{DRM}	Repetitive peak off-state voltage		2500	V	$V_{GR} \ge 2V$		
V_{RRM}	Repetitive peak reverse voltage		17	V			
I _{DRM}	Repetitive peak off-state current	<	30	mA	$V_D = V_{DRM}$ $V_{GR} \ge 2V$		
I _{RRM}	Repetitive peak reverse current	<	50	mA	$V_R = V_{RRM}$ $R_{GK} = \infty$		
V_{DClink}	Permanent DC voltage for 100		1400	V	$-40 \le T_j \le 125$ °C. Ambient cosmic		
	FIT failure rate				radiation at sea level in open air.		

Mechanical data (see Fig. 19)

	(
F _m	Mounting force	min.		17	kN
	wounting force	max.		24	kN
Α	Acceleration:				
	Device unclamped			50	m/s ²
	Device clamped			200	m/s ²
М	Weight			0.8	kg
Ds	Surface creepage distance		\geq	22	mm
Da	Air strike distance		>	13	mm

GTO Data

On-state

I _{TAVM}	Max. average on-state current	830	Α	Half sine wave, T _C = 85 °C					
I _{TRMS}	Max. RMS on-state current	1300	Α						
I _{TSM}	Max. peak non-repetitive	16	kA	t _P	=	10	ms	T _j =	125°C
	surge current	32	kA	t _P	=	1	ms	After	surge:
I ² t	Limiting load integral	1.28·10 ⁶	A ² s	t _P	=	10	ms	V _D =	$V_R = 0V$
		0.51·10 ⁶	A ² s	t _P	=	1	ms		
V _T	On-state voltage	2.80	V	I _T	=	2000	Α		
V _{T0}	Threshold voltage	1.66	V	I _T	=	200 - 2500	Α	T _j =	125 °C
r _T	Slope resistance	0.57	mΩ						
I _H	Holding current	50	Α	Tj	=	25 °C			

Gate

V _{GT}	Gate trigger voltage	1.0 V	V _D = 24 V	T _j =	25 °C
I _{GT}	Gate trigger current	2.5 A	$R_A = 0.1 \Omega$		
V_{GRM}	Repetitive peak reverse voltage	17 V			
I _{GRM}	Repetitive peak reverse current	50 mA	$V_G = V_{GRM}$		

Turn-on switching

	owitoning						
di/dt _{crit}	Max. rate of rise of on-state	400 A/µs	f = 200Hz	I _T = 200	0 A,	$T_j =$	125 °C
	current	700 A/µs	f = 1Hz	I _{GM} = 30	A, di	₃/dt =	= 20 A/µs
t _d	Delay time	1.5 µs	V _D =	$0.5 V_{DRM}$	Tj	=	125 °C
t _r	Rise time	3.5 µs	I _T = 20	000 A	di/dt	=	200 A/µs
t _{on(min)}	Min. on-time	80 µs	I _{GM} =	30 A	di _G /dt	=	20 A/µs
E _{on}	Turn-on energy per pulse	0.75 Ws	C _S =	4 µF	R_S	=	5 Ω

Turn-off switching

<u> </u>	1 Swittening							
I _{TGQM}	Max controllable turn-off	2000 A	V_{DM}	=	V_{DRM}	di _{GQ} /dt	=	30 A/µs
	current		Cs	=	4 µF	L_{S}	≤	0.3 µH
ts	Storage time	22.0 µs	V_D	=	$\frac{1}{2}$ V_{DRM}	V_{DM}	=	V_{DRM}
t _f	Fall time	2.0 µs	Tj	=	125 °C	di_{GQ}/dt	=	30 A/µs
t _{off(min)}	Min. off-time	80 µs	I_{TGQ}	=	I_{TGQM}			
E _{off}	Turn-off energy per pulse	3.5 Ws	Cs	=	4 µF	R_S	=	5 Ω
I_{GQM}	Peak turn-off gate current	700 A	Ls	\leq	0.3 µH			

Doc. No. 5SYA1205-01 Jun. 04 page 2 of 9

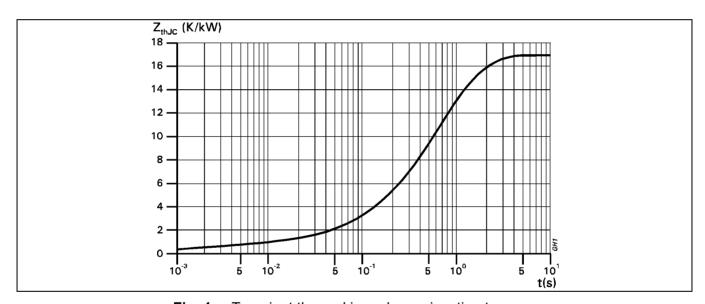
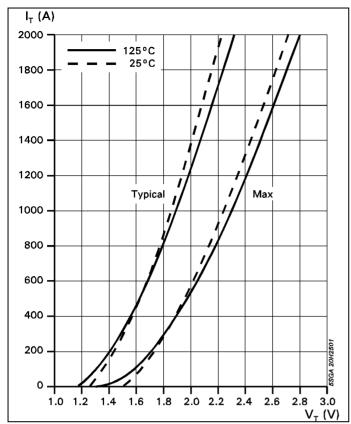
Thermal

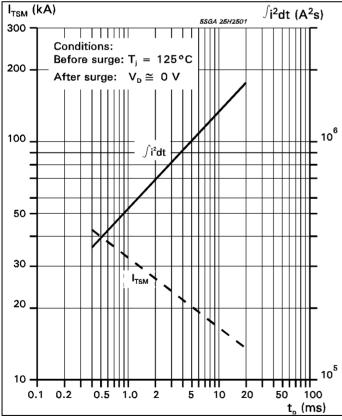
T _j	Storage and operating junction temperature range	-40125°C	
R _{thJC}	Thermal resistance	30 K/kW	Anode side cooled
	junction to case	39 K/kW	Cathode side cooled
		17 K/kW	Double side cooled
R_{thCH}	Thermal resistance case to	10 K/kW	Single side cooled
	heat sink	5 K/kW	Double side cooled

Analytical function for transient thermal impedance:

ZthJC (t) =
$$\sum_{i=1}^{4} R_i(1 - e^{-t/\tau_i})$$

i	1	2	3	4
R _I (K/kW)	11.7	4.7	0.64	0.0001
τ _i (s)	0.9	0.26	0.002	0.001


Fig. 1 Transient thermal impedance, junction to case.

P_{AV} (kW) 3.50 3.00 2.50 -DC 180° Л 180° sine 120° ∏ 2.00 60° ∏ 1.50 1.00 0.50 0.00 500 750 1000 1250 1500 250

Fig. 2 On-state characteristics

Fig. 3 Average on-state power dissipation vs. average on-state current.

Fig. 4 Surge current and fusing integral vs. pulse width

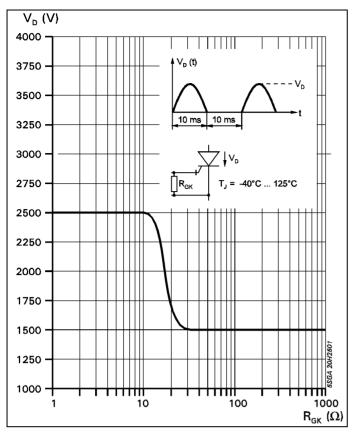


Fig. 5 Forward blocking voltage vs. gate-cathode resistance.

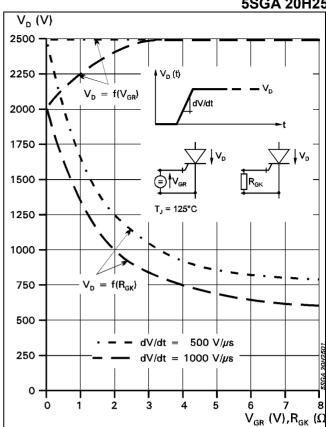
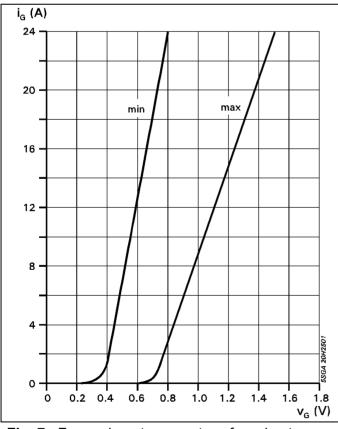
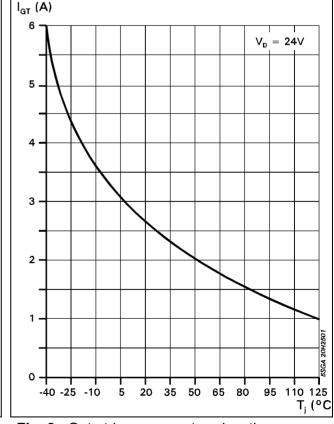
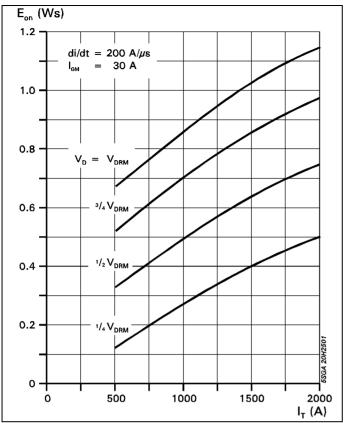
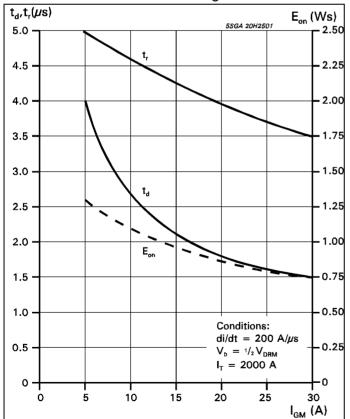



Fig. 6 Static dv/dt capability: Forward blocking voltage vs. neg. gate voltage or gate cathode resistance.

Forwarde gate current vs. forard gate Fig. 7 voltage.

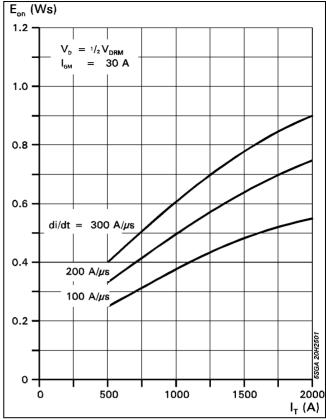

Fig. 8 Gate trigger current vs. junction temperature

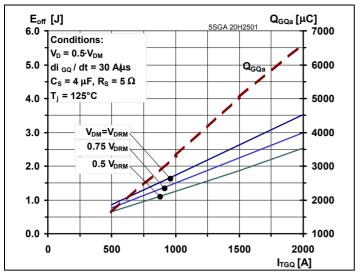
Fig. 9 Turn-on energy per pulse vs. on-state current and turn-on voltage.

Fig. 11 Turn-on energy per pulse vs. on-state current and turn-on voltage.

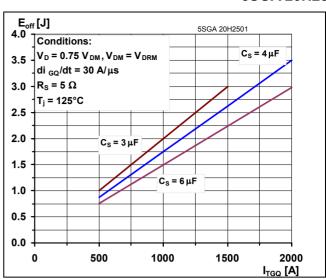
Fig. 10 Turn-on energy per pulse vs. on.-state current and current rise rate

Common Test conditions for figures 9, 10 and 11:

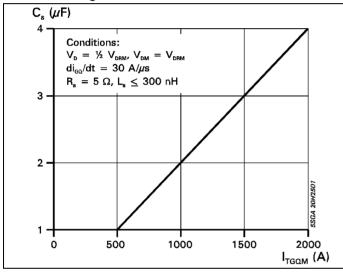
$$di_G/dt$$
 = 20 A/ μ s
 C_S = 4 μ F
 R_S = 5 Ω
Tj = 125 °C

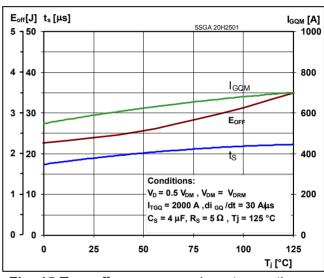

Definition of Turn-on energy:

$$Eon = \int_{0}^{20 \,\mu s} V_D \cdot I \tau dt \quad (t = 0, I_G = 0.1 \cdot I_{GM})$$


Common Test conditions for figures 12, 13 and 15:

Definition of Turn-off energy:


$$E_{off} = \int_{0}^{40 \, \mu s} V_D \cdot I_T dt \quad (t = 0, I_T = 0.9 \cdot I_{TGQ})$$


Fig. 12 Turn-off energy per pulse vs. turn-off current and peak turn-off voltage. Extracted gate charge vs. turn-off current.

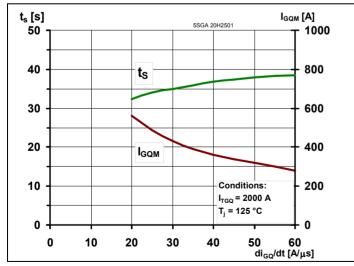

Fig. 13 Turn-off energy per pulse vs. turn-off current and snubber capacitance.

Fig. 14 Required snubber capacitor vs. max allowable turn-off current.

Fig. 15 Turn-off energy per pulse, storage time and peak turn-off gate current vs. junction temperature

Fig. 16 Storage time and peak turn-off gate current vs. neg. gate current rise rate.

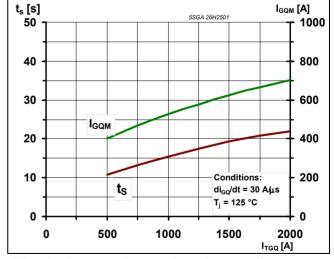


Fig. 17 Storage time and peak turn-off gate current vs. turn-off current

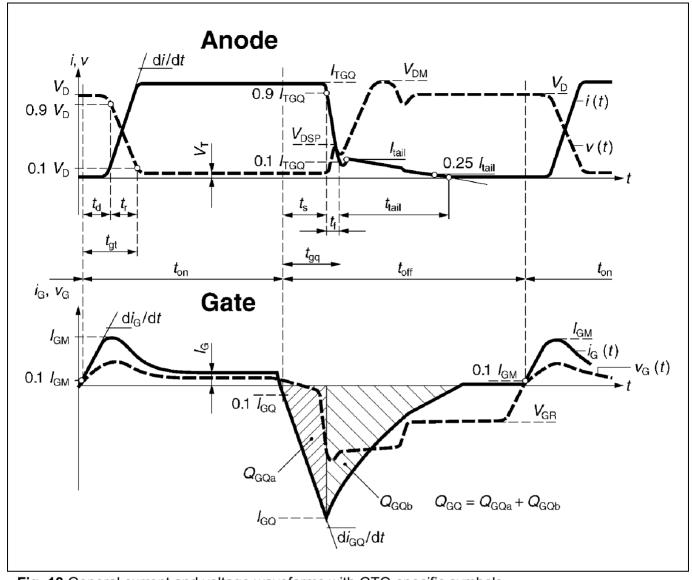
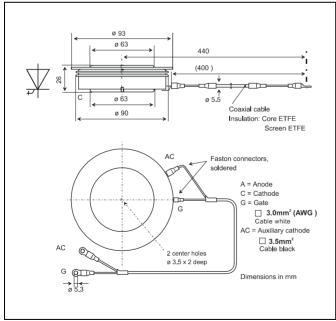



Fig. 18 General current and voltage waveforms with GTO-specific symbols

Fig. 19 Outline drawing. All dimensions are in millimeters and represent nominal values unless stated otherwise.

Reverse avalanche capability

In operation with an antiparallel freewheeling diode, the GTO reverse voltage V_R may exceed the rate value V_{RRM} due to stray inductance and diode turn-on voltage spike at high di/dt. The GTO is then driven into reverse avalanche. This condition is not dangerous for the GTO provided avalanche time and current are below 10 μ s and 1000 A respectively. However, gate voltage must remain negative during this time. Recommendation : V_{GR} = 10... 15 V.

ABB Semiconductors AG reserves the right to change specifications without notice.

ABB Semiconductors AG

Fabrikstrasse 3 CH-5600 Lenzburg, Switzerland

Tel: +41 (0)62 888 6419
Fax: +41 (0)62 888 6306
E-mail info@ch.abb.com
Internet www.abbsem.com

Doc. No. 5SYA1205-01 Jun. 04

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for SCRs category:

Click to view products by ABB manufacturer:

Other Similar products are found below:

NTE5428 NTE5448 NTE5457 NTE5511 T1500N16TOF VT T720N18TOF T880N14TOF T880N16TOF TS110-7UF TT104N12KOF-A
TT104N12KOF-K TT162N16KOF-A TT162N16KOF-K TT330N16AOF VS-16RIA100 VS-22RIA20 VS-2N5206 VS-2N685 VS40TPS08A-M3 VS-ST230S12P1VPBF 057219R CLB30I1200HB T1190N16TOF VT T1220N22TOF VT T201N70TOH T830N18TOF
TD92N16KOF-A TT250N12KOF-K VS-2N692 VS-2N689 VS-25RIA40 VS-16RIA120 VS-10RIA120 VS-30TPS08PBF NTE5427
NTE5442 VS-2N690 VS-ST300S20P0PBF TT251N16KOF-K VS-22RIA100 VS-16RIA40 CR02AM-8#F00 TD250N16KOF-A VSST110S16P0 VS-10RIA10 VS-16TTS08-M3 TS110-7A1-AP T930N36TOF VT T2160N24TOF VT T1190N18TOF VT