$V_{\text {DRM }}=4500 \mathrm{~V}$
 $\mathrm{I}_{\text {TGQM }}=3000 \mathrm{~A}$
 $I_{\text {TSM }}=24 \mathrm{kA}$
 $\mathrm{V}_{\mathrm{T} 0}=1.80 \mathrm{~V}$
 $\mathrm{r}_{\mathrm{T}}=0.70 \mathrm{~m} \Omega$
 $\mathrm{V}_{\text {DClin }}=3000 \mathrm{~V}$
 Gate turn-off Thyristor 5SGF 30J4502 PRELIMINARY

Doc. No. 5SYA 1211-04 Aug. 2000

- Patented free-floating silicon technology
- Low on-state and switching losses
- Annular gate electrode
- Industry standard housing
- Cosmic radiation withstand rating

The 5SGF 30 J 4502 is a 85 mm buffered layer GTO with exceptionally low dynamic and static losses designed to retro-fit all former 3 kA GTOs of the same voltage. It offers optimal trade-off between on-state and switching losses and is encapsulated in an industry-standard press pack housing 108 mm wide and 26 mm thick.

Blocking

$V_{\text {DRM }}$	Repetitive peak off-state voltage	4500	V	$\mathrm{~V}_{\mathrm{GR}} \geq 2 \mathrm{~V}$	
$\mathrm{~V}_{\text {RRM }}$	Repetitive peak reverse voltage	17	V		
$\mathrm{I}_{\text {DRM }}$	Repetitive peak off-state current	\leq	100	mA	$\mathrm{~V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{DRM}}$

Mechanical data (see Fig. 19)

F_{m}	Mounting force	\min.	28	kN
		max.	38	kN
A	Acceleration:			
	Device unclamped		50	$\mathrm{~m} / \mathrm{s}^{2}$
	Device clamped		200	$\mathrm{~m} / \mathrm{s}^{2}$
M	Weight	1.3	kg	
D_{s}	Surface creepage distance	\geq	33	mm
D_{a}	Air strike distance	\geq	15	mm

GTO Data
On-state

$\mathrm{I}_{\text {tavm }}$	Max. average on-state current	960 A	Half sine wave, $\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$	
$\mathrm{I}_{\text {TRMS }}$	Max. RMS on-state current	1510 A		
$\mathrm{I}_{\text {TSM }}$	Max. peak non-repetitive surge current	24 kA	$\mathrm{t}_{\mathrm{P}}=10 \mathrm{~ms}$	$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$ After surge: $V_{D}=V_{R}=0 V$
		40 kA	$\mathrm{t}_{\mathrm{p}}=1 \mathrm{~ms}$	
$\mathrm{I}^{2} \mathrm{t}$	Limiting load integral	$2.88 \cdot 10^{6} \quad \mathrm{~A}^{2} \mathrm{~S}$	$\mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$	
		$0.80 \cdot 10^{6} \quad \mathrm{~A}^{2} \mathrm{~s}$	$\mathrm{t}_{\mathrm{p}}=1 \mathrm{~ms}$	
$V_{\text {T }}$	On-state voltage	3.90 V	$\mathrm{I}_{\mathrm{T}}=3000 \mathrm{~A}$	$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {T0 }}$	Threshold voltage	1.80 V	$\mathrm{I}_{\mathrm{T}}=400-4000 \mathrm{~A}$	
$\mathrm{r}_{\text {T }}$	Slope resistance	$0.70 \mathrm{~m} \Omega$		
I_{H}	Holding current	100 A	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	

Gate

| V_{GT} | Gate trigger voltage | 1.2 V | $\mathrm{~V}_{\mathrm{D}}=24 \mathrm{~V}$ | $\mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ |
| :--- | :--- | ---: | ---: | :--- | :--- |
| I_{GT} | Gate trigger current | 2.5 A | $\mathrm{R}_{\mathrm{A}}=0.1 \Omega$ | |
| $\mathrm{~V}_{\mathrm{GRM}}$ | Repetitive peak reverse voltage | 17 V | | |
| $\mathrm{I}_{\mathrm{GRM}}$ | Repetitive peak reverse current | 20 mA | $\mathrm{~V}_{\mathrm{GR}}=\mathrm{V}_{\mathrm{GRM}}$ | |

Turn-on switching

di/dt crit	Max. rate of rise of on-state current	$500 \mathrm{~A} / \mathrm{\mu s}$	$\mathrm{f}=200 \mathrm{~Hz}$	$\begin{aligned} & \mathrm{I}_{\mathrm{T}}=3000 \mathrm{~A}, \quad \mathrm{~T}_{\mathrm{j}}=125^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{GM}}=25 \mathrm{~A}, \mathrm{di}_{\mathrm{G}} / \mathrm{dt}=20 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$					
		$1000 \mathrm{~A} / \mu \mathrm{s}$	$\mathrm{f}=1 \mathrm{~Hz}$						
$\mathrm{t}_{\text {d }}$	Delay time	$2.5 \mu \mathrm{~s}$							
t_{r}	Rise time	$5.0 \mu \mathrm{~s}$							
$\mathrm{t}_{\text {on(min) }}$	Min. on-time	$100 \mu \mathrm{~s}$							
$\mathrm{E}_{\text {on }}$	Turn-on energy per pulse	2.50 Ws							

Turn-off switching

$\mathrm{I}_{\text {TGQM }}$	Max controllable turn-off current	3000 A	$\begin{aligned} \mathrm{V}_{\mathrm{DM}} & =\mathrm{V}_{\mathrm{DRM}} \\ \mathrm{C}_{\mathrm{s}} & =3 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & \mathrm{di}_{\mathrm{GQ}} / \mathrm{dtt} \\ & \mathrm{~L}_{\mathrm{s}} \end{aligned}$		$\begin{aligned} & 40 \mathrm{~A} / \mu \mathrm{s} \\ & 0.2 \mu \mathrm{H} \end{aligned}$
$\mathrm{t}_{\text {s }}$	Storage time	25.0 \%	$\begin{aligned} \mathrm{V}_{\mathrm{D}} & =1 / 2 \mathrm{~V}_{\mathrm{DRM}} \mathrm{~V}_{\mathrm{DM}}=\mathrm{V}_{\mathrm{DRM}} \\ \mathrm{~T}_{\mathrm{j}} & =125{ }^{\circ} \mathrm{C} \mathrm{di} \mathrm{di}_{\mathrm{G}} / \mathrm{dt}=40 \mathrm{~A} / \mu \mathrm{s} \\ \mathrm{I}_{\mathrm{TGQ}} & =\mathrm{I}_{\mathrm{TGQM}} \\ \mathrm{C}_{\mathrm{S}} & =3 \mu \mathrm{~F} \mathrm{R}_{\mathrm{S}}=5 \Omega \\ \mathrm{~L}_{\mathrm{S}} & \leq 0.2 \mu \mathrm{H} \end{aligned}$			
t_{f}	Fall time	$3.0 \mu \mathrm{~s}$				
$\mathrm{tofff(min)}$	Min. off-time	$100 \mu \mathrm{~s}$				
$\mathrm{E}_{\text {off }}$	Turn-off energy per pulse	10.0 Ws				
$\mathrm{I}_{\text {GQM }}$	Peak turn-off gate current	800 A				

Thermal

T_{j}	Storage and operating junction temperature range	$-40 \ldots 125^{\circ} \mathrm{C}$	
$\mathrm{R}_{\text {thJc }}$	Thermal resistance junction to case	22	$\mathrm{~K} / \mathrm{kW}$
		27	Anode side cooled
		12	$\mathrm{~K} / \mathrm{kW}$
$\mathrm{R}_{\text {thch }}$	Thermal resistance case to heat sink	Cathode side cooled	3

Analytical function for transient thermal

 impedance:Z thJC $(\mathrm{t})=\sum_{\mathrm{i}=1}^{4} \mathrm{R}_{\mathrm{i}}\left(1-\mathrm{e}^{-\mathrm{t} / \tau_{i}}\right) \quad$| i | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{R}_{\mathrm{I}}(\mathrm{K} / \mathrm{kW})$ | 5.4 | 4.5 | 1.7 | 0.4 |
| $\tau_{\mathrm{i}}(\mathrm{s})$ | 1.2 | 0.17 | 0.01 | 0.001 |

Fig. 1 Transient thermal impedance, junction to case.

Fig. 2 On-state characteristics

Fig. 4 Surge current and fusing integral vs. pulse width

Fig. 3 Average on-state power dissipation vs. average on-state current.

Fig. 5 Forward blocking voltage vs. gate-cathode resistance.

Fig. 6 Static dv/dt capability: Forward blocking voltage vs. neg. gate voltage or gate cathode resistance.

Fig. 7 Forwarde gate current vs. forard gate voltage.

Fig. 8 Gate trigger current vs. junction temperature

Fig. 9 Turn-on energy per pulse vs. on-state current and turn-on voltage.

Fig. 10 Turn-on energy per pulse vs. on.-state current and current rise rate

Common Test conditions for figures 9,10 and 11:
$\mathrm{di}_{\mathrm{G}} / \mathrm{dt}=20 \mathrm{~A} / \mu \mathrm{s}$
$\mathrm{C}_{\mathrm{s}} \quad=3 \mu \mathrm{~F}$
$\mathrm{R}_{\mathrm{S}} \quad=5 \Omega$
$\mathrm{Tj}=125^{\circ} \mathrm{C}$

Definition of Turn-on energy:

$$
E_{o n}=\int_{0}^{20 \mu s} V D \cdot I T d t \quad(\mathrm{t}=0, \mathrm{IG}=0.1 \cdot I G M)
$$

Common Test conditions for figures 12, 13 and 15:

Definition of Turn-off energy:

$$
E_{\text {off }}=\int_{0}^{40 \mu s} V_{D} \cdot I_{T} d t \quad\left(\mathrm{t}=0, \mathrm{I}_{\mathrm{T}}=0.9 \cdot I_{T G Q}\right)
$$

Fig. 11 Turn-on energy per pulse vs. on-state current and turn-on voltage.

Fig. 12 Turn-off energy per pulse vs. turn-off current and peak turn-off voltage. Extracted gate charge vs. turn-off current.

Fig. 14 Required snubber capacitor vs. max allowable turn-off current.

Fig. 16 Storage time and peak turn-off gate current vs. neg. gate current rise rate.

Fig. 13 Turn-off energy per pulse vs. turn-off current and snubber capacitance.

Fig. 15 Turn-off energy per pulse, storage time and peak turn-off gate current vs. junction temperature

Fig. 17 Storage time and peak turn-off gate current vs. turn-off current

Fig. 18 General current and voltage waveforms with GTO-specific symbols

Fig. 19 Outline drawing. All dimensions are in millimeters and represent nominal values unless stated otherwise.

Reverse avalanche capability

In operation with an antiparallel freewheeling diode, the GTO reverse voltage V_{R} may exceed the rate value $\mathrm{V}_{\text {RRM }}$ due to stray inductance and diode turn-on voltage spike at high di/dt. The GTO is then driven into reverse avalanche. This condition is not dangerous for the GTO provided avalanche time and current are below $10 \mu \mathrm{~s}$ and 1000 A respectively. However, gate voltage must remain negative during this time. Recommendation : $\mathrm{V}_{\mathrm{GR}}=10 \ldots 15 \mathrm{~V}$.

ABB Semiconductors AG reserves the right to change specifications without notice.

ABB Semiconductors AG

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for SCRs category:
Click to view products by ABB manufacturer:
Other Similar products are found below :
NTE5428 NTE5448 NTE5457 NTE5511 T1500N16TOF VT T720N18TOF T880N14TOF T880N16TOF TS110-7UF TT104N12KOF-A TT104N12KOF-K TT162N16KOF-A TT162N16KOF-K TT330N16AOF VS-16RIA100 VS-22RIA20 VS-2N5206 VS-2N685 VS-40TPS08A-M3 VS-ST230S12P1VPBF 057219R CLB30I1200HB T1190N16TOF VT T1220N22TOF VT T201N70TOH T830N18TOF TD92N16KOF-A TT250N12KOF-K VS-2N692 VS-2N689 VS-25RIA40 VS-16RIA120 VS-10RIA120 VS-30TPS08PBF NTE5427 NTE5442 VS-2N690 VS-ST300S20P0PBF TT251N16KOF-K VS-22RIA100 VS-16RIA40 CR02AM-8\#F00 TD250N16KOF-A VS$\underline{\text { ST110S16P0 VS-10RIA10 VS-16TTS08-M3 TS110-7A1-AP T930N36TOF VT T2160N24TOF VT T1190N18TOF VT }}$

