74HC3G07; 74HCT3G07 Triple buffer with open-drain outputs Rev. 4 — 16 December 2013

Product data sheet

General description

The 74HC3G07; 74HCT3G07 is a triple buffer with open-drain outputs. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of V_{CC}.

Features and benefits 2.

- Wide supply voltage range from 2.0 V to 6.0 V
- Input levels:
 - For 74HC3G07: CMOS level
 - For 74HCT3G07: TTL level
- Complies with JEDEC standard no. 7 A
- High noise immunity
- Low power dissipation
- Balanced propagation delays
- ESD protection:
 - ◆ HBM JESD22-A114E exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

Ordering information

Table 1. **Ordering information**

Type number	Package							
	Temperature range	Name	Description	Version				
74HC3G07DP	–40 °C to +125 °C	TSSOP8	plastic thin shrink small outline package; 8 leads;	SOT505-2				
74HCT3G07DP			body width 3 mm; lead length 0.5 mm					
74HC3G07DC	–40 °C to +125 °C	VSSOP8	plastic very thin shrink small outline package; 8 leads;	SOT765-1				
74HCT3G07DC			body width 2.3 mm					
74HC3G07GD	–40 °C to +125 °C	XSON8	pg.,					
74HCT3G07GD	_		8 terminals; body $3 \times 2 \times 0.5$ mm					

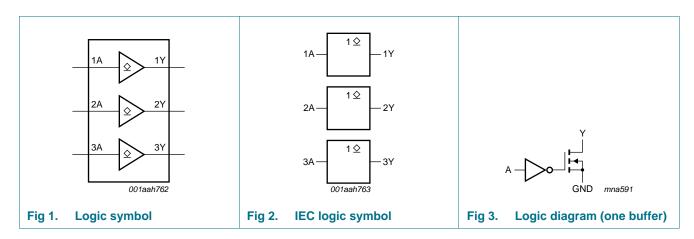
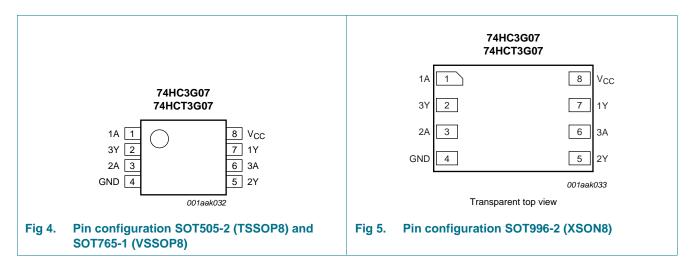

4. Marking

Table 2. Marking code

Type number	Marking code ^[1]
74HC3G07DP	H07
74HCT3G07DP	T07
74HC3G07DC	H07
74HCT3G07DC	T07
74HC3G07GD	H07
74HCT3G07GD	T07


^[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

5. Functional diagram

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3. Pin description

Symbol	Pin	Description
1A, 2A, 3A	1, 3, 6	data input
GND	4	ground (0 V)
1Y, 2Y, 3Y	7, 5, 2	data output
V _{CC}	8	supply voltage

7. Functional description

Table 4. Function table [1]

Input nA	Output nY
L	L
Н	Z

^[1] H = HIGH voltage level; L = LOW voltage level; Z = high-impedance OFF-state.

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	7.0	V
I _{IK}	input clamping current	$V_I < -0.5 \text{ V or } V_I > V_{CC} + 0.5 \text{ V}$	<u>[1]</u> _	±20	mA
I _{OK}	output clamping current	$V_{O} < -0.5 \text{ V}$	<u>[1]</u> –20	-	mA
Vo	output voltage	active mode	<u>[1]</u> –0.5	$V_{CC} + 0.5$	V
		high-impedance mode	<u>[1]</u> –0.5	7.0	V
I _O	output current	$V_{O} = -0.5 \text{ V to } 7.0 \text{ V}$	<u>[1]</u> –25	-	mA
I _{CC}	supply current		<u>[1]</u> _	50	mA
I _{GND}	ground current		<u>[1]</u> –50	-	mA
T _{stg}	storage temperature		-65	+150	°C
P_D	dynamic power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$	[2] -	300	mW

^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

^[2] For TSSOP8 package: above 55 °C the value of P_{tot} derates linearly with 2.5 mW/K. For VSSOP8 package: above 110 °C the value of P_{tot} derates linearly with 8 mW/K. For XSON8 package: above 118 °C the value of P_{tot} derates linearly with 7.8 mW/K.

9. Recommended operating conditions

Table 6. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	74HC3G07		74HCT3G07			Unit	
			Min	Тур	Max	Min	Тур	Max	
V_{CC}	supply voltage		2.0	5.0	6.0	4.5	5.0	5.5	V
VI	input voltage		0	-	6.0	0	-	5.5	V
Vo	output voltage		0	-	V_{CC}	0	-	V_{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	-40	+25	+125	°C
Δt/ΔV	input transition rise	$V_{CC} = 2.0 \text{ V}$	-	-	625	-	-	-	ns/V
	and fall rate	$V_{CC} = 4.5 \text{ V}$	-	1.67	139	-	1.67	139	ns/V
		$V_{CC} = 6.0 \text{ V}$	-	-	83	-	-	-	ns/V

10. Static characteristics

Table 7. Static characteristics

Voltages are referenced to GND (ground = 0 V). All typical values are measured at T_{amb} = 25 °C.

Symbol	Parameter	Conditions	-40) °C to +8	5 °C	–40 °C	to +125 °C	Unit	
				Min	Typ[1]	Max	Min	Max	
74HC3G	07		'						
V _{IH}	HIGH-level input	V _{CC} = 2.0 V	1.5	1.2	-	1.5	-	V	
	voltage	$V_{CC} = 4.5 \text{ V}$	3.15	2.4	-	3.15	-	V	
		$V_{CC} = 6.0 \text{ V}$	4.2	3.2	-	4.2	-	V	
V_{IL}	LOW-level input	$V_{CC} = 2.0 \text{ V}$	-	0.8	0.5	-	0.5	V	
	voltage	V _{CC} = 4.5 V	-	2.1	1.35	-	1.35	V	
		V _{CC} = 6.0 V	-	2.8	1.8	-	1.8	V	
V _{OL} L	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}							
		$I_O = 20 \mu A; V_{CC} = 2.0 V$	-	0	0.1	-	0.1	V	
		$I_O = 20 \mu A; V_{CC} = 4.5 V$	-	0	0.1	-	0.1	V	
		$I_O = 20 \mu A; V_{CC} = 6.0 V$	-	0	0.1	-	0.1	V	
		$I_O = 4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	0.15	0.33	-	0.4	V	
		$I_O = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	0.16	0.33	-	0.4	V	
I _I	input leakage current	$V_1 = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	-	-	±0.1	-	±1.0	μΑ	
I_{LO}	output leakage current	$V_I = V_{IH}$; $V_O = V_{CC}$ or GND	-	-	±5.0	-	±10	μА	
I _{CC}	supply current	per input pin; $V_{CC} = 6.0 \text{ V}$; $V_I = V_{CC}$ or GND; $I_O = 0 \text{ A}$;	-	-	10	-	20	μА	
C _I	input capacitance		-	1.5	-	-	-	pF	

 Table 7.
 Static characteristics ...continued

Voltages are referenced to GND (ground = 0 V). All typical values are measured at T_{amb} = 25 °C.

•		, , ,			arrib			
Symbol	Parameter	Conditions	-40	0 °C to +8	5 °C	–40 °C 1	to +125 °C	Unit
			Min	Typ[1]	Max	Min	Max	
74HCT30	3 07				1		1	'
V _{IH}	HIGH-level input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	2.0	1.6	-	2.0	-	V
V _{IL}	LOW-level input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	-	1.2	8.0	-	0.8	V
V _{OL}	LOW-level output	$V_I = V_{IH}$ or V_{IL}						
	voltage	$I_O = 20 \mu A; V_{CC} = 4.5 V$	-	0	0.1	-	0.1	V
		$I_O = 4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	0.15	0.33	-	0.4	V
I _I	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$	-	-	±1.0	-	±1.0	μΑ
I _{LO}	output leakage current	$V_I = V_{IH}$; $V_O = V_{CC}$ or GND	-	-	±5.0	-	±10	μΑ
I _{CC}	supply current	per input pin; $V_{CC} = 5.5 \text{ V}$; $V_I = V_{CC}$ or GND; $I_O = 0 \text{ A}$;	-	-	10	-	20	μΑ
ΔI_{CC}	additional supply current	per input; $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V};$ $V_I = V_{CC} - 2.1 \text{ V}; I_O = 0 \text{ A}$	-	-	375	-	410	μА
Cı	input capacitance		-	1.5	-	-	-	pF

^[1] Typical values are measured at T_{amb} = 25 °C.

11. Dynamic characteristics

Table 8. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); all typical values are measured at T_{amb} = 25 °C; for test circuit see Figure 7.

Symbol	Parameter	Conditions		-40	°C to +85	5 °C	-40 °C to +125 °C		Unit
				Min	Тур	Max	Min	Max	
74HC3G	07								·
t _{PZL}	OFF-state to LOW	nA to nY; see Figure 6							
	propagation delay	$V_{CC} = 2.0 \text{ V}$		-	25	95	-	125	ns
		$V_{CC} = 4.5 \text{ V}$		-	9	19	-	25	ns
		$V_{CC} = 6.0 \text{ V}$		-	7	16	-	20	ns
t _{PLZ}	LOW to OFF-state propagation delay	nA to nY; see Figure 6							
		$V_{CC} = 2.0 \text{ V}$		-	25	95	-	125	ns
		$V_{CC} = 4.5 \text{ V}$		-	11	23	-	30	ns
		$V_{CC} = 6.0 \text{ V}$		-	10	23	-	26	ns
t _{THL}	HIGH to LOW output	nY; see Figure 6							
	transition time	$V_{CC} = 2.0 \text{ V}$		-	18	95	-	125	ns
		$V_{CC} = 4.5 \text{ V}$		-	6	19	-	25	ns
		$V_{CC} = 6.0 \text{ V}$		-	5	16	-	20	ns
C_{PD}	power dissipation capacitance	$V_I = GND$ to V_{CC}	[1]	-	4	-	-	-	pF

 Table 8.
 Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V); all typical values are measured at T_{amb} = 25 ℃; for test circuit see Figure 7.

Symbol	Parameter	Conditions	-40	–40 °C to +85 °C			–40 °C to +125 °C	
			Min	Тур	Max	Min	Max	
74HCT30	G07							
t _{PZL}	OFF-state to LOW	nA to nY; see Figure 6						
	propagation delay	V _{CC} = 4.5 V	-	11	27	-	32	ns
t _{PLZ}	LOW to OFF-state	nA to nY; see Figure 6						
	propagation delay	V _{CC} = 4.5 V	-	10	26	-	31	ns
t _{THL}	HIGH to LOW output transition time	V _{CC} = 4.5 V; see <u>Figure 6</u>	-	6	19	-	22	ns
C_{PD}	power dissipation capacitance	$V_I = GND \text{ to } V_{CC} - 1.5 \text{ V}$	[1] -	4		-	-	pF

[1] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz;

fo = output frequency in MHz;

C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of outputs.

12. Waveforms

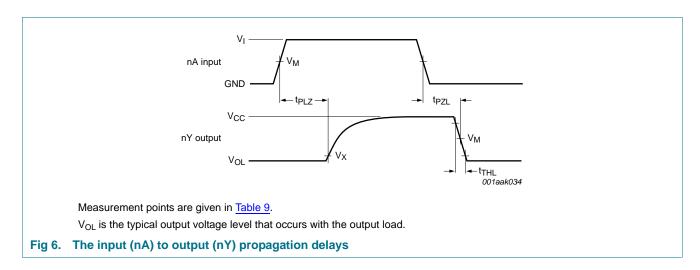
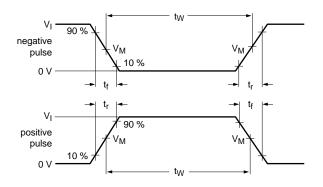
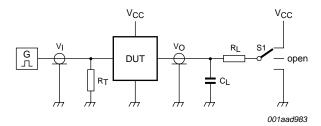




Table 9. Measurement points

Туре	Input	Output V _M V _X			
	V _M				
74HC3G07	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$	0.1 × V _{CC}		
74HCT3G07	1.3 V	1.3 V	0.1 × V _{CC}		

Test data is given in Table 10.

Definitions for test circuit:

 R_T = Termination resistance should be equal to output impedance Z_o of the pulse generator.

 C_L = Load capacitance including jig and probe capacitance.

 R_L = Load resistance.

S1 = Test selection switch.

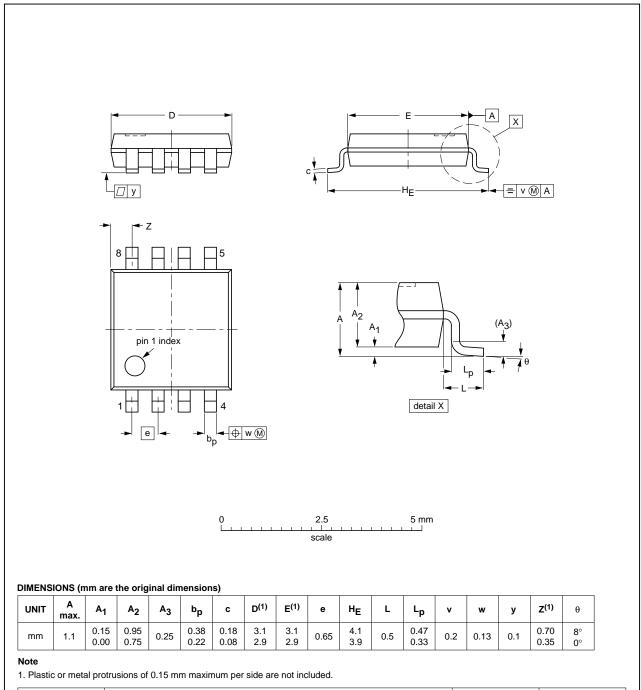
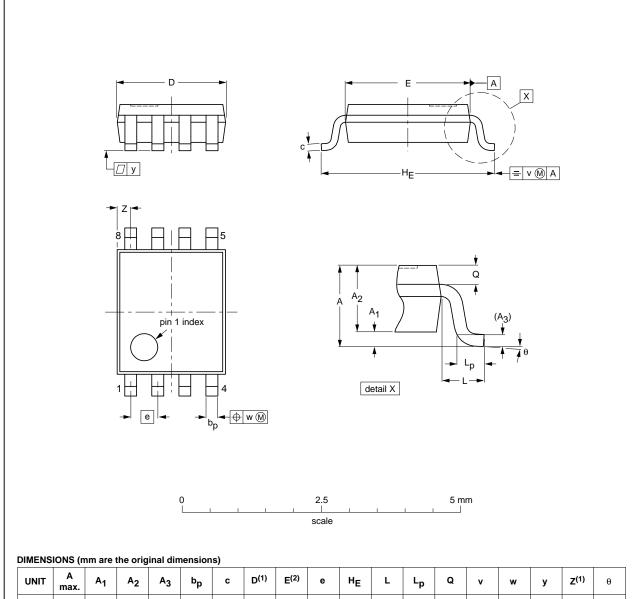

Fig 7. Test circuit for measuring switching times

Table 10. Test data

Туре	Input		Load	Load	
	V _I	t _r , t _f	CL	R _L	t _{PZL} , t _{PLZ}
74HC3G07	GND to V _{CC}	≤ 6 ns	50 pF	1 kΩ	V _{CC}
74HCT3G07	GND to 3 V	≤ 6 ns	50 pF	1 kΩ	V _{CC}

13. Package outline

TSSOP8: plastic thin shrink small outline package; 8 leads; body width 3 mm; lead length 0.5 mm SOT505-2



OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT505-2					$ \ \ \bigoplus \big($	02-01-16

Fig 8. Package outline SOT505-2 (TSSOP8)

VSSOP8: plastic very thin shrink small outline package; 8 leads; body width 2.3 mm

SOT765-1

UNIT	A max.	A ₁	A ₂	А3	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1	0.15 0.00	0.85 0.60	0.12	0.27 0.17	0.23 0.08	2.1 1.9	2.4 2.2	0.5	3.2 3.0	0.4	0.40 0.15	0.21 0.19	0.2	0.13	0.1	0.4 0.1	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE			REFER	EUROPEAN	ISSUE DATE		
	VERSION	IEC	JEDEC	JEITA		PROJECTION	1330E DATE
	SOT765-1		MO-187			$ \ \ \bigoplus \big($	02-06-07

Fig 9. Package outline SOT765-1 (VSSOP8)

74HC_HCT3G07

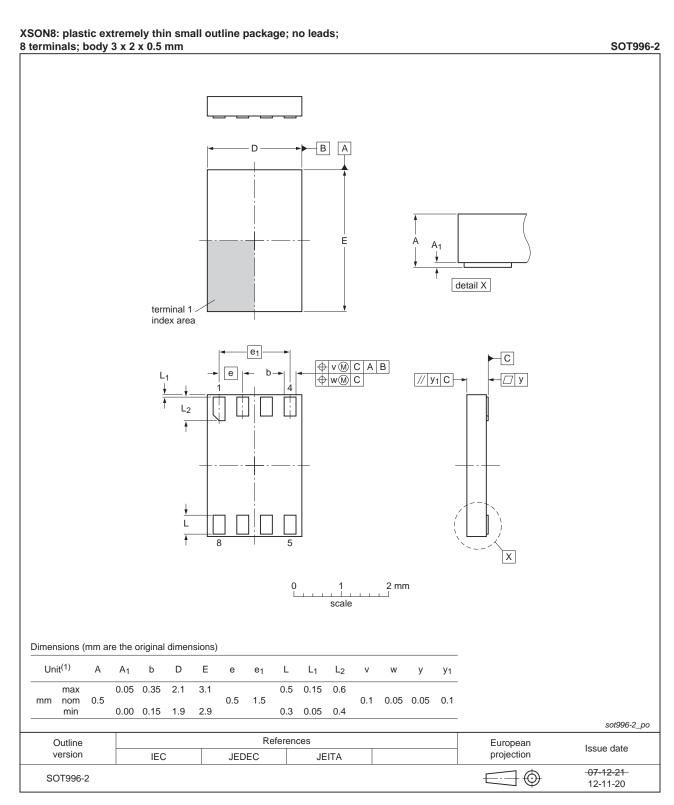


Fig 10. Package outline SOT996-2 (XSON8)

Triple buffer with open-drain outputs

14. Abbreviations

Table 11. Abbreviations

Acronym	Description
CMOS	Complementary Metal Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
MM	Machine Model
TTL	Transistor-Transistor Logic

15. Revision history

Table 12. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74HC_HCT3G07 v.4	20131216	Product data sheet	-	74HC_HCT3G07 v.3
Modifications:	 Features and 	d benefits updated (errata).		
74HC_HCT3G07 v.3	20130814	Product data sheet	-	74HC_HCT3G07 v.2
Modifications:	 For type num 	nbers 74HC3G07GD and 74H0	CT3G07GD XSON8L	J has changed to XSON8.
74HC_HCT3G07 v.2	20090512	Product data sheet	-	74HC_HCT3G07 v.1
74HC_HCT3G07 v.1	20031015	Product specification	-	-

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

purchase of Nexperia products by customer.

74HC HCT3G07

All information provided in this document is subject to legal disclaimers.

Triple buffer with open-drain outputs

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

Triple buffer with open-drain outputs

18. Contents

1	General description
2	Features and benefits
3	Ordering information
4	Marking
5	Functional diagram
6	Pinning information
6.1	Pinning
6.2	Pin description
7	Functional description
8	Limiting values
9	Recommended operating conditions 4
10	Static characteristics
11	Dynamic characteristics
12	Waveforms
13	Package outline
14	Abbreviations
15	Revision history
16	Legal information
16.1	Data sheet status
16.2	Definitions
16.3	Disclaimers
16.4	Trademarks
17	Contact information
10	Contents

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bus Transmitters category:

Click to view products by NXP manufacturer:

Other Similar products are found below:

NLV7SB3257DTT1G 7SB3257DTT2G 7SB3257DTT1G 7SB385DTT1G 74HC1G125GW 74AHC125D.112 74AHC244D.112

74AHC245D.112 74AHC541D.112 74HC245D.652 74HCT365D.652 74ABT125D.602 74ABT16245BDGG.112 74AHCT245D.112

74HC245PW.112 74HC367D.652 74HC541D.652 74HC541D.653 74HC7541D.112 74HCT367D.652 74HCT541D.653 74LVC244AD.112

74LVC4245AD.112 74LVC541AD.112 74HC240D.652 74HC4049D.653 74HC540D.652 74HCT125D.652 74HCT244D.652

74HCT245PW.112 74HCT367N.652 74HC125D.652 74HC244D.652 74HC245DB.118 HEF4050BT.652 74HC05PW.112 74HC125PW.112

74HC2G16GVH 74LVC06AD.112 74LVC06APW.112 74LVC125APW.112 74LVC126APW.112 74VHC126FT(BE) 7SB3257MUTCG

7SB384MUTCG 7SB384DTT1G 74AHCT245PW.118 74HC126DB.118 74HC240PW.112 74HC241DB.118