74LV4052 Dual 4-channel analog multiplexer/demultiplexer Rev. 5 – 17 March 2016 Prod

Product data sheet

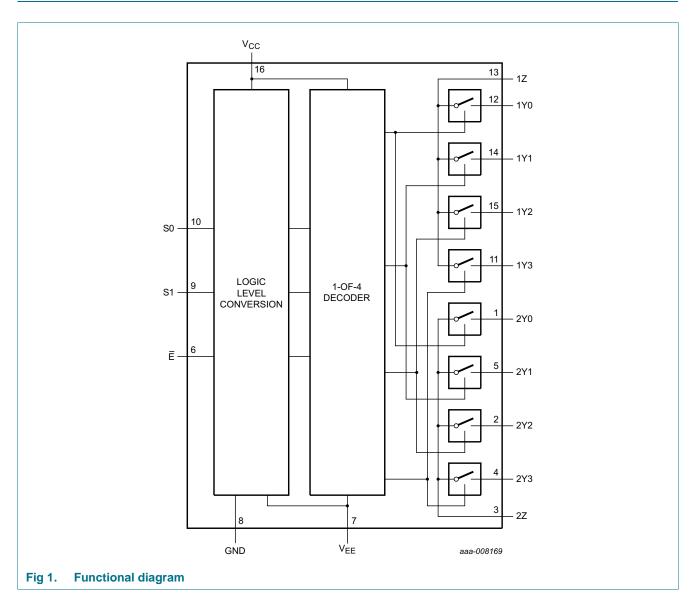
1. General description

The 74LV4052 is a low-voltage CMOS device and is pin and function compatible with the 74HC/HCT4052.

The 74LV4052 is a dual 4-channel analog multiplexer/demultiplexer with a common select logic. Each multiplexer has four independent inputs/outputs (nY0 to nY3) and a common input/output (nZ). The common channel select logics include two digital select inputs (S0 and S1) and an active LOW enable input (\overline{E}). With \overline{E} LOW, one of the four switches is selected (low impedance ON-state) by S0 and S1. With \overline{E} HIGH, all switches are in the high impedance OFF-state, independent of S0 and S1. V_{CC} and GND are the supply voltage pins for the digital control inputs (S0, S1 and \overline{E}). The V_{CC} to GND ranges are 1.0 V to 6.0 V. The analog inputs/outputs (nY0, to nY3, and nZ) can swing between V_{CC} as a positive limit and V_{EE} as a negative limit. V_{CC} - V_{EE} may not exceed 6.0 V. For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to GND (typically ground).

2. Features and benefits

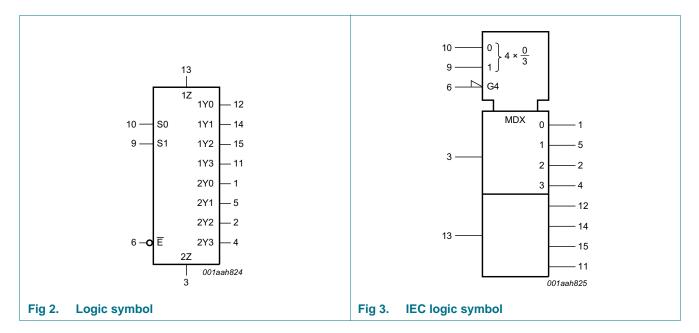
- Optimized for low-voltage applications: 1.0 V to 6.0 V
- Accepts TTL input levels between V_{CC} = 2.7 V and V_{CC} = 3.6 V
- Low ON resistance:
 - 145 Ω (typical) at V_{CC} V_{EE} = 2.0 V
 - 90 Ω (typical) at V_{CC} V_{EE} = 3.0 V
 - 60 Ω (typical) at V_{CC} V_{EE} = 4.5 V
- Logic level translation:
 - \blacklozenge To enable 3 V logic to communicate with \pm 3 V analog signals
- Typical 'break before make' built in
- ESD protection:
 - HBM JESD22-A114E exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
- Multiple package options
- Specified from –40 °C to +85 °C and from –40 °C to +125 °C

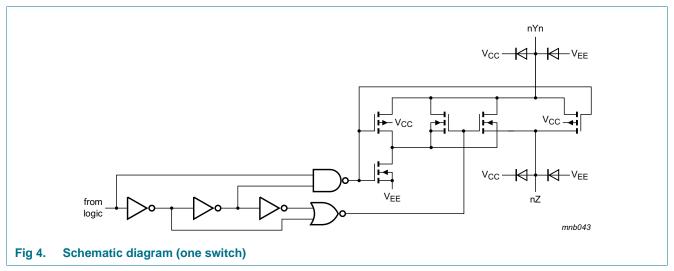

nexperia

3. Ordering information

Table 1.Ordering information

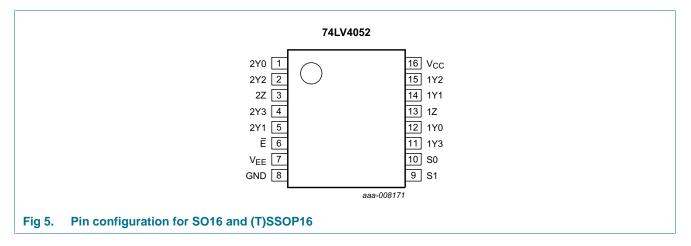
Type number	Package	Package								
	Temperature range	Name	Description	Version						
74LV4052D	–40 °C to +125 °C	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1						
74LV4052DB	–40 °C to +125 °C	SSOP16	plastic shrink small outline package; 16 leads; body width 5.3 mm	SOT338-1						
74LV4052PW	–40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1						


4. Functional diagram



Nexperia

74LV4052


Dual 4-channel analog multiplexer/demultiplexer

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2. Pin description							
Symbol	Pin	Description					
2Y0	1	independent input or output					
2Y2	2	independent input or output					
2Z	3	common input or output					
2Y3	4	independent input or output					
2Y1	5	independent input or output					
Ē	6	enable input (active LOW)					
V _{EE}	7	negative supply voltage					
GND	8	ground (0 V)					
S1	9	select logic input					
S0	10	select logic input					
1Y3	11	independent input or output					
1Y0	12	independent input or output					
1Z	13	common input or output					
1Y1	14	independent input or output					
1Y2	15	independent input or output					
V _{CC}	16	positive supply voltage					

6. Functional description

Table 3.	Function table ^[1]

Input	nput					
Ē	S1	S0				
L	L	L	nY0 and nZ			
L	L	Н	nY1 and nZ			
L	Н	L	nY2 and nZ			
L	Н	Н	nY3 and nZ			
Н	Х	X	none			

[1] H = HIGH voltage level; L = LOW voltage level; X = don't care.

7. Limiting values

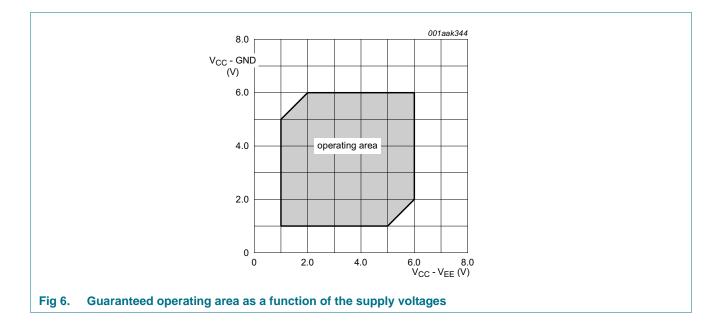
Table 4.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to $V_{SS} = 0 V$ (ground).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage		[1]	-0.5	+7.0	V
I _{IK}	input clamping current	$V_{\rm I}$ < -0.5 V or $V_{\rm I}$ > $V_{\rm CC}$ + 0.5 V	[2]	-	±20	mA
I _{SK}	switch clamping current	V_{SW} < –0.5 V or V_{SW} > V_{CC} + 0.5 V	[2]	-	±20	mA
I _{SW}	switch current	V_{SW} > -0.5 V or V_{SW} < V_{CC} + 0.5 V; source or sink current	[2]	-	±25	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \ ^{\circ}C$ to +125 $^{\circ}C$	<u>[3]</u>			
		SO16 package		-	500	mW
		SSOP16 and TSSOP16 package		-	500	mW

[1] To avoid drawing V_{CC} current out of terminal nZ, when switch current flows into terminals nYn, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminal nZ, no V_{CC} current flows out of terminals nYn. In this case, there is no limit for the voltage drop across the switch, but the voltages at nYn and nZ may not exceed V_{CC} or V_{EE}.

[2] The minimum input voltage rating may be exceeded if the input current rating is observed.


For SO16 package: above 70 °C the value of P_{tot} derates linearly with 8 mW/K.
 For SSOP16 and TSSOP16 packages: above 60 °C the value of P_{tot} derates linearly with 5.5 mW/K.

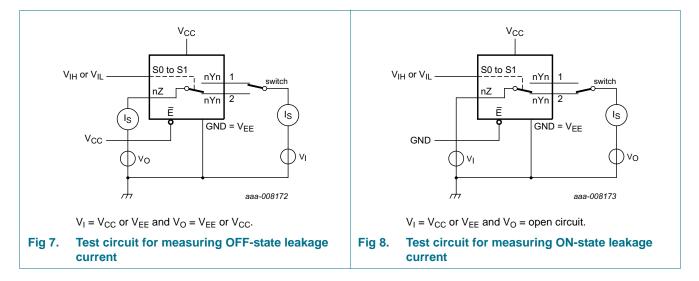
8. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC}	supply voltage	see Figure 6	1	3.3	6	V
VI	input voltage		0	-	V _{CC}	V
V _{SW}	switch voltage		0	-	V _{CC}	V
T _{amb}	ambient temperature	in free air	-40	-	+125	°C
Δt/ΔV	input transition rise and fall rate	V_{CC} = 1.0 V to 2.0 V	-	-	500	ns/V
		V_{CC} = 2.0 V to 2.7 V	-	-	200	ns/V
		V _{CC} = 2.7 V to 6.0 V	-	-	100	ns/V

Table 5. Recommended operating conditions^[1]

[1] The static characteristics are guaranteed from V_{CC} = 1.2 V to 6.0 V. However, LV devices are guaranteed to function down to V_{CC} = 1.0 V (with input levels GND or V_{CC}).

9. Static characteristics


Table 6. Static characteristics

At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	-40	°C to +8	S ℃	–40 °C to	o +125 ℃	Unit
			Min	Typ[1]	Max	Min	Max	
VIH	HIGH-level input voltage	V _{CC} = 1.2 V	0.9	-	-	0.9	-	V
		V _{CC} = 2.0 V	1.4	-	-	1.4	-	V
		V_{CC} = 2.7 V to 3.6 V	2.0	-	-	2.0	-	V
		V _{CC} = 4.5 V	3.15	-	-	3.15	-	V
		V _{CC} = 6.0 V	4.20	-	-	4.20	-	V
VIL	LOW-level input voltage	V _{CC} = 1.2 V	-	-	0.3	-	0.3	V
		V _{CC} = 2.0 V	-	-	0.6	-	0.6	V
		V _{CC} = 2.7 V to 3.6 V	-	-	0.8	-	0.8	V
		V _{CC} = 4.5 V	-	-	1.35	-	1.35	V
		V _{CC} = 6.0 V	-	-	1.80	-	1.80	V
li	input leakage current	$V_I = V_{CC}$ or GND				0 - 1.0		
		V _{CC} = 3.6 V	-	-	1.0		1.0	μΑ
		V _{CC} = 6.0 V	-	-	2.0	-	2.0	μΑ
I _{S(OFF)}	OFF-state leakage current	$V_I = V_{IH}$ or V_{IL} ; see Figure 7						
		V _{CC} = 3.6 V	-	-	1.0	-	1.0	μΑ
		V _{CC} = 6.0 V	-	-	2.0	- 0.6 - 0.8 - 1.35 - 1.80 - 1.0 - 2.0 - 1.0 - 2.0 - 1.0 - 2.0 - 1.0 - 2.0 - 40	2.0	μΑ
S(ON)	ON-state leakage current	$V_I = V_{IH}$ or V_{IL} ; see Figure 8						
		V _{CC} = 3.6 V	-	-	1.0	4.20 	1.0	μA
		V _{CC} = 6.0 V	-	-	2.0	-	2.0	μA
lcc	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A						
		V _{CC} = 3.6 V	-	-	20	-	40	μΑ
		V _{CC} = 6.0 V	-	-	40	-	80	μΑ
∆l _{CC}	additional supply current	per input; $V_1 = V_{CC} - 0.6 V$; $V_{CC} = 2.7 V$ to 3.6 V	-	-	500	-	850	μA
CI	input capacitance		-	3.5	-	-	-	pF
C _{sw}	switch capacitance	independent pins nYn	-	5	-	-	-	pF
$I_{S(ON)}$ I_{CC} ΔI_{CC} C_{I} C_{sw}		common pins nZ	-	12	-	-	-	pF

[1] Typical values are measured at $T_{amb} = 25 \ ^{\circ}C$.

Dual 4-channel analog multiplexer/demultiplexer

9.1 Test circuits

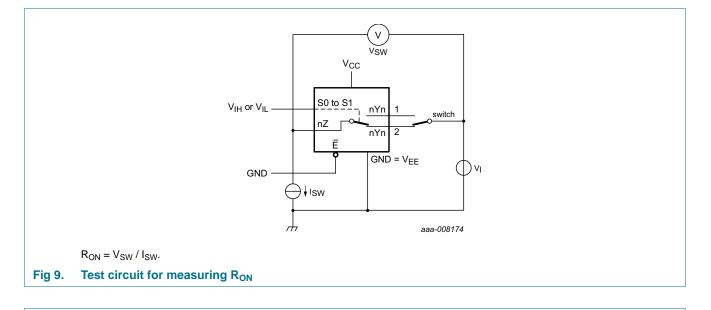
9.2 ON resistance

Table 7. ON resistance

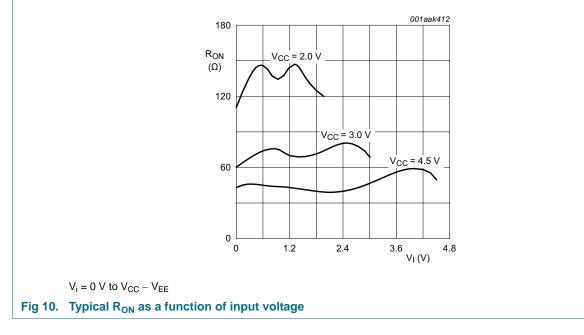
At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for graphs see <u>Figure 9</u> and <u>Figure 10</u>.

Symbol	Parameter	Conditions	-40	°C to +8	5 °C	-40 °C t	o +125 °C	Unit
			Min	Typ[1]	Max	Min	Max	
R _{ON(peak)}	ON resistance (peak)	$V_I = 0 V \text{ to } V_{CC} - V_{EE}$						
		V _{CC} = 1.2 V; I _{SW} = 100 μA [2]	-	-	-	-	-	Ω
		$V_{CC} = 2.0 \text{ V}; \text{ I}_{SW} = 1000 \mu\text{A}$	-	145	325	-	375	Ω
		$V_{CC} = 2.7 \text{ V}; \text{ I}_{SW} = 1000 \mu\text{A}$	-	90	200	-	235	Ω
		V _{CC} = 3.0 V to 3.6 V; I _{SW} = 1000 μA	-	80	180	-	210	Ω
		V_{CC} = 4.5 V; I _{SW} = 1000 µA	-	60	135	-	160	Ω
		$V_{CC} = 6.0 \text{ V}; \text{ I}_{SW} = 1000 \mu\text{A}$	-	55	125	-	145	Ω
ΔR_{ON}	ON resistance mismatch	$V_I = 0 V \text{ to } V_{CC} - V_{EE}$						
	between channels	$V_{CC} = 1.2 \text{ V}; \text{ I}_{SW} = 100 \mu\text{A}$	-	-	-	-	-	Ω
		$V_{CC} = 2.0 \text{ V}; \text{ I}_{SW} = 1000 \mu\text{A}$	-	5	-	-	-	Ω
		$V_{CC} = 2.7 \text{ V}; \text{ I}_{SW} = 1000 \mu\text{A}$	-	4	-	-	-	Ω
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V};$ $I_{SW} = 1000 \mu\text{A}$	-	4	-	-	-	Ω
		V_{CC} = 4.5 V; I _{SW} = 1000 µA	-	3	-	-	-	Ω
		$V_{CC} = 6.0 \text{ V}; \text{ I}_{SW} = 1000 \mu\text{A}$	-	2	-	-	-	Ω

Table 7. ON resistance ...continued


At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for graphs see <u>Figure 9</u> and <u>Figure 10</u>.

Symbol	Parameter	Conditions	-40	°C to +8	5 °C	-40 °C to	o +125 ℃	Unit
			Min	Typ <mark>[1]</mark>	Max	Min	Max	
R _{ON(rail)}	ON resistance (rail)	V _I = GND						
		$V_{CC} = 1.2 \text{ V}; \text{ I}_{SW} = 100 \mu\text{A}$ [2]	-	225	-	-	-	Ω
		V_{CC} = 2.0 V; I _{SW} = 1000 µA	-	110	235	-	270	Ω
		$V_{CC} = 2.7 \text{ V}; \text{ I}_{SW} = 1000 \mu\text{A}$	-	70	145	-	165	Ω
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V};$ $I_{SW} = 1000 \mu\text{A}$	-	60	130	-	150	Ω
		V_{CC} = 4.5 V; I _{SW} = 1000 µA	-	45	100	-	115	Ω
		$V_{CC} = 6.0 \text{ V}; \text{ I}_{SW} = 1000 \mu\text{A}$	-	40	85	-	100	Ω
R _{ON(rail)}	ON resistance (rail)	$V_I = V_{CC} - V_{EE}$						
		$V_{CC} = 1.2 \text{ V}; I_{SW} = 100 \mu\text{A}$ [2]	-	250	-	-	-	Ω
		V_{CC} = 2.0 V; I _{SW} = 1000 µA	-	120	320	-	370	Ω
		V_{CC} = 2.7 V; I _{SW} = 1000 µA	-	75	195	-	225	Ω
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V};$ $I_{SW} = 1000 \mu\text{A}$	-	70	175	-	205	Ω
		V_{CC} = 4.5 V; I _{SW} = 1000 µA	-	50	130	-	150	Ω
		$V_{CC} = 6.0 \text{ V}; \text{ I}_{SW} = 1000 \mu\text{A}$	-	45	120	-	135	Ω


[1] Typical values are measured at $T_{amb} = 25 \ ^{\circ}C$.

[2] When supply voltages (V_{CC} - V_{EE}) near 1.2 V the analog switch ON resistance becomes extremely non-linear. When using a supply of 1.2 V, only use these devices for transmitting digital signals.

Dual 4-channel analog multiplexer/demultiplexer

9.3 On resistance waveform and test circuit

Dual 4-channel analog multiplexer/demultiplexer

10. Dynamic characteristics

Table 8. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V). For test circuit, see Figure 13.

Symbol	Parameter	Conditions		-40	°C to +85	5°C	_40 °C t	o +125 °C	Unit
				Min	Typ <mark>[1]</mark>	Max	Min	Max	
t _{pd}	propagation delay	nYn to nZ, nZ to nYn; see Figure 11	[2]						
		V _{CC} = 1.2 V		-	25	-	-	-	ns
		V _{CC} = 2.0 V		-	9	17	-	20	ns
		$V_{CC} = 2.7 V$		-	6	13	-	15	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	<u>[3]</u>	-	5	10	-	12	ns
		V _{CC} = 4.5 V		-	4	9	-	10	ns
		V _{CC} = 6.0 V		-	3	7	-	8	ns
t _{en}	enable time	Ē, Sn to nYn, nZ; see Figure 12	[2]						
		V _{CC} = 1.2 V		-	190	-	-	-	ns
		V _{CC} = 2.0 V		-	65	121	-	146	ns
		V _{CC} = 2.7 V		-	48	89	-	108	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}; C_L = 15 \text{ pF}$	<u>[3]</u>	-	30	-	-	-	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	<u>[3]</u>	-	36	71	-	86	ns
		V _{CC} = 4.5 V		-	32	60	-	73	ns
		V _{CC} = 6.0 V		-	25	46	-	56	ns
t _{dis}	disable time	E, Sn to nYn, nZ; see Figure 12	[2]						
		V _{CC} = 1.2 V		-	125	-	-	-	ns
		V _{CC} = 2.0 V		-	43	80	-	95	ns
		$V_{CC} = 2.7 V$		-	33	59	-	71	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}; C_L = 15 \text{ pF}$	<u>[3]</u>	-	22	-	-	-	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	[3]	-	26	48	-	57	ns
		V _{CC} = 4.5 V		-	23	41	-	49	ns
		V _{CC} = 6.0 V		-	18	32	-	38	ns
C _{PD}	power dissipation capacitance	C_L = 50 pF; f _i = 1 MHz; V _I = GND to V _{CC}	[4]	-	57	-	-	-	pF

[1] All typical values are measured at T_{amb} = 25 °C.

- - t_{dis} is the same as t_{PLZ} and t_{PHZ} .
- [3] Typical values are measured at nominal supply voltage (V_{CC} = 3.3 V).

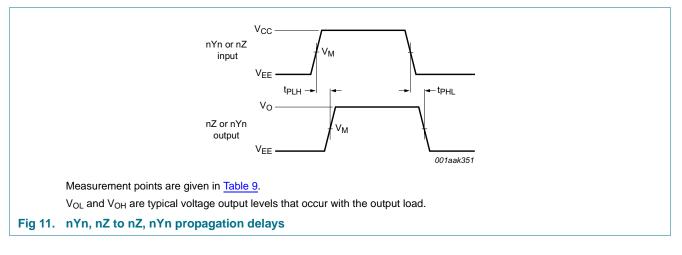
[4] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

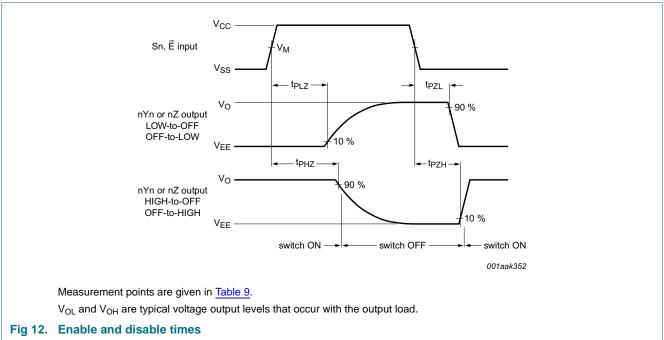
 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \Sigma((C_{L} + C_{sw}) \times V_{CC}^{2} \times f_{o}) \text{ where:}$

 f_i = input frequency in MHz, f_o = output frequency in MHz

 C_L = output load capacitance in pF

 C_{sw} = maximum switch capacitance in pF;


V_{CC} = supply voltage in Volts

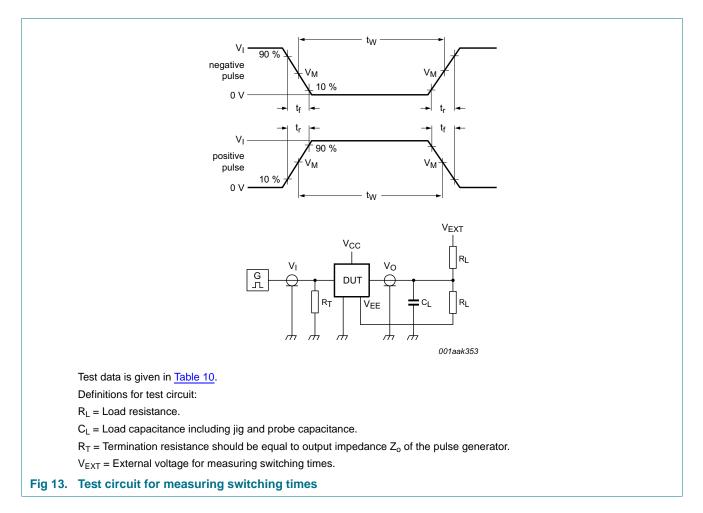

N = number of inputs switching

 $\Sigma(C_L \times V_{CC}{}^2 \times f_o)$ = sum of the outputs.

Dual 4-channel analog multiplexer/demultiplexer

10.1 Waveforms

Table 9. Measurement points


Supply voltage	Input	Output
V _{cc}	V _M	V _M
< 2.7 V	0.5V _{CC}	0.5V _{CC}
2.7 V to 3.6 V	1.5 V	1.5 V
> 3.6 V	0.5V _{CC}	0.5V _{CC}

74LV4052 Product data sheet

Nexperia

74LV4052

Dual 4-channel analog multiplexer/demultiplexer

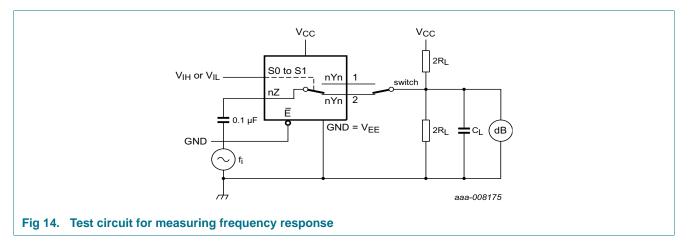
Table 10. Test data

Supply voltage	Input		Load		ad V _{EXT}		
V _{cc}	VI	t _r , t _f	CL	RL	t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
< 2.7 V	V _{CC}	≤ 6 ns	50 pF	1 kΩ	open	V _{EE}	2V _{CC}
2.7 V to 3.6 V	2.7 V	≤ 6 ns	15 pF, 50 pF	1 kΩ	open	V _{EE}	2V _{CC}
> 3.6 V	V _{CC}	≤ 6 ns	50 pF	1 kΩ	open	V _{EE}	2V _{CC}

Dual 4-channel analog multiplexer/demultiplexer

10.2 Additional dynamic parameters

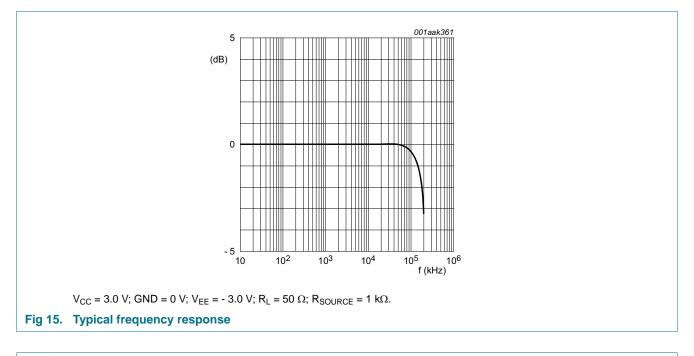
Table 11. Additional dynamic characteristics


At recommended operating conditions; voltages are referenced to GND (ground = 0 V); $V_I = GND$ or V_{CC} (unless otherwise specified); $t_r = t_f \le 6.0$ ns; $T_{amb} = 25$ °C.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
THD	total harmonic distortion	$f_i = 1 \text{ kHz}; C_L = 50 \text{ pF}; R_L = 10 \text{ k}\Omega; \text{ see } \frac{\text{Figure } 18}{10 \text{ km}}$				
		V _{CC} = 3.0 V; V _I = 2.75 V (p-p)	-	0.8	-	%
		V _{CC} = 6.0 V; V _I = 5.5 V (p-p)	-	0.4	-	%
		$f_i = 10 \text{ kHz}; C_L = 50 \text{ pF}; R_L = 10 \text{ k}\Omega; \text{ see } \frac{\text{Figure 18}}{10000000000000000000000000000000000$				
		V _{CC} = 3.0 V; V _I = 2.75 V (p-p)	-	2.4	-	%
		V _{CC} = 6.0 V; V _I = 5.5 V (p-p)	-	1.2	-	%
f _(-3dB)	-3 dB frequency response	$C_L = 50 \text{ pF}; R_L = 50 \Omega; \text{ see Figure 14}$ [1]				
		V _{CC} = 3.0 V	-	180	-	MHz
		V _{CC} = 6.0 V	-	200	-	MHz
α _{iso}	isolation (OFF-state)	$f_i = 1 \text{ MHz}; C_L = 50 \text{ pF}; R_L = 600 \Omega; \text{ see } Figure 16$ [2]				
		V _{CC} = 3.0 V	-	-50	-	dB
		V _{CC} = 6.0 V	-	-50	-	dB
V _{ct}	crosstalk voltage	between digital inputs and switch; $f_i = 1 \text{ MHz}$; $C_L = 50 \text{ pF}$; $R_L = 600 \Omega$; see Figure 19				
		V _{CC} = 3.0 V	-	0.11	-	V
		V _{CC} = 6.0 V	-	0.12	-	V
Xtalk	crosstalk	between switches; $f_i = 1$ MHz; $C_L = 50$ pF; [2] $R_L = 600 \Omega$; see Figure 20				
		V _{CC} = 3.0 V	-	-60	-	dB
		V _{CC} = 6.0 V	-	-60	-	dB

[1] To obtain 0 dBm level at output for 1 MHz (0 dBm = 1 mW into 50 Ω), adjust f_i voltage.

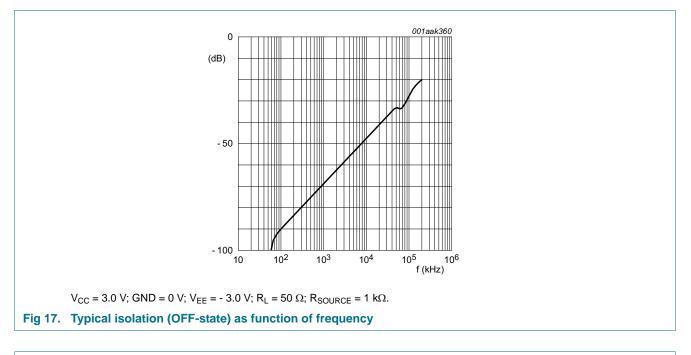
[2] To obtain 0 dBm level at output for 1 MHz (0 dBm = 1 mW into 600 Ω), adjust f_i voltage.

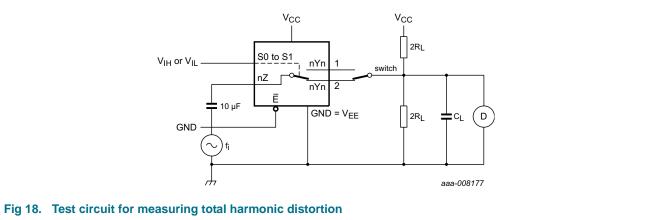

10.2.1 Test circuits

Nexperia

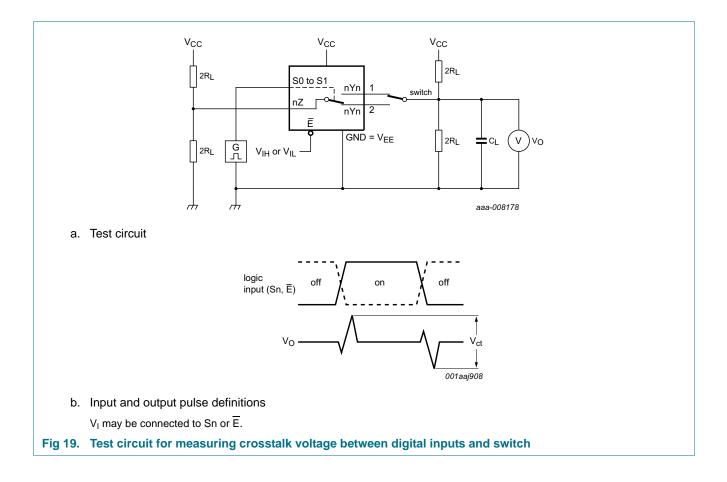
74LV4052

Dual 4-channel analog multiplexer/demultiplexer

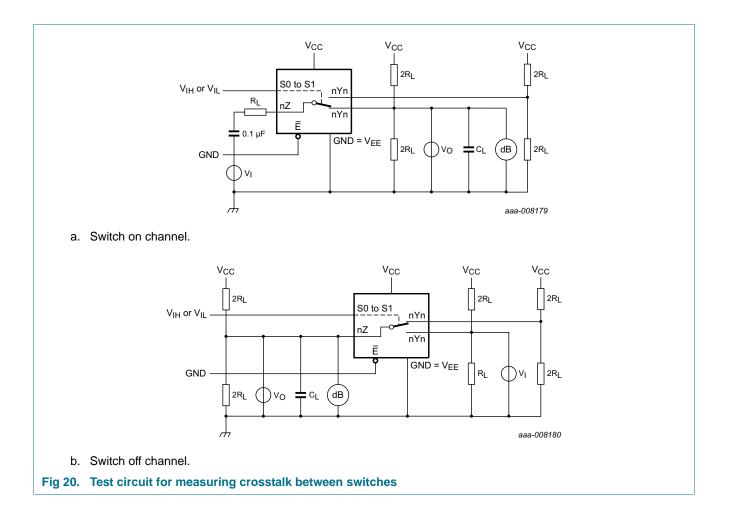




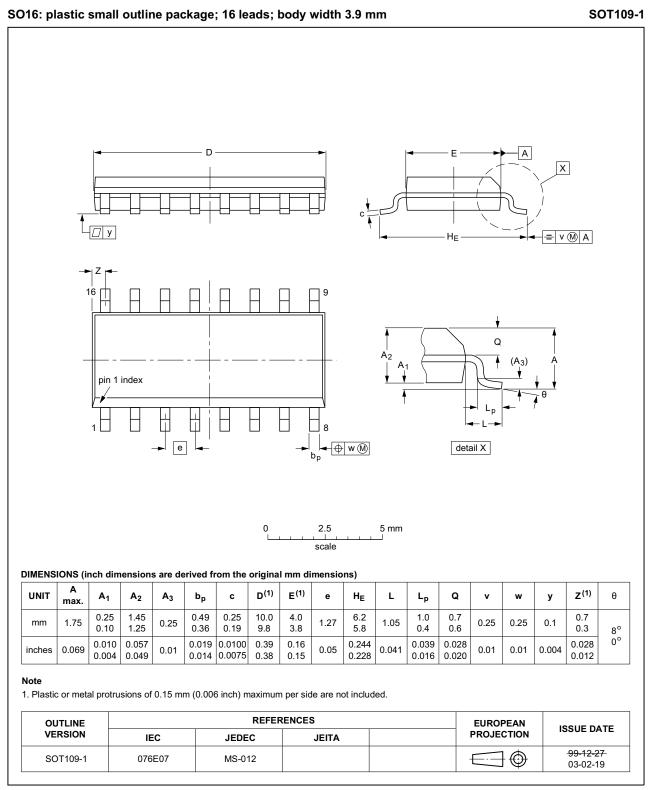
Nexperia


74LV4052

Dual 4-channel analog multiplexer/demultiplexer



Dual 4-channel analog multiplexer/demultiplexer



Dual 4-channel analog multiplexer/demultiplexer

Dual 4-channel analog multiplexer/demultiplexer

11. Package outline

Fig 21. Package outline SOT109-1 (SO16)

Dual 4-channel analog multiplexer/demultiplexer

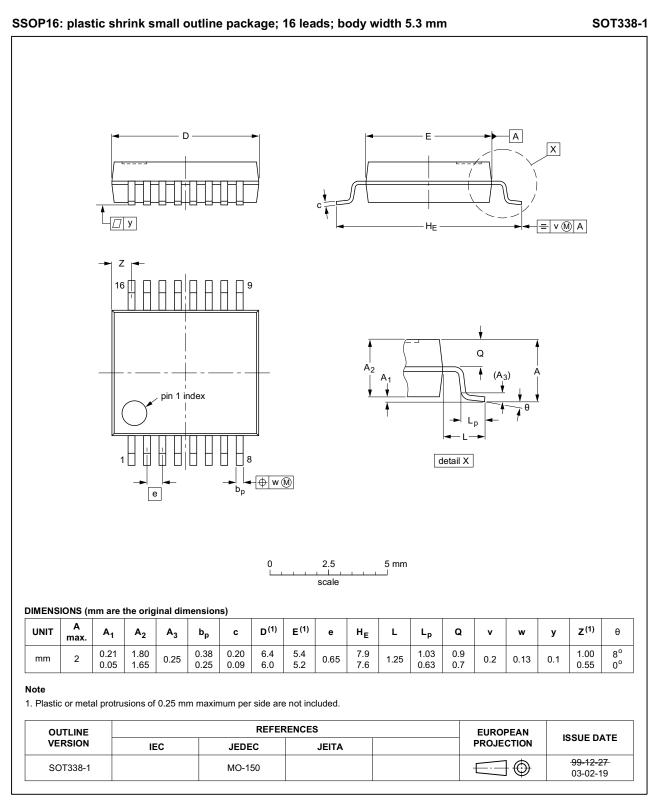


Fig 22. Package outline SOT338-1 (SSOP16)

Dual 4-channel analog multiplexer/demultiplexer

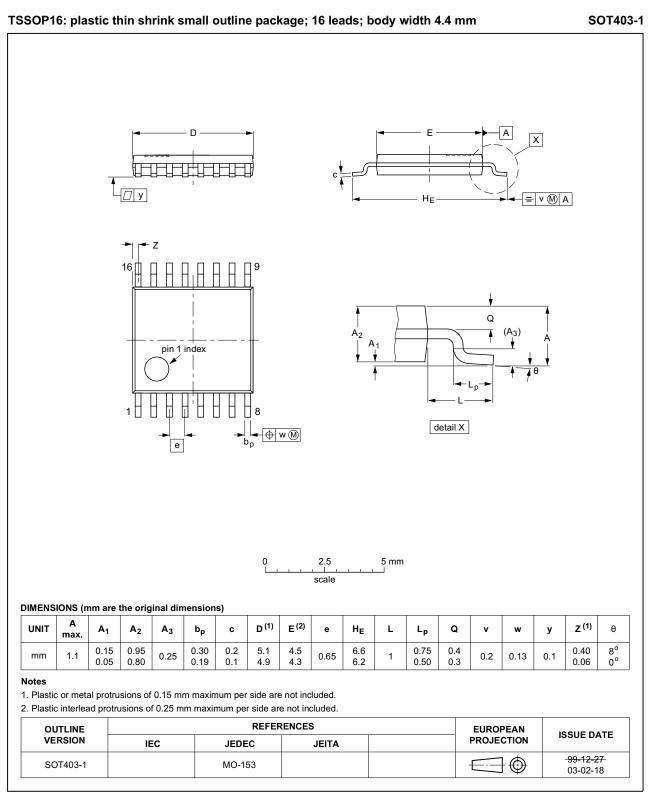


Fig 23. Package outline SOT403-1 (TSSOP16)

All information provided in this document is subject to legal disclaimers.

12. Abbreviations

Table 12. Abbreviations		
Acronym	Description	
CMOS	Complementary Metal-Oxide Semiconductor	
ESD	ElectroStatic Discharge	
НВМ	Human Body Model	
MM	Machine Model	
TTL	Transistor-Transistor Logic	

13. Revision history

Table 13.Revision history

Document ID	Release date	Data sheet status	Change no	otice Supersedes		
74LV4052 v.5	20160317	Product data sheet	-	74LV4052 v.4		
Modifications:	 Type numb 	oer 74LV4052N (SOT38-4) r	emoved.			
74LV4052 v.4	20130701	Product data sheet	-	74LV4052 v.3		
Modifications:	 The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors. 					
	 Legal texts have been adapted to the new company name where appropriate. 					
74LV4052 v.3	19980623	Product specification	-	74LV4052 v.2		
74LV4052 v.2	19970715	Product specification	-	-		

14. Legal information

14.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

14.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any

representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and

customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

14.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - Nexperia

products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Dual 4-channel analog multiplexer/demultiplexer

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of

non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the

product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

14.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

15. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

Dual 4-channel analog multiplexer/demultiplexer

16. Contents

1	General description 1
2	Features and benefits 1
3	Ordering information 2
4	Functional diagram 2
5	Pinning information 4
5.1	Pinning 4
5.2	Pin description 4
6	Functional description 5
7	Limiting values 5
8	Recommended operating conditions 6
9	Static characteristics 7
9.1	Test circuits
9.2	ON resistance 8
9.3	On resistance waveform and test circuit 10
10	Dynamic characteristics 11
10.1	Waveforms 12
10.2	Additional dynamic parameters 14
10.2.1	Test circuits 14
11	Package outline 19
12	Abbreviations 22
13	Revision history 22
14	Legal information 23
14.1	Data sheet status 23
14.2	Definitions 23
14.3	Disclaimers
14.4	Trademarks
15	Contact information 24
16	Contents

© Nexperia B.V. 2017. All rights reserved

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 17 March 2016

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Encoders, Decoders, Multiplexers & Demultiplexers category:

Click to view products by NXP manufacturer:

Other Similar products are found below :

M38510/01406BEA MC74HC163ADTG 74HC253N HMC854LC5TR NLV74VHC1G01DFT1G NLVHC4851ADTR2G NLVHCT4851ADTR2G PI3B33X257BE M74HCT4052ADTR2G M74VHC1GT04DFT3G TC74AC138P(F) MC74LVX4051MNTWG HMC855LC5TR NLV14028BDR2G NLV14051BDR2G NLV74HC238ADTR2G 715428X COMX-CAR-210 5962-8607001EA 5962-8756601EA MAX3783UCM+D PI5C3253QEX 8CA3052APGGI8 TC74HC4051AF(EL,F) TC74VHC138F(EL,K,F PI3B3251LE PI5C3309UEX PI5C3251QEX PI3B3251QE 74VHC4052AFT(BJ) PI3PCIE3415AZHEX NLV74HC4851AMNTWG MC74LVX257DG M74HC151YRM13TR M74HC151YTTR PI5USB31213XEAEX M74HCT4851ADWR2G XD74LS154 AP4373AW5-7-01 QS3VH251QG8 QS4A201QG HCS301T-ISN HCS500-I/SM MC74HC151ADTG TC4066BP(N,F) 74ACT11139PWR HMC728LC3CTR 74VHC238FT(BJ) 74VHC4066AFT(BJ) 74VHCT138AFT(BJ)