As experienced experts we support our customers and partners around the world with products, solutions and services in the industrial environment of power, siqnal and data. We are at home in their industries and markets and know the signal and data. We are at home in their industries and markets and know the
technological challenges of tomorrow. We are therefore continuously developing innovative, sustainable and useful solutions for their individual needs. Together we set standards in Industrial Connectivity.

Signal converters, trip amplifiers and process meters Catalogue 2016/2017
Let's connect.

Made in Geermany

Analogue signal conditioning

Dear Customers,

The PDF versions of our catalogues offer practical additional functions, helping you to find your way around our product range and simplifying the ordering process.

In addition to the catalogue, the PDF also contains:

- Internal page links
- Links to the online catalogue

Try it out for yourself. Click the order number to obtain more detailed information and close-up images via you web browser. The links in the PDF file also enable you to go directly to the next desired catalogue page

Further Weidmüller product catalogues can be accessed by
clicking the following:

Weidmuller 35

Signal converters, trip amplifiers and process meters
Catalogue 4.1

Signal converters, trip amplifiers and process meters	Product verview - Analogue Signal Conditioning

Intrinsically safe signal conditioners for hazardous area applications

Signal converters in 6 mm width

Signal converters \quad D

Trip amplifier for monitoring AC/DC circuits \quad E

Indicators and configurable displays
Accessories Analogue Signal Conditioning
G

| Appentix | Technical appentix/Glossary | | W |
| :--- | :--- | :--- | :--- | :--- |
| | Index | Search acocrding to type o ro rder rumber | X |

Signal converters, trip amplifiers and process meters

Configuration adapter
Page G.4
Markers and cross-connectors

		Conems
Product overview - Analogue Signal Conditioning		
	Intoutricion	A2
		${ }^{\text {a }}$

Analogue Signal Conditioning Qs and As

Where are analogue conditioners used?

In all types of electronic industrial and marine measureme and control systems - for example in processes such a gas production and chemical processing. In fact wherever temperature, pressure, level, flow, weight, speed, etc., is measured and controlled as part of a continuous or batch production process. Such measurement parameters - after being accurately produced - must not be degraded on the way from the field to the control room, despite external influences from the atmosphere and installation. Conversio highest quality, which can also withstand wide ambient temperature changes, electro-magnetic interference, vibration, corrosive or hazardous conditions.

What functions do analogue conditioners provide?
One or more of the following:

1) Isolation of high level DC measurement and control signals. (Why do we need isolation? - see the notes that follow later in this catalogue.)
2) Conversion of high level signals, such as $0 . .5 \mathrm{~V}$ input to 4... 20 mA output
3) Amplification, linearisation and transmission of low-leve senor inputs, such as millivolts from thermocouples, into high level DC outputs to enable transmission over distances 100 m or more.
4) Initiation of status indications and alarms by creating relay contact closure outputs from analogue inputs.

Why do we need separate analogue modules nowadays? Surely the control system (PLC or DCS) can perform the same functions?

1) Sometimes this is true, but look at where the cabling from the field devices (transmitters, sensors, valves and actuators) needs to go. It will usually go not just straight to the control system. Many signals are also passed to ocal indicators and alarms, and each will need isolating from the others
2) Often sensors - like thermocouples for temperature need isolating, converting and linearising locally to a standardised high level signal (e.g. $4 \ldots 20 \mathrm{~mA}$) for long distance transmission - instead of running expensive compensation cable to the control system.
3) Where the control system has no isolated analogue inputs, a separate isolator will often be needed.
4) Where the control system cannot provide power for the ensor / transmitter and it is convenient to do this from an isolating module.
5) Where a high integrity, dedicated display is required, separate from the control system display, and the input needs splitting
6) Where local linearisation is needed for a plant operator for example where a liquid volume indicator is needed for filling a bulk storage tank, but the measurement is level level to volume conversion depends on the shape of the tank).
7) Where the control system only takes $4 \ldots 20 \mathrm{~mA}$ analogu inputs and the sensors provide other less common ... $12 \mathrm{kHz}, 0 . . .5 \mathrm{~A}$ AC etc
8) Where the control system needs to be protected from electrical noise pulses on it's analogue inputs
) Where expansion of the analogue inputs would mean an expensive new //O board for the control system
9) Weidmüller has a formidable range of analogue conditioners, covering most application requirements, and our range is expanding. We also have some useful tools for selection and configuration.
10) If you cannot find a suitable product for your application it doesn't mean we don't have one! Tell us your requirement, and if we can t provide a solution from our version that we could create for you.

Quick select - Analogue Signal Conditioning

8965340000 9965350000	Intrinsically sate signal converete for the Ex zone											
		1							Namur lititaor		22.5mm	
	Actr2x+iolscoinics								Namur hititaor		22.5 mm	
8995537000	Acr20.2H01.2S0-ANO.S	2							Namur nititior		22.5 mm	
8965388000	Act20:2H0-2500-ANCS	2							Namur hititior		22.5 mm	
8995356000	Actr20xH0:S0.S	1							Namur rititaor		22.5 mm	
89965390000	ACT20X-2H01-250.S	2							Namur rititior		22.5 mm	
89955400000	Actrox.s01/-00.LS	1							NPN PNP swithing signal		22.5 mm	
89955420000	ACT20X2SOL-2H00.	2							NPN PNP swithing Signal		22.5 mm	
8985410000	ACT20X.SOHOOOHS	1							NPN PNP swithing signal		22.5 mm	
8995470000	Actr20xHrisa.S	1	x				x	x			22.5 mm	
89855880000	Actrox-2HTr 2 SAO.S	2	x				x	x			22.5 mm	
8995549000	Actr20xHl\|ISAOS	1	x	x	x	x	x	\times		\times	22.5 mm	
13182220000	ACTr20x+HULSAOMP. ${ }^{\text {a }}$	1	x	x	\times	x	x	\times			12.5 mm	
8995433000	Actroxthalsa.s	1		x					HART- trassamant	\times	22.5 mm	
8995540000	ACTIOX2HALISASA.S	2		\times					HarT. tanssament	\times	22.5 mm	
89954550000	Acr20.Sathaos	1		\times					HART0. transparant		22.5 mm	
${ }_{8965460000}$	ACTIOX2SALI-HAO.S	2		\times							22.5 mm	
1176020000												
11755990000	Actr2M.C.2-20.S	1	x	x							6.1 mm	
11766000000	ACT2OMAAPA.S	1	x	x	x	x				\times	6.1 mm	
1178601000	ACTroMAAAOES	1	x	\times	x	${ }^{*}$					6.1 mm	
1175988000	Actrom.cleo.s	1	x	x							6.1 mm	
11776030000	ACT2OM.VIAO.S.	1	x	x	\times	x	x	x		\times	6.1 mm	
1176607000	Actrom.cicoilles	1	x	\times							6.1 mm	
1176088000		2	x	x							6.1 mm	
1176604000	Actromacteolles	1	x	\times						\times	6.1 mm	
1178655000		2	x	\times						\times	6.1 mm	
1375455000	Actrom.Bal-A.S	1									6.1 mm	
13754770000	Actrombalizaos	1							-1020) + +102020 mA. $51010 .+5101 \mathrm{~V}$		6.1 mm	
1375488000	Actrom.tilao.	1					x				6.1 mm	
1375550000	Actrom:ctiaOes	1					x				6.1 mm	
13755110000	Actrom.ritao.s	1	-					x			6.1 mm	
13755220000	Actrom.ritaoes	1	-					\times			6.1 mm	
1433559000	ACT20M.ficlecoiles	1					x	x			6.1 mm	
1433561000	ACT2OM.Fiticoelurs	1						\times			6.1 mm	
8425720000	MCZPT10/3 ClP P. 1100 C	1						\times			6.1 mm	
8483388000	McZPPT10/3 CIP O. 1200 C	1						x			6.1 mm	
8860420000	McZ Pritoo/3 CIP 0..150C	1						x			6.1 mm	
${ }^{8473310000}$	MCZPP100/3 clip 0.2000 C	1						\times			6.1 mm	
8473320000	MczPPT100/3 CIP 0.3000	1						\times			6.1 mm	
8473000000		1						-			6.1 mm	
8604430000 841190000		1	x					x			${ }_{6}^{6.1 \mathrm{~mm}}$	
8260280000	Mczsco 0.10 V	1			x						${ }_{6} \mathrm{~mm}$	
8277350000	Mcz2co -20MA	1	x								6 mm	
8461488000	mcz cfe 0.20nA	1	x								6 mm	
8461470000	Mcz Vece 0.10 V	1		\times							6 mm	
	Networkcompatible signal convererers											
1334499000	A¢T20СA A10.MTPP.	1	x	x	x					x	22.5 mm	
1510377000		1							R.45, Motulus TCP		22.5 mm	
1510240000	ACTroccmitioanacs	1							0.10 ACCIOC		22.5 mm	
1510420000	Actroccmitoanarcs	1							0.600AC/OC		122.5 mm	

1			x	Rela y utut, Status relay	Softwar	24 VCO	300 V	3.way	s	With ATEX approval, intinisis satey
1			x	Relay utput, Staus relay	Sotware	24 VOC	300 V	3.way	s	With AIEX aporoval, intinisics sfiely
2			x	Relay output, Staus relay	Sotware	24 VCC	300 V	3.way	s	With AIEX approval, intinisis sately
2			\times	Relay utupt, Staus relay	Sotware	24 VOC	300 V	3.way	s	With AIEX approval, intisisics staty
				Tansistor output, Staus selay	Sotware	${ }^{24 V D C}$	300 V	3.way	s	With AIEX approval, intinisics sfity
2				Tannistor output, Status relay	Sotware	24 VDC	300 V	3.way	s	With ATE approval, intinisics staty
1				Staus relay	Sotware	24 VCC	300 V	3.way	s	With AIEXapporoval, intinsis sisfery
2				Staus reay	Softwar	24 VCC	300 V	3.way	s	ATEX appoval, intinisis safery y intion protection IIC
1				Status reay	Sotware	24 VOC	300 V	3.way	s	ATEX appoval, intinisics satevi yintion protection IIB
1	x	x		Staus reay	Sotware	24 VOC	300 V	3.way	s	With AIEE approval, intinisis satily
2	x	x		Staus reay	Softwar	24 VDC	300 V	3.way	s	With ATEX approval, intinisis satery
1	x		x	Limit value relay output, Stats selay	Softwar	24 VOC	300 V	3.way	s	With AIEX appovol, intinisis satity
1		\times			Sotware	output lop	300 V	2.way	s	With ATEX approval i. itrinsis sadet, Supply onouputs side
1		\times		Status relay	Sotware	24 VDC	300 V	3.way	s	ATEX appoval, intrinsisis satey, HART- transparent
2		x		Status relay	Sotware	24 VOC	300 V	3.way	s	
1		\times		Staus relay	Stuwar	24 VDC	300 V	3.way	s	ATEX appoval, intinisis sfaty, HART0. Tanspar
2		\times		Status relay	Sotwaie	24 VOC	300 V	3.way	s	

Quick select - Analogue Signal Conditioning

	Signal covverters												
7760054114	Actropepiceo	1	x	${ }^{x}$						2/3/3iet tassiter	x	12.5 mm	
${ }_{7}^{7760054115}$		$\frac{1}{2}$	x \times ¢	x						2/3/wisit tassmiter	\times	${ }_{12.5 \mathrm{~mm}}^{12.5}$	
8411190000	Mcz ccco -20mA0.20mA	1	x									6 mm	
	Strain gauge transmitter												
106725000	ACT20P-8RIDES	1			-	\|	-			4.6; wire stain gauges	x	12.5 mm	
	Universal measuring transtuer												
1481970000	Act20PPR OCCOC IIS	1	x	x		x				$\pm 100 \mathrm{~mA}, \pm 300 \mathrm{~V}$		12.5 mm	
1453210000		1	x	x	x	x	x	x		$\pm 25 \mathrm{~mA}, \pm 5 \mathrm{ACC}, \pm 88 \mathrm{VCC}, \pm 300 \mathrm{VCC}, 30 \mathrm{VaC}$	\times	12.5 mm	
1477420000	ACTIOPAPAO.OCS	,	x	\times	\times	x				0..11V, 0.22 mA	\times	12.5 mm	
8939670000	WAS6 TTA	1	x	x	x	x	x	x	\times	Adiustable: $200.500 \mathrm{mv}-20.50 \mathrm{~V}$	\times	45 mm	
8939680000	Waz6 TA	1	x	\times	x	x	x	x	x	2 Hz .100 kHz	\times	45 mm	
8964310000	Was6 TAAX	1	\times	x	\times	\times	\times	x	\times	RTT, TC, resisor,	\times	45 mm	
8964320000	Waz6 ta Ex	1	x	x	x	\times	\times	x	\times	potentioneter	\times	45 mm	
	Measuring- and monitoring modules												
7940045760	ACT20P-1.128COMCS	1	x	x		x	x	x		$\pm 25 \mathrm{~mA}, \pm 5 \mathrm{ADC},, 30 \mathrm{VCC}, \pm 300 \mathrm{VDC}$, , poentiomeer, Widessand	x	22.5 mm	
8220288000	Mczsco 0.10 V	1			x							6 mm	
8227350000	Mç2 SC O20MA	1	x									6 mm	

1510470000	AC/DC masuring trasstucer									
	ACTI2P-CMTIT.AAOACS	1						0. 0.10 A AC/DC	${ }^{22.5 \mathrm{~mm}}$	
${ }^{1515054040000}$		1						0.. 60 ACACDCOC	${ }_{222.5 \mathrm{~mm}}^{22 .}$	
${ }_{8523400000}$	WASI CMA 1/5/10Aac	1				-		Adiusable: 0.10 T A AC	22.5 mm	
${ }^{8533410000}$	WA21 C MA 1/5/10Aac	1						Adiusatale: 0.1 .10 AAC	22.5 mm	
${ }^{8528855000}$	WASI CMALP 1/5/10a ac	1						Adiustable 0.0 .10 AAC	22.5 mm	
${ }^{85288560000}$	WAZI CMALP $1 / 5 / 10 \mathrm{Aac}$	1						Adiustable :0.10 10 AC	22.5 mm	
897559000	WASI CNALP 1/5/00 EX	1						Adiusabale 0.0 .10 AAC	22.5 mm	

1	x	x	x		\|Resest tuton (TAEE)		10.60 VOC	300 V	3.way	s	
1	x	x	x		$\pm 10 \mathrm{~V}, \pm 20 \mathrm{~mA}$	Displa, DIP spith	24 V -230V VC/0d	600V	3.way	s	aktivo rpasis utuput
1		x			Outpot Lop poweed, NPN output, Limit value	Sotware	output lop	300 V	3.way	s	Output loop powered
1	x	x	x		0..11V, 0.22 mA	DIP swich, Butor, ED	12.60 V DC	300 V	3.way	s	
3	x	x	x	x	1 analogule output	Sotwaie	$18 \mathrm{~V}-23 \mathrm{VaC/} / \mathrm{Cd}$	300 V	3.way	s	
3	-	\times	x	\times	2 relay outurs	Sotware	18 V -230 Vat/od	300 V	3.way	z	
3	\times	\times	\times	\times		Sotwaie	18 V -230 VAC/IC	300 V	3.way	s	ATEX approval
3	\times	\times	\times	\times		Sotware	$18 \mathrm{~V}-23 \mathrm{VaCt} / \mathrm{Od}$	300 V	3.way	7	ATEX approval
1				\times	$2 \times$ Linit value elaly outputs	Soltware, Display	9.-60 V DC	300 V	3-way	s	
2					Linit value tansistor output	poteniometer	24 VOC			2	
2					Linit value tansistor utuput	poteniometer	24VOC			z	
1	x	x	x	x	$\pm 10 \mathrm{~V}, \pm 20 \mathrm{ma}$, Limit value reals	DPP swith . poteniometer	22 VOC	300 V	3.way	s	Through hole current converer
1	x	x	x	x	$\pm 10 \mathrm{~V}, \pm 20 \mathrm{ma}$, Limit value erlays	OPP ssitht, popentioneter	24 VDC	300 V	3.way	s	Through hole eurrent converere
1	x	\times	x	\times	$\pm 10 \mathrm{~V}, \pm 20 \mathrm{ma}$, Limit value relays	DP spuith popentionter	24 VDC	300 V	3.way	s	Through hole current converer
,	x	\times	x			DP spwich	24 VOC	300 V	2.way	s	
1	x	x	\times			DPs swich	24 VOC	300 V	2.way	2	
1	x	x	\times			DPs swich	output lop	300 V	2.way	s	
1	\times	\times	\times			DPP swich	output top	300 V	2.way	2	
1	x	\times	x			DIP swich	output top	300 V	2.way	s	ATEX appoval
1	${ }^{\text {x }}$						${ }_{2}^{24 V \text { VC }}$	${ }_{300 \mathrm{~V}}^{300}$	${ }^{\text {3.way }}$.way	${ }_{5}$	
1	x		x				${ }_{24}^{24 V O C}$	${ }^{300 \mathrm{~V}}$	${ }^{3 \text { 3way }}$	2	
1	x						24 VOC	300 V	3-way	2	
1			x				24 VOC	300 V	3.way	s	
1	x						24 VOC	300 V	3.way	2	
,		x					${ }_{2}^{24 V \mathrm{VCO}}$	${ }^{300 \mathrm{~V}}$	${ }^{3 \text { 3way }}$	$\stackrel{s}{8}$	
1			${ }^{\text {x }}$				${ }_{2}^{24 \mathrm{VOC}}$	${ }_{300 \mathrm{~V}}^{300}$	${ }^{3 \text { 3.way }}$ 3-way	$\stackrel{2}{s}$	
1					-10V.+10V		24 VOC	300 V	3.way	2	
1	x						24 VOC	300 V	3.way	s	
1	x						24 VOC	300 V	3.way	z	
1		x					24 VOC	300 V	3.way	s	
1			x				24 VOC	300 V	3.way	S	
1	x		x				${ }_{24}^{24 \mathrm{VOC}}$	${ }^{300 \mathrm{~V}}$	${ }^{3 . \text {-way }}$	s	
1	x						24 VOC	300 V	3.way	s	
1	x						24 VOC	300 V	3.way	7	
,		x					24 VOC	300 V	3.way	${ }^{\text {s}}$	
1		\times					24VOC	300 V	3.way	2	
1			x \times				${ }_{2}^{24 \mathrm{VOC}}$	${ }_{300 \mathrm{~V}}^{300}$	${ }_{\text {3.way }}^{3.3}$	s	
1			\times				24V00	300 V	3.way	z	

Quick select - Analogue Signal Conditioning

8444980000	DC/DC 2.way isolator										
	WAS4 CCC DC $420 / 420 \mathrm{MA}$	1	x							12.5 mm	
	Waz ccco dc 420/420MA	1	x							12.5 mm	
8445010000	WAS4 CCC DC 42000.20 MA	1	x							12.5 mm	
8445040000	wast crc oc $42000 \cdot 10 \mathrm{~V}$	1	-							${ }_{1}^{12.5 \mathrm{~mm}}$	

8581160000	DC/ICC passive isolator										
8581170000	Waz5 ccc 201P									17.5 mm	
8975640000	WAS5 CCC 201P EX	1								17.5 mm	
85533720000	WAS5 OIP	1								17.5 mm	
85537330000	Waz OLP	1								17.5 mm	
8449950000	WAS5 CCCLP P-200-20mA		x							17.5 mm	
8449968000		1	x							17.5 mm	
84853580000	WAS5 5 CCC LP $0.2000 \cdot 20 \mathrm{ma}$	1	x							17.5 mm	
8463590000	WA25 ccC LP O.200020m	1	x							17.5 mm	
	Temperature measuring transtucer										
8560700000	Was5 Pro ito						x			12.5 mm	
85607110000	Waz5 Pro fio						x			12.5 mm	
8679990000	WAS5 Pro RTT 1000						x			12.5 mm	
8863895000	WAS5 PRo Rto Cu						x			12.5 mm	
8432280000	WT74 PT100/4c 0/420mA						x			12.5 mm	
${ }^{8432250000}$	WT24PT100/4V0-10V						${ }^{\text {x }}$			12.5 mm	
8432133000	WT24 PT100/3v0.10V						x			12.5 mm	
8432166000	WT74 PT100/3 0 0/420mA						x			12.5 mm	
84322190000	WT24PT10/2V0.10V						x			12.5 mm	
8432220000	WT74PT100/2C01/20mA						x			12.5 mm	
8560720000	WAS5 PROT Themo					x				12.5 mm	
8560730000	Wa25 PR0 Themm					x				12.5 mm	
84332300000	WTS4 4HERMO					x				12.5 mm	
8433310000	WT24 पHERMO					x				12.5 mm	
13754880000	Actrom:ctiau.S	1				${ }^{\text {x }}$				${ }^{6.1} 1 \mathrm{~mm}$	
1377550000	ACTzon-tialaes	1				x				${ }^{6.1} 1 \mathrm{~mm}$	
1377511000	Actrom.fitaos	1					x			6.1 mm	
1377552000	Actromartiaoes	1					${ }^{x}$			6.1 mm	
1435590000		1				x	x			${ }^{6.1 \mathrm{~mm}}$	
${ }_{84255720000}^{14}$	MCZPTIOO/3 LIP O...100C	1					${ }^{\text {x }}$			${ }_{6}^{6.1} \mathrm{~mm}$	
8483888000	MCZPT100/3 CLP Po. 120 C	1					x			6.1 mm	
880422000	McZ Pritoos cip o. 11500	1					x			6.1 mm	
8473010000	MCZPT100/3 ClP P. 2000 C	1					x			6.1 mm	
${ }^{84733200000}$	мс2PPT100/3 Clp P. 3000	1					${ }^{\text {x }}$			${ }^{6.1} 1 \mathrm{~mm}$	
${ }^{8473000000}$	MCZPPT100/3 clp. 50.	1					${ }^{\text {x }}$			${ }^{6.1} 1 \mathrm{~mm}$	
8860433000	MCZPT100/3 CLP 400.. 1000	1					x			6.1 mm	

Quick select - Analogue Signal Conditioning

						Configuration	$\begin{array}{\|l\|l\|} \hline \text { Auxiliary } \\ \text { power } \end{array}$	$\begin{array}{\|l\|l} \text { Rated } \\ \text { voltage } \end{array}$			Special Characteristitiss					
$\begin{array}{\|l\|l\|} \hline \text { 蒿 } \\ \hline \end{array}$	¢	款	\vec{a}	悥	Miscellaneou					㜢						
1	x	x	x			DP swich	24 VDC	3300	3．way	s						
	x	x	\times			DP swich	24VOC	300 V	3．way	z						
1					Frequencry 0．0．1／4／8／16 k klz	DPs swich	24 VOC	100V	2．way	z	Freuenery output					
1					Frequenery 0．0．1／4／8／16 6 klz	DP swich	24VOC	100 V	2．way	z	Frewuency output					
1	x	x				DIP swich	24 VOC	300 V	3．way	s						
1	x	x				DP swich	24 VOC	300 V	3．way	z						
1					RS232／RS8455／422	Difs swich	24 VOC		3 3way	s						
1					RS2327TV	DP swich	24V00		3．way	s						
2				x		Dip swith popentioneter	24V00	300 V	3．way	z						
1				x					2way	s						
1				${ }^{\text {x }}$					2．way	s						
1				x					2．way	s						
1				x	Moritring of fow and surge volages	DIP swith ，poentioneter	input lop	300 V	3．way	s	Adiusale suwithing thestolds					
1				－	Moritioing of low and surge voltages	Dip swith，potentioneter	iput lop	600 V	2way	s	Adiustale swithing thestolds					
，						Sotivare	USB				Progamming accessoiies					

Intrinsically safe signal conditioners for hazardous area applications	Intrinsically safe signal conditionest for hazardous area aplications O Overiew	B. 2
	Actrox - Overiew	B. 4
	Current supply solator	B. 6
	Current utuput siolator	${ }^{\text {B. }} 8$
	Temperature tanssicuer	B. 10
	Universal measurement and Signal isolator-converer	B. 12
	NamUR isolating switching amplifier	B. 16
	Vave control module	B. 20

Intrinsically safe signal conditioners
 for hazardous area applications

ACT20X signal converters
The ACT20X is a completely new line of signal converter
products for the Ex zone. These compact modules require only 11 mm per channel and take up very little space in the ACT20X line for process automation applications in Ex and non-Ex zones. The 17 different variants can process all standard input signals (such as 2 -wire, HART ${ }^{\Phi}$-, NAMUR-, RTD, thermocouple or DC signals) from Ex zone 0 . They can also handle digital or analogue signals from Ex-zone field devices to the controller. The integrated relay output
issues an alert in the event of a malfunction; this makes troubleshooting easier and reduces facility down times. The WI-Manager configuration software is based on FDT (Field Device Tool) technology. The software allows you to configure all ACT20X products with your PC so that they can be custom-fit to a wide variety of process applications. Weidmüller provides a device type manager (DTM) for the ACT20X modules that can be used in any FDT-based
frame. The DTMs allow you to configure different devices quickly and accurately. They also enable you to analyse measurements and diagnostics data. The DTM can also be used to clearly identify the connected device. The FDT fram application "WI Manager" and the device-specific DTMs are available from Weidmüller free of charge. The ACT20X modules can be used in a temperature range from $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ without limitations. The modules can be installed
in the safe zone or in the explosion risk area of Zone 2. The ACT20Xs always deliver a pure, interference-free signal
thanks to their accuracy, temperature stability and high insulation strength. They can easily be used around the globe since they already have all the necessary international approvals, including ATEX, ICEEX, GOST and FM HUI-SAO-LP. This offers an intrinsically safe input for O/4 $20 \mathrm{~mA}, 0$ to 10 V , temperature and resistance signals, and separates the Ex zone from the safe zone. The narrow 12.5 mm module is supplied via the 4 to 20 mA output.

Fet

- International approvals for Zone 0, 1 and 2 (IECEx, ATEX) and Class 1 Division 1 and 2 (FM)
- Analogue and binary signal interface to Zone 0/Div. 1 for explosion-risk inputs and outputs
All standard input signals (4 to 20 mA HART®-, NAMUR-, RTD- or thermocouple signals) out of Ex zone 0,1 or 2
Two-channel type saves space in the electrical cabinet and reduces installation costs
- Integrated alarm contact
- Configuration over FDT/DTM standard with the frame application "WI Manager"

ACT20X - intrinsic safety signal conditioners for hazardous areas

$\begin{array}{ll}\text { PC-configurable conditioners family for hazardous } & \text { temperature, Namur and volt-free contact signals. On the } \\ \text { areas in the new Weidmüller electronics housing for } & \text { output side field devices in the Ex area are controlled via }\end{array}$ areas in the new Weidmüller electronics housing for installation in safe or hazardous areas.
ACT20X meets the arduous requirements of the process industry where potentially explosive fluids are controlled. The range connects to sensors and actuators in the hazardous area, isolates their signals and limits the energy passed to
them. On the input side ACT20X models can process d.c., output side field devices in the Ex area are controlled via
the ACT20X with analogue or digital signals. All ACT2OX the ACT20X with analogue or digital signals. All ACT20X
products are characterised by insulation, accuracy and high temperature stability.
The digital 2 -channel versions with width of 22.5 mm are available with either transistor or relay output. Due to
this high component density, the space requirements and installation costs are reduced accordingly.

Configuration via FDT

All modules can be quickly
anveniently contigured with manufacturer-independent FDT/DTM

Worldwide application
Fulfils the strict sta
ents of the process industry Con be used worldwide due to international and cal approvals ATEX, IECEX CULUS, FM, GOST and DNV.

Intelligent connection system
Pluggable, coded, with release lever
The release lever simplifies
maintenance and allows disconnection without damaging the cables.

Alarm function
, labious
anction integrabted for cable Alar function integrated for cable or sensor signal is sent to the control system.

Robust
$+60^{\circ} \mathrm{C}$
to
$-20^{\circ} \mathrm{C}$
Wide ambient temperature range from
$-20^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$.

SIL certification according 61508
sil
61508
Avale for
switching aggregates
on/off, monitoring actuators or
temperature/pressure

Current supply isolator, HART ${ }^{\otimes}$ Transparent

The ACT2OX-HAI-SAO current supply isolator is a HART - -protocol transparent signal isolator for analogue input signals from Ex zone 0 . It trovides an analogue signal for the safe zone on the output side. It tis availab in a single-channel or double-channel version

Application example:
Application example:
Measuring temperature with a head transmitter, signal transmission with HART

Current output isolator, HART ${ }^{\oplus}$ Transparent
The ACT2OX-SAI-HAO current output isolator is HART ${ }^{\oplus}$-transparent. The input is connected to the safe area controller or PLC, and the output is connected to an analog actuator in a hazardous area, e.g. Zone 0 . It is controler or PLL, and the outpur is connected to an ana

act20x

Temperature transducer
The ACT2OX-HTI-SAO temperature transducer processes temperature signals from PT100 sensors an
The ACT2XX-HI-SAO temperature transducer processes temperature signals from PTIOO sensors and input is part of an intrinsically safe circuit (Zone 0). The isolated mill amp analogue output is the input to the receiver or controller in the safe area. It is available in a single-channel or double-channel version

Temperature transducer

- Converts intrinsicilly safe RTD, thermocouple and mA signals into analogue signals for safe zones. - PC configuration with $\operatorname{EDT/TTM}$ sottware, download - Relay wouvwutweidmuelle.con
- Relay outpur tor faliure alarn
- 2.channel module, can also be used as a signal spititer

ACT20X-HT-SAO-S/2HTI-2SAO-S

Technical data

Input	
${ }^{\text {Type }}$ Sesersuly	
Tenpeature input ange	Configuable
Line essisancei in meassing icruit	$\leq 50 \mathrm{n}$
Input curent	$0.20 \mathrm{~mA}, 4.20 \mathrm{~mA}$
Input resistane, curent	$20 \Omega+$ PTC 50Ω
Output	
Output turent	
Output signal linit	$3.8 .20 .5 \mathrm{~mA} / 0.20 .5 \mathrm{ma}$ (dependenten onarange)
load ineedarece urrent	S600,
Influence of foad esesistance	s0.01\%of span/ / 100 ת
Current lop output	
Output uruent (current lopp)	4.20 mA
Load fesistance	$\left.{ }^{(10} 8 \cdot 3.5\right) / 0.023 \mathrm{~A}$
Influence of flad esisiance	S0.01\% of span/100
2.wies supply	3.5 .268 VOC
Alarm output	
Type	Realy, 1 NC (volagafitee)
Nominial switching volage	$\leq 125 \mathrm{VAC} / 110 \mathrm{VOC}$ (safe area)
Continuous surent	
Power rating	
	$\leq 16 \mathrm{Va} / 32 \mathrm{~W}($ Ione 2)
General data	
Supply volage	19.2-312 V OC
Poweec consumprion	$\leq 3 \mathrm{~W}$ (2 chamenes)
Tighereing torque, min./ /Tghtening torue, max.	$0.4 \mathrm{Nm} / 0.6 \mathrm{Nm}$
Ambient tempeatue / Storage temperatue	$7.20^{\circ} \mathrm{C} .60^{\circ} \mathrm{C} / 20^{\circ} \mathrm{C} .45^{\circ} \mathrm{C}$
Approvals	
Approvas	CLULus: DetNorver; EAC; FMEX; GOSTEX; GOSTME25; IEEXKEM: KEMAATEX
Insulation coordination	
Insulation voltage	$2.6 \mathrm{kN} \mathrm{(input/} \mathrm{outut)}$
Rated volige EMC sanalars a	
EMC sanamards	DINEN61326, NE 21

Ordering data		
Type	aty.	Orider No.
1-chamel version		
Actr20xHTITSA.S	1	8985470000
2.chanel version		
Actr20x-2HTr2SAO.S		89654800

Screw comenetion, Removalale tereminal llock
2.50.5/2.5
22.5/117.2

act20x

Universal measurement and signal isolator-converter
The ACTr2OX-HUI-SAO.S is a universal input signal isolator/converter. This model processes temperatur The ACTIOX-HT-SAO-S Is a universal input signal isolator/converter. This model processes temperature
signals from PT100 sensors and thermocouples as well as DC voltage and current signals (mA) from the hazardous area. On the output side, an isolated milliamp signal is passed to the receiver or controller in the safe area. This model also has a relay output which can be used for a process alarm or trip.

Universal signal converter

- Universal isolator for intrinisially safe RTD signals, thermal sensor signals, resistor signals, potentiometer signals and DC signals (ma,V)
- PC configuration with FDT/DTM software, download at www.weidmueler.com
- Digital relay uutput adjustable as threshold switch
- Relay output for error alarm

Usable as:

- Safety barier (insulator)
- Signal conversion
- Amplifier, repeater

or

	Type	Temperature-	Acturacy			
intrinsically safe circuit, active (as current source) or passive (as	Metal PTC range					
28.16 .5 V DC/0.20 mA	P.100	.$^{20.0 .850}{ }^{\circ} \mathrm{C}$	$\pm(0.15+0.02 \times \mathrm{T})$ Class A $\pm\left(0.30^{\circ} \mathrm{C}+0.005 \times \mathrm{T}\right)$ Class B			
Adiustable foom-200. $+800^{\circ} \mathrm{C}$	P.5500	${ }^{200.80500^{\circ} \mathrm{C}}$				
$\leq 50 \Omega$	P 11000	200.0850 ${ }^{\circ}$				
	N:50		$\pm(0.4+0.007 \times 1)$			
	Ni100	.60.0 $0^{\circ} \mathrm{C}$				
	Ni120	$0 . .180^{\circ} \mathrm{C}$	$\pm(0.4+0.028 x)$			
$10 \Omega .10 \mathrm{k} \Omega$	vilooo					
	TC-Type according to IC660544					
$>10 \mathrm{M} \Omega$ @ $600 \mathrm{mV}, 2 \mathrm{M} \Omega$ @ $28 \mathrm{~V} / 20 \mathrm{R}+\mathrm{PTC} 50 \mathrm{\Omega}$	${ }^{\text {B }}$	${ }^{50 . .250^{\circ} \mathrm{C}}$	$\pm 25 \mathrm{~K}$			
		${ }^{\text {250..50 }}$ - ${ }^{\text {c }}$	$\pm 10 \mathrm{~K}$			
configuable downscale (3.5 mA / /upsale $(23 \mathrm{~mA}$) @ eror		500.1820 ${ }^{\circ} \mathrm{C}$	$\pm 6 \mathrm{~K}$			
	${ }^{\text {E }}$	200..150 ${ }^{\circ} \mathrm{C}$	$\pm{ }_{ \pm}^{ \pm 4 \mathrm{~K}}$			
≤ 600,		-150.1000 ${ }^{\circ} \mathrm{C}$	$\pm 4 \mathrm{~K}$			
$\leq 0.01 \%$ of span / 100Ω		200..150 ${ }^{\circ} \mathrm{C}$				
		-150.1200 12 C	\pm			
4.20 mA	k	200..150 ${ }^{\circ} \mathrm{C}$	$\pm{ }_{ \pm}^{ \pm 5 K}$			
\leq (Vs $101 / 20 \mathrm{~mA}$ (curent loop)		${ }^{-150.12000^{\circ} \mathrm{C}}$				
$\leq 26 \mathrm{VOC}$		${ }^{1200.1 .1372}{ }^{\text {a }}$ C	$\pm 4 \mathrm{~K}$			
	N	${ }^{2020 .-1500^{\circ} \mathrm{C}}$	$\pm 6 \mathrm{~K}$			
		-150.1130 ${ }^{\circ} \mathrm{C}$	\pm			
Reaby, $1 \mathrm{NO} / \mathrm{NC}$ contact	${ }^{\text {R }}$. $50.2020{ }^{\circ} \mathrm{C}$				
Configuable suictining thestolds, Sensor erero, Window tunction		$200.1780^{\circ} \mathrm{C}$	$\pm 6 \mathrm{~K}$			
$\leq 250 \mathrm{VCC} / 30 \mathrm{VCC}$ (sate area)		.50.2009 ${ }^{\text {c }}$	$\pm 10 \mathrm{~K}$			
$\leq 32 \mathrm{VAC} / 32 \mathrm{VOC}$ (2 ne 2)		$200.1780^{\circ} \mathrm{C}$	$\pm 6 \mathrm{~K}$			
$\leq 2 \mathrm{ACCOC}$ (sfáe area, Oone 2 area)		200..150 ${ }^{\circ} \mathrm{C}$	$\stackrel{ \pm}{ \pm 5 K}$			
		-150.4009 ${ }^{\circ} \mathrm{C}$				
Relay, 1 NC (volagefifee)	acorring to Dina3710					
$\leq 125 \mathrm{~V} \mathrm{AC} / 110 \mathrm{~V}$ DC (safe area) ≤ 32 V AC / 32 V DC (Zone 2			$\pm 3^{\circ} \mathrm{C}$			
19.2-312.2 VC						
$\leq 3.5 \mathrm{~W}$						
$1-20^{\circ} \mathrm{C} .60^{\circ} \mathrm{C} /-20^{\circ} \mathrm{C} . .85^{\circ} \mathrm{C}$						
cUlLus; DETNORVVE; EAC; FMEX; GOSTEX; GOSTME25; IECEXKEM; kematex	Ordering data					
	Type		aty.	Order No.		
2.6 WV (input/ output/ /300	1-chamel version					
	Actroxt	ISAO.S	1	8965490000		

Input	
Sensors supply	
Inputuvalage	
Potentioneter	
Inutresisisance, volage/current	
Output analogue	
Output current	
Output Sgan linit	
load impedance current Influence of load resistance	
${ }^{\text {Curenent }}$ Oop output	
${ }^{\text {In filuence of foad esisiance }}$	
2.wies supply	
Output tigital	
$\underset{\substack{\text { Type } \\ \text { Function }}}{ }$	
Continuous urrent	
Alarm output	
Nominial switching volage	
Conituwus surent	
General data	
Suply volage	
Ambient tenpeature /Storag temperatue	
$\begin{aligned} & \text { Approvals } \\ & \text { Approvals } \end{aligned}$	
Insulation coortilation	
Insulation voltage / Rated voltage MC standards	
Dimensions	
Clamming arase (nominal / min./ max)	
Lenght x with x height	mm
Note	

act20x

Output loop powered universal measurement and signal isolating converter
The ACT2OX-HUISAO-LP is a universal input, isolating signal converter. This model processes temperatur signals from PT100 sensors and thermocouples as well as DC voltage and current signass (mA) from the hazardous area. The 12.5 mm wide module is powered through it's 4.20 mA output.

EX area Zone 0, 1, 2, 20, 21, 22
Safe area Zone 2/FM Class 1, Division 2
B

Universal measurement and signal isolator-
converter
t-loop powered

- Universal isolator for intrinsically safe RTD signals, thermal sensor signals, resistor signals, potentiometer

- Suply via output loop
-12.5 mm thin housing
- 12.5 mm thin housing PC configuration with FD

Technical data

Input	
Type	intinisially stat eiciuit
Tenpeature input range	Adiusable fome $200 .+800^{\circ} \mathrm{C}$
Inputuruent	configurabe, $\pm 25 \mathrm{~mA}, 0.20 \mathrm{~mA}, 4.20 \mathrm{~mA}$
Input volage	configurable, $\pm 12 \mathrm{~V}$ DC (min. measurement range 1 V), $\pm 28 \mathrm{~V} D C$ (min. measurement range 2 V$), \pm 600 \mathrm{mV} \mathrm{DC}$ (min. measurement range 50 mV$) \pm 150 \mathrm{mV}$ DC (min. measurement range 15 mV)
Porentionter	10, $10 \mathrm{k} \Omega$
Inut tesisisare, volageflurrent	$\geq 10 \mathrm{M}$ @ @ $600 \mathrm{mv}, 2 \mathrm{M}$ @ @ $28 \mathrm{~V} / 70 \mathrm{~S}$
Output analogue	
Output current	$4.20 \mathrm{~mA}(\mathrm{max} .23 \mathrm{~mA})$
load inpedance eurent	S700
Residual ipple (Curent lopp)	$\leq 10 \mathrm{mv}$
Acturacy	<0.1\%of end value
Temperatur coefficient	$<0.02^{\circ} \mathrm{COf} \mathrm{masasting} \mathrm{ange} /{ }^{\circ} \mathrm{C}$
Step response time	<400 ms (10.0.90\%)
Cututf fepueney (3 3 B8)	100 Hz
General data	
Suply volage	via output curenert lop, 11.28 V VC (lop powered)
Tightening torue, min. /Tghteening torue, max.	$0.4 \mathrm{Nm} / 0.6 \mathrm{Nm}$
Ambient tempeature / Storge tenpeature	$10^{\circ} \mathrm{C} .60^{\circ} \mathrm{C} / 20^{\circ} \mathrm{C} .70^{\circ} \mathrm{C}$
Approvals	
Approvals	Ce: EAC; GOSTEX
Insulation coordination	
Insulation volage /Rated volage	3.511 W between input and output/ $300 \mathrm{~V}_{\text {tIt }}$
Rated volage	
Standads	DIN EN 61326-1, IEC 61010-1, , IEC 61010-2-030, IEC 6007-0, IEC 60079-11, IEE 60079-15, IEC 60079.26
Impuse withsand volage	$4 \mathrm{kVV11.250} \mathrm{us)}$
${ }^{\text {Onemonatage calegor }}$	$\frac{11}{2}$

Ordering data		
Type	atr.	Order No .
1.chamel version		
Acr20xHuISAOPIP.		1318

Screw commection, Removaatile terminaal llock
13.6/12.5/117.2117.2

act20x

NAMUR isolating switching amplifier: with relay output
The ACT20X-HDI-SDO-RNO (NC) isolating switching amplifier is a specialised Signal isolating converter The ACIUXXAD-SOO-RNO (NC) isolating switching amplifier is a specialised signal isolating converter
for Namur sensor signals or for volt-free contacts from a Zone 0 hazardous area. A single relay, available optionally as NC or NO, provides the output signal in the safe zone. Single-channel or double-channel version
are also available.
EX area Zone $0,1,2,20,21,22$

Ex label (excerpt)											
$\begin{array}{llllll}\text { atex } & \text { FM } & \mathrm{U}_{0} & 10.6 \mathrm{~V}\end{array}$											
1336 Exanclicta	Insalalioio i icl	1	12 mA								
\|	(1) G Exxia Ga]	l	l		l				${ }_{P}$	32 mW	
\#(1)D [Exiou)		$\underline{L / R}$	1150 H//0								
IEEEx	Exampl:	\cdots	$\mathrm{C}_{0}-2 \mu \mathrm{~F}$,	Le-260 MH							
ExnAn $\mathrm{Cl\mid cT} 746 \mathrm{c}$	ATEX vesion,	IB	$\mathrm{C}_{0}=6 \mathrm{H}$ F,	$\mathrm{L}=780 \mathrm{mH}$							
	Exinut	IA	$C_{0}=18 \mathrm{p}$ F,	$\mathrm{L}=1000 \mathrm{mH}$							
[Exia Da] \|lic	(More de										

Technical data	
Input	
Sensor	
Sensors supply	$8 \mathrm{VDC} / 8 \mathrm{~mA}$
Resisance	RP-750 / / RS - 15 K /
Input feepuency	$0 . .5 \mathrm{kHz}$
Pusse duation	70.1 ms
Input esisiance	1 k 2
Trigeer level low/ Tiggerel level ligh	<1.2 ma/ $/ 2.1 \mathrm{~mA}$
Type	Relay, 2 NC (voltageffree), Switching frequency 2 Hz , digital, output input, direct o rinverse (configurable)
Rated switching volage	$\leq 250 \mathrm{~V} \mathrm{AC} / 30 \mathrm{VDC}$ (safe area) ≤ 32 V AC / 32 V DC (Zone 2)
Conituous surent	$\leq 2 \mathrm{AAC/DC}$ (safe afea, Oone 2aras)
Power rating	$\leq 500 \mathrm{VA} / 60 \mathrm{~W}$ (safe area) $\leq 16 \mathrm{VA} / 32 \mathrm{~W}$ (Zone 2)
Alarm output	
Tonee ${ }^{\text {Thial suitching volage }}$	Relay, 1 NC (volagaf frea)
	$\leq 125 \mathrm{~V} \mathrm{AC} / 110 \mathrm{~V}$ DC (safe area) $\leq 32 \mathrm{VAC} / 32 \mathrm{VDC}$ (Zone 2)
Coninuous surent	
Power raing	$\leq 62.5 \mathrm{VA} / 32 \mathrm{~W}$ (safe area) ≤ 16 VA / 32 W (Zone 2)
Generaldata	
Supply volage	
namur supply	$8 \mathrm{BVCC} / 8 \mathrm{ma}$
Powe consumprion	$\leq 3 \mathrm{~W}$ (2 chameses)
Tighening torque, mi. /Tighening torue, max.	$0.4 \mathrm{Nm} / 0.6 \mathrm{Nm}$
Approvals	
Approvals	clulus; DETNORVER; EAC; FMEX; GOSTEX; GOSTME25; IECEXKEM: kematex
Insulation coorsination	
Insulation volage	$\frac{2.6 \text { WV (inut / output) }}{3 \text { One }}$
${ }^{\text {Rated dolage }}$	300 V
	Oin ENGI326,NE2

Ordering data		
Type	atr.	Orider No.
1-chamenel version, NC		
ACT20XHDI:SOORANCS	1	8965350000
1 1-chamenel version, NO		
Act20x+0.\|SOO.ANOS	1	8965340000
2.chamenel version, NC		
Actrox.2H012SOOPRNCS	1	8965380000
2 2.channelversion, No		
Actr20x.2H012.2so.:RNO.S	1	8965370000

act20x

Pulse Isolator, with NPN transistor outpu.

The ACT20X-HDI-SDO isolating switching amplifier is a digital pulse signal isolator for Namur sensors or volt-free contacts from a Zone 0 hazardous area. A transistor (NPN) output is provided for the receiver or controller in the safe area. Single-channel or double-channel versions are also available.

NAMUR isolating switching amplifie

- Converts intrinsicically safe signals NAMUR / switching contart) from EX Zone 0 into digital output signals (relay output) for the saff zone
- PC configuration with FDT/OTM software, download at www.weidmuelle.com
- Relay output fore error alarm
-1 or 2 channels in one modul

ACT2OX-HDI-SDO-S / 2HDI-2SDO-S

Thor

Ordering data		
Type Oty Orider No.		
ACTrox+H0:SOOS	1	8965360000
2.channel version		
ACCT2X-2H01.2SOO.S	1	8965390000

Screw comnection, Removalale terminial llock
${ }_{2}^{250.05 / 2.5}$
22.5/117.2

act20x

Valve control component for gas group IIC, 35 mA
The ACT2OX-SDI-HAO.S solenoid/actuator driver takes a switched input from e.g. a a safe area controller and delivers an corresponding output to operate an actuator in a hazardous area, e.g. Zone 0 . It is available in a single-channel or double-channel version

Valve control component for gas group IIB, 60 m

The ACT2OX-SDI-HAO-S solenoid/actuator driver takes a switched input from e.g. a a safe area controller and
delivers an corresponding output to opperate an actuator in a hazardous area e e. Zone.
This driver is suitable for switching solenoid valves or alarm devices.

Signal converters in 6 mm width

Signal converters in 6 mm width	Universal signal converter in 6 mm width - Overview	C. 2

ACT20M - Overview c. 4
CH2OM rail bus C. 26
mCZ-SERIES - Overview C. 30

MCZ SERIES - DC/DC passive isolator C. 32
MCZ-SERIES - PT100/RTD signal converter C. 33
MCZ-SERIES - Frequency signal converter C. 34
MCZ-SERIES - Threshold monitoring C. 35

Analogue signal converter in 6 mm width

The thinnest signal converter for isolating,
converting and monitoring analogue signals
The signal converters and the signal separators in the product family ACT2OM, MICROSERIES and the MCZ a compact space. In addition to galvanic separation these products offer the conversion and conditioning of DC and
temperature signals (TC and RTD) to standard norm signals (e.g. $4 . .20 \mathrm{~mA}, 0 \ldots 10 \mathrm{~V}$). The pluggable cross-connections
option for MAS/MAZ and MCZ ranges, or the Weidmüller option for MAS/MAZ and MCZ ranges, or the Weidmuller
rail bus option for the ACT2OM ensure a quick installation.

ACT20M - a narrow 6 mm signal converter

The new dimension for converting and isolating housed in a $\mathbf{6} \mathbf{~ m m}$ width
The new ACT2OM range combines innovative technologie with the highest levels of functionality in an electronics per module result in space savings in the electrical cabine per module result in space savings in the electrical cabinet
The high electrical isolation of 2.5 kV and an accuracy of up to 0.05% both help to ensure a high degree of process reliability

The product line consists of Input Loop Powered, Output Loop Powered and Auxiliary Powered analog isolators and converters, including a universal input converter.
The eight-connection housing allows additional functionality such as 2 channel ILP, 2 channel OLP isolation and signa carried out via DIP switches or the FDT/ DTM software. Th ACT20M modules are supplied via direct wiring or a rail bus.

Easy configuration

DIP switches on the side are used to configure the input and output parameters, as well as the respons well as the respons

High level of galvanic isolation

2.5 kV of electrical isolation

 (300 V rated voltage) ensures excellent process reliability.

Installation is simple and quick

The power supply is simply snapped onto the rail bus for fast and easy installation. The supply can be through any ACT20M module or a separate power-feed unit.

-(11) us Tiecky

Approvals
Fulfils the strict standards and require ments of the process industry. Can be used worldwide due to international and local approvals ATEX, IECEX, CULUS, FM, GL and DNV.

			Powersupply	Function	Current			
					$\begin{aligned} & 0 . . .20 \mathrm{~mA} \\ & \text { 1.chananel } \end{aligned}$	$\begin{gathered} 4 . .20 \mathrm{~mA} \\ \text { 1-chanel } \end{gathered}$	2×0... 20 mA 2-channel/splitte	$\begin{aligned} & 2 \times 4 . .20 \mathrm{~mA} \\ & 2.2 \text { mamel } / \text { spiter } \end{aligned}$
言		0...20 mA	24 VOCandrail us	univeral	ACT2OMUHIAO.	ACT2OM.UHAO.		
				U/1			ACT2OMAII2A.S	ACT2OMAl2aO.
				Current			ACT20MClizas.	ACT2OMC.İ20.
				U/	Actromataots	ACT2OMAAOEES		
				U/	ACT2OMAAAOS	ACT2OMAAAOS		
				Curent	Actromacicos.	Actromactio.s		
				UI				
			Inut Loop Poweed	Cureent				
			Output Loop Poweed	Current		ACTraMClicoolles		
				Curent				
		$2 \times 0 . .20 \mathrm{~mA}$	Output Lope Powered	Cureent				ACTram-201-2C0.01P.
			Input Loop Poweed	Current				
			24 VDC	Curent				
		4...20 mA	24 VDCandrail bus	univeral	ACt2OM.UHAOS	ACtrom.litas.		
				U/			ACT2OMAII2A.S	Actromalizas
				Curent			Actromecrizas	ACT2OMC.LI2COS
				U/1	ACT2OMAAOOES	ACT2OMAAOES		
				U/	ACT2MAAAOOS	ACT2OMAAAOSS		
				Curent	Actromacicos	Actromacticos		
				U/				
		$1 \times 4 . .10 \mathrm{~mA}$	Output Loop Poweed	Current		Actromclicoolles		
				Current				
		$2 \times 4 . . .20 \mathrm{~mA}$	Output Loop Poweed	Cureent				ACtram.201-2Co.ulp.
			24 VDC	Cureent				
			Inout Loop Poweed	Cureent				
				Curent			ACT2OM201200011P.S	ACT20M2CILICOM\|IP.
		$1 \times 4 . .20 \mathrm{~mA}$	Input Loop Poweed	${ }_{6}$ Curent				
				Curent	Actrowclicoulps			
		- 10 mA .0 .0 .10 mA	24 VDCandrail bus	bipolar	Actrombahaos	ACT20Mbala.as	ACTrombanizais	ACTzombatraas
		-20 ma.... 20 mA	24 VCCandrailus	biplar	Actrombalaos	ACTrombalap	ActrombanizaO.	Actrombantaos
		with sensor r power supply	24 VDCandrail bus	univesal	ACT2OMUH:AOS	ACT2OM.UHAOS		
				U/	ACT2OMAAAOS	ACT2OMAAAOS		
		$\begin{aligned} & 0 . .5 \mathrm{~V} \\ & 1 . .5 \mathrm{~V} \end{aligned}$	24 VCCandrail bs	univeral	ACT2OMULIAOS	Actionvilias		
				U/	Actromalaots	Actromalaoes		
				U/	ACT2OMAAAOS	ACT2OMAAAOS		
				U/				
			Output Loop Poweed	U/				
		$\begin{aligned} & 0.10 \mathrm{~V} \\ & 2 . .10 \mathrm{~V} \end{aligned}$	24 VCCand ail bus	univesal	ATr20Mulia ${ }^{\text {a }}$	ACT2OMUHAO.S		
				U/	ACT2OMAAOOES	ACT2OMAIAOES		
				U/	ACT2OMAAOOS	ACT2OMAAOOS		
				U/				
			Ouput Loop Poweed	UI				
		-5v......5V	24 VCC and rail bus	bipolar	Actrombalao.s	ACTzombalao.	Actrombalizaos	ACTzombanl2aOS
		-10V......10V	${ }^{24 V}$ DC and aril bus	bipolar	Actrombalaos	ACTrombahao.	Actrombalizaos	Actrom.bal-2aOS
				bipolar				

		Voltage				
$-10 \mathrm{~mA} . .0$... 10 mA 1-channel bipolar	$\begin{gathered} -20 \mathrm{~mA} A20 \mathrm{~mA} \\ \text { 1-channel bipolar } \end{gathered}$	$\begin{aligned} & 0 \text {... } 5 \mathrm{~V} / 1 \text {... } 5 \mathrm{~V} \\ & \text { 1-channel } \end{aligned}$	$\begin{aligned} & 0 \text {... } 10 \mathrm{~V} / 2 \ldots 10 \mathrm{~V} \\ & \text { 1-channel } \end{aligned}$	$2 \times 0 \ldots 5 \mathrm{~V} / 2 \times 1 \ldots 5 \mathrm{~V}$ 2-channel / splitter	$\begin{aligned} & 2 \times 0 \ldots 10 \mathrm{~V} / 2 \times 2 \ldots 10 \mathrm{~V} \\ & \text { 2-channel / splitter } \end{aligned}$	$\begin{aligned} & -10 \mathrm{~V} . . \mathrm{O} . . \mathrm{10} \mathrm{~V} \\ & \text { 1-channel } \end{aligned}$
			ACT2OM.UHAO.			
				ACT2OMAIIRAOS	Actromalizas	
		$\frac{\text { Actromaliaes }}{\text { ACT2MAAAOS }}$	$\frac{\text { ACT2OMAAAOES }}{\text { ACT2OMAAO.S }}$			
		ACIzoMAAAOS	ActroMAAAOS			
		Actrom.liais	ACtron.ulias.			
				ACT2OMALIAROS	ACT20MA-12a-S	
		ACT2OMAAOEES	ACTzOMAAAOES			
		ACT2MAAAOS.S	ACT2OMAAAOS			
Actrombar-2aOS	Actrom:3al-2aO.S	ACT2MBBAAAOS	Actrombalaias	ACT20MBal2a.s	Actrom:Balzais.	
Actrombal-2a0.s	Actrombanizaos	ACT2MMBAAAOS	ACTzombala.	ACT20MBatI2a.s	Actrom.anizaas	
		Acteom.lifas	Action.lifas.			
		ACT20MAAAOS	ACT2OMAAAOS			
		Acteomulians	Actrom.liais			
		ACT2MMAAOESS	Actromalaoes			
		ACT2MAAAO.S	ACT2OMAAOOS			
		Actomulifas	Actrom.liao.s			
		ACT2MAAAOES	ACT2OMAAOOES			
		ACT2MAAAO.S	ACT2OMAAAOS			
		ACT2OMBAAAOS	ACTreMBal-AOS	ACT20MBARI2a.S	Actrom:Bal-2aO.	
		ACT20MBAAAOS	Actrom:Balaos	ACTzaMBalzaos	Actrom:Bal-2aOS	

								Current
			Powersupply	Function	0... 20 mA 1-channel	$\begin{aligned} & 4.20 \mathrm{~mA} \\ & \text { 1.- } \end{aligned}$	2×0... 20 mA 2-channel/splitter	$2 \times 4 \ldots 20 \mathrm{~mA}$ 2-channel / splitte
亳		PT100	Output toop Poweed	Temp.				
				Tenp.				
			24 VCC	Tenp.	Actromeritaoes	Actrom.ritaoes		
				Tenp.				
			24 VOCandrail bus	univesal	ACT2OMUHIAOS	Actrom.lians		
				Tenp.	Actrom.rita.s	Actrom.fita.s		
				Tenp.				
		PT1000	24 VDCandrail bus	universal	Actromuliaus	ACTzOM.UIAO.S		
		Ni100	24 V DCandrail us	univesal	ACT2OMUHIAOS	Actrom.lians		
		M11000	24 VDCandrail us	universal	Actromulias	Actrom.ulia.		
	\bigcirc	B	24 VDCandrail bs	univesal	ACT2OMUUHOSS	ACt2OM.U.HaS.		
		E	24 VDCandrail bus	univesal	ACT2OMUHAOS	ACT2OM.UHAO.S		
		J	Output top Poweed	Tenp.		ACT20M.RTC-COCOLP.		
			24 VOC	Tenp.	Actromitaiaes	Actromiciaoes		
			24 VDCandrail bs	universal	ACTzOMUHIAO.	ACtrom.ulia		
				Tenp.	Actromiciaias	Actromiciaias		
			24 VOC	Tenp.				
				Tenp.	Actrom.ftia.	ACTzoMritias		
		κ	Output toop Powered	Tenp.		ACT2MM.RTCLCOCOLP.		
			24 VCCandtail bus	Temp.	Actromitaines	Actromichaoes		
				univesal	ACT2OMUHAOS	ACt2OM.U.IAO.		
				Tenp.				
				Temp.	ACTraMTCLAO.	Actromiciaias		
				Tenp.	Actrom.ritias	AстгмM.fita.		
		,	24 VDCandrail bus	univesal	ACTIOM.UIAO.S	ACT2OM.UHAO.S		
		LR	24 VDCandrail bus	univesal	ACT2OMUHAOS	ACtrom.liapos		
		N	24 VDCandrail bus	universal	ACT2OMUIAOS	ACT2OMUHAOS		
		-	24 VDCandrail bs	universal	ACT2OMUHIAOS	ACt2OMUH:AOS		
		-	24 VDCandrail us	univesal	ACT2OMULIAOS	ACT2OM.UHAOS		
		T	24 VOCandrail bs	univesal	ACT2OMUIHAOS	ACT2OMUHIAO.S		
		U	24 VOCandrail us	universal	ACT2OMUHIAOS	ACT2OM.UHAOS		
		w3	24 VDCandrail bus	universal	ACT2OMUHAOS	ACT2OMUHAOS		
		w5	24 VDCandrail us	univesal	ACT2OMUHAOS	ACT2OM.UHAOS		
	Poti	108..100k	24 VDCandrail us	univesal	ACT2OMUILAOS	Actrom.lifas		
	R	108...100k	24 VDCandrail bus	universal	ACT2OMUHIAO.	ACT2OM.U.1AOS		

		Voltage				
$\begin{aligned} & -10 \mathrm{~mA}10 \mathrm{~mA} \\ & \text { 1-channel bipolar } \end{aligned}$	$\begin{gathered} -20 \mathrm{~mA}20 \mathrm{~mA} \\ \text { 1.chanal bipolar } \end{gathered}$	$\begin{aligned} & 0 . .5 \mathrm{~V} / 1 \ldots 5 \mathrm{~V} \\ & \text { 1-channel } \end{aligned}$	$\begin{aligned} & 0 \text {... } 10 \mathrm{~V} / 2 \ldots 10 \mathrm{~V} \\ & \text { 1-channel } \end{aligned}$	2×0... $5 \mathrm{~V} / 2 \times 1$... 5 V 2-channel / splitter	2×0... $10 \mathrm{~V} / 2 \times 2$... 10 V 2-channel / splitter	$\begin{aligned} & -10 \mathrm{~V} . . .0 . . .10 \mathrm{~V} \\ & \text { 1-channel } \end{aligned}$
		Actrom.fitaoes	Actrom.ritaoes			
		Actrom.ulia.	Actrom.UILA.S			
		Actrom.ritaos	ACT2OM.RTIAO.S			
		Actrom.ritians	ACTzOM.RTCIAO.S			
		Actromuliais	ACtrom.Ul/A.as			
		ACtrom.lias.	ACTrem.U.1.a.s			
		Actrom.lias.	ACTrom.Ulia.			
		Actrom.lianas	ACtrom.liai.			
		Actrom.lialas	Actrom.ulia.			
		Actrom.tciae:	Actromictaoes			
		ACT2OM.UHAOS	Actrom.liai.			
		ACT20M:TCAAOS	Act20M.tia.as			
		Actrom.ritaos	Actrom.fita.			
		Actromicianes	Acram.iclaoes			
		ACT2OM.lifas	ACtrom.ulia.			
		Actrom.tcanas	ACT20M.TCAPA.			
		Actrom.ritaos	Actrom.tita.			
		ACT2OMULIAOS	ACtrom.Ulia.			
		actrom.liacos	Actrom.ulia.			
		ACT2OM.lifas	ACtrom.liai.			
		Actromuliais	Actrom.Ulia.			
		Actromulials	Actrom.litas			
		ACtrom.UHAOS	ACtrom.Ulia.			
		Actrom.ulias	Actrom.lia.as			
		ACT2OM.liaos	ACTzom.U.1.a.S			
		ACT2OMUHAOS	Actromiliaias			
		${ }^{\text {actromuliaias }}$	ACTr2M.UHAO.S			
		Actrom.litas	Actrom.UITA.OS			

ACT20M

Technical data

Input	
	Input urrent
Volaged dop, curentinipu	
Senerall data	
Confiumation	
Supply volageAmbienteneature	
AmbientempeatureAccurary	
Power consumption, typ.	
Power consumption, max. Step response time	
Insulation oortiation	
Rated voltage	
	Pollution degree
	Overvoltage category

Dimensions	Screw comection		
Clamining rage (nominal / min. / max)	2.5/0.5/2.5		
Depht x width x height	$\frac{2.5 / 0.5 / 2.5}{14.36 .112 .5}$		
Note			
Ordering data			
	Type ACT2OM-CI-2CO-S	aty.	Order No.

Accesso

Note

ACT20M

Signal splitter

- Isolation and conversion of bipolar DC signals
- Splititing into standard signal or bipolar output - Configuration via DIP swithhes
- Power supply via the mounting rail by
4way isplation
- Support for adiustment by ACT2OM Tool software, download link at www.weidmueller.com

Technical data

$\square=$
$\square=$
\square
provals

sions
Clamping range (nominal / min. / max.) Depth x width x height
Note
Ordering data

- $=0 \mathrm{on}$

Note

Access

Note
 \qquad

ACT20M

Signal converter

- Isolation and conversion of DC Signals
- Configuration via DP switches
- Power supply via the mounting rail bus
- 3-war isolation

3-way isalatio
download link a t www. weidmuelle.c.con software, download link at www.weidmueller.com
2

ACT20M-AI-AO-S

a=on
$\square=0$ off

Signal converter

- Isolation and conversion of DC signal
- Conifigration via DIP swithes
- Power supply wia the mounting rail bus
- Support for aduistment by ACT20M Tool sottv download link at www.weidmueler.com

c

Dimensions	Screw comeation		
Clamming range (hominal / min./max)	$2.5 / 0.5 / 2.5$		
Dephth x widh \times height	114.3/6.1/112.5		
Note			
Ordering data			
	Tppe	aty	Ordier ${ }^{\text {No. }}$
Strew comerecion	ACT2OMAAPOES		1176010000
Note			
Accessories			
Note	ONM mountigatils see		

ACT20M

Signal converter

- Isolation and conversion of bipolar DC signals into standard signals

- 3-wupy isolation tor ajustment by ACT20M Tool software, download link at www.weidmueler.com

Ovevolage eategary
Appovals
Appovals.

Clamping range (nominal / min. / max.) Depth x width x height
Note
Ordering data

$\frac{\text { Screwe comenection }}{2.50 .5 / 2.5}$

2.5

$\square=0 n$
$\square-0$ off
0

Note

Accesso

Note \square
Technical data

$\underset{\substack{\text { Input } \\ \text { Inputurent }}}{\text { ate }}$	
Onutuot outase	
Output curant	
load inedalace curentload inedance volage	
General data	
${ }_{\text {Coneran }}^{\text {Conifuration }}$	
Supply volage	
Ambient temperatur	
Storage temeneaturAcuracy	
(emperatue coeficient	
Insulation oorrination	
lisulation volageRaied volage	
EMC Standards	
Pouruolaye category	
$\begin{aligned} & \text { Approvals } \\ & \hline \text { Approvals } \end{aligned}$	

ACT20M

Technical data
Input
Volage drop, current input

Temperature transducer

- Isolation and convers
and thermocouple)
- Configuration via DIP switche
- Power supply via the output circui
- 2 -way isolation

Technical data

Input
Sensor
Input neasurement trage

Tenpeature input range

\section*{| Output |
| :--- |
| Output curent |}

Output urunt
Sensur eroroteter
General data

Supply $\begin{array}{c}\text { colage } \\ \text { Powe onsumprion }\end{array}$

Sowe consum
Starase empe
Actracer

Gavanic isalation
Step response time

Insulation poenculian
Insulation volage

Pollution degree
Ovenotage category

Approvols
Appols

Temperature transducer

- Isolation and conversion of temperature signals, RTD
- (PT100)
- Configuration via DIP switches
- Power supply via

ACT20M-RTI-AO-S

Dimensions Clamping range (nominal / min. / max.) Depth x width x height

Access
Note

Temperature transducer

c Technical data

$\frac{\text { Input }}{\text { Sensor }}$	
Input measumenentrangeTempeatue initurane	
Tempeatue inpur ange	
Output curentOututut votage	
load impedarese curent	
load impedance voltage	
Sensorerorodetection	
Configutaion	
Supply volage	
Powev consumptionAccuray	
Galvanic isolation	
Temperature coefficient	
Ster response timeAmbient tenperatue	
Ambien temperaureEMS sandadsts	
	Approvals

Temperature transducer

- Islation and conversion of temperature signals - (thermocouple)
- Configuration via IIP switches
$\stackrel{-}{-}$ - Pwawr supply iva

ACT20M-TCI-AO-S

Technical data
Imput
Sensor
lnout measurementrange

Tenpeature inputrangeOutput	
Outpup turentOutut volage	
lead $\begin{aligned} & \text { load inedance volage } \\ & \text { Sersorerorctetection }\end{aligned}$	
Sensore erorodetection	
$\underset{\substack{\text { Configuraion } \\ \text { Suply volage }}}{ }$	
${ }_{\substack{\text { Supply yotage } \\ \text { Powe consumpion }}}$	
${ }^{\text {Acoururay }}$	
Step esponse time	
Ambient teneature	
Insulation ooordination	
EMC StandadsPolution deguee	
Pollution degreeOverolage categry	
	Approvals

Dimensions
Clamping range (nominal / min. / max.)
Note
Ordering data
Note
Accessories
Note

Screw comenetion

CH2OM rail bus

Quick and safe power supply through the DIN rail
This customer-friendly infrastructure solution brings power, signals and data to the rail in a quick and reliable manner.
The rail bus can replace the tedious individual wiring proce The rail bus can replace the tedious individual wiring process
with a flexible and uninterrupted system solution. As a result the customer saves time and cost-especially if any module changes are needed later, as other adjacent modules are not disturbed. The uninterrupted system bus is securely integrated within the 35 mm standard mounting rail. Whether 7.5 mm or 15 mm high, the custom-fit rail profiles are easy to install on all TS 35 standard rails in accordance th DIN EN 60715 .

The resistant gold-plated contacts ensure a permanent and reliable contact. The ACT2OM modules are simply snapped onto the mounting rail and are automatically in contact with the DIN rail bus.

The supply of 24 V DC to the power rail can be from any one of the auxiliary powered ACT2OM modules, when that module is itself externally supplied. This allows the rail to power up to 8 other modules (approximately 400 mA). Fo
\qquad can be used.
The ACT2O-reed-n-Basic provides a simple and compact supplying un) power supply interface to the rail, for

The ACT2O-Feed-In-Pro is a more powerful 22.5 mm wide solution. This takes 2 external 24 V DC inputs, and via internal diodes provides a redundant supply to the rail, and an alarm output in the case of input failure.

- Support section for TS 35×7.5
- Length: 250,500 or 750 mm

CH20M BUS-ADP TS35/1000
Cover plate
ver plate for DIN rail bus - Length: 250,500 or 750 mm

Ordering data		
${ }_{\text {Trpe }}$ CH2OM BUSADP TS35/50	${ }_{10}{ }^{\text {aty }}$	Order No.
CH2OM BUSAADP TS35/500	10	1248260000
CH2OM BUSADP P T35/750	5	12887

SET CH20M bus 250Mm TS 35X15

Ch2OM Bus-PRofll TS35x15/1000 Support section for bus circuit board

- Support section for TS 35×15 - Length: 250,500 or 750 mm

CH2OM BUS-AP LITS35x7.5 \& 15
End plate

- End plate for DIN rail bus Fits on TS 35×7.5 and $T S 35 \times 15$

SET CH20M BUS 250MM TS 35X7.5

- SET consists of one each of CH2OM BUS-ADP TS $35 / 250$ CH2OM BUSAP AP LITS $35 \times 7.5 \& 15$ CH2OM BUS-AP RE TS $35 \times 7.5 \& 15$ CH2OM BUS.PROFFL TS 35X7.5/250
Ordering data

CH2OM BUS 4.50/05 AU/1000 Bus PCB

- Bus circuit board for use on TS 35×7.5 and TS 35×15
- Length: 250,500 or 750 mm
- Length: 250,500 or 750 mm
- Five oonductor paths, gold-plated
- Electrical rating: $63 \mathrm{~V} \mathrm{AC}$,5 A conductor path

C

Ordering data

CH2OM BUS-AP RE TS35x7. 5 \& 15
End plate

- End plate for DIN rail bus
- Fits on TS 35×7.5 and $T S 35 \times 15$
- right

Ordering data

TS 35x7.5/TS 35x15 ${ }^{011 N}$ rail

Power-feed module for the CH2OM DIN rail bus

4 A supply with backup supply and
error analysis
The power-feed unit ACT2O-FEED-IN-PRO-S supplies the devices on the CH2OM DIN rail bus with 24 VDC At the same time, the FEED-IN device reads the group error contact - optionally provided by the installed devices - from the CH2OM rail bus and sends a message through the status relay to the external controller. Optionally, two powe supplies can be connected as a primary and back-up, to create a redundant 24 V DC source. An installation in Zone 2 / Division 2 is also possible. Three LEDs show the status of the power supply and the error status.

Weidmuiler offers a compact and narrow 6 mm
feed-in module as an alternative. This feeds the 24 V DC from it's field terminals directly to the to the DIN rail bus. Up to 80 modules can be fed with a maximum available current of 2.5 A .
of 2.5

The FEED-IN-PRO can supply a maximum of 4 A to feed up to 120 devices mounted on a CH2OM rail bus. Quick identification of errors on the DIN rail bus is through the internal status relay. The FEED-IN-PRO device immediately The supply is then switched automatically to the redundan power supply.

ACT20 power-feed module

- Distributes the supply onto the busbar
- Compatible with Weidmuiler CH2O DIN rail bus - Pptional connection for backup supply - Approved for us in ExZone 2 /Div. - Alarm alers via the status relay
 ACT20-Feed-In-BASIC-S

\qquad

Technical data

Input
Supply vilage

Tingerer tevel to tr the powers supply
Output, powers
Oupputvotage
Outpower
Outurut curenem
Outprut , status relay in inste 2 one

Conitious curent
AC power max.
 Ambient tenpeature
Power consumpion
Protection degra
Weight
Weight
Humidiy
$\underset{\substack{\text { EMC standardic } \\ \text { Approvals }}}{ }$

Signal converter in a terminal format

The MCZ-SERIES signal converters have a slim terminal design and convert, isolate and monitor analogue signals. They have five tension clamp connections. The open side of the housing can be closed using a standard cover plate
accessory. The housing has a low height of just 6.3 cm . It also accommodates a cross-connector for reducing the wiring of multiple module's 24 V and 0 V connections. Two WS 10/6 markers can be used for labelling. These are available in MultiCard format and can be printed using Weidmüller's professional printing system.

Security

Electrical isolation increases the safety
of operations and reduces the risk of facility malfunctions.

Saves space in the electrical cabinet
High product density (modules only High product density (modules only the DIN rail.

Simple wiring
The power supply can easily be bridged from one module to the next using pluggable cross-connections.

MCZ SERIES - DC/DC passive isolator

Input current loop feed
 mcz ccc / ILP

- Passive isolators for galvanic isolation of $0 / 4 . .20 \mathrm{~mA}$ standard signals.
- The component dram
- The component draws power from the measuremen signal and requires no additional auxiliary power
- Low energy consumption, pick-up current of <100 - 2 -way isolation

Technical data
Input tulage / /nput turent
Pickup curre
Voltage drop

Output
Output voltage / Output curent

Output volage / Ouput urrent
Load inpodance voltagef Curen

Accuracy
Tempeature coefficient

Culutf feepuency (-3 Bib)
Generar data
Conifiuation
Ambient tempeatit
Ambien temperature
Appovis
and
Insulataion coordination

RTD 2-3-conductor converter
Output-loop powered \qquad

- RTD signal converter for galvanic isolation and
- Tonversion of PT100 signals
requires no additional auxiliary power
- 2 -way isolation

C

Technical data

DC/f converter
The analogue input signal is converted into a configurable frequency signal. Thus analogue signals can be read by the PLC's counter inputs.

mcz cFc

Technical data

\section*{| Input |
| :--- |
| Input olage / Input uruent |
| Inut tesistanace, voltagefecurreat |
 Input tesistan

Volaged drop}

Wolaged diop
Output
Out
Outpupt fequenc
Output vevel
Outpopt lever
Outpur curent
Acturary

Accuracy
Tempeature coefficient

Stausus indicatar

General latata
Confiunation

Conifutation
Supply volage

Ciraneltararinincapacity of
Ambiert temperaure
Aporads
Appovals
Insulation coordination

Insulation coordinin
Standards

EMM sanandads
Rated volage
Rated volage
Impuse wiftsand voltage

Impulse wivtstand
Insulation voltage

Ovenolageg categor
Pollution degree
Clearance \& crepenge distances

Signal converters

Signal converters	Universal signal converters - Overview	D. 2
	ACT20C - Overview	D. 4
	ACT20C - Network-compatible signal converter	0.7
	ACT20C - Station	D. 8
	ACT20P - Overview	D.16
	ACT20P - Universal measurement converter	D. 20
	ACT20P - Signal spliter	D.26
	ACT20P - Signal converter	0.27
	ACT20P - Limit value monitoring	0.29
	ACT20P - Current measuring transducer	D. 32
	ACT20P - Bridge measuring transducer	D. 34
	WAvESERIES - Overview	D. 38
	WAVESERIES - Universal signal converters and trip amplifiers, configurable	D. 40
	WAVESERIES - DC/DC 3 -way isolator	D. 44
	WAVESERIES - DC/DC 2-way isolator	D.54
	WAVESERIES - DC/CC passive isolator	D.56
	WAVESERIES - Temperature measuring transducer	D. 60
	WAVESERRES - Frequency signal isolator/converter configurable	D.70
	WaveSERIES - Current measuring transducer	0.72
	WAVESERIES - Voltage measuring transducer	0.74
	- Isolating converter for serial interfaces	0.76

Signal converters

Weidmüller analogue conditioners and monitoring modules are offered in touch-safe IP 20 housings and
with space-saving DIN mounting.

This product line includes: passive and active isolation amplifiers for analogue current and voltage signals; measurement isolators for measuring temperatures, resistances, frequencies, $\mathrm{AC} / \mathrm{DC}$ currents and voltages; and universally-configurable signal isolating converters with integrated threshold monitoring.
Weidmüller wide product range covers all the functions for isolating, converting and monitoring analogue signals. industrial measurement applications to safeguard the bas functionality between field signals and post-processing systems. A comprehensive line of accessories is also available for the analogue signal converter product line. These include pluggable cross-connectors, markers, and configuration adapters for the software-programmable products.

reatures

- Can handle a variety of measurements
the output side
Stand-alone, pluggable connection mechanism - screw or tension clamp
- Minimal commissioning needed - often with no calibration.
Minimal wiring effort - with pluggable ZOV 2.5 N cross-connector
- Clear type designations makes selection easy
- High level galvanic isolation

International approvals

ACT20C

Your process requires the utmost attention

Our new ACT20C signal conditioners support you in achieving this

Many process parameters in your system are handled by your control system, which shows you the current status of your process. Even so, do you have a full overview of critica system states? And this at all times, at every location, and with the recent system history?

With the ACT20C, you receive accurate information on the status of the sensors, signal processing and cabling. Data
communication ind will depending on your individual
communications infrastructure. This comprehensive and initiate targeted tactions taken by syse errors and fault and maintenance personnel. By doing so, this technolo contributes to ensuring reliable system operation.

ACT20C signal conditioner with Ethernet interface

Comprehensive process transparency is provided by the transfer of diagnostics information, signals and data

You would like more process transparency for your systems. We support you with signal conditioners that supply you with precise information via our Ethernet interace. Let's connect

To be able to control systems and processes optimally, you require a constant flow of information on the current states of individual applications, devices and functions.

Our ACT20C signal conditioner not only monitors the signa conversion, but also communicates precise information on device status, signals and data directly to connected computer and control systems.

Our Ethernet interface enables an event-controlled transfer of diagnostics information, which in turn supports the elimination of faults in, for example, plant operation.

Simple operation and configuration Simple operation and configuration
Software supported configuration allows a fast Soplication of settings and simple operation.

Simple remote access
continuuus monitoring of device and system functions, simple and afford
existing Ethernet networks.

Detailed analysis and presentation of core process parameters
The ACT20C supplies key parameters and historical data,
independent of the location
Thanks to the ACT20C, Weidmüller is now the first to offer a solution which supplies you with extensive diagnostic and status information without the need to deal with the complexity of field bus systems.

The isolating converters are based on the proven, robust technology of transferring analogue signals to the DCS system. Various signal sources and field devices can be
connected to the input side of the isolating converters.
As a result of this, the ACT20C can be configured for the sier-defined processing of current, voltage and transmitter ignals. Access is accomplished via a service interface on
the front panel or via the Ethernet, and performance is ensured through the manufacturer-independent FDT/DTM software platform. To work with this platform, Weidmüller provides the WI-Manager universal FDT frame application.

Data collected in the ACT2OC is made available over the Ethernet via Modbus TCP. Depending on the available to your SCADA system within your network, and you can also access it via the Internet from any location .

Network-ready signal converter for
DC voltage and current signals
Networkcompatible signal converter with Ethernet - Scalable current or voltage in

- Limitvalue monitoring with parameterisation options
- Diagnostics on device status, signals and line fauts via Modbus
- PC configuration with FOT/TTM software, downloa

ACT20C-AI-AO-MTCP-S

Technical data

\section*{| Input |
| :--- |
| Inturent |
| Inout voltase |}

Input voltage
Sensos supuply

Outpot
Output current

Output current
Output volage

load inpepanece volage
Signal arouessing
Tanserfuturions
Sigat processing
Tinatest funtions
Limituvue monotiong
Limitivalue monition
Condidion Monioí
Diagososics

Geneal data
Supply volage

Supply yolage
Power consumproio
Accuar

stoang tempe
Huvity
Protection dey

Protection degeree
Insulation coordination

Senid solation

Pollution degree
Communication

Intefrese
Adtresing

Protocolin
Coniputain
AAprovils
Standards

Standadds
Recommendations

 0.20 mA .4 .20 mA $0.20 \mathrm{~mA}, 4$
$\frac{0.10}{0.100}$

5000 | $\frac{5500 \Omega}{206}$ |
| :--- |
| 10 Ka |

$\frac{3.5 \mathrm{~W}}{0.155^{\circ}}$ $>550^{\circ} \mathrm{C}$, Votage $1 \mathrm{mV} / 15 \mathrm{mV}\left(+5 \mathrm{mV} \geqslant 55^{\circ} \mathrm{C}\right)$

$\frac{0.95 \% \text { (no oondensation) }}{1.220}$
4 maz isolator. beeween input/ outpup/ / oweversuppl/ Ethemet

\qquad

 FOTTOTM (Ethenento orsenice interface)

$\frac{\text { Ordering data }}{\text { Type }}$

Ordering data		
Typer 2	aty.	0rider No.
ACT2OCAAAO.MTCP	1	1334490000

Take a preventative approach to monitoring plants and processes ACT20C gateway conveys precise status information on your devices

Diagnostic and status information that's as comprehensive as possible and comes from all areas of an automation solution goes a long way in helping to optimise process

With ACT20C gat signal converters, for the first time ever we can obtain of the automation solution selected. An Ethernet interface enables simple access to the desired information. The data obtained in the ACT20C gateway is provided via Modbus TCP or OPC, or can be displayed directly in an FDT frame application.
The flexibility of the ACT20C gateway makes it easy for you to optimise your processes. Depending on the available throughout your entire network or pass it on to your SCADA or maintenance system. The data can even be used from any location over the Internet via an Industrial Ethernet router

The Etiement interacte e enables eveniss-diviven tansmisision of diagnostic information. So, for example, measurement data
about the pumps, which is continuussy y ollected throughout their sesicice life, frovides intormation about their performance $\begin{gathered}\text { and operationa satus. }\end{gathered}$

Your
special advantages:

More transparency in your process automation

[^0]

Simple commissioning, fast maintenance The station concept with "Plug \& Produce"
and "Hot swapping" makes installation an
maintenance work faster and thus more
efficient.

Clever software configuration
The software contiguration based on the FDT
The software configuration based on the FDT
and FDT2 standards makes parameterisatio and FDT2 standards makes parameterisa
documentation and data backup easier.

CT20C - Station

Condition monitoring
Preventative maintenance
Preventative manitoring
automation-indentrategies using
automation-independent information about
operating conditions and process data for
conneected devices.
operating conditions
connected devices.

Smart software configuration
The software contiguration based on the FDT
and FDT2 standards makes parameterisation
and FDT2 standards makes parameterisa
documentation and data backup easier.

High process reliability
A galvanic four-way isolatio
galvanic four-way isolation and an impulse

vithstand voltage of 6.4 kV pursuant to
$E C 61010-2-201$ guarantee optimum fusing
$E C$

(1010-2-201 guarantee optimum fusing.

Gateway for ACT20C station \qquad
\qquad

- Access to all data
Act202 station
- AJ45 port with Ethermet TCP/IP
- Configuration by means of the EDT/OTM - Configuration by means of the FDT/OTM standard Swapping"

Technical data
Communication
Commulication
Addersing
Confirumion
Rulfation

OHCP r r manual adiustment
With PTTTTTM sotware

($\mathrm{m} T \mathrm{x}$) With forToTM sotware, OHCP

30 VaCRMS
 $\frac{\frac{1.1 \mathrm{kV}}{\frac{1.5 \mathrm{~V}(1.250 \mathrm{us})}{2}} \frac{1}{11}}{}$
Pollution degree
Ovenoltage categuy

ACT20C-Station

- Measurement and monitoring of AC/DC curren
- Input and output ranges are adjustala
- Relay utput for limit value alarm with switching

Input signal

Output toltage [lutput tanloguie
Output urrent [ouptut analogyele)

Output (ligitial $)$
Type
Rated swithining urrent

Max. snithinin volage, AC
Genearid data

Step esponsse itine
Tenpearuve cofficient
Supply volage
Supply volage
Insulation coordination
Rated voltage
EnC standards
Galanicisalation
Testututage

Impllse enitssand volter
Pollution degeree

I- on

Bus termination terminal - Electrical termination of the CH2OM rail bus of an ACT20C station - Acts as a mechanical end bracket at the same time

\qquad

- Electical termination of the CH2OM rail bus of an

ACT20C station

- Acts as a mechanical end bracket at the same time

Technical data

Technical aat

\section*{| Ambient tenperatu |
| :--- |
| General data |}

Tighthening oratu
Mounting zail

202820000

CH2OM rail bus

Quick and safe power supply through the DIN rail.
This customer-friendly infrastructure solution brings power signals and data to the rail in a quick and reliable manner.
The rail bus can replace the tedious individual wiring process changes are needed later, as other adjacent modules are not disturbed. The uninterrupted system bus is securely
integrated within the 35 mm standard mounting rail.
Whether 7.5 mm or 15 mm high, the custom-fit rail profiles are easy to install on all TS 35 standard rails in accordance 60715

The resistant gold-plated contacts ensure a permanent and reliable contact. The ACT2OM modules are simply snapped onto the mounting rail and are automatically in contact with the DIN rail bus.

The supply of 24 VDC to the power rail can be from any one of the auxiliary powered ACT2OM modules, when that module is itself externally supplied. This allows the rail to power up to 8 other modules (approximately 400 mA). Fo can be used.

6 mm 20-Feed-ln-Basic provides a simple and compact supplying

The ACT2O-Feed-In-Pro is a more powerful 22.5 mm wide solution. This takes 2 external 24 V DC inputs, and via internaldiodes provides a redundant supply to the rail, and an alarm output in the case of input failure.

- Length: 250,500 or 750 mm

CH20M BUS-ADP TS35/1000
Cover plate
ver plate for DIN rail bus - Length: 250,500 or 750 mm

Ordering data		
${ }_{\text {Trpe }}$ CH2OM BUSADP TS35/50	${ }_{10}{ }^{\text {aty }}$	Order No.
CH2OM BUSAADP TS35/500	10	1248280000
CH2OM BUSADP P T35//50	5	12482

SET CH20M bus 250Mm TS 35X15

CH2OM BUS-PRoFIL TS35x15/1000 Support section for bus circuit board

- Support section for TS 35×15 - Length: 250,500 or 750 mm

CH2OM BUS-AP LITS35x7.5 \& 15 End plate

- End plate for DIN rail bus - left

SET CH2OM BUS 250MM TS 35×7.5

- SET consists of one each of CH2OM BUS-ADP TS $35 / 250$ CH2OM BUSAP AP LITS $35 \times 7.5 \& 15$ CH2OM BUS-AP RE TS $35 \times 7.5 \& 15$ CH2OM BUS.PROFFL TS 35X7.5/250

CH20M bus 4.50/05 AU/1000 Bus PCB

- Bus circuit board for use on TS 35×7.5 and TS 35×15
- Length: 250,500 or 750 mm .
- Electrical rating: 63 V AC, $5 \mathrm{~A} /$ /conductor path

CH2OM BUS-AP RE TS35x7.5 \& 15
End plate

- End plate for DIN rail bus
- Fits on TS 35×7.5 and $T S 35 \times 15$
- right

TS 35x7.5/TS 35x15 ${ }^{0} 11 \mathrm{rail}$

Your systems work with analogue current signals ACT20P signal converters efficiently tackle signal conditioning and isolation

Your systems and processes are controlled using analogue current signals. Our signal isolation converters are the reliable and efficient
solution to signal conditioning and galvanic isolation of current signals. Let's connect.
Temperature, pressure, weight or distance: your system's sensors pass on a wide range of analogue signals. During this process, undesirable transients may occur causing faults and damaging your controls' inputs.

Our ACT20P signal converter delivers reliable protection of controls and remote //O inputs against transients and voltage peaks. It also adapts a multitude of signal variants to standard signals, in addition to being space-saving and efficient. Its properties make the ACT20P signal converter a low-cost universal solution to Its properties make the ACT2OP signal converter a low-cost universal soluti.
all tasks involving the analogue isolation and conversion of current signals.

Fault-free recording of measured data in Faut-r management During the final step of water purficication,
quality values are checked. To this end, the quaity values are checked. To this end, the
signals are transterred over several hundred metres
from the switching box on the last setting basin to the plant control room. There, they a basin to the plant controit room. There, they
recorded, analysed and stored. For a smooth measurement data recording process, our signal
isolation converters
filter out all of the faults and isolation converters titer out all of the faults and
transients according to the latest provisions set
forth in forth in EN 61010 .

ACT20P - Selection table

Reliable connection

Individually configurable protection against mismating with release lever

High level of galvanic isolation
The galvanic isolation of 2 kV $(300 \mathrm{~V}$ rated voltage) ensures high pro cess reliability

Simple signal conditioning
Devices configured for converting standard sensor signals to standard DC standard.
signals.

Auxiliary power		高	膏	Special characterisitis
24 VDC	300	3.way	s	Hatre transarent
24 VDC	300	3.way	s	Hatre transarent
24 VOC	300	3.way	s	Hatre transarant
10.60 VOC	$300 \mid$	3.way	s	
24V-230 Vac/oc	600	3.way	s	adkiv r passiv utuput
output lop	300	3.way	s	Output top powered
12.60 VOC	300	3.way	s	
$9 . .60 \mathrm{Voc}$	300	3way	s	
24 VOC	300	3way	s	Through hole current converer
24 VOC	300	3way	s	Though hole eurent conventer
24 VOC	300	3.way	s	Though hole curent converer

Precise data recording
Measurement data is
Measurement data is converted and transmitted
with an accuracy level of 0.05%

Universal DC isolation amplifier \qquad

- Universally configurable input and output for voltage/ - current
- Active or passive output \quad Universl voltage supply 24.230 V AC/DC
- Universal voltage
- Convenient configuration on the device with IIP switches or by means of clear-text display + buttons, without reference source.

Technical data
Input

Output $\begin{aligned} & \text { Output vage }\end{aligned}$
Output volage
Outur urent
lodid invedancer

load impeanace cu
Othste volage
Cutut teveneny
Cutoff fequeneny \mid : od B

General data
Gavanic
Acruaravation

Accurac
Tempeature

Tenperatur coee
Cofifuration
Configuraion
Power ocsumpion
Ster esesonsese tione
Step response time
Supply volage

Supfly votage
Insulation coordination

Rated volage
Standards

Insulatio v volage
Impulse wistsand volage

Impllse withsan
Polluinon degeee
Polltion degree
Ovenollage category

All-purpose inputs combined with output loop supply

ACT20 signal converters are equipped for diverse applications

When it comes to recording analogue measured values compliance with safety regulations and maximum precisio are basic prerequisites for industrial plants. Basic security functions, such as switching units on and off, monitoring actuators or controlling temperature and pressure, require the support of high-precision signal converters.

With our ACT20X and ACT20P products, we are providing you with universal devices that will reliably isolate and convert signals from intrinsically safe or safe zones. Thanks to the integrated output current loop, the modules do not require any additional external power supply and can also be easily used in remote control boxes. Integrated in an enclosure that measures a mere 12.5 mm wide, the signa converters take up very little space on the DIN rail.

The latest addition to our ACT20X series is characterised by high precision and compliance with all the safety requirements for use in Ex zones 0,1 and 2. Also, the
ACT2OP ITX+ offers extended input properties, such ACT2OP ITX + offers extended input properties, such as
measurement of $+/-300 \mathrm{~V} \mathrm{AC/DC}$ voltages and currents of up to $+/-5$ A DC limit values.

The graat advantage of a signal converere in applications wiolving direct onsite recording of measured values foom temperature and pressur sensoss sis that t can be used

[^1]
Universal converter with digital output

ACT20P-UI-AO-DO-LP-S

- Independent of external supply thanks to output toop. powered supply
- Allpurpose usage thanks to versatile input functions
- Simple sottware configuratio
- Digital output for verasaile linit value setting

Simple operation
The intuitive connection system with release levers makes it easier to maintain the device and to detach lines.

Versatile application options

High process reliability
High process
The high level of gavanic isolation of 4 kV at
300 V rated voltage guarantees safe operation
300 V rated voltage guarantees safe operation

```
4 kV
```


Signal converter

ACT2OP-AI-AO-DC-S

(\$4 Technical data | Input |
| :--- |
| Inputvalage |

 Sensors supply
Output
Output volage Output
Output olage
Outut turuent

 Genenalataa
Givanaicialation
Linait
Tenneayur coefficien Tenperature coefficient
Configuraion ${ }_{\text {Contigutaion }}^{\text {Step }}$ Sesponse ine Suply volage
Insulation coordination Standards
EMC standatadic
$\underset{\substack{\text { EMS sandards } \\ \text { Insuldaion volte }}}{ }$
Impulse wilstand volag:

24 VOC
adiustable, 0.11 V V, min outuptrange 2 V
adiustale, 0.2 .22 mA , min. Outuputrange 4 mA
$\frac{2500 \mathrm{k} 2}{}$
3.way iolator, beemeen input/ output/sypply
350 ms
12.60 V OC
IEC61326-1
2 WV ipputs outputs
$4 \mathrm{kV} 11.2 / 50$ us)

ACT2OP - Signal splitter

Signal converter
ACT20P-CI-CO

- Isolation of DC Signals
- Passive transmitter or active current input
- 3.way isolation
- HART® - transparent

Technical data
Input
Inpus iginal
Input turemt
Votages dopop, current

Volageg drop
Output

Output
Outruent
Oppt uneme

Senerald data
Configution

Configutain
Supply volage
Accuary
Acterarar
Step response tine

Ambient tempeature
Insulation coortiation
mand

Insulation yolage
Testutotage
Tessuolage
Impuse witsand volage
Ponluon devee
Polluition degree
vitoon degeree

ACT20P - Signal converter

Limit monitoring with simple configuration
ACT20P identifies even the smallest deviations

Reliable monitoring of parameters such as pressure, flow and temperature plays an important role, especially for power applications and in the process industry. In this regard, ndividual specifications and standards define the limits to be observed for smooth process flows.
Our ACT20P trip amplifier enables a precise monitoring solution to be set up for your process signals. Easily configured via FDT/DTM software or also directly on the device, the universal module can be used in many ways. The universal input range as well as the robust design support a wide temperature range
The trip amplifier is characterised by high reproducibility and eliability Thanks to its wide range of alarm functions, it reliabiity. hanks to its wide range of alarm functions, it ca

Effective control of threshold limits for the processs industry- our trip amplifers offer an especially recisis solutiont that tesponds
rapily and correctly in the event of deviations

Your

special advantages:

Simple configuration
Use the buttons on the 7 -segment display to configure the ACT20P monitoring module extremely quickly. The manufacturer independent FDT/DTM software also facilitates configuration.

Numerous alarm functions Window alarm, alarm delay, wireline break
detection and hysteresis are just some of the features with which the trip amplifier
provides the best conditions provides the best conditions for each proces
Universal input
DC currents up to 5 A and voltages up to 300 v . $2 / 3$-wire RTDD, thermocouples, resistors and
potentiometers to $500 \mathrm{k} \Omega$.

| U, I, | |
| :--- | :--- | :--- |
| R, Q | E |

Configured directly at the device A 7 -segment display and LLDEDS supuport the
direct configuration by push buttons and direct confifiuration by push buttons and
potentiometer.

High temperature stability
Thanks to the extended temper
Thanks to the extended temperature range from
$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, the robust monitoring module
can be used in any environment.

Universal limit-value monitoring

\qquad
Universally configurable input tor tenperature, volage, current, potentiometer, resistance
.2 independent relay outputs with m

- 2 independent relay outputs with multiple linit value functions: window alarm, upper/lower linits, hysteresis,
delay e etc.

Contiguration on the de
via FTT/TTM sotware
Exteral power supply $9 . . .60 \mathrm{~V}$ DC

Technical data

	Technical data
	Input

Dimensions	Screw comenection		
Clamping arage (loninal / min./ max)	$\frac{.313 .6 / 22.5 / 17.2}{}$		
Depht/Wisth/ Height			
Note			
Ordering data			
	Type ACT2OP-UI-2RCO-DC-S	${ }_{1}^{0}$	Order No 7940045760
Note			
Accessories			
Note	crx200 SSB confugurion		

ACT2OP - Current measuring transducer

Current-measuring transducer

- Measuring and monitoring of $A C / D C$ curren
- Inut/output electrically solated
- Input and output ranges are adiustable
- Contact-free through-hole technology Relay outurut for imitiv value
threshold, delay, hysteresis
2

ACT20P-CMT

D

Technical data

$\frac{\text { Input }}{\text { Input measurument trange }}$
Input signal
Input trequenery
Output tanalogute)
Output volage
Iuptuta

Rated switching current
Max swithing volage, Ac
Max. ssitithin voltage,
General
Batat
Genenaral data
Gavanic sisation
Accuary
Configuration
Step response time
Tempeature coefficient
Tenpparaure coeficie
Supply volage

Rated volage
Standards
Impuse withstand volage
Testultage
Polluition egee

Polution degree
Overologe catega

 ≤ 220 ms $110 . .900^{\text {\%o }}$ | $\leq 200 \mathrm{ppm} / \mathrm{C}$ |
| :--- |
| 18.30 VDC |

3
 $\frac{4 \mathrm{kV}}{2}$

ACT20P Strain gauge transmitter

The ACT20P Bridge converts load cell/strain gauge measurement signals to standard analogue signals.
The ACT20P family offers the customer precise and functional signal converters in a compact design. The ACT2OP Bridge is the first product from this new line of signal converters.

Load cells, with integral strain gauges, are used for weighing and load measurements throughout factory and process automation, in such applications as batch and recipe control silo contents for granular products, bag weighing, engine
strain measurements, and tank level. strain measurements, and tank level
a measurement bridge network, which deform with load changes and create a varying millivolt output from the bridge. The ACT20P Bridge reads these signals and converts them to a standard signal $0(4)-20 \mathrm{~mA}$ or $0-10 \mathrm{~V}$.

The high input to output isolation provided protects the control PLC against signal line interference. A digital input representing the "empty" condition of the container (tare function) is a standard feature which zeroes the output of the ACT20P Bridge.

Features

- Adjust to load cells using push button

Easy tare function using the integrated control input Intelligent pluggable connection method The release lever simplifies maintenance and enables the connection to be unplugged without any wire damage. ding with the unique "auto-set" function

Exact measurement

The input with 6 -cond and very high 6 -conductor connection eas signal processing.

Conversion
Conversion of the bridge voltage in standardised analogue signals.

Tare calibration

Simple calibration of the
位 weight can be dore onsite by using with an external connection via a PLC rnal connection via a PLC

On-site calibration
mple and reliable calibration on-site. The ACT2OP Bridge is adjusted to the different load cells by means of a pus button behind the hinged panel.

Protection
Protection against nois from The 3 -way isolation separates the input the voltage supply and the output with 5.7 kV isolation voltage.

Strain gauge transmitter

ACT20P Bridge measuring transducer

Bridge measuring transducer for reading from load cells

General

The ACT2OP Bridge is a DIN rail mounted, signal conditioner for industrial measuring bridges. It provides a precise excitation voltage for the bridge, and converts the input measurement to an isolated current/voltage signal. Bridge measuring

Bridge excitation supply
Voltage sense connections are provided so that the excitation voltage can be measured at the bridge. Known as 'remote sensing' this method compensates for cabling and contact resistance errors. It is recommended for all new installations or where an upgrade is possible. Remote sensing wiring requires three twisted pairs.

TARE adjustment

The installed strain gauge is normally subjected to an initial load independent of the measurement taken. The TARE connection allows you to correct for this initial loading by operating a switch. Alternatively there is a button on the front of the unit (under the front cover) that performs the same function. Press for two seconds to correct for the initial load (the 'CAL HI' LED will light for one second).

Gauge factor
Every strain gauge has a 'gauge factor' which gives the output voltage at full-scale for a one volt excitation voltage (given in mV / V). You multiply this by the bridge excitation voltage to get the output voltage when the gauge is fully loaded. For example, a load cell with 10 V excitation and $2 \mathrm{mV} / \mathrm{V}$ gauge factor will give 20 mV when fully loaded. The meaning of a 20 mV output depends on the type of the strain gauge. If it was designed to measure $0-1000 \mathrm{Kg}$ then 20 mV indicates a 1000 Kg load.

Setup
The ACT20P Bridge has internal switch settings that determine the excitation voltage (5 V or 10 V) and Input range limits. Select the appropriate settings from the table calibrate the unit to the input and output range for your application.

Calibration

There are three options for calibrating the ACT20P Bridge

- Kalibrierung über einen Messbrückensimulators
(Bench calibrate using a bridge simulator (if you know the
gauge factor)
- Calibrate on-site by loading the actual installed strain
- Bench calibrates using a mV source (if you know the gauge factor).
For more information please read the manual from the web page: www.weidmueller.com

Configurable
Bridge measuring transducer for reading from load cells - 3 -way isolation

- Supply for measuring bridges up to 4×350 ת - Simple calibration of the tare weight using external - Input and output ranges adjustable via DIP switch

ACT20P-BRIDGE-S

\qquad

號
Technical data $\frac{1}{\text { Input }}$

Birige supply volageOutut	
Output	Type
Output voltage / Output current	
${ }_{\text {Senaral data }}$	
${ }_{\text {Configuation }}^{\text {Supply vagase }}$	
Power consunplion	
Lineaity	
${ }_{\substack{\text { Lineaity } \\ \text { Repeatacuracy }}}$	
Repeat accurayHumidy	
Step response time	
Ambien tenpeatureApporals	
Approvas	
Ssanalaras	
$\underset{\substack{\text { EMC Standards } \\ \text { Rated volage }}}{\text { ate }}$	
Impulse witssand volage	
Overentase category	

Ovenoltage categ

Dimensions	Screw comection		
Clamping range (nominal / mi./ / max)	$\frac{2.50 .5}{113.6 / 22.5 / 117.2}$		
Depht x with x height			
Note			
Ordering data			
	Type ACT2OP-BRIDGE-S	aty.	Order No 1067250000

Note
Accessories
Note

WAVESERIES - Signal converters

Isolation and conversion of analogue signals -
enclosed in a rail-mounted WAVEBOX housing
WAVESERIES products are well suited for users seeking an analogue signal conversion solution. Weidmüller's WAVESERIES integrates a wide variety of functions into a broad range of products suitable for many different analogue signal conditioning applications.

- Passive isolation amplifier for standard analogue signals
- Active isolation amplifier for standard analogue signals with 2-way or 3-way isolation
Isolating signal converters for temperature (RTDs / thermocouples), resistance, potentiometer, frequency,
AC/DC currents up to 60 A , and AC voltages up to 450 V . - Measuring transducer for measuring AC currents up to 500 A
- Signal converters for all common input signals, with
. configuration (either DIP switch or with software)
- Signal converters with analogue and relay outputs, fully configurable via interface and software

Service
No tools are required when removing the PCB from the housing. Simply push in the locking clips on the head piece and then pull out the upper section along with

aves time

he ZQV 2.5 N cross-connector can be used to connect the housing together in order to bridge the power supply between the modules.

Security
You must ensure the presence of "protective separation" in accordance with EN50178. The WAVESERIES products are able to fulfil these requirements ompletely

Flexibility

The BLZ/ BLZF pluggable screw and tension-clamp connections offer you the best flexibility. Coding elements can be used (without loss of poles) to make sure that the wrong plug cannot be inserted.

Protection
The WAVEBOX housing is made from recyclable plastics. It is available in widths of $12.5,17.5,22$ or 45 mm . Practically no tools are required during installation. Il requirements and EMC are met. The integrated ventilation slits ensure that sufficient heat dissipation takes place.
3-way isolator, configurable
3-way isolator
Passival signal converter Isolators, Input and
Output Loop Powered
Output Loop Powered

WAVE TTA - one module fits all ...

In the case of signal processing this is a big benefit. The
maintenance engineer who hasn't got the right spare isolator or transmitter, and has to run part of the plant on manual control for a day or two before the replacement Weidmüller has designed a signal processor with unique Weidmuller has designed a signal processor with unique

- Isolator
- Converto
- Transmitter
- Trip-amplifi

The new WAVE TTA is a "universal" Transmitter TripAmplifier. It is part of Weidmüller's well-established WAVESERIES family of analogue signal conditioners, which are widely used in process and factory automatio applications.

The TTA is unique. It has a combination of high performance and exceptional configurability. Designed for process industry applications, the TAA will work accurately and
stably over a wide ambient temperature range, and over a wide supply voltage range, and with most types of senso inputs. For 2 -wire current transmitters 24 VDC power is provided. Alternatively the TA can be a passive input for the current source.

Most commonly used temperature sensors and DC inputs are accepted, and the TTA also allows the user to define his can easily be acommodated.
To help simplify installation and loop commissioning, test erminals are provided to permit input and output signa checks without removing cabling

For linearised and/or isolated analogue outputs, the user has a choice of standard or variable DC milliamps and voltage ranges. These can be set as either direct or reverse acting The user can also select upscale or downscale output i

The TA provides 2 changeover-relay outputs which can be independently set, for use as high and low level alarms or control points.
Configuring the versatile Π A to change input and output parameters is simple, and performed from a computer via an interface (CBX200 USB).
is aring the TTA is flexible too. When the auxiliary supply can take it.
Physically, the TA comes in a baVESERIES housing with a flammability class VO acc. UL 94, for mounting on TS 35 DIN rail. Pluggable connectors, allow screw or tension clamp wiring. A screwdriver-releasable front flap gives access to the configuration interface socket.

The free software TTA-Set allows fast and uncomplicated configuration of the WAVE TTA
Easily adjustable measurement window, transmit functions and switching thresholds, as well as different thresholds and

ULClass I Div. 2 and ATEX Zone 2 approvals

wave tia

- Input and outputs can be configured on PC with the

TTA.SET software, download at www.weidmueller.
$\stackrel{\text { com }}{\text { - Univeral input signals }}$

- Loop-powerede or passive input

 Technical data

Input	
Sensor	Thermocouples: B, E, J, K, L, N, R, S, T (IEC 60584), PT100, PT1000, (EN 60571) Ni100, Ni1000, (JIS1604), Cu10, Cu25, Cu50, Cu100 (DIN 43760) 2-/3-/4-wire
Poteniometer	100.1100 k 2
Resisance	$10 . .5 \mathrm{k} \mathrm{k}$
Input treuenery	2 Hz .100 kHz
Inputvolage	-200.500 MV (min. 4 mV Span) 220.50 VOCC (min. 0.5 V Span)
Input curent	$2.20 .50 \mathrm{~mA}($ min. 5.8 san 0.4 ma$)$
Sensors supaly	$24 \mathrm{VOC} / 22 \mathrm{~mA}$
Outputanalog	
Output volage	Adiustalle beween $10 .+10 \mathrm{~V}$ (Ini.s.span of 2.5 V)
Output uruent	Adiustalie beeween 0.220 mA (min. Span of 5 mA)
Load impedance, volage/current	
Signal output	difecto fivereted
Tassnit tunction	
Output digital	
Type	2×1.10 comatat (hard goldipletel)
Swithing voltage A, max. /DC, max.	${ }^{250 \mathrm{~V} / 30 \mathrm{~V}}$
Continuous urrent	$3 \mathrm{AAC} / 2 \mathrm{ADC}$
General data	
Configuraion	TTA Stes Sofware
Suply volage	18.264V AC/IC
Power consumplion	<3.5 W
Accuracy	
Tenpeature coefficient	$<0.1 \% / \mathrm{K}(\mathrm{OC}, \mathrm{RTD}) ;<0.1 \%$ FSR / K + CJ error 0.07 \%/K (thermocuples)
Ambient temperatur /Storage tenpeature	$7.40^{\circ} \mathrm{C} .70^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C} .45^{\circ} \mathrm{C}$
Step response time	
Humidity	5.95%, no condenasation
Approvals	CE; culus EAC; Gl
Insulation coorsination	
Standards	DIN ENS 5178 , IIN EN 6100042
EM Standards	EN 55011, EN61000-6
Rated volage	300 V
Impuss withtsand volage	6 kV
Polution degree	2
Ovenolase category	-
Clearance \& creepage disanaces	$25.5 \mathrm{~mm}(1 \mathrm{~mm}$ mameme

$\frac{\text { Screw comener }}{\frac{2.50 .5 / 2.5}{1124 / 45}}$ ${ }_{2}^{\text {Tension clamp coonnection }}$

wave tita ex

\qquad

- Input and outputs can be configured on PC with the TTA.SET software, download at www.weidmueller. $\stackrel{\text { com }}{\text { - Univeral input signals }}$
- Universal input signals
- Looppowered or passive input
- Pugagale connection terminals
- Pluggable connection terminals
- AteX 3 Gexnallicta
- ULClass , Div. 2

Cimensions (laming ange (nominal / min./ max

Clamminirange elominaal
Depphy w width h height

Depht x widt
Note

$\frac{5 \text { creve comenec }}{2.50 .5 / 2.5}$
${ }_{\text {Tension clamp comnection }}^{1.50 .5 / 2.5}$
WMZE TIAEX

Csx200 USS B anfiguration ataperer 8978550000

20 kHz limiting frequency

- Signal conversion
- Galvanic soslation between input/output signals and
power supply
- Power supply
wer supply can be cross:connected using plug-in
jumpers

0 (4) ... $20 \mathrm{~mA} / 0$ (4) ... 20 mA
$0 . .20 \mathrm{~mA} / 0 . . .10 \mathrm{~V}$

Input

 Output

Configutaion
Supply
Poonge
Pone consumprion
Powe Consumplion
$\begin{aligned} & \text { Accuray } \\ & \text { Temperatur coefficient }\end{aligned}$

Ambien tempeature
Approvals
$\frac{\text { Insulition cordination }}{\text { Standards }}$
Standards
EMC standards

Enc Istanaras
Raied volase

Impulse wiststand volagag
Insulatio volage

Insulation volage
Ovenotrage categ

Polution degree
Cleanace 8 ceep

Pollution regeree
Clearane 8 crepepage isisances

20 kHz limiting frequency

- Signal conversion
- Galvanic soslation between inputoutput signals and
- Power supply
- Power supply can be cross:connected using plug-in
jumpers

$4 . . .20 \mathrm{~mA} / 0 . . .20 \mathrm{~mA}$
$4 . .20 \mathrm{~mA} / 0 . . .10$
UuL Class , Div. 2

Technical data

 Input Intage / hput turrent

Configutaion
Supply
Poonge
Pone consumprion
Poner consumpion
Accuracy

Ambient temperature
Approvals
$\frac{\text { Insulition cordination }}{\text { Standards }}$
Standards
EMC standards

Enc Istanaras
Raied volase

Impulse wiststand volagag
Insulatio volage

Insulation volage
Ovenotrage categ

Polution degree
Cleanace 8 ceep

Pollution regeree
Clearane 8 crepepage isisances

$\frac{74.20 \mathrm{~mA}}{150 \mathrm{n}}$
$\frac{0.10 \mathrm{~V} /}{22 \mathrm{~K} / \leq 600 \Omega}$
$\frac{22 \mathrm{kR} / 5600 \mathrm{n}}{\frac{2}{215 \mathrm{kl}(\mathrm{lty} .20 \mathrm{klz})}}$
$\xrightarrow{\frac{\text { none }}{24 \mathrm{VOC}+25 \%}}$

CE: CSA; ©luss; clusesk: EAC
$\frac{\text { OIN EN5 } 5178, \text { OIN EN } 6100}{\text { EN }}$

4 kV
$\frac{1.2 \mathrm{~V} / \mathrm{N}_{\mathrm{II}} / 5 \mathrm{~s}}{10}$
$\frac{12}{2}$
1

Dimensions		Screw comnection			Screw comnection				
Clamping range (hominal / min. / max)	mm²	$\frac{\underline{2.50 .512 .5}}{1124 / 17.5}$			$\frac{2.50 .5 / 2.5}{1124 / 17.5}$				
Depth w widht \times neight	mm								
Note									
Ordering data									
Screw connectionTension-clamp connection		Type WAS5 CCC HF 4-20/0-20MA	aty.	${ }^{\text {Order }}$ No.	Type WAS5 CVC HF 4-20/0-10V	$\begin{array}{c\|l\|} \hline \text { Oty. } & \text { Order No. } \\ \hline 1 & 8447280000 \\ \hline \end{array}$			
		1	8447250000						
Note									
Accessories									
Note									

20 kHz limiting frequency

- Signal conversion
- Galvanic soslation between inputoutput signals and
- power supply

Power supply can be cross.connected using plug-in
jumpers
~/~/L/L
~/~/L/L
$0 . .10 \mathrm{~V} / 0 . . .10 \mathrm{~V}$

Technical data

Cubot freverency
Configutaion
Supply
Poonge
Pone consumprion
Powec consumption
AACury
Tenver

Accuray
Tempeature coefficient

Ambient tenepeature
Aprovols

Appovals
Insulation coordianation

Standards
EMC standards
$\underset{\substack{\text { EMC Standard } \\ \text { Rated volage }}}{\text { and }}$
Imeulse wivestanan volaga
Insulation volage

Insulation volage
Ovenotrage categ

Ovenelotage catega
Polluino
Clegree

Pollution regeree
Clearane 8 crepepage isisances

$-10 \mathrm{~V} . . .+10 \mathrm{~V} /-10 \mathrm{~V} . . .+10 \mathrm{~V}$

10 Hz limiting frequency

- Signal conversion
- Galvanic soslation between input/output signals and
power supply
- Power supply ca
wer supply can be cross-coonnected using plug-in
jumpers
$0(4) \ldots 20 \mathrm{~mA} / 0(4) \ldots 20 \mathrm{~mA}$

Technical data Input Outputut volage / Output current

 ${ }^{\text {Generald data }}$ Confuration
 Powev consumprio
Accuray

Tener | Tenpeaturu coeflicient |
| :---: |
| Step respossense time | Step response time

Ammbentenpeat
And Appovals
Insuraculue
Insution coortination Insulation coorrination
Sunadats

End | Standards |
| :---: |
| Ems catadurar |
| Rated volase | Rated volage

Impulse wiltsand volatae Insulution vologage
Overontage categor Duenentage categu
Pollution dequeg Cliearance \& \& reepopge isisances

$0 . . .20 \mathrm{~mA} / 4 \ldots 20 \mathrm{~mA}$

10 Hz limiting frequency

- Signal conversion
- Galvanic soslation between inputoutput signals and
- Power supply
- Power supply can be cross:connected using plug-in
jumpers
$0 . . .20 \mathrm{~mA} / 0 . . .10 \mathrm{~V}$

Technical data Imput
Input tolage / Input turent
Oitw Output Output volage / Output urrent

 General atata
Confiuman
Supply voltase
Supply volage
Power consumpion
Power consumption
Accuray
Tenpeawe coefficio

Siep resonss itie
Approval
Insulionture
neorlination
Sendads
Insulation coordinatio

Stantands
EMc candurd
Rated ovolage

Rated volage
Impulse witssand voltage

Ovenoltage catego
Polluion degree
Clearance \& creepage isisances

10 Hz limiting frequency

- Signal conversion
- Galvanic soslation between input/output signals and
power supply
- Power supply
ver supply can be cross:connected using plug-in
jumpers
$4 . .20 \mathrm{~mA} / 0 . .20 \mathrm{~mA}$
$4 . .20 \mathrm{~mA} / 0 . . .10 \mathrm{~V}$

Technical data
Input
Inplatage / Input turrent
OUtput Output
Otrout vitage / Output turentent

 ${ }^{\text {Generald data }}$ Confuration

anc consumpion Acturucary y gin ceaparity Step response time Ambient tempera Appovals \begin{tabular}{l}
Standards

EMS standards

\hline

EMC Stanalar

Rated volase

\hline
\end{tabular} Impulse witstanad volage

Insuldion volage | Insulation volage |
| :--- |
| Ovenotrage categ | Polution degree

Cleanace 8 ceep | Pollution degeree |
| :---: |
| Clearance $\&$ crepapage isisances |

Dimensions	Screw comeation	Screw comection
Clamining range (nominal / min. / max)	2.5/0.5/2.5	2.5/0.5/2.5
Depht \times width \times height	112.4/17.5/	112.4/17.5/
Note		
Ordering data		
		Type
Screw conection		WAS5 CVV 420mA0 10 V
Note		
Accessories		
Note		

10 Hz limiting frequency

- Signal conversion
- Galvanic isolation between input/output signals an
- Power supply
- Power supply can be cross:connected using plug-in
jumpers

$$
0 \ldots 10 \mathrm{~V} / 0 . \ldots 20 \mathrm{~mA}
$$

 $0 . . .10 \mathrm{~V} / 4 \ldots 20 \mathrm{~mA}$

Technical data
Technical data
Input
Input volage / Input current
Outut
Ourput volagese Output turent
Outpout volage /Oupput urrent

General data
Configuraion

Powe consumplion
Actuar
Tempeature coffeficic
Accurary
Tenpeaturue cofficient
Sten
Stepresponse time
Ambien tenearaure
And
Ampient tempeatatue
Approvas
Insultaion coordination
${ }_{\text {Insulation coordina }}^{\text {Standards }}$

Rated volage
Impuse withstand voltage

Pollution degege
Clearace $\&$ crepapag isisanctes

imensins		Screw comection	Tension lamp comenection		Screw connection 2.5/0.5/2.	Tension clamp comnection	
Clamping ange (hominal / min. / max.)	mm²	2.5/0.5/2.5	1.5/0.5/2.5			1.500.5/2.5	
Depht \times width \times neight	mm	1124/17.5	$1124 / 17.5$		1124/17.5	$1124 / 17.5$	
Note							
Ordering data							
		Type	aty.	Orider No.	Tppe	aty.	
	Screw comection	WAS5VCCO-10VV/20MA	1	8500310000	WAS5VCC O-10V/420MA	1	8540290000
	Tensionclamp comection	Waz2 VCC $0.10 \mathrm{VVO} \cdot 20 \mathrm{MA}$	1	8500320000	Wa75 VCC $0.10 \mathrm{~V} / 42 \mathrm{OMA}$	1	8540300000
Note							
Accessories							
Note		Cosscomenasos tro powers supiea	matess ifert oma	Sessmies	Cassemeneasos tr pones supue	naters itetro aca	mssoiss

WAVESERIES - DC/DC 3-way isolator

10 Hz limiting frequency

- Signal conversion
- Galvanic soslation between input/output signals and
power supply
- Power supply
er supply can be cross.connected using plua-in jumpers
\qquad

Technical data Input
Inpot vigese / Input turrent
Output Output volages /Output uruert
 antoff feruenery y I-3d ${ }^{\text {Generald data }}$ Confuration

Current.tarrying capacity of rosscomened | Accuracy |
| :---: |
| Tempeature coefficient |

 Ambient tempera Appovals
Insulation corditiation
Standards EMC standards $\underset{\substack{\text { EMC Standardit } \\ \text { Rated volage }}}{\text { and }}$ Impusse withstand volage
Insulation volage input or ot Insulation volage input or outputssupply Venevtiage caieg

Polluion degee | Pollution degee ee |
| :---: |
| Clieanare \& creapae distances |

Dimensions		$\frac{\text { Screw connection }}{2.5 / 0.5 / 2.5}$	Tension clamp comenection	
Clamping range (nominal / min. / max)	mm²		1.5/0.5/2.5	
Depth x width x enight	mm	1124/17.5	$1124 / 17.5$	
Note				
Ordering data				
		Tppe	aty.	
	Steew comenection	WAS5 WCO $0.10 \mathrm{VO} \cdot 10 \mathrm{OV}$	1	${ }^{85403300000}$
	Tensioncliamp comenetion	Waz5 Wco -0.10VO-10V	1	8540340000
Note				
Accessories				
Note				

D

Dimensions		Screw connection $2.5 / 0.5 / 2.5$	Tension clamp comnection		Screw comenection		
Clamining range (nominal / min. / max)	mm²		1.590.5/2.5		$\frac{2.5050 .52 .5}{1124 / 2.5}$		
Depplix width x height $\mathrm{mm}^{\text {m }}$		1124/12.5	$11124 / 12.5$				
Note							
Ordering data							
		Type	aty.		Tipe	aty	Orrier No.
	Scew commetion	WAS4 4 CCC OC 42021420 Na	1	${ }^{84449880000}$	WAS4 CCC OC $420 / 0.20 \mathrm{MA}$	1	8445010000
	Tensionclamp comenection	Wa74 CCC OC 4201/20MA	1	844999000			
Note							
Accessories							
Note		Cosscemeneut frowers supfies		Lessoiss		refer	cessmis

\qquad

Technical data

Input
Input volage / /hput turent

Output

${ }^{-6 \text { Eeneral data }}$ Confuration
Supply volage
Curent tonsunvie
Currentutarasyng capanaity of consscomened.

Accuracy
Tempeature coefficient

Step response time
Ambient tempeature
Approvals
$\frac{\text { Insulation cordination }}{\text { Standards }}$

Sanatadas
EMS standards

Rated volage
Impulse wilstanad volage
Insuldion volage

Insulation volage
Ovenotrage categ

Pollution degeree
Clearance $\&$ crepapage isisances

Signal distributor
Supplied by current loop

- Galvanicisolation
- Input and output current loop feed
- No calibration necessary

\qquad
\qquad Technical data

Output	
Conifuraion	
${ }^{\text {Supply volage }}$	
Tempeature coefficient	
Ambient tenenatue	
Appovals	
${ }^{\text {Insumation coordiation }}$	
Standards EMC standards	
Ovenolitage category	
	Polluion degree

Polltuon degree
Clearance creepanae distances

Signal distributor
Supplied by current loop

- Galvanicisolation
- Input and output current loop feed
- Nory calibration neocessarary
- ATEXII 3 G ExnA IIC
- UL Class I, Div. 2

\qquad

Technical data

Input current loop feed

- Safe separation
- Very low power consumption
- ULClass I Div. 2
- ul Class I, Div. 2
\rightarrow

Technical data
Input
Pirkvip current
Voltage drop
Oitaget diop

Configuraion
Ambient tenperature
$\underset{\text { Temperature coefficient }}{ }$

Appovals
Insulation coordination

EnC Standards
Rated volagese
Impulse withsand voltae
Insuldainon voltage

Inslation volage
Ovenoltage catega

WAVESERIES - Temperature measuring transducer

RTD signal isolator/converter

- Universally adiustalle via IIP switch
- 3 -way isolation
- Linearisation
- Power sundy can be cross-connected using plug-in
- WAVETOOL software helps with configuration
download at www.weidmueler.com
\qquad
PRO RTD

Technical data

linput
Sensor

Tenpeature input range
Outpurt
Output
Output turent $/$ Output volage
Oftsen uruent $/$ Otrses volage Output turent/ / Output voltage
Oftrse turrent $/$ Ofses volagese

Sensor erorodietection
Fine adistrnent
Stauts indicator
$\underset{\substack{\text { General data } \\ \text { Confifurution }}}{ }$
Configuraion
Supply volage

Power cossumplion
Step response ine

Approvals
Insulition corridiation
sund
Slanturads
Enc sandards
and

Rated voltage
Impulse
yintsand volage

Inslation volage
Overovolaye catean

Ovenolage catega
Polluion degree
Cliearance \& Creepapag distances
 Configurable, PT100: 200 0 .. $.55^{\circ} \mathrm{C}$, N100: $60^{\circ} \mathrm{C} .+250^{\circ} \mathrm{C}$ $0 . .20 \mathrm{~mA}, 4.20 \mathrm{~mA} / 0.10 \mathrm{~V}$

Eror LED off

OINEN 50178 , INEN 6100
ONEN5178, OINENG10
$\frac{300 \mathrm{~V}}{4 \mathrm{kV}}$
$\frac{\frac{4 \mathrm{kV}}{2 \mathrm{~N}} / \mathrm{s}}{\frac{2 \mathrm{~s}}{}}$

$\frac{\text { PRO RTD }}{\text { Switch position / seting options }}$

Accurary, slow/fast step responsest ime
PT 100, $1100: 0.3 \%$ form measuring range 0.8%

Temperature coefficient
Measuring range $200 \mathrm{~K} \leq 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

Wavetool adjustment tool
This service tool enables quick and striaghtorward confi:
guration of the WAVEmanos PRo.
Internet download:
http://www.weidmueler.con

WAVESERIES - Temperature measuring transducer

RTD signal isolator/converter

- Universally adiustable via DIP switch
- 3-way isolation
- Linearisation
- Power supply can be cross-connected using plug-in
jumpers

```
~->~
```

sions	Screw con		
Clamping range (hominal / min. / max)	$\underline{2.5 / 0.5 / 2.5}$		
Depht x width x higigt	1124/17.5/		
Note			
Ordering data			
	Type WAS5 PRO RTD 1000		Order No 8679490000

Note	
Accessories	
Note	

PRO RTD 1000

lom measuing fange $100 \mathrm{~K} / 0.3 \mathrm{~K} / 0.8 \mathrm{~K}$

Temperature coefficient
Neassing range $200 \mathrm{~K} \leq 200 \mathrm{pmm} / \mathrm{\circ}$

Wavetool adjustment tool
This sevicice tool enables quick and straightforward
Configuration of the Waveanauos PRO.
Internet download:
hhtp://www.weidmueller.com

RTD signal isolator/converter

- Universally adiustable via DIP switch
- 3-way isolation
- Linearistion
- Power supply can be cross.connected using iusin
- Power sula

Technical data

PRO RTD Cu

$\underset{\substack{\text { Input } \\ \text { Sensor } \\ \text { Tempeawre inetange } \\ \hline}}{ }$
Output turent/ Output voltage
Otist turrent/ Otststev tolage
Load inpelanace, volagedelurra
Sensur eror dedercion
Fine a didstrent
Staus indicator
Generald data
Confiruian
Supply volage

Power consumpion
Step response ine
Ambient temperature
Apporvals

Rated vologese
minuse wibtsand volten
Impusse witstand voltag
Insulation volatase
Ovenoltage catego
Pollution degere
Clieanace \& creepage isisances

Dimensions	Screw commetion
Clamping range (nominal / min. / max)	2.5/0.5/2.5
Depht \times width \times neight	112.4/17.5/
Note	
Ordering data	
Sceew conection	Type Oty. Order No. WAS5 PRO RTD Cu 1 $\mathbf{8 6 3 8 9 5 0 0 0 0}$
Note	
Accessories	
Note	

RTD, 4-wire converter

- Awiristante tection
- Adjustable temperature range from $-200^{\circ} \mathrm{C} . .+800^{\circ} \mathrm{C}$
- Power supply can be cross connected using plug-in
jumpers
- ${ }^{\text {No gavaritic }}$
jumpers
- No gavaric isclation between input and output tircuits

 $\frac{10.20 \mathrm{~mA}, 4.20 \mathrm{~mA}}{1 \leq 5000}$

$\frac{34 \mathrm{VOC} \pm 20 \% /}{0.0 .55 \mathrm{C}}$

$\frac{\text { CE: CSA: CULLS: EAC }}{\text { CN }}$
EN 55011, EN 610006

$1.510 .5 / 2.5$
$124 / 2.5$

PT100 /2:/3/4wie
1.45 mA $\frac{0.10 \mathrm{~V} /}{21 \mathrm{~K} /}$ IIP switch Popentionemer
$\frac{24 \mathrm{VCD} \pm 20 \% /}{00^{\circ} \mathrm{C} . .55 \mathrm{C}}$
$\frac{1005}{}$

Tension clamp comenection	Tension clamp comnetion
$1.50 .5 / 2.51 / 25$	
$1.5 / 5 / 2.5$	

RTD, 3-wire converter

- 3 -wire connection
- Adjustable temperature range from $-200^{\circ} \mathrm{C} . .+800^{\circ} \mathrm{C}$
- Power supply can be cross connected using plug-in
jumpers
- N g gavani
- No gavvanic isolation between input and output circuits

PT100/30...10V
PT100/30(4)...20 mA

 Configuration

Sundu vatad | Confifuration |
| :---: |
| Supply volage / Curenent consumprion |
| Ambient tempeawur | Ambient tempeatui

Accuray
Approvals

Standards
EnC sanatardsts

Tension clamp comenection
$1.50 .5 / 2.5$
:---
$1124 / 12.5$

Note		Cross-connectors for power supplies and markers - refer to WAVESERIES accessorie
Applications		
		Switch position/setting options
Example for Zero and Span		
Temperature ajuistment	Temperature coefficient	(10)
${ }_{\substack{\text { Tnin }}}{ }_{\text {Sman }}$		$40^{\circ} \mathrm{C}$ -
		($60{ }^{\circ} \mathrm{C}$
	dids	- $400{ }^{\circ} \mathrm{C}$
Adiustmentof f Span $\quad+25 \%$		
$10, \theta \quad 200$		
$)^{\circ 0}$	- Ampere-voltreter w which can be calibated to a a dacuracy of	
		4. 4.20 mA (
${ }^{\left.655^{\circ}{ }_{85}{ }^{\circ}{ }^{\circ}\right\|_{10000} \mid}$		

RTD, 2 -wire converter

- 2 -wivie connection
- Adjustable temperature range from $-200^{\circ} \mathrm{C} . .+800^{\circ} \mathrm{C}$
- Power supply can be cross connected using plug-in
jumpers
- ${ }^{\text {No gavaritic }}$
- No gavavici solation between input and output tircuits

\qquad PT100/20 (4)... 20 mA

Tension clamp comnection	Tension clamp comnection
$1.51 .5 / 2.5$	$1.50 .51 / 2.5$

Tensison clamp comenection	Tension clamp comenection
$1.50 .5 / 2.5$	

Thermal converter type:
K,J,T,E,N,N,R,S,B

- 3-way isolation
- Internal coldiunction compensation
- Power supply can be crosss:onnected using plug-in
- Suitarale for insulated and uninsulated thermocouples WAVVETOOL sotwware helps with configuration download at wwww. weidmuelele.com

$\frac{\text { Technical data }}{\text { Input }}$

Input
$\substack{\text { Sessor } \\ \text { Tenpeatur inut } \\ \hline}$

Sensor eroro deteain
Fine a dissment

General data
Confugation

Conifinaion
Supply volage
Poner consumption
Step esponse time
Currenturansing ing capaity of rosscomenect.
Ambient tempeatur
Storase tempeature
Starage tenp
Defall seting
Apporovals
Appovals
$\frac{\text { Insulion coordiation }}{\text { Standards }}$
Sandadds
ECstandards
Rated voltage
Rated volage
Inpuse withstand volage

Ovenollage catego
Polluin degree

Dimensions		$\begin{aligned} & \text { Screw connection } \\ & \hline 2.5 / 0.5 / 2.5 \end{aligned}$	Tension clamp comnection	
Clamping rage (nominal / min. / mx.)	mm²		1.5/0.5/2.5	
		1124/17.5	112.417 .5	
Note				
Ordering data				
		Type	aty.	Orider No.
	Screw comection	WAS5 PROT Temo	1	8560720000
	Tensionclamp comenecion	Waz5 PROT Themo	1	8560730000
Note				
Accessories				
Note				

\qquad

Thermal converter type:
K, J, T, E, N, R, S, B

- No calibration necessary
- Inturput signal selectatale
- Power supply can be cross:connected using plug-in
jumpers
- Suitable for insulated thermocouples

Technical data

Input Sensor Sten Tene

$\underset{\substack{\text { Sensor } \\ \text { Tempeature input range }}}{ }$

Output tolage / Output urerent

Sensore eror detection
General data
Conituate
Supply voltage
Supply volage
Curent consumption

Apporvals
Insulation coordination

Standards
EMC sanadards

Thermo Select

\qquad

Switch position/setting options

\qquad

WAVEanalog PRO Frequency

WAVEanalog PRO Frequency
delivers settings help, for any input and output values.
The input range is set using the DIP switches (a frequenc generator is not required)

There are 2 different methods:

1. Lower measuring frequency $=\mathbf{0 H z}$

- Choose operating mode " $=$... fmax" S2.3 $=0$ and S2.4 $=0$
Set the upper measuring frequency using DIP switches S1 and S2.1, S2.2 (see table)
- That's all!

2. Lower measuring frequency $\neq 0 \mathrm{~Hz}$

- First the lower measuring frequency must be saved. Select mode fmin". S2.3 = 1 and S2.4 $=0$. Set the frequency using DIP switches S and S2.1, S2.2 (see table) To save the frequency, briefly connect the module to the power supply, $\mathrm{S} 2.3=0$ and $\mathrm{S} 2.4=1$
- Set the upper measuring frequency using DIP switches S1 and S2.1, S2.2 (see table).
That's all!

Adjusting input range using frequency device to be measured:

Select the switch setting for saving S2.3 $=1$ and S2.4 $=1$

- Apply min. frequency to the modul Connect the module to the power supply
frequency is b up when the input frequency is being measured. If the LED goes off, the frequency has been saved and the module can be again.
again. Repeat with max. frequency: S2.1 $\mathrm{S} 2.2=0, \mathrm{~S} 2.3=1$ and $\mathrm{S} 2.4=1$ Select special range
S2.1 $=1, \mathrm{~S} 2.2=1, \mathrm{~S} 2.3=1$ and S2.4 =1

Connection configuration for the sensors

f/DC isolator/converter

- ${ }^{\text {- Maxay input fitequequency: }} 100 \mathrm{kHz}$
- Input and output ranges can be adjusted via IIP
- No calibration necessary
- Supplies the NAMUR sensor
- Can be adiusted and set using the wavetool sottware, download from www.weidmueller.com

PRO Frequency

\qquad

Dimensions	
Clamping ange (nominal / min./ max.)	m ${ }^{2}$
Depht x width \times neight	mm
Note	
Ordering data	
	Screw connection Tension-clamp connection
Note	
Accessories	
Note	

$-=$ on
$\square=0$ off

Analogue output

- Monitor AC Currents
- Input and output ranges adiustable via DIP switch
$1 / 5 / 10 \mathrm{AAC} \quad 1 / 5 / 10 \mathrm{AAC} 4 . .20 \mathrm{~mA}$

Input
Inpur turent
Inut treuenery

Volage of measuring ciruit
Sessor
OUtupt
Output urenent/ Output toltage

Output sinal linit
Laad inedaneevevolage
Ser nesponse inine
Step pessonsse ine
Accurac

Accuracy
$\begin{array}{l}\text { Tempeature eveficient } \\ \text { Staus indidatar }\end{array}$

General atata
Coffiuyation
Configuration
Supply volage
Supply volage
Current consumpio
Current tarrying caparity of coss conneci
Ambient temperaure / Sturase tempeal
Ambien tempeature $/$ Storase temperaat
Defaut seting
Defaul seting
Appovals

Stanalads
EMC standars
Rated volase

Rated volage
Impulse wiftsanand volage

Clearane e creveape distances
Insulation volage

Dimensions	
Clamping ange (lominal / min. / max)	mm²
Depht x with x neight	mm
Note	
Ordering data	
	Screw connection Tension-clamp connection
Note	
Accessories	
Note	

$0.1 \mathrm{AAC} / 0.5 \mathrm{AAC} / 0.0 .10 \mathrm{AAC}$ 50.6 HC 100 ftor 1 s

 4.20 ma (current loop)/ | max. 100 HA |
| :--- |
| Appox 24 mA |

$\frac{\leq 200 \text { pmp/K }}{\text { LELO OV: }}$

$\frac{\text { DIP swith }}{13.30 \mathrm{~V} \text { DC, vio output ururet toop }}$
$70^{\circ} \mathrm{C} .50^{\circ} \mathrm{C} / 20^{\circ} \mathrm{C} .70^{\circ} \mathrm{C}$
$\frac{0.5 \text { AC, } 4.20 \mathrm{~mA}}{\text { CE: CULI: EAC }}$
OINE EN 50178 (securve spepation)

\square

Analogue output

- Monitors AC currents
- Input and output are electrically isolated
- Input and outputput ar angeses adiustable via IIP switch
- No calibration required
- ULClass I, Diviv 2

```
\(\rightarrow\)
```

$1 / 5 / 10 \mathrm{AAC} 4 . .20 \mathrm{~mA}$

Technical data

- 3 -way isolation
- Max. measuring voltage $450 \mathrm{VAC}_{\text {et }}$
- Output range selected via DIP switch
\qquad

Technical data | Input |
| :--- |
| Inout olage |
| Input fequen |

Max. volage

Oftses volage Offsse turrent
Load inpedance voltage furrent

Accuacy
Tenpeaturue coefficient

$\underset{ }{\text { Genenal lata }}$

Defaul seting
Ambient tempeature / Storage temperature

Approvals
Insulation coordiatation

Standards
EMs sandads
Rated volage
Impusse withstand volage
Insulation volage Ovenoltage catega
Polluion degree
Pollution degree
Clearane C crepapae disisances

D

Isolating converters for serial interfaces

Isolating converters for serial interfaces RS232/
RS485/422 or TTY RS485/422 or TTY
Serial interface are used for exchanging data between data processing systems, controllers and peripherals. The WDS2 interface isolating converter is particularly well suited for harsh conditions located near to the process. Versions are available for a variety of industrial applications:

- RS232/RS422 or RS48

The thin (22.5 mm wide) rail-mounted modules come with a 9-pole SUB-D connector for the RS232 connection and a shield connection for the RS $485 / 422$ or TTY signal line In order to ensure high transmission security, the serial interface isolating converters are equipped with high-qualit 4 -kV 3-way electrical isolation

- Easy to service: the electronic components can be removed from the housing/base without using any tools. - High data transmission speeds up to $115 \mathrm{kBit} / \mathrm{s}$ and freely adjustable Secure connec
RS232 interface.
For the serial RS485/422 and TTY connection, the user can connect the shield using the LLBU or the EMC Set (1067470000).

RS232/RS485/422

- 3-way isolation
- RS232 connection via SUB-D 9
- RS485/422, shield connection via KLBUE
- Switchable DTE or DCE assignm

Typer ofomention
Bit distorion

Control of fatat direction
Shided onnerion
Shied domenetion
Stautus indicatar
Status niticior
Tansusision raie
Tansusmsision chanels

Conifigation
Supply voltage
Power cossumpion
Ambient tempeature
Ambient enperature
Appovals
Insultion condin

Approvals Insulation coordination Standards		

Enc standards
Impulse wiltstand volae
Polution degee
Ovenolage categony
Clearance \& crepepage isisances
Insulation voltage

Depth x width x height
Note
Ordering data

Trip amplifier for monitoring AC/DC circuits

Trip amplifier for monitoring AC/DC circuits Trip amplifier for monitoring AC/DC circuits - Overview E. 2
WAVESERIES - Limit value monitoring E. 4
PLUGCONTROL - Current monitoring E. 6
WAVESERIES - Voltage monitoring E. 8

Trip amplifier for monitoring AC/DC circuits

Monitoring AC/DC currents and voltages within single-phase and three-phase power networks.
Some WAVESERIES products provide the function of monitoring voltage and current. Typical uses include monitoring of phase voltages and current while controlling actuators. Another application is in monitoring dropouts of power supply, or accumulators and feed-in systems within industrial production lines. There are many applications for threshold monitoring (trip amplifier) products in process automation. Typically they are used to generate alarms
when out-of-limits"s signals are detected with fill levels, flo when .ion or temperature signals. quatted with fill levels, flow

The PLUGCONTROL series of current monitoring products monitor DC current up to 10 amps . They can be used in applications to monitor the functioning of valves, servocontrols and DC motors. The pluggable detector uses the same socket (base) as Weidmüller PLUGSERIES relays and pluggable ZOV cross-connections for saving wiring time. A lever is provided to quickly release or instal the detector.

Features
WAVECONTROL:

- Threshold monitoring of analogue standard signals
- Measuring AC currents ranging from 1 to 30 A
- Monitoring DC and AC voltages up to 400 V
- Fully adjustable switching thresholds
- Relay outputs for monitoring threshold
- Versatile pluggable connection method - screw or spring

PLUGCONTROL:

- Monitoring for DC currents ranging from 0.5 to 10 A
- Very small, pluggable monitoring unit
- Reed relay contact for monitoring and measuring current
- Install on standard base
- Quick initial commissioning - with replaceable electronics
- Minimal wiring effort - with pluggable ZQV $2,5 \mathrm{~N}$ crossconnector

E

Current monitoring
Threshold monitoring of analogue
standard signals

Relay output

\qquad

- Monitors currents up to 10 ADC
- Used with valves, servo-controls or DC motors - Pull-up / pulldown resistor 4.7 kR

$\square=0$ on
$\square=0.0$
Q voltage is is set range
Fig.1: Overoltage and undevoltage monitoring,
example of seting
-3 phase monotiong

Access
Note

		Content
Indicators and configurable displays		
Indicators and configurable displays	Overien	F. 2
	Process value display with LEE display	F.4
	Process value display with LCo display	F. 20

Indicators and configurable displays

In industrial and process automation, displays provide a visual rendering of data and an digital presentation of electrical and non-electrical measurements. They provide essential diagnostics, logging and operational guidance when operating machines and facilities.

Displays make dialogue-based operations possible. The show measurements, error messages and also allow processes to be monitored. Displays can also feature
digital and analoge digital and analogue outputs, interference-suppression internally. This turns a simple display into a high-quality process interface capable of independently controlling sub processes.

All-purpose

A fitting solution for any application

- with a multitude of input ranges,
xternal of input loop-powered supply,
and analogue or digital outputs.

Security
No additional signal isolation is
No adartional signar isolation is voltage.

Saves time
asy push-button configuration.

Protection
D 04 IP 65 protection allows for use in harsh industrial conditions.

Counters
PTX800 SERIES

Panel-mounted totaliser/counter/rate monitors
The configurable monitors of the PTX800 SERIES are available in two designs:

- PTX800A for analogue (mA, Volts) inputs PTX800D with digital pulse inputs (NAMUR NPN/PNP sensors, TTL, etc)

The eight-digit LED rate/total display can be changed via a button on the front of the unit. Both versions make use of output relays to close values when the "total" setpoin outputs for re-transmission.

The display can be globally scaled based on the flow quantity per second, minute, hour or day. The flow-quantity counter can be multiplied by factors of $0.001,0.01,0.1,1$ 10, 100 or 1000 . This allows for best use of the display

The PTX800A counter processes standardised analogue current and voltage signals. Linearisation and filtering functions are available for processing measurement signal In addition, the counter has a 24 V DC power supply for loop-powered sensors.
The PTX800D can be connected on the input side to all standard initiators (NPN/PNP/Namur) and with other aurre voltage transmitters. The monitor will accept any periodic signal type and can total the input pulses into a "total" display.

It can also calculate the resulting flow rate. External proximity switches can be supplied with 12 V DC directly
from the PTX800D.

Typical application of PTX800

- Display of the flow quantity/rate
- Easily-readable eight-digit LED display
- Up to two outputs for alarm monitoring or contro
- Pulse output
- Reset function can be controlled
- The most recent measured value is stored in case of a
power outage
- DC power supply
- LED display for values outside of range

Complete electrical isolation
DIN-standar $1 / 8$ front panel with IP 65 protection

- Changing the device configuration is possible without performing a new calibration
No internal adjustments needed

Process value displays with LED display

PTX800 Series

Counter and totaliser with additional functionality and
limitivalue monitoring

- Installation in control panels
- Plugable connection terminals
- signals

PTX8000
Digital pulse input

Technical data

Connections
Terminal Signal

\qquad

Indicators and configurable displays for analogue signals PMX420 SERIES

Universal, 4-digit, current/voltage displays
The current/voltage displays of the PMX420 SERIES ar available as a pure display unit or optionally with available as a pure display unit or op

The basic model is suitable for displaying a wide range of bipolar mA or voltage signals. Inputs are isolated from the power supply. An integrated power source is available for supplying external sensors and transmitters.
The PMX420 Plus adds four alarm channels (each with it's own status indicator and relay contact outputs) and a fully isolated analogue current/voltage output.

Device functions can be configured, specifically for the There are, using the integrated keypad on the front panel. There are also several other handy features like maximum and minimum value recall, integrated linearisation, an manual or automatic alarm reset

Technical features

- 4-digit LED display
- Suitable for current and voltage signal
- Bipolar inputs
- Retrieval of mina root function
- Integral power supply for active sensors
- DC power supply
- Complete electrical isolation
- Four alarm channels and an analogue current/voltage output (PMX420 Plus)
- LED alarm status indication
- DIN-standard $1 / 8$ front panel with IP 65 protection
- Configurable via front-panel keypad
Configurable via front-panel keypad

Typical application of PMX420 Plus

PMX420 Series
Universal, 4 character current/voltage display

- Display instrument for control panel installation
- Pluggable connection terminals
- Simplarecter, menalabile uisplay

PMX420Plus

Display with analoguse output and 4 alamm channels \qquad

Technical data Alatam

F

Load impedance, volagegelurr

Number of chaments

Insulation volage

Connections

Dimensions	Screw comection		
Clamping arane (toninal / min./ max.)	$\frac{1.5 / 0.5 / 2.5}{137 / 966 / 488}$		
Length x width \times neight			
Note			
Ordering data			
	Type PMX420Plus	${ }_{1}^{0+1}$	Order No. 7940018957

Note
Accessories
Note

\square

Indicators and configurable displays for temperature
PMX400 SERIES

Four-digit temperature and frequency displays with analogue-value read-out and alarm monitoring
The PMX400 SERIES consists of two modules:

- Temperature display
- Frequency display / tachometer

A variety of temperature or frequency signals can be processed. On the output side, optional analogue signals are available, as well as either two or four relay contacts for alarm monitoring. The PMX400 HZX frequency display the relay contacts. The outputs are designated for the alarm function. An integrated power supply can be used for supplying external sensors and input devices.

Technical features:

- Four-digit digital LED display
- Up to four alarm channels and an analogue current voltage output
- Retrieval of min. and max. values
- IC power supply
- Complete electrical isolation
- LED alarm status indication
- DIN-standard $1 / 8$ front panel with IP 65 protection
- Decimal point can fo adjusted to any position
- Configurable via front-panel keypad

Typical application of PMX400

PMX400 Series

- Temperature measuring and monitoring (PT100,
- Temperature measurin
thermocuople, mV
- Automatic sensor dete
- Automatic sensor detection
- Automatic compensation for PT100 measurement leads - Display instrument for control panel installation

Technical data

Clamping range (nominal / min. / max.) Length x width x height Note

$\frac{\text { Screew compention }}{1.5 / 0.5 / 2.5}$
${ }_{-37 / 96.6 / 48.8}$


```
Accessori
Note
```

\qquad
\qquad

- Frequency measuring and monitoring 3 3-wire NPN/PNP, NPN/PNP Open Collector, TTL logic, slidistate switch, potentialfree contacts)
- Integrated power supply for external sensors - Two outputs for monitoring linitivalu

Technical data | Display |
| :--- |
| Display value |

 Sensor supppy
Inpututoge
Alarm (chamene $1 / 2)$
$\underset{\substack{\text { Alarm (chamene } 1 / 2)}}{\text { Ty }}$ Rated swithing current
Rated switring volage Rated swithing voltage
Alamm (channol $3 / 4$) Alame

Swithing curreat
General data
 Powe cosusumpion
Serepense ine Step response time
Atrenuation facoror Attenation

Type | Insulation ologege |
| :---: |
| EMM Standarats |

Connections \qquad

$\underset{\text { Anprovals }}{\text { EMC sandaris }}$

Input	Offset	Resolution
${ }_{\text {range }}^{\text {rame }}$		
0.09 .99 Hz	$0 . .99 .98 \mathrm{~Hz}$	0.01 Hz
0.099 .9 Hz	0.9998 Hz	0.1 Hz
0.0999 Hz	0...9998 ${ }^{\text {H2}}$	$1{ }^{\text {H2}}$

Universal auto-manual stations

AMS400A

Universal auto-manual stations
The AMS400A modules are interface devices which are used between controllers / PLCs and valves / actuators in the they implement aouto-manual transfer operations for automatically controlled processes.

Typical applications are:

- Manual start-up of sensitive processes before handover to automatic control
- Manual over-ride in case of controller failure or malfunction.

The AMS400A offers three different I/O configurations,
which serve as interfaces between:

- Analogue control equipment and analogue control devices
- Digital control equipment and analogue control devices
- Digital control equipment and digital control devices

In AA (analogue-analogue) mode, it is possible for a remote source to switch between manual and automatic operations using digital inputs. Ramp rates and additional handover. Two options are available for the method of returning to automatic control, in order to ensure a bumpless transfer.

Typical application of AMS400A

Indicators with scalable displays
DI350

3 $1 / 2$-digit LED display, auxiliary powered
The DI350 is a pair of inexpensive $31 / 2$-digit displays - one for nalogue current ($4-20 \mathrm{~mA}$) and the other for voltag $(0-10 \mathrm{~V}$) signals, for use in industrial applications.

An integrated regulated power supply can be used to supply two-wire transmitters.
The decimal point can be moved to any of the positions (1.XXX, 1X.XX, 1XX.X or 1XXX) so that it can display values in any range.

The bright seven-segment LEDs are easily visible even in weak lighting. The special filtering properties of the front F face give it a wide viewing angle.
The DIN-standard $1 / 8$ front panel with IP 65 protection ensures reliable operation in wet areas. The connection uses pluggable screw-connection elements. approved cuLus Ex Class 1 Div. 2, Groups A, B , C \& D)

Typical application of DI350

Wiring diagramm DI350

Indicators and configurable displays
LPD350

31/2-digit digital display, loop powered
The LPD350 is a compact, cost effective, $3^{1 / 2}$ digit digital indicator designed specifically for current loop signals. The $1 \mathrm{XX} . \mathrm{X}$ or 1 XXX) so that it can display values in a range of ± 1999.

The LPD350 uses a liquid crystal display which can be read even under poor lighting conditions.
No additional wiring is needed for a power supply. The user can simply break the loop and connect to the LPD350.

The housing has a DIN-standard $1 / 8$ front panel with IP 65 protection. The connection uses pluggable screw-connection elements.
Technical features

- Large $3^{11 / 2}$-digit digital LCD display
- 4 ... 20 mA input
- Loop-powered two-wire design (125Ω loop load)
- Direct or reverse-action display
- Linearity is $\pm 0.1 \%$ of the corresponding signal range
- DIN-standard front-panel with IP 65 protection
- Pluggable screw-connection mechanism

Hazardous area approved cuLus Ex (Class 1 Div. 2
Groups A, B, C \& D)

Typical application of LPD350

Configurable IP 67 field-mounted LCD indicator
LPD405F

4¹/2-digit display, loop powered
The display is loop powered by the $4 \ldots 20 \mathrm{~mA}$ current loop with no external supply requied The twenty-mm LCD displays can be read even under poor light conditions.

A sheet of perforated self-adhesive labels is included. They include standard engineering units and can be used for all label needs.
The electronic subassembly is housed in a rugged, glass reinforced polycarbonate, IP 67 case. This housing is suitable for any industrial environment

Optionally available is a pipe mounting bracket which can be used for horizontal and vertical mounting.

Technical features

- Big 20 mm LCD dispaly
- $4 . .20 \mathrm{~mA}$ inputs (two-wire loop-powered)
- Integrated signal linearisation $\left(\sqrt{ }, x^{3 / 2}, x^{5}\right.$
- Min./max. value display feature
- IP 67 protection
- Pipe mount bracket option
- Hazardous area approved cULus Ex (Class 1 Div. 2 Groups A, B, C \& D)

Typical application of LPD450F

Accessories Analogue Signal Conditioning Accessories Analogue Signal Conditioning - Overview G.2
USB configuration adapter G. 4
CH2OM DIN rail bus G.6
ACT20 powerfeed modules for rail bus G. 8
ACT20X/ACT20C/ACT2OP - Accessories G. 10
MICROSERIES/ACT20M - Accessories G. 11
mCZ/WAVE - Accessories G. 12
Calibrators G.14

Accessories Analogue Signal Conditioning

Configure, calibrate, mount, mark, (cross-) connect.
A comprehensive line of accessories is available for the analogue signal converter product family. The line includes configuration adapters for software-programmable products,
interface modules, calibrators and mounting accessories (such as cross-connectors, end plates and terminal connectors) - all naturally in the top Weidmüller quality that you've come to expect.

\qquad
CBX200

Pin assignments for jack plug

G

CH2OM DIN rail bus

Quick and safe power supply through the

 mounting rail.This customer-friendly infrastructure solution brings power, signals and data to the rail in a quick and reliable manner. The DIN rail bus can replace the tedious individual wiring As a result, the wiring overhead and the error rate are both reduced. The uninterrupted system bus is securely integrated within the 35 mm standard mounting rail. Whether 7.5 mm or 15 mm high, the custom-fit rail profiles are easy to install all TS 35 standard rails in accordance with
DIN EN 60715.

The resistant gold-plated contacts ensure a permanent and reliable contact. The ACT2OM modules are simply snapped onto the mounting rail and are automatically in contact with the DIN rail bus.

The supply to the 24 V power supply can be from either one of the modules (up to 400 mA) or a separate power supply terminal (up to 4A). This is sufficient for up to 120 modules. The ACT2O-Feed-In-Basic provides a simple and compac 16 mm wT2 $)$ poed Pro is a terminal solution solution. This makes a backup power supply that includes error messaging possible.

CH20M BUS-ADP TS35/1000 Cover plate

Cover plate for DIN rail bus - Length: 250,500 or 750 mm

Ordering data		
Type	atr.	${ }^{\text {Order }}$ No.
CH2OM BUSADP T TS3/250	10	1248250000
CHH2OM BUSADP T S335/500	10	1248260000
CH2OM BUSADP P T33//50	5	128870000

SET CH20M BUS 250MM TS 35X15

CH2OM Bus-PRoFIL TS35x15/1000 Support section for bus circuit board

- Support section for TS 35×15 - Length: 250,500 or 750 mm

CH2OM BUS-AP LITS35x7.5 \& 15
End plate

- End plate for DIN rail bus Fits on TS 35×7.5 and $T S 35 \times 15$

SET CH2OM BUS 250MM TS 35X7.5

- SET consists of one each of CH2OM BUS-ADP TS $35 / 250$ CH2OM BUSAP LI LTS $35 \times 7.5 \& 15$ CH2OM BUS-AP RE TS $35 \times 7.5 \& 15$ CH2OM BUS.PROFFL TS 35X7.5/250

CH2OM BUS 4.50/05 AU/1000 us PCB

- Bus circuit board for use on TS 35×7.5 and TS 35×15
- Length: 250,500 or 750 mm
- Electrical rating: 63 V AC, $5 \mathrm{~A} /$ conductor path

CH20M BUS-AP RE TS35x7. 5 \& 15
End plate

- End plate for DIN rail bus
- Fits on TS 35×7.5 and $T S 35 \times 15$
- right

TS 35x7.5/TS 35x15 ${ }^{0} 11 \mathrm{rail}$

Power-feed module for the CH2OM DIN rail bus

4 A supply with backup supply and
error analysis
The power-feed unit ACT2O-FEED-IN-PRO-S supplies the devices on the CH2OM DIN rail bus with 24 VDC . At the same time, the FEED-IN device reads the group error contact CH2OM rail bus and sends a message through the status relay to the external controller. Optionally, two powe supplies can be connected for the primary and secondary supplies (backup). An installation in Zone 2 / Division 2 is also possible. Three LEDs show the status of the power supply and the error status.

The FEED-IN-PRO can supply a maximum of 4 A to feed up to 120 devices mounted on a CH2OM rail bus. Ouick identification of errors on the DIN rail bus is through the internal status relay. The FEED-IN-PRO device immediately The supply is then switched automatically to the redundan power supply.

Weidmüller offers a compact and narrow 6 mm feed-in module as an alternative. This wires the terminal level directly to the DIN rail bus. Up to 80 modules can be fed with a maximum available current of 2.5 A .

ACT20 power-feed module

- Distributes the supply onto the busbar
- Compatible with Weidmuiller CH2O DIN rail bus - Pptional connection for backup supply - Approved for us in ExZone 2 /Div. - Alarm alers via the status relay
2

ACT20-Feed-In-PRO-S
ACT20-Feed-In-BASIC-S

Technical data

Input
Supply volage
lnout curent
Tiggere level tor the oover supply
Output power s
Output voltage
Outpuptrotage
Outpowe
Outupururent
Output, status relay in sate one 2

Conitious curent
AC power max.

General data
Degre of feficiency

Ambier temperature
Powe consunction
Pone consumption
Porocetion degee
Weight
Humidity
$\underset{\text { Humidiy }}{\text { Approvals }}$

\qquad

Dimensions Clamping range (nominal / min. / max.) Length x width x heigh			Screw comeation	
			$\frac{2.5 / 0.5 / 2.5}{/ 6.1 / 112.5}$	
	2.5/0.5/2.5 /22.5/117.2			
Ordering data				
	Type EIIPras	Oty. Order No.	$\frac{\text { Trpe }}{\text { ACrafefein }}$	Oty. Order No.

| Note | | |
| :--- | :--- | :--- | :--- |
| Accessories | | |
| Note | | |

ACT20X/ACT20C/ACT20P

Cold-junction compensation terminals (optional for the ACT20X temperature modules)

1. chamel	Release levere colour	Comnection ummber	Printing	Order No.
black	bue	11/12/13/14	whie	11160550000

Trpe	Version ${ }^{\text {and }}$	Dimensions	atry	Order ${ }^{\text {a }}$
		${ }_{8 \times 1.6 \times 20 \mathrm{~mm}}$	5	1082540000 191213000

Ordering data markers

WAVE Accessories

Ordering data markers
Multiard connetoro maker
Mutitard connetorer makerer

3-pole			
Tppe			
Biz5.08/3 SN OR BEER.		Printing	

2-pole

Portacal 1000EU

Calibration device for current and voltage signals

The Portacal 1000EU is a calibration device which is controlled by a microprocessor. It is used for current and controiled by a microprocessor. It is used for current and
voltage signals. It has three output modes for simulating signals:

- Voltage source: for the simulation of externally-supplied voltage transmitters
- Current source: for the simulation of externally-supplied
current sensors
- Current sink mode: simulates the outputs of a two-wire (loop-powered) transmitter.

Commonly used calibration functions can be invoked for each mode by pressing a button. Up to 9 storage locations per mode are available to save the individual values.
Furthermore, the Portacal 1000EU can be programmed in a way that all modes can be cycled automatically. Th defined time by means of a value storage. The following values can be checked and parameterised:

- Voltage outputs
- Current outputs
- Two-wire transmitter outputs

The Portacal 1000EU provides the necessary voltage supply for the sensor in order to check a two-wire transmitter.

Technical features:

- Complete diagnosis tool for current and voltage supply
- Measuring and simulating of voltage and current signals
- Simulation of function of signal transmitter, which can be
auxiliary-powered or process-powered (two-wire type)
- Continually adjustable step and ramping function
- Accuracy $<0.05 \%$ in all signal domains
- Light and portable
- Supply via NiMH rechargeable battery or comparable
battery
Signal tone at the press of a button

[^2]Typical application of Portacal 1000EU

Portacal 275

Hand-held signal source and loop calibrator

The Portacal 275 is a precise hand-held signal source for current and voltage signals. It can he used in four mode which allows the calibration of standard current/voltage transmitters.

The operating mode "voltage source" simulates auxiliary powered transmitters with proportional voltage outputs. The mode "current source" allows emulation of transmitter with proportional current outputs. The "mv source" mode simulates a variety of other analogue signals from many outputs of a two-wire (loop powered) transmitter.

The Portacal 275 is equipped with a scalable potentiometer (0 to 100%) that can be adjusted in steps to an accuracy of 0.1%. Together with the output-range switch, the potentiometer allows for a quick and precise adjustmen
of the signal value. A typical accuracy of $+0.25 \%$ is of the signal value. A typical accuracy of $\pm 0.25 \%$ is measue A tevices, allows for a higher accuracy of $\pm 0.1 \%$.

Technical features:

- Light and portable devic
- Simulates loop-powered transmitter operation
- LED for indication of source/sink operating mod
- Current ranges: 0 to $20 \mathrm{~mA} / 4$ to $20 \mathrm{~mA} /$ Voltage ranges: 0 to $5 \mathrm{~V} / 1$ to $5 \mathrm{~V} / 0$ to 200 mV
0.1% accurate current source
Test points for current output monitoring
- Switch select $0 \%, 100 \%$ or variable output
potentiometer for high accuracy
- Powered from tor high accuracy 9 V block batterie

Technical appendix/Glossary

Technical appendix/Glossary	Dimensioned drawings	W. 2

Introduction	W.4

Technical data W. 6
FDT/DTM - The standard solution for device configuration W. 10
EX basics W. 12
ATEX W. 18
Electrical data W. 20
General technical information W. 22
Glossary W.23

5

microseries

ACT20X/ACT20C/ACT20P

ACT20X HUI-SAO-LP-S

Different types of analogue signalling

The working environment can be measured in many different
forms e e in terms of temperature, humidity or air pressure. forms, e.g. in terms of temperature, humidity or air pressure. The values of these physical variables change constantly. Components that monitor the status and changes of a given to continuously display the changes taking place.

In industrial and process automation, the outputs received from field sensors, switches and transmitters provides measurement and status data which becomes the analogue and digital inputs (AI and DI) for the control system. Similarly control signals are passed from the control system to field control equipment such as analog and digital valves and
fautomation processes are expected to reach certain statuses or keep them constant, then analogue signal conditioning is required. It is also important in areas where in process engineering or the chemicals industry in process engineering standardised electrical signal normally used. Currents of $0 . . .20 \mathrm{~mA}, 4 \ldots 20 \mathrm{~mA}$ or voltages of $0 \ldots 10 \mathrm{~V}$ have become established as the outpu variables for sensors recording various different physical parameters
Weidmüller takes account of the growing preference for automation - including and the resulting need for analogue signal conditioning - and offers a wide range of products解 signals. Units for the common signals ($0 \ldots 20 \mathrm{~mA}$, ... $20 \mathrm{~mA}, 0 . . .10 \mathrm{~V}$) generate an output signal as a separation", e.g. of the sensor circuit from the evaluation circuit, is also taken into account. "Protective separation" eg. as in the case of earth loops in interlinked measuring circuits.

The wide range of Weidmüller products completely covers the functions involved in signal conversion, signal separation and signal monitoring. The products can thus handle nearly all applications in industrial measuring technology, and further processing systems. The mechanical properties of the products are built up around a consistent concept.

Signal converters can be used with other Weidmüller
products and combined with each other. They are designed to entail a minimum wiring workload and maintenance in

The product range contains the following functions: - DC/DC converters

- Current converters
- Temperature converters for resistance thermometers (RTDs) and thermocouples
- Frequency converters
- AC transducers
- Bridge transducers (strain gauges)
- Threshold monitoring modules
- AD/DA converters

The products are available as pure signal converters, or with 2 -port or 3-port isolation and a choice of passive or output application requirements.

2-way isolation separates the signals from each other electrically and decouple the measuring circuits. Potential differences - caused by long line lengths and common reference points - are eliminated. Furthermore, the electrical separation protects against irreparable damage caused by overvoltages as well as inductive and capacitive interference.

3 -way isolation decouples the supply voltage from the input and output circuits as well and enables the function to operate with just one operating voltage.
cold trap compensation as standard. Furthermore, they amplify and linearise the cold trap compensation as standard. Furthermore, they amplify and linearise the
voltage signal provided by the thermocouple. This guarantees accurate analogue signal conditioning while eliminating sources of interference or error
requency converters convert frequencies into standard analogue signals. Downstream controls can therefore directly process pulse strings for measuring rpm or speed.

AD or DA converters are required for bringing together the analogue signal forms mapping the local conditions and the digital processing in the process forms mapping the local conditions and the digital processing in the process $0 \ldots 20 \mathrm{~mA}, 4 . \ldots 20 \mathrm{~mA}$ and $0 \ldots 10 \mathrm{~V}$ input and output signals. 8 -bit processors are available on the digital side.
Current-monitoring modules can be used to control DC and AC currents up to 60 amps . A switching operation is triggered when the set current values are not Components with analogue outputs monitor the current load continuously via downstream controls.

Voltage monitoring modules can be used to monitor $A C$ and $D C$ voltages. Adjustable switching thresholds can be used to reliably detect and notify in the event of fluctuations caused by switching operations or mains overloads.
\square


```
lum
```


Technical data

Common Mode Noise Elimination

- Generally, signals emitted by sensors have low levels and are thus susceptible to capacitive and inductive interference, such as those generated by motors, frequency changers and other change processes. This noise contents the measuring value and frequently electronics Through the utilisation in ana control isolators this interferace, which usually actions both signal lines in common mode (push push), is effectively eliminated through the zero potential input.

Active Isolator / Passive Isolato

- Active isolators draw their power supply from a separate supply terminal to ensure that they can operate perfectly. Depending upon the applications the input, output and additionally the power supply are isolated from each other. Only one supply is required for 3 -port isolation. However, it is isolated from the input and output circuits. Thus even in the event of a short circuit, surge voltage or reverse polarity, the downstream control electronics cannot be damaged. Isolating the signals between th by transformer barrier depending upon the transfer rate Active isolators are non interacting, i.e. a change in the load does not exert any influence on an input circuit.
- Passive isolators generate the current required for the supply from the measuring signal. The current required internally is so small that transfer problems do not occur here.
The feed can be effected from either the input or the output side. Isolation is by transformer barrier. The advan-
tages are: cessation of network influences, outstanding accuracy, low signal delay and low potential requirement Passive isolators are not non interacting; a change in load in the output circuit will influence the input circuit

Ground Loops

- The voltage supply's secondary side is earthed for the purpose of setting up fast and secure ground loop monitoring. If an analogue signal is fed in from a separate voltage supply or if the sensing device itself is earthed then transient currents will flow between the ground which in turn corrupts the measuring signal Analogue signal isolating amplifiers preven measuring signal corruption and influence.

2-port Isolation

- The simplest form of analogue signal isolator is that of 2-port isolation. It serves to isolate the input circuit from the output circuit as well as the two auxiliary voltages from each other. Depending upon the isolator design and the observed isolation data one refers here to base isolation (galvanic isolation) or safe separation. (1)
For current signals, $4 . . .20 \mathrm{~mA}$ input current loop fed modules are available. An additional auxiliary voltage for the input circuit is not required here. (2)
By connecting the input and output side voltage supplies, he 2-port isolation can be converted to operate as a isolation is not required for an application, but a signal conversion has to be performed.

3-port Isolation

- 3 -port isolation is the most universal form of signal isolator
- An optical coupler or transformer isolates the input from the output circuit. Together with the clearance and creepage distances it serves to define the isolation level. For example, the input signal is converted by means of pulse-width modulation into a frequency signal and demodulated again on the output side to form an analogue value. An amplifier then generates a standardised analogue signal. A galvanic isolated
DC/DC converter feeds the input and output circuit with a potential free supply voltage. It also determines the isolation level through its data, air and creepage distances. In the case of these three isolation paths (input/output, input/auxiliary voltage, output/auxiliary voltage) one refers to 3 -port isolation

Temperature Signal Measuring Method

- Measurement using resistors (RTD)

When measuring with temperature-dependent resistors a current of approx. $\mathbf{1 . 5 \mathrm { mA } \text { is passed through the resistor }}$ from a constant current source in the signal converter.

An operational amplifier is used to measure the potentia drop at the resistor (2 -wire circuit). In order to take account of lead length, the voltage drop
is measured at the erturn conductor and calculated with double the value (3-wire circuit). This simulates the wire Accurate measurements are achieved by s.
measuring the voltage drop at the feed and return lines (4 -wire circuit). The values for the supply lines are calculated against the measured value.

Temperature Signal Measuring Method

- Measurements using thermocouples When conducting the voltage that is generated when two differently alloyed metals come into contact with each other is measured. A differential amplifier is then used to recondition the signal. The easiest (and the most cost-effective) method of subsequent processing is conducted by means of an amplifier circuit, which converts these signals into standard signals. High-end components process the measuring signal using a microprocessor,
which simultaneously reconditions the signal (filtering. linearisation)

Cold Junction Compensation For Thermocouples

- Recording temperatures by using thermocouples encounters the problem of a thermal voltage forming at the clamping terminals on the signal converter on accoun This voltage then counteracts the thermal element's voltage.

In order to compensate for the error to the measured value which arises here, the temperature is measured at the clamping terminal. The microprocessor in the signal converter reads the value measured there and calculates it against the measured value. This procedure is known as cold junction compensation.

Linearisation

- Temperature-dependent components do not normally have linear characteristic curves. To ensure that further processing can take place with the necessary accuracy,
these characteristic curves have to be linearised to some extent. The graph showing measurements of thermocouples, in particular, reveals significant deviations at some points from the "ideal graph". As a consequence, the signal whic asured is worked up by microprocesso.

The microprocessor compares the value measured with the characteristic curve for the thermocouple in its memory and calculates the corresponding value on the
"ideal characteristic curve". At the output, it supplies he latter to an amplifier, which produces the analis value in linear form. The output stage converts this into a standardised value or into a switching output with a switching threshold.
The linearisation of PT100-elements can be undertaken via simple amplifier stages. The first stage corrects the peak value of the graph of the measurements. The is corrected by a second stage. The under-and overshooting generated in this way is very slight and is covered by the tolerance for the module.

Current Measurement Using A Measuring Transformer

- Transformer principle: Each conductor through which current flows is surrounded by a magnetic field H , th intensity of which is proportional to the current. The field, which is bundled in a magnetic core, generates a magnetic flux B, through which suitable sensors are used to measure current.
 establish the most cost effective measurement method for simple sinusoidal currents. The current to be measured flows directly through the measuring transformer's primary winding.

The secondary winding supplies the measuring
electronics with a proportional current signal. Because of power loss this method of measuring current is limited to smaller currents up to 5 A . These converters react sensitively to peak loads and therefore have to be fused
on the primary winding side.
Measuring Current Using A Hall-type Sensor

- Hall-type sensor principle:

Hall-type sensors also measure the manetic flux B and supply a proportional voltage at the measured output,
en reconditioned to form a standard signal by an amplifier circuit.
Components with Hall-type sensors are ideally suited to measuring higher currents, as any possible high residua currents from motors or peak loads cannot damage the component. Additionally, they are also ideal for measuring direct and alternating currents of various curve shapes.

Root Mean Square Measurement / Crest Factor

- The root mean square value (r.m.s) of a sinusoidal shaped alternating current is the value, which in an ohmic resistor converts the same (effective) ouput as that of an equal sized direct current.
- Non sinusoidal shaped signals can only be measured with "True RMS" capable devices and/or further processed.
- True RMS = True root mean square
- Root mean square measurement is required where the (effective) output content of alternating voltages or currents are to be measured or evaluated.
The crest factor indicates the ratio of the crest factor to
the root mean square value. the root mean square value

Load Load Resistor

- The load is a load resistor on the output side of a
measuring transducer or isolating amplifier. The load is sually less than 500Ω so th g anpifier. The load is outputs are normally under a load greater than 1 KO

Galvanic Isolation / Safe Separation

- Galvanic isolation is understood to mean an electrica isolation between the input and output circuit and the位curts supply voltage. It can be set up either optically using an opto coupler or with a transformer. The isolation serves to safeguard the measuring circuit against damag and to eliminate ground loops, which could cause the measured signal to be corrupted
郎 DIN VDE 0106 Section 101 standard. This fundamental hazardous body currents and describes the basic requirements for safe separation in electrical operating equipment. Thus, for instance, the voltage supply of 50 VAC 75 V DC as under 50178 may not be exceeded. and thus an increase in the clearance and creepage distances is stipulated.

Cut-off Frequency

- Cut-off frequencies indicate the dynamic transfer characteristic of an isolation amplifier.
- The given frequency is the (-3dB) limit, at which a distinct Change occurs to the signal.
- An increased cut-off frequency leads to a transmission of the required signal.

FDT/DTM - The standard solution for device configuration

Field Device Tool (FDT)
FDT technology specifies and standardises the integration of communicating devices from different manufacturers. It
makes use of a superimposed device management program. The key feature is its independence from the communication protocol and software used by the device and the host system. FDT allows access to any device from any host using any protocol.

Device Type Manager (DTM)

Device manufacturers make available a Device Type Manager (DTM) software driver for each device or device group. The DTM specifies all device-specific information functions and rules (such as the device structure,
 human-machine interface (HMII). DTMs define functions for access to device parameters, troubleshooting, configuration and operation of devices. DTMs are available which can be
simple GUls for setting device parameters or more complex applications that are capable of carrying out calculations for diagnostic or maintenance purposes.

There are several different types of DTMs:

- Device DTM

This is a "normal" field device that uses communication channels to communicate with the connected physical device.
ation DTM
This is a communications device that provides
communication using communication channels. Communication channels provide access to the communications infrastructure (such as PC interface cards or modems). They are used by device DTMs or gateway Gateway DTM
This is a gateway device. It allows data to be exchanged between two communication channels. For example, this could be a gateway between PROFIBUS-DP and PROFIBUS-PA.
The DTM is loaded and started up within a FDT container program or "frame" application.

FDT frame application

Frame applications can be used as a tool to configure devices, plan projects, operate consoles or administer facilities. The with the following functions:

User adistan

- User administration
- DTM administration
- Data management
- Network configuration
- Navigation

Weidmüller offers their WI-Manager FDT frame program to the user for no cost. This certified software is compatible and works together with all certified DTMs. This screenshot shows the WI-Manager with an opened DTM for the ACT20X series.
Download at www.weidmueller.com

The FDT User Group is an alliance of users and
manufacturers interested in defining the specifications and moving the FDT/DTM technology forward. Weidmüller is a member of this group along with most process automatio rers and work towards advanci
further.
More details are available at http://www.fdtgroup.org/

Safety in hazardous areas

When operating electrical devices within hazardous areas, you must comply with the requirements regulating their use in such zones. Explosive atmospheres may be created from mixtures of flammable gases, mists, vapours or dusts. If their source of ignition or spark could trigger an explosion. Such explosions can cause death, serious injuries and significant property damages.
There are basically two strategies for reducing the risk of explosion. Firstly, no dangerous materials should be released into the air that could create an explosive atmosphere. Secondly, there should be no mechanism present that could eate a spark.
Many explosions in the past could have been avoided if only in hazardous areas had been observed.

But what are the most important global regulations regarding the use of devices in hazardous areas?
In North America, the US National Electric Code (NEC) regulations (Articles 500 to 505 and the Canadian CEC and -300 are all valid Code) Articles 18-000, -090, -100, -200 In Europe, both EU directives ATEX 95 (94/9/EG) and ATEX 137 (1992/92/EC) are relevant. They describe preparation (ATEX 95) and usage (ATEX 137) for facilities in potential Ex zones. Throughout the rest of the world, there is a mixture of national regulations (in Eastern Europe) and internationa IECEX conformity declarations (in Asia) that must be directives have been accepted and applied.

EX

American approvals .e. UL 508 Industrial Control UL 60079-.

Approval bases: protection

A brief overview of regulations used throughout the world and their basic content.

The European ATEX Regulation applies to facilities

 and their usage in hazardous areasThe term "ATEX" derives from the French phrase
"Atmospheres Explosive". The regulation currently includes two directives from the European Union concerning explosion protection. These are the ATEX operational directive 1999/92/EG (ATEX 137) and the ATEX product directive 94/9/EG (ATEX 95). The ATEX 137 operational directive specifies the minimum requirements for improving the protection of health and security of workers in environments at risk of explosions. The ATEX 95 product the market that will be used in zones where there is risk explosion. This directive is the first to include non-electric devices within its jurisdiction.

The purpose of the directive is to protect personnel who work in hazardous areas. Appendix II of the directive contains the basic health and safety requirements. These must be proved by the manufacturer and compliance 30, 2003, all devices, components and protective systems brought to the market must be in compliance with the ATEX 95 product directive.

The ATEX 95 directive classifies devices and components for the Ex zone into two main groups:

Group
\Rightarrow Devices for use in mining, for underground and
above-ground operation

- Coal dust
- Harsh operating conditions

No additional divisions

Group II

\Rightarrow Devices for use in the other hazardous areas

For applications in the oil, gas and chemical industries, it is particularly important to follow the Group-ll G ' requirements concerning electrical or electronic devices and components.

Safety in hazardous areas

Group II " G " divides the Ex zone into three zones with different safety requirements.

- Zone $\mathbf{0}$ This zone applies to dangerous explosive
atmospheres where the risk is present often or over long time periods.
$\Rightarrow>50 \%$ of the operational time, or more than 1.000 hours per year.
- Zone 1 This zone applies to situation where explosive atmospheres may occasionally be present during hormal operations.
\Rightarrow Occasionally, less than 10 hours per year
- Zone 2 This zone applies to situation where explosive atmospheres are normally not present or only atmospheres are norm => Max. $30 \mathrm{~min} /$ year.

Hazardous areas	Zone 0	Zone 1	Zone 2	Safe zone
Explosion risk	Continual, long-term, often	Occasionally	Rarely	None
Spark source	None	Rarely and short-term	Occasionally	Continual, long-term, often

Typical division of zones at a fuelling station

In which operations are ATEX-certified electronic
devices (such as signal converters, isolation
devices (such as signal converters, isolation
amplifier, Namur switches and switching amplifiers)
used?
ATEX-certified devices are used within industrial facilitie and production halls where there is the possibility that explosive gases or dusts may be released. Transportation and production applications which require the use of such certified devices are listed below:

- Off-shore oil and gas drilling
- Tanker ships which carry oil, gas or chemicals - Ships which carry potentially explosive materials - Refineries and other oil or gas production plants - Transportation and filling stations for oil and gas
- Petro-chemicals

What are the differences between standard devices and intrinsically safe devices?
For electronic devices that are being used in Zone $\mathrm{O}(20)$ or $1(21)$, none of the components or electrical circuitry are perks, whether during normal aberigh temperature malfunctions. In other words: "All of the circuits in intrinsically safe electrical devices (Exi) are safe and are not capable of igniting explosive atmospheres

What is the device category?

The device Group II (hazardous areas not including underground or above-ground mining operations) is divided into device categories 1, 2 and 3 . They have the following safety levels:

Surroundings	Device categary	Occurrence and duration of explosive	Ignitable materials	Safety levels	Groups and zones Comparson
Group II	1	Constantly ocururing	Gases, vppuss, nist dust	Very high safety level	Grup II
		Longtem		2 different potetetion classes	Zone (gas)
		Regulaty		or	20020 (dust)
Group II	${ }^{2}$	Occurrence probable over a limited time period	Gases, vapuus, nist, dust	High satetrl level	${ }^{\text {Guppee II }}$
				1 protection class	Zone 1 (gas)
Group II	3	Occurenenc inpobableOnly forstorteriods	Gases, vapuous, mist, dust	Normal safety level	Group II
				Reguired protecive measurs	Zone 2 (gas)

Safety in hazardous areas

Which explosion protection categories are most commonly used?

- Pressure-resistant encapsulation (Ex d) in compliance with EN60079-1:
compliance with EN60079-1:
Components that are capable of triggering an explosion are enclosed in a housing that is capable of withstanding the explosion. Openings in the housing are designed to prevent the explosion from being transmitted externally.

In (Ex e) in compliance with

 EN60079-1:This explosion protection category is normally applied to transformers, motors, batteries, terminal blocks, electric lines and cables. It is not suitable for the protection of electronic components and spark-generating components (such as switches, relays or surge protection). Additional measures and an increased safety level are implemented in order to prevent any sparks, electrical arcing or unallowable high temperatures which could trigger gnitions. Increased safety is made possible by housing

Explosion protection methods (Ex n):
This explosion protection category may only be used in the hazardous areas $2 / 22$. Here there is no danger of an explosion from the electrical equipment during normal operations or during defined malfunctions. This includes all electrical devices and components that have no spar
forming contacts and that have a water-proof or dustproof housing. Larger creepage and clearance distance are not required as long as the maximum rated voltage of $60 \mathrm{~V} \mathrm{AC} / 70 \mathrm{~V} \mathrm{DC}$ is maintained.
Intrinsic safety (Ex i) in compliance with EN60079-1 Power supply to electrical equipment is carried out current and voltage so that the minimum power and emperature levels for creating an explosive mixture are not reached. Intrinsic safety for electrical and electronic devices is specified so that their circulating or stored power (even in event of malfunction) is never strong enough to trigger an explosion in an explosive atmosphere. You must also remember that not only
the electrical device but also all other components he electrical device but also all other components atmosphere. All switching circuits in intrinsically safe devices must be designed so that they are also intrinsically safe.

These devices are divided into the category groups <ia> and <ib> which differ in the number of occurring malfunctions.

Category <ia>

\Rightarrow Switching circuits within category <ia> electrical evices must not be able to cause a spark even if two independent malfunctions take place.
\Rightarrow Switching circuits in electrical devices must not be able to cause a spark when a malfunction.

Electrical devices for use in ex in accordance with CENELEC		
Explosion protection type	Idenifificat	Proterive des
Pressure-resistant	Exd	Encossess the explosion and prev tom spreatin
Increasese sately	Exe	Nos spakk formation of thotsutfaes
Method foferlosion protectic	Exn	No spark formation of tot suffaces
sic sate	Exi	Limited energy for preventing spark formatio

CENELEC classification of gases, dusts and the maximum permitted surface temperatures of devices and components

$\begin{aligned} & \text { Casa } \\ & \text { group } \end{aligned}$	T1 T2 Temperature classes					
		$\stackrel{\text { T2 }}{ }$			T5	
IIA		$\begin{gathered} \text { Ethyl alcohol } \\ \text { Cyclohexane } \\ \text { n-Butane } \\ \text { n-Hexane } \end{gathered}$	$\begin{gathered} \text { Benvene } \\ \text { Kerosene } \end{gathered}$	Aceataldeyde	$-$	
"B	$\begin{gathered} \text { Lighing } \\ \text { Agases } \\ \text { Acryonitite } \end{gathered}$	$\begin{aligned} & \text { Ethylene, } \\ & \text { Ethylene oxide } \end{aligned}$	$\begin{gathered} \substack{\text { glycoll } \\ \text { Hylogen } \\ \text { sulphidide }} \\ \hline \end{gathered}$	Ethy ether	-	
IIC	Hydrogen	$\begin{aligned} & \text { Ethine } \\ & \text { (Acetylen) } \end{aligned}$		-	-	Hydroca

$\begin{aligned} & \text { IEC (group III) } \\ & \text { Classification } \end{aligned}$	Max. surface	Comment
It	$45^{\circ}{ }^{\circ} \mathrm{C}\left(842^{\circ} \mathrm{F}\right)$	The temperature is relevant to all parts of the devices that can come into contact with potentially explosive materials.
I2	$3000^{\circ} \mathrm{C}\left(572^{\circ} \mathrm{F}\right)$	
$\frac{\mathrm{T} 3}{\text { T4 }}$	$200^{\circ} \mathrm{C}\left(392^{\circ} \mathrm{F}\right)$	
${ }_{5} 5$	$100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$	
${ }^{16}$	$85^{\circ} \mathrm{C}\left(185^{\circ} \mathrm{F}\right)$	
Tx	Max. surface temperature undefined	Valid for the closed tank systems used on container ships where the individual contents cannot be monitored in event of a fire. It is the responsibility of the operator to assess each temperatur class.

What labelling is considered proper?

An example of device labelling:
CE $\mathbf{0 5 3 9}$

ATEX directives

Since July 1, 2003, all new facilities
in hazardous areas must be certified according to ATEX Directive 94/9/EG or ATEX 95 (ATEX: ATmosphère
EXplosive $=$ explosive atmosphere Explosive = explosive atmosphere)
This directive is one of the "NewApproach" directives. It is valid in al European Union countries, as well as Iceland, Lichtenstein and Norway. In
these countries, the directive refers
to the sale and commissioning of
products which have been designed environments (where explosive atmospheres exist due to gases
vapours, mists, or dusts). It now also covers the mining sector and purely mechanical devices.

Labelling for ATEX approval of a signal converter

II 3 G Ex nAnCnL IIC T4

II = Device group 2: devices for use in hazardous areas (except for mines and above-ground mining are exposed to flammable dusts or methane
3 = Device category 3: the danger occurs rarely or only for short periods. The requirement is for
$\mathbf{G} \quad=$ Intended for the gas zone
Ex Explosion protection
C Non-sparking equipment
C Enclosed facility (suitable protection)
IC = Explosion groups: typical ger
T4 = Temperature class: The max. permitted surface temperature for T 4 is $135^{\circ} \mathrm{C}$
Zone 2 a zone for which, during normal operations, here is at most, only a short-term occurrence of ir and flammables gases, vapours or mists).

II (1) \mathbf{G} [Ex ia] IIC/IIB/IIA
II = Device group 2: devices for use in hazardous areas (except for mines and above-ground mining acilities that are exposed to flammable dusts or methane)
(1) = Device category (1): Equipment from category t can be connected to this signal converter. The signal converter must be operated in the safe zone or in zone 2 (II 3 G ...)
G $\quad=$ Intended for the gas zone
[Ex ia] = Explosion protection type: protected with intrinsic afety. This signal converter, as accompanying connection of intrinsically safe circuits.
IIC/ = Explosion groups - typical gases: propane for A IIB/IIA Ethylene for B, and hydrogen for C.

II (1) D [Ex iaD]
II = Device group 2: devices for use in hazardous areas (except for mines and above-ground mining areas except for mines and above-ground mining
facilities that are exposed to flammable dusts or methane) 1 can be connected to this signal converter. Th signal converter must be operated in the safe zone or in zone 2 (II $3 \mathrm{G} .$.).
D $=$ Designed for the dust zone. safety. This signal converter, as accompanying ment, in intended to be used for the

Design of clearance and creepage distances in electrical equipment - influencing factors

Rated impulse withstand voltage
The rated impulse withstand voltage is
derived from:
Voltage conductor - earth
taking into account all networks)

- Surge category

Surge categories
are stipulated in accordance with the German standard DIN VDE 0110-1 (fo the low-voltage network)

Surge category 1

- Equipment that is intended to be connected to the permanent electrical installation of a building Measures to limit transient surg to the specific level are taken permanent installation or between the permanent installation and the equipment.
Surge category II
Equipment to be connected to the building, e.g. household appliances portable tools, etc.

Surge category III
Equipment that is part of the permanent electrical installation higher degree of availability is expected, e.g. distribution boards, circuit-breakers, wiring systems (including cables, busbars, junction boxes, switches, power sockets) in the permanent installation, and equipment for industrial use stationary motors with permanent connections to the permanent installation.

Surge category IV
Equipment for use at or near the power supplies in the electrical the principal distribution and the mains, e.g. electricity meters, circuit breakers and centralised ripple controllers.

Pollution severity categories
Pollution severity category 1
No pollution, or only dry, non-
influence.
Pollution severity category 2

- Non-conductive pollution only; occasional condensation may cause temporary conductivity.

Pollution severity category 3

Conductive pollution, or dry, nonconductive pollution that is liable condensation.
Pollution severity category 4
Contamination results in constant ond

Unless explicitly stated otherwise, the measurement of clearance and creepage distances and the resulting rating data for electromechanical components is based on pollution account of all network types.

Derating curve (current-carrying capacity curve)

The derating curve shows which currents may flow continuously and simultaneously via all possible connections when the component
is subjected to various ambient is subjected to various ambien temperature.

The upper limit temperature component is the rated value determined by the materials used. The total of the ambient temperature plu
the temperature rise caused by the current load (power loss at volum resistance) may not exceed the upper limit temperature of the component, otherwise it will be damaged or even completely ruined.
The current-carrying capacity is henc not a constant value, but rather decreases as the component ambien he current-carryinses. Furthermore influenced by the geometry of the component, the number of poles and the conductor(s) connected to it.
The current-carrying capacity is determined empirically according
to DIN IEC 60512-3. To do this, the resulting component temperatures $t_{b_{1} 1}, t_{p_{2}}$ and the ambient temperatures $t_{u_{1}}, t_{u_{2}}$ are measured for three differen currents I_{1}, l_{2}.
The values are entered on a graph with a system of linear coordinates to illustrate the relationships between the currents, the ambient temperatures and
the temperature rise in the component.

Base curve

$t_{t}=$ maximum temperatur
$=$ ambient temperature
= current
he loading currents are plotted on the y-axis, the component ambient emperatures on the x-axis.

A line drawn perpendicular to the x-axis the upper limit temperature $t_{\text {t }}$ of the component completes the system of coordinates.
o associated average val and $=\mathrm{t}_{\mathrm{b} 1}-\mathrm{t}_{\mathrm{u} 1}, \Delta \mathrm{t}_{2}=\mathrm{t}_{\mathrm{ta}}-\mathrm{t}_{\text {a }}$ are plotted for every current l_{1}, to the left of the perpendicular line.
The points generated in this way are joined to form a roughly parabolic curve.
As it is practically impossible to choos mponents with the maximum permissible volume resistances for the reduced.

Derating curve

Reducing the currents to 80% result in the "derating curve" in which the maximum permissibe volum uncertainties in the temperature measurements are taken into account in such a way that they are suitable for practical applications, as experience has shown. If the derating curve exceeds the currents in the low ambient temperature zone, which is given by the current-carrying capacity
of the conductor cross-sections to be connected, then the derating curve should be limited to the smaller current in this zone.

IP class of protection to DIN EN 60529

The class of protection is indicated by a code consistingof the two letters IP and two digits representing the class of
protection. protection.

Example:
IP65
| ${ }^{1}$ nd digit: protection from liquids 1st digit: protection from solid bod

Glossary

1-9

2-way isolation	The input and output signals are separated electrically from each other and decoupled. Potential differences caused by long wire lengths and common reference points are eliminated.
3-way isolation	Also decouples the power supply to the input and output circuit and enables supply with only one operating voltage.

A/D converter	Converts standardised analogue current and voltage signals into an 8 -bit, 12 -bit or 16 -bit digital signal. It may be necessary to convert analogue signals into digital signals when you need the analogue signal from the surroundings to work with the typical digital processing requirements of process monitoring.
AC	Alternating current
Accuracy	Describes the ability of an analogue signal isolating converter to transmit a measured value as precisely as possible. It is specified in the percent deviation from the measuring range end value at room temperature.
Active sensor	In an active sensor, an electrical signal is generated from the measurement itself, for example dynamometric or piezo-electric. Thus no auxiliary power source is required. Because of their physical operating principals (since energy cannot be sent during the static and quasi-static states), only a change in the measured variable can be detected.
Actuator	The actuator is a sensor counterpart - it converts electrical current into another form of energy.
Alarm contact	A switching contact that activates when a disturbance occurs (for example, an overload or short circuit).
Ambient temperature	DIN EN 60204-1 uses this term to refer to the temperature of the surrounding air or medium at which the equipment can be properly and safely operated. This is a part of the surrounding physical and operational conditions. Failure to maintain this temperature level can invalidate the product warranty.
Analogue signal	A signal is designated as an analogue signal if it transmits parameter information that is infinitely variable between a minimum and maximum value (this includes instantaneous values such as current, voltage or temperature). This applies to practically all real-world processes or states. It is theoretically possible to register any small signal changes (there is a very large dynamic range).

The ATEX directive from 23.4.1994 is valid within the EU and the EFTA Western European nations. It applies to devices, machinery components, controllers and protective systems that are to be used in hazardous areas. This directiv harmore the the the mations

ATEX is derived from the phrase "ATmosphere EXplosive". It stipulates that operators should prevent explosions and ensure protection.
Regarding explosion protection in a potentially explosive atmosphere, the ATEX directive 94/9/EC has precedence over machinery directives and must be followed The directive describes the following steps:
oftere occurs and where it occurs.
These areas are then divided into zones according to the specifications. ake sure that only properly categorised equipment is present within each e taken to limit the potential ignition sources that are present there

C	
Calibration device	A special instrument used for the calibration and configuration of analogue signal conditioning devices. The calibration device produces highly precise standardised signals. It is equipped with a load indicator for quick loop diagnostics.
CE	Abbreviation for Communauté Européenne (the European Community). Manufacturers use the CE label to confirm that their products comply with the corresponding EC directives and the "essential requirements" therein.
Cold-junction compensation	Thermocouples require a temperature reference point to compensate for unwanted "cold junctions". The usual method for achieving this is by measuring the temperature at the reference junction with a temperature sensor that can be read immediately. The interfering voltage can then be compensated for in the measurement results. This process is referred to as cold-junction compensation (CJC).
Common-mode interference	Interfering currents and voltages that can occur on the connecting cables between electrical devices and facility components. These can then spread with similar phase and current direction to the feed line and the return line.
Counter	A counter can be used for measuring flow or for counting events. Analogue or digital input signals (pulses) may also be processed. Integrated function such as linearisation, interference suppression hysteresis configuration and ereference values expand the range of use of a counter. Switching contacts are available on the output side for monitoring threshold.

reference.

```
Creepage distance . . ...... Live, current-arrying p
```


D	
D/A converter	D/A converters convert standardised digital signals (for example, with an 8-bit structure) into analogue current and voltage signals. It may be necessary to convert digital signals into analogue signals when you need the analogue signal from the surroundings to work with the typical digital processing requirements of process monitoring.
DC	Direct current
Derating	The continuous current level reduction in relation to an ambient temperature increase, represented as a derating curve (a load reduction curve).

Device categories	The device category determines which equipment can be used in which zone. There are six device categories. The categories $1 \mathrm{G}, 2 \mathrm{G}$ and 3 G are classifications for gas explosion protection ($\mathrm{G}=\mathrm{Gas}$). Equipment with 1 G is suitable for zones 0,1 and 2 . Equipment with 2 G is suitable for zones 1 and 2 . Equipment with 3 G is suitable for zone 2. The categories $1 \mathrm{D}, 2 \mathrm{D}$ and 3 D are classifications for dust explosion protection ($\mathrm{D}=$ Dust). Equipment with 1 D is suitable for zones 20,21 and 22 . Equipment with 2 D is suitable for zones 21 and 22 . Equipment with 3 D is suitable for zone 22.
Device groups	Equipment is divided into groups I and II. Group I concerns underground mining while group II concerns explosion protection for gas and dust in all other applications.
DTM	DTMs (Device Type Manager) are software drivers that are vendor- and deviceneutral. DTMs define functions for access to device parameters, troubleshooting configuration and operation of devices The DTM specifies all device-specific information, functions and rules (such as the device structure, communication capabilities, internal dependencies and the human-machine interface (HMI)). Device manufacturers make available a Device Type Manager (DTM) software driver for each device or device group.

E
EIA-232/ RS232 \quad The term EIA-232 (originally RS232) refers to a serial interface standard Electronic Industries Alliance) in the early 1960 s. EIA-232 specifies connection between the data terminal equipment (DTE) and the modem (data communication equipment or DCE). It defines timing, voltage level, plug and protocol details. EIA-232 defines a voltage interface. The information bits are encoded using electrical voltage. The data lines (TxD and R×D) use a negative logic whereby a voltage level between -3 V and -15 V (ANSI/EIA/TIA-232-F-1997) represents a logical one and a voltage level between +3 V and +15 \checkmark represents a logical zero. Signal levels between -3 V and +3 V are undef differential serial data transmission interface standard for cable-based diferential, senial dat the siA 322 . for symmetric transmissions. This means that two sets of twisted pair wires are required to carry the positive and negative signals from the sender to the receiver. This minimises common-mode interferences and also increases the data rates in comparison to the asymmetric EIA-232 interface. EIA-422 can be used to establish a full-duplex, point-to-point connection. Multi-drop networks with one sender and up to ten receivers are also possible. The sender and receiver in multidrop networks can only be operated in haff-duplex (in one direction). Because of he high data rate (up to several MBitss), a wire pair on the EIA-422 interface must be terminated with a terminating resistor (normally 120 ohm)

EIA-485, also referred to as RS485, is an interface standard for digital, cabl based, differential, serial data transmissions. EIA-485 uses a wire pair for transmitting inverted and non-inverted levels for a single-bit data signal. The the two voltage levels. This has the advantage of increasing the resistance to interference tevels. This has the advanege of increasing the resistance transmission. The EIA-485 interface operates with a voltage differential of $+/-200 \mathrm{mV}$, so that the voltage interface has a differential related to half of the operational voltage. It normally uses a single wire pair and is operated in halfduplex. However full-duplex operations are possible with two wire pairs.This connection has multi-point capabilities; up to 32 nodes can be connected to transmission speeds up to $10 \mathrm{MBit} / \mathrm{s}$. The wire pairs must be terminated with resistors (typically 120 Ohm) because of the cable length and high data rates.

Electrical equipment

 All of the electrical and electronic compents and circuits within an enclosure:
Explosion groups

Explosion protection types

 Depending and elecrich Depending on the ignition protection, explosion-protected equipment intended for gases, vapours and mists are divided into three explosion groups (IIA-IIB-IIC).The explosion group provides a measure of the explosive break-though capability of gases (in an explosive atmosphere). The requirements for the equipment increase in strictness from II A to II C.
The ignition protection type is a term used in explosion protection that refers to the various types of protective construction designed into the product Ignition protection types are formulated to minimise the risk that an ignition source will be present in an explosive atmosphere.
The following ignition protection types are specified.

- For electrical equipment in a gas
 - Intrinsic safety Ex i

- Pressure-resistant Ex d encapsulation
- Pressurization Ex
- Oil immersion Ex o
- Moulded encapsulation Ex m
- Sand encapsulation Ex a
- Ignition protection type for zone 2 Exn

Special ignition protection type Ex s

- For electrical equipment in dust

- Intrinsic safety Ex iD
- Moulded encapsulation Ex mD
- Protection provided by housing Es tD

Explosive atmospheres	This is defined as a mixture of flammable materials and oxygen. An ignition leads to a explosive burning process throughout the entire mixture. Usually the oxygen is supplied by the surrounding air. Flammable materials may be gases, liquids, vapours, mists or dusts. Explosion protection considers this to be normal atmospheric conditions. The explosiveness of the mixture depends of the

F

Flammability rating	Flammability class specification according to the American UL 94 specification. Duration of burning, annealing time and the burning drop formation are all taken into account. The highest category is V-O.
Frequency converter	Converts frequencies into analogue signals (or vice versa). In-line control systems can then directly process pulse strings from speed or rotational measurements.

G

| Galvanic isolation | Potential-free isolation between electrical components. Normally, the inputs circuit, output circuit and power supply are designed so |
| :---: | :---: | that they are electrically isolated from each other. The isolation can be achieved using optical means (an optocoupler) or by using a transformer. The electrical and common-mode interference are suppressed

GOST-R The Russian certification for products, materials and technical facilities.

H
Hall sensor current measurement \quad Hall sensors can measure the magnetic field of a conducting wire. They then generate a proportional voltage on the measurement output (the Hall voltage). This can be converted to a standardised signal by means of an amplifier circuit, Such a measurement is well suited for measuring high DC and AC currents with to 1 kHz . Start-up currents and current peaks cannot damage Hall sensor

HART ${ }^{\text {® }}$	HART ${ }^{\circledR}$ (Highway Addressable Remote Transducer) is a communications protocol for bus-addressed field devices used in process automation. In HART ${ }^{\oplus}$-based communications, field devices and controllers are connected together over 4-20 mA current loops. This analogue signal is superimposed with a digital signal by using the FSK process (Frequency Shift Keying). The process allows additional measurements, configuration and device data to be transmitted without influencing the analogue signal. Ex isolators can also be used in hazardous areas.
Hazardous area	According to the ATEX directive, an hazardous area is where the extent of the explosive atmosphere mandates that extra measures must be taken to safeguard health and protect surrounding machinery. Hazardous areas are classified according to the frequency and duration of the occurrence of the explosive atmosphere (refer to the sub-divided zones).
Hysteresis	Specifies the percent difference between the switch-on and switch-off points of a switching contact. The hysteresis must not fall below a minimal value. Otherwise it would no longer be possible to carry out specific switching during the monitoring of threshold.
I	
IECEx	An international directive regarding the creation of declarations of conformity by the manufacturers of facilities, devices and components that are intended for use in explosion risk zones. This directive is valid throughout the globe but is only currently used in some Asian nations.
Impulse withstand voltage	The high pulse voltage of a specified form and polarity that does not lead to an insulation breakthrough or flashover, under the specific conditions defined in EN 60664-1.

Initiator PNP/NPN switched	Two wires in a three-wire sensor are responsible for keeping the supply activated. The third connecting wire is used for transferring commands (NO/NC contact). Initiators with NPN outputs switch the load in active mode towards the minus potential. Proximity switches with PNP outputs switch toward the plus potential.
Insulation voltage	For electronics components with electrical isolation, this is the maximum AC test voltage that can be applied for a specified time interval ($5 \mathrm{~s} / 60 \mathrm{~s}$) without causing a break-through.
Intrinsic safety "i"	Electrical equipment for hazardous areas with the ignition protection type "Intrinsic safety Ex i" Intrinsic safety is divided into ignition protection types "ia" or "ib" The ignition protection type "intrinsic safety" is a protective strategy that requires a complex analysis of electronic devices. So it is not only important to protect intrinsically safe current from the other unsafe circuits. It is also important to limit the open-circuit voltage, short-circuit current, power, stored energy and the surface temperature of components that will be exposed to the explosive atmosphere. Intrinsically safe circuits are circuits where a spark or thermal effect (as may occur under the testing conditions specified by EN 60079-11) is not capable of igniting an explosive atmosphere (of sub-groups IIA, IIB or IIC) or a dustair mixture. The testing conditions cover normal operations and certain error conditions as specified in the standard.
IP protection classes	Equipment is assigned an IP protection class to indicate which environmental conditions it can be used in.
Isolation amplifier (active isolator)	An isolation amplifier is used to provide electrical isolation for analogue standard signals. They are designed with 2-way or 3-way isolation. The isolation of the potentials eliminates interference on the measurement signal that can be caused by earth loops or common-mode noise. The active isolator makes use of a separate voltage source for its power supply. It functions without feedback; a change on the output side load does not influence the input circuit.

L	The current on the load side of an optocoupler that flows towards the output circuit while in a closed state.
Leakage current	The limiting frequency of an analogue signal isolating converter is that frequency where the output signal is reduced to $1 /($ scra 2) of the value of the input signal (approx. $70.7 \%=-3 ~ d B)$.
Limiting frequency break monitoring	Analogue measuring transducer with wire-break detection capability that permanently monitors the input signal. In the event of an fault (a wire break), the output signal jumps up to a defined value over the nominal range so that a controller wired further down the circuit can evaluate the error.

Linearisation	Temperature-dependent components normally do not have a linear characteristic curve. Their characteristic curves must be linearised so that they can be evaluated as precisely as possible. The measurement curves of thermocouples and temperature-dependent resistors (NTC/ PTC), in particular, exhibit significant deviation from an "ideal curve". In the linearisation process, the measurement signal is processed by a microprocessor and an ideal characteristic curve is generated which can then be analysed or processed further.
Load cell	A load cell is a special type of force sensor used in weighing systems (i.e., with scales). They are calibrated in grams (g), kilograms (kg) or tons (t). Load cells usually have a spring mechanism used as a force sensor. The spring is a specially shaped piece of metal whose shape changes slightly when under the influence of weight. This elastic deformation is recorded by strain gauges and converted into an electrical signal. Weights can be recorded ranging from a few hundred grams to several thousand tons.
Load resistance (load)	This is the load resistance on the output side of a measuring transducer or transmitter. For analogue current outputs, the load is $500-600$ ohms maximum. Voltage outputs normally have a load of at least 10 kOhm .

M

| Measurement isolating transformer | Converts electric and non-electric input signals into standard analogue signals.
 At the same time it provides electrical isolation between the input and output
 (2-way isolation) or between the input, output and supply (3-way isolation).
 Measurement isolators are typically used to record temperatures (RTD, |
| :--- | :--- | (2-way isolation) or between the input, output and supply (3-way isolation).

Measurement isolators are typically ysed to record temperatures (RTD, thermocouples) or for measuring current, voltage, power, frequency, resistance and conductivity.

| Measuring bridge | Sensors based on Wheatstone bridge circuitry can capture force, pressure and
 torque Re |
| :--- | :--- | DMS strain gauges in the form of resistance changes. A typical application is for capturing measurements in load cells

Namur sensor	NAMUR-compliant sensors (The standardization commission for measuring and control technology in the German chemical industry) operate with a loadindependent current. They have four modes so that an analogue evaluative unit can detect a sensor malfunction. 1) Current of $0 \mathrm{~mA} \Rightarrow>$ wire break, circuit is open 2) Current of approx. 20% of the max. value $=>$ Sensor ready, activated 3) Current of approx. 60% of the max. value $=>$ Sensor ready, not activated 4) Current at max. value $=>$ short circuit, max. current NAMUR sensors are suited for use in hazardous areas.
NEC 500-505	The relevant directives for the classification of explosion protection in the USA. NEC 500 regulates the standard Ex classifications (class - division - model). The NEC 505 defines the zone model based on the European and IEC classifications.

Nominal switching current - load side	The permitted load current of a relay contact or semiconductor contact when in continuous operations.
Nominal switching voltage -	The switching voltage that a relay contact or semiconductor contact uses in relation to its application.
load side	

0
Output-current loop-powered \quad Output loop powered 2-wire transmitters have a 4-20 mA output. The transmitter is supplied with power via the current loop on the output side. A typical loop consists of a regulated DC power supply, the 2 -wire transmitter and a receiving device.
Overvoltage category

The overvoltage categories are described in DIN EN 60664-1. The category dictates the insulation clearance gaps required. Category III is the default specification (EN 50178)

- Overvoltage category I

Devices that are intended to be connected to the permanent electrical building installation. The measures for limiting transient surge voltages to the proper level are taken outside of the device. The protective mechanisms can either be in the permanent installation or between the permanent installation and the device.

- Overvoltage category II

Devices that are intended to be connected to the permanent electrical building installation (such household appliances or portable tools).

Overvoltage category III

Devices that are a part of the permanent installation and other devices where a higher degree of availability is required. This includes the distributor panels, power switches, distribution systems (including cable, busbars, distributor devices intended for industrial use, and devices that are continually connected to the permanent installation (such as stationary motors).

- Overvoltage category IV

Devices that are intended to be used on or near the power feed in a building's electrical installation - ranging from the main distribution to the mains power stem- This includes electrical meters, surge protection switches and ripple control equipment.

Passive isolator/ input loop powered \quad Generates its power supply from the input signal ($0 / 4-20 \mathrm{~mA}$). The amount of current needed internally is so small that the measuremen sion
is not influenced. Transformers are used to provide the isolation between the input and the output.
The advantages include: eliminates the influence of the mains power system, highly accurate, minimal signal delay, and minimal power used. Passive isolators do not function free from feedback;
so a load change on the output circuit will automatically effect the input circuit as well.
Passive sensor Coins passive components whose parameters can be changed by the measured variables. A primary electronic mechanism converts these para passive sensor Passive sensors can be used to determine both static an semi-static measured variables. For this reason, the majority of sensors have a passive construction. Examples of this type include load cells and resistance thermometers.
The po surroundings. It is defined in DIN EN 50178, Section 5.2.15.2. The poliution (contamination) severity level should be used to determine the
required creepage distance for the insulation. Pollution degree 2 is the default specification.

- Pollution severity level 1

There is no contamination or only dry occurrences of non-conductive pollution. This pollution has no influence.

Pollution severity level 2

There is only non-conductive pollution. Temporary occurrences of conductivity caused by condensation may also occur.

- Pollution severity level 3

Conductive pollution or dry, non-conductive pollution that can become conductive due to condensation is likely to occur.

- Pollution severity level 4

The contamination leads to continual conductivity which can be caused by contaminants as conductive dust, rain or snow.

R

Rated voltage	Specified by the insulation coordination - the rated voltage is the voltage level at which the product can be safely operated, in relation to the corresponding pollution severity level and the surge voltage category.
Relative humidity	The relationship between the actual moisture and the maximum possible quantity of water in the air. Expressed as a percentage.

The EC directive 2002/95/EC - concerning the restriction of the use of certain hazardous substances in electrical and electronic equipment - regulates the use of hazardous materials within devices and components. This directive, and it's

RTD sensors are temperature probes that operate based on the resistance changes which take in metal as the temperature changes. They are resistance thermometers based on PTC resistors. The electrical changes in resistance of a platinum wire or platinum film is often used for measuring temperatures ranging from $-200^{\circ} \mathrm{C}$ to $850^{\circ} \mathrm{C}$. The platinum temperature sensors are characterised by their nominal resistance RO at a temperature of $0^{\circ} \mathrm{C}$. The standard types include: - PT100 (RO= 100 Ohm)

- PT1000 ($\mathrm{RO}=1 \mathrm{kOhm}$)

A two-wire, three-wire or four-wire electrical connection can be used to electrically connect the PT/RTD sensor to the evaluative electronics. A three-wire the sensor connecting wires
In the three-wire method, one end is equipped with two pigtail connector four-wire method, both ends are equipped with two pigtail connectors.
\mathbf{S}

Self-heating \quad| Self-heating refers to the temperature increase in an operating device caused by |
| :--- |
| the internal power loss. |

Sensor

Signal distributorsplitte

 sILA sensor is a physical component capable of capturing certain physical or chemical properties (such as thermal radiation, temperature, humidity, pressure, noise, brightness or acceleration) as a measurement. It may also be able to analyse the quality of the composition of the material surroundings. These values are captured using physical or chemical phenomena and then convert into another form (usually electrical signals) so they can be post-processed. A signal isolator that accepts an analogue input signal and delivers at least two
signals on the output side. This permits the signal to be transmitted to a PLC/ signals on the output side. This permits the signal to be transmitted to a PLC/ active isolator with an external power feed or as an output loop powered version.
\qquad Safety Integrity Level.
risk This standard provides the requirements of IEC 61508 is order to reduce risk. This standard provides general requirements for avoiding and minim
device and equipment outages. It stipulates organization and technical requirements concerning device development and operation. Four safety levels are defined (from SIL1 for minimal risk to SIL4 for very high risk) for classifying facilities and risk-reduction measures. Risk-reduction measures must be more reliable when the classified risk level is higher.
An LED that displays the operational status, such as operational (yellow). switching (green), and alarm/malfunction (red)
This is the time delay in the output signal change when there is a signal jump anging from 10 to 90% on the input side. The step response time is inversely proportional to the limiting frequenc
Storage temperature subdivided into six temperature classes (T1 to T6).
These temperature classes define the maximum surface temperature permitted for the equipment. The definition is based on an ambient temperature of $+40^{\circ} \mathrm{C}$ point in time In all cases, the maximum surface temperature must be an the ignition temperature of the surrounding medium. The requirements placed on the equipment become stricter from class T1 to T6.
Temperature coefficient
The temperature coefficient describes the relative change of a physical variable The temperature coefficient describes the relative change of a physical variab
based on the temperature change relative to a reference temperature (room temperature). It directly influences the precision of an analogue signal converter. The coefficient is specified in $\mathrm{ppm} / \mathrm{K}$ of the corresponding measuring range end value.

Thermocouple
A thermocouple is a component made of two different materials which are connected to each other at one end. An electrical voltage is created (based on the principle of the Seebeck effect) along a wire that connects the unattached ends when there is a temperature differential.
The juncture point and the unattached ends must have different temperatures for a voltage to be generated.

The following thermocouples are used for industrial applications:

Themal pair	Short name	Tppe	Temperature range in ${ }^{\circ} \mathrm{C}$
Nicke/ChomeNickel/Al	Nic-rival	k	$200 . .+13$
Tronconsanalan	Fecouli	J	200...+1200
Coppercoustantan	Cu-GuNi	T	. $200 . .+400$
Nictel/Chome consaman	Nior-cuni	E	200...1000
Patioum/10\% R hodiumplatium	Pl10Rh.pt	s	-50..+1760
Patiumm/13\%.RhodiumPlatium	Pl13hhipt	R	. $50 . \ldots+1760$
Nictel/ChromeNiNictel/agnessium	Nicr-NM,	N	200..+1300
Platiuu//30\% .hodium. Platiun/6\%\% Rhodium	PiPOPR P Pri6h	в	0...+1820

The lustrial procues of physical variables must be continually monitored for industrial processes. This includes fill levels, temperatures, speed, positions used for this purpose. The sensor signals are captured on the input side, evaluated electronically and converted. The corresponding threshold ($\mathrm{min} / \mathrm{max}$) are then made available via the digital switching outputs (relays or transistors) to the external devices. Potentiometers can be used to customise each switching point and is minimum/maximum threshold as well as the switching hysteresis. Signal converters with transformer coupling are used for taking cost-effective measurements of sinusoidal currents ($50 / 60 \mathrm{~Hz}$). The current being measured stepped down and electronically processed in the converter

Tue ins is the measure of the active component of alternating current and voltages. The root mean square (RMS) is a measure of the magnitude of varying elates to the as alternating current and voltage). It is a constant value that RMS is dependent consumed by a resistive load in a specified time period. The can only be measured and processed with "true RMS"-compliant devices. The TYY interface is a serial interface. This interface is often referred to as a it during the id asymmetric signal connection is not controlled by voltage changes but by load-independent line current (typically 20 mA for High and 0 mA for Low). Thus there is no significant length-dependent voltage loss to take into consideration. Here the cable lengths can run up to several kilometres.
TY interfaces are currently used mostly where dedicated connections are lectronic scales, for large industria displays, or for log printers.
A contact is called normally open (NO) or a make contact if it is open when the armature is dropped out (no current in coil) and closed when the armature is picked up (current flowing in coil). A contact is called a break contact or normally A combination of NC and NO is called a changeover (CO) contact. A relay may have one or more of such contacts:
NC - Normally Closed = break contact (11, 12: NC contact)
NO - Normally Open $=$ make contact ($13,14:$ NO contact)
CO - Change Over contact (11, 12, 14: CO contact
11 is the shared (root) contact)

Hazardous areas are divided into zones. These divisions take into account the various risks from explosive atmospheres. The corresponding explosion
protection can then be implemented economically and safely in accordance with the particular conditions of the zone. The zone definitions in the ATEX directive provide comprehensive regulations for the European Community.
IEC 60079-10 is valid for gases and vapours. A similar classification is used for facilities in the USA which are covered by the US standard NEC 505.

IEC 61241-3 covers the division into zones according to the dust level.
Explosion risk areas are classified into zones according to likelihood of explosive atmospheres occurring and their persistence:
Zone $\mathbf{0}$: this zone has an explosive atmosphere that is a mixture of air and flammable gases, vapours or mists. The mixture is present frequently or over long periods.

Zone 1: an explosive atmosphere may occasionally occur in this zone under normal operating conditions.

Zone 2: an explosive atmosphere is not likely to occur in this zone or may only ccur briefly
Zone 20: this zone has an explosive atmosphere that is a flammable mixture of air and dust. The mixture is present often or over long periods.

Zone 21: an explosive atmosphere, in the form of a flammable dustair mixture, may occasionally occur in this zone under normal operating conditions
Zone 22: an explosive atmosphere, in the form of a flammable dust/air mixture, is not likely to occur in this zone or may only occur briefly.

Glossary

Index		Contents
Index	Index Type	
Index Order No.	X.2	

Orien No.	Tpme	Page
1060000000		
$\frac{106755000}{106550000}$		
1080000000		
IV8284000		
108685000		
1088440000		
$\frac{108655000}{1086565000}$		
1088170000		
108888000		
1888190000		
108682000		
N00620000		
1088240000		
Disibstou		
20883000	隹	
1088380000		
1086890000		
108800000		
1088410000		
I08672000		
1088400000	8H25 500 O49901 ENBL	
1088650000	BH25.0004990Н EVBL	
IOP8480000		

1240000000

 Orite llo. ${ }^{\text {Trpe }}$
1870000000

 2240000000

| 1330000000 | |
| :--- | :--- | :--- |

7760000000

7940000000

430000000

 1450000000 1470000000
 1480000000

1510000000

1520000000
1600000000

1710000000

1750000000

(58520000		

1760000000
 \qquad
1820000000

820
8260000000

8380000000
\square

8420000000

8430000000

844000000

We cannot guarantee that there are no mistakes in the
publications or software provided by us to the customer for the publications or software provided by us to the customer for the
purpose of making orders. We try our best to quickly correct errors in our printed media.
All orders are based on our general terms of delivery, which can be reviewed on the websites of our group companies where you place your order. On demand we can also send the general terms of delivery to you.

Weidmüller - Your partner in Industrial Connectivity

As experienced experts we support our customers and partners around the world with products, solutions and services in the industrial environment of power, signal and data. We are at home in their industries and markets and know the technological challenges of tomorrow. We are therefore continuously developing innovative, sustainable and useful solutions for their individual needs. Together we set standards in Industrial Connectivity.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Measuring Tools category:
Click to view products by Weidmuller manufacturer:
Other Similar products are found below :
G336 M225203-01 G426 G1333 G1327 G1154 G1150 G1152 G1157 G1153 G1155 G1009 1051-03 121010D 121050D 25541 8255 NF-221200130 $20323 \underline{20329} \underline{20363} \underline{20365} \underline{20515} 20516$ G800 G1229 $52050005206000 \underline{6921000} \underline{\text { YT-30061 W002900 W061008 }}$ W061009 W061010 W062004 W066005 W066006 $152251613516456172151721817221 \quad 176701767217677177051795318115$ 18879

[^0]: For the first time ever, extensive diagnostic and status information
 (which you can call up via the Ethernet interface) is available to you at status conversion level.

[^1]: Predestined for field use
 The combination of all-purpose input and output loop supply makes the ACT20X a unique product solution for the process industry and plant manufacture. But the advantages of this solution really do come into their own especially when the device is used e.g. in remote cabinets in the mining industry - both above and below ground - or in overburden materials handling.

[^2]: Sial

