Miniature Circuit Breakers PLS..., PLZ...

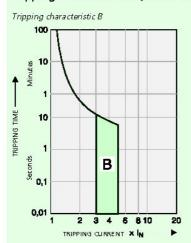
- High selectivity between MCB and back-up fuse due to low let-through
- Compatible with standard busbar
- Twin-purpose terminal (lift/open-mouthed) above and below
- Busbar positioning optionally above or below
- · Meets the requirements of insulation co-ordination, distance between contacts ≥ 4 mm, for secure isolation
- Suitable for applications up to 48 V DC (use PLS6-DC for higher DC voltages)
- PLS6-DC: Rated breaking capacity 6 kA according to IEC/EN 60947-2 Rated voltage 250 V [per pole), $\tau = 4 \text{ ms}$ Take into account polarity!

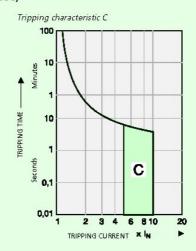
Accessories:		
Auxiliary switch for		
subsequent installation	ZP-AHK	248436
Tripping signal contact for		
subsequent installation	ZP-NHK	248437
Remote control and automatics witching device	Z-FW/LP	248296
Shunt trip release	ZP-ASA/	248438, 248439
Undervoltage release	Z-USA/	248288-248291
Compact enclosure	KLV-TC-2	276240
	KLV-TC-4	276241
Additional terminal 35mm ²	Z-HA-EK/35	263960
Anti-tamper device	HA7-SPE	75 096 05 1 0

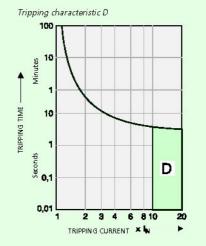
Connection diagrams 1+N-pole (1.5MU) 1+N-pole (2MU) 1-pole

Technical Data

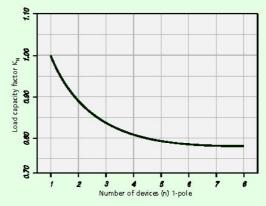
Electrical		М
Design according to		Fr
PLSM	IEC/EN 60898	D
PLS6-DC	IEC/EN 60947-2	D
Current test marks as printed o	nto the device	
Rated voltage		M
PLS., PLZ.	AC: 230/400V	
PLS., PLZ.	DC: 48V (per pole)	
PLS6-DC	DC: 250V (per pole)	D
Rated frequency	50/60 Hz	U
Rated breaking capacity accord	ling to IEC/EN 60898	Te
PLSM, PLZM	10 kA	
PLS6, PLZ6	6 kA	Te
PLS4, PLZ4	4.5 kA	
Rated breaking capacity accord	ling to IEC/EN 60947-2	Te
PLS6-DC	10 kA	
Characteristic	B, C, D	В
Back-up fuse		
PLS M	max. 125 A gL	M
PLS6	max. 100 A gL	
PLS4	max. 80 A gL	
Selectivity class	3	
Endurance	≥ 8,000 operating cycles	
Line voltage connection	optional (above/below)	


Mechanical	
Frame size	45 mm
Device height	80 mm
Device width	17.5 mm per pole (1MU) 26.3 mm: device 1P+N (1.5MU)
Mounting	quick fastening with 3 lock-in positions on DIN rail EN 50022
Degree of protection	IP20
Upper and lower terminals	open mouthed/lift terminals
Terminal protection	finger and hand touch safe, BGV A3, ÖVE-EN 6
Terminal capacity	1-25 mm ²
(1p+N, 1.5MU)	1-25 mm ² / 1-2x10 mm ² (N)
Terminal fastening torque (1p+N, 1.5MU)	2-2.4 Nm 2-2.4 Nm / 1,2-1,5 Nm (N)
Busbar thickness	0.8 - 2 mm (except N 0.5 MU)
Mounting	independent of position


Dimensions (mm) 1P4N (1,5TE) 1P4N (2TE)



Tripping Characteristics (IEC/EN 60898)

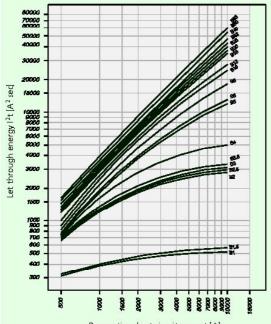

Quick-acting (B), slow (C), very slow (D)

Effect of the Ambient Temperature on Thermal Tripping Behaviour

Adjusted rated current values according to the ambient temperature

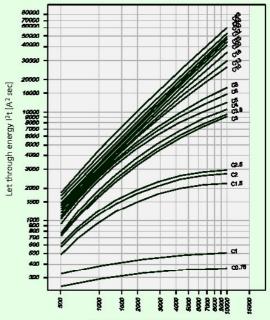
						Ambie	nt tempe	erature T	ta				
Is [A]	-25	-20	-10	0	10	20	30	35	48	45	50	55	60
0,16	0.20	0.19	0.19	0.18	0.17	0.17	0.16	0.16	0.16	0.15	0.15	0.14	0.14
0.25	0.31	0.30	0.29	0.28	0.27	0.26	0.25	0.25	0.24	0.24	0.23	0.23	0.22
0.5	0.61	0.80	0.58	0.56	0.54	0.52	0.60	0.49	D.48	0.47	D.48	0.45	0.44
0.75	0.02	0.90	0.87	0.84	0.81	0.78	0.75	0.74	0.73	0.71	0.69	0.68	0.66
1	1.2	1.2	1.2	1.1	1.1	1.0	1.0	0.99	0.97	0.95	0.93	0.90	98.0
1.5	1.8	1.6	1.7	1.7	1.6	1.6	1.5	1.5	1.5	1.4	1.4	1.4	1.3
1,8	2.0	1.9	1.9	1.8	1.7	1.7	1.8	1.6	1.5	1.5	1.5	1.4	1.4
2	24	2.4	2.3	2.2	22	21	2.0	2.0	1.9	1.0	1.9	1.8	1.8
2.5	8.1	3.0	29	2.8	27	26	2.5	2.5	2.4	2.4	2.3	2.3	2.2
3	3.7	3.6	3.5	3.4	33	3.1	3.0	3.0	2.9	2.8	2.8	2.7	2.7
3,5	4.3	42	4.1	3.9	3.8	3.7	3.5	3.4	3.4	3.3	3.2	3.2	3.1
4	4.9	4.8	4.7	4.5	4.3	4.2	4.0	3.9	3.9	3.8	3.7	3.8	3.5
	6.1	6.0	5.8	6.6	5.4	5.2	6.0	4.9	4.8	4.7	4.6	4.5	4.4
	7.3	7.2	7.0	8.7	6.5	6.3	6.0	5.9	5.8	5.7	5.6	5.4	5.3
8	9.8	9.6	9.3	9.0	8.7	8.4	8.0	7.9	7.7	7.8	7.4	7.2	7.1
10	12	12	12	11	11	10	10	9.9	9.7	9.6	9,3	9.0	8.9
12	15	14	14	13	13	13	12	12	12	11	11	11	11
18	16	18	15	16	14	14	13	13	13	12	12	12	12
15	18	18	17	17	16	16	15	15	15	14	14	14	13
15	20	19	19	18	17	17	16	18	15	15	15	14	14
20	24	24	28	22	22	21	20	20	19	18	18	18	18
25	31	30	29	28	27	26	25	26	24	24	23	23	22
32	39	36	37	36	35	33	32	32	31	8	30	29	28
40	49	48	47	45	43	42	40	39	39	38	37	36	35
60	61	60	58	56	54	52	50	49	48	47	48	45	44
63	77	78	73	71	68	68	63	62	61	88	58	57	58

Load Capacity of Series Connected Miniature Circuit Breakers

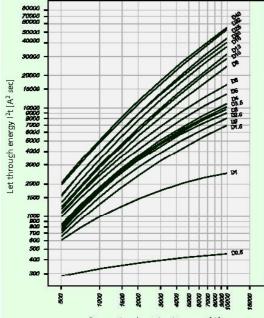

Effect of Power Frequency

Effect of power frequency on the tripping behaviour I_{MA} of the quick release

	Power	frequenc	y [[H∠]		,		
	16 ² / ₃	50	60	100	200	300	400
I _{MA} (f)/I _{MA} (50Hz) [%]	91	100	101	106	115	134	141


Let-through Energy PLSM

Let-through energy PLSM, characteristic B, 1-pole


Prospective short-circuit current [A]

Let-through energy PLSM, characteristic C, 1-pole

Prospective short-circuit current [A]

Let-through energy PLSM, characteristic D, 1-pole

Prospective short-circuit current [A]

Short Circuit Selectivity PLSM towards DIAZED Fuses

In case of short circuit, there is selectivity between the miniature circuit breakers PLSM and the upstream fuses up to the specified values of the selectivity limit current I_s [kA] (i. e. in case of short-circuit currents I_{ks} under I_s, only the MCB will trip, in case of short circuit currents above this value both protective devices will respond).

*) basically in accordance with EN 60898 D.5.2.b

Short circuit selectivity characteristic B towards fuse link DIAZED*)

Short circuit selectivity characteristic C towards fuse link DIAZED*)

PLSM	DIAZE	D DII-DI	N gL/g(3					
ι, [A]	10	16	20	25	35	50	63	80	100
1.0	<0.51)	1.2	10.02)	10.02)	10.02)	10.02)	10.02)	10.02)	10.02
1.5	<0.51)	1.0	10.02)	10.0 ²⁾	10.02)	10.02)	10.02)	10.02)	10.02
2.0	<0.51)	<0.5 ¹⁾	0.8	1.6	10.02)	10.02)	10.02)	10.02)	10.0 ²
2.5	<0.51)	<0.51)	0.8	1.5	10.0 ²⁾	10.0 ²⁾	10.02)	10.02)	10.02
3.0	<0.51)	<0.5 ¹⁾	0.8	1.4	10.02)	10.02)	10.02)	10.02)	10.02
3.5	<0.51)	<0.5 ¹⁾	0.7	1.3	10.0 ²⁾	10.0 ²⁾	10.0 ²⁾	10.0 ²⁾	10.0 ²
4	<0.51)	<0.51)	0.6	1.0	3.6	10.02)	10.02)	10.0 ²⁾	10.0 ²
5	<0.51)	<0.5 ¹⁾	0.6	0.9	2.0	3.5	8.5	10.0 ²⁾	10.02
6		<0.51)	0.6	0.9	1.8	3.2	7.4	10.02)	10.02
8		<0.5 ¹⁾	0.5	0.8	1.6	2.6	5.2	8.3	10.0 ²
10		y	0.5	0.8	1.4	2.2	3.9	6.0	10.0 ²
13			0.5	0.7	1.3	2.0	3.6	5.4	10.0 ²
16				0.6	1.2	1.9	3.2	4.6	8.4
20					1.2	1.8	3.1	4.4	7.8
25					1.2	1.8	3.0	4.2	7.3
32						1.7	2.8	3.9	6.8
40							2.7	3.8	6.5
50							2.5	3.5	5.7
6 3									5.3

PLSM	DIAZE	D DII-DI	V gL/g6	•					
կ [A]	10	16	20	25	35	50	63	80	100
0.75	1.0	10.0 ²⁾							
1.0	<0.5 ¹⁾	1.2	10.0 ²⁾						
1.5	<0.5 ¹⁾	<0.51)	1.0	2.2	10.0 ²⁾				
2.0	<0.5 ¹⁾	<0.51)	0.8	1.6	10.0 ²⁾				
2.5	<0.51)	<0.51)	0.8	1.4	10.0 ²⁾				
3.0	<0.51)	<0.51)	0.8	0.9	10.0 ²⁾				
3.5	<0.5 ¹⁾	<0.51)	0.6	0.9	2.2	4.5	10.0 ²⁾	10.0 ²⁾	10.0 ²⁾
4	<0.51)	<0.51)	0.6	0.8	1.8	3.6	9.7	10.0 ²⁾	10.0 ²⁾
5	<0.5 ¹⁾	<0.51)	0.6	0.7	1.5	2.7	7.3	10.0 ²⁾	10.0 ²⁾
6		<0.51)	0.5	0.6	1.4	2.4	5.5	10.0 ²⁾	10.0 ²⁾
8		<0.51)	<0.51)	0.6	1.3	2.2	4.7	8.7	10.0 ²⁾
10			<0.51)	0.6	1.3	2.0	3.6	5.4	10.0 ²⁾
13					1.3	1.9	3.3	5.0	9.4
16					1.2	1.8	3.2	4.4	8.0
20					1.2	1.8	3.1	4.1	7.0
25						1.7	2.8	3.8	6.5
32							2.7	3.7	6.2
40								3.5	5.9
50									5.5
ឲ									

Short circuit selectivity **characteristic D** towards fuse link **DIAZED***)

PL\$M	DIAZE	D DII-DI	V gL/g(3					
_ዜ [A]	10	16	20	25	35	50	63	80	100
0.5	0.5	3.0	10.0 ²⁾	10.02)	10.02)	10.0 ²⁾	10.02)	10.0 ²⁾	10.02)
1.0	<0.51)	<0.51)	1.0	2.4	10.0 ²⁾	10.02)	10.02)	10.0 ²⁾	10.02)
1.5	<0.5 ¹⁾	<0.51)	0.7	1.2	3.5	7.7	10.02)	10.02)	10.02)
2.0	<0.51)	<0.51)	0.6	1.0	28	5.8	10 02)	10 02)	10 02)
2.5	<0.51)	<0.51)	0.6	1.4	2.3	4.6	10.02)	10.02)	10.02)
3.0	<0.51)	<0.5 ¹⁾	0.6	0.9	2.3	4.3	10.02)	10.0 ²⁾	10.02)
3.5	<0.51)	<0.5 ¹⁾	0.6	0.9	2.1	4.0	10.02)	10.02)	10.02)
4		<0.5 ¹⁾	0.6	0.9	2.0	3.8	9.5	10.0 ²⁾	10.02)
5		<0.5 ¹⁾	0.5	0.7	1.7	3.1	7.0	10.02)	10.02)
6			0.5	0.7	1.5	2.6	5.3	9.1	10.02)
8			<0.51)	0.7	1.4	2.2	3.9	6.0	10.02)
10				0.7	1.2	1.9	3.4	5.0	9.5
13					1.2	1.8	3.2	4.6	8.6
16						1.6	2.7	4.0	7.4
20						1.5	2.5	3.5	6.7
25							2.4	3.4	6.2
32								2.8	5.0
40	8								4.8

¹⁾ Selectivity limit current I_s under 0.5 kA

 $^{^{2)}}$ Selectivity limit current I_s = rated breaking capacity I_{cn} of the MCB no selectivity

Short Circuit Selectivity PLSM towards NEOZED Fuses

In case of short circuit, there is selectivity between the miniature circuit breakers PLSM and the upstream fuses up to the specified values of the selectivity limit current I_s [kA] (i. e. in case of short-circuit currents I_{ks} under I_s, only the MCB will trip, in case of short circuit currents above this value both protective devices will respond).

*) basically in accordance with EN 60898 D.5.2.b

Short circuit selectivity characteristic B towards fuse link NEOZED*)

Short circuit selectivity characteristic C towards fuse link NEOZED*)

PLSM	NEOZE	D D01-	D03 gL/	gG					
_ዜ [A]	10	16	20	25	35	50	ଶ	80	100
1.0	<0.51)	10.02)	10.02)	10.02)	10.02)	10.0 ²⁾	10.02)	10.02)	10.0 ²⁾
1.5	<0.5 ¹⁾	4.1	10.02)	10.0 ²⁾	10.0 ²⁾	10.0 ²⁾	10.0 ²⁾	10.02)	10.02)
2.0	<0.51)	<0.51)	0.6	1.0	10.02)	10.0 ²⁾	10.02)	10.02)	10.0 ²⁾
2.5	<0.51)	<0.5 ¹⁾	0.6	1.0	10.0 ²⁾				
3.0	<0.51)	<0.51)	0.5	1.0	10.0 ²⁾				
3.5	<0.5 ¹⁾	<0.51)	0.5	0.9	7.0	10.0 ²⁾	10.02)	10.0 ²⁾	10.02)
4	<0.5 ¹⁾	<0.5 ¹⁾	0.5	0.9	2.5	10.0 ²⁾	10.0 ²⁾	10.0 ²⁾	10.0 ²⁾
5		<0.5 ¹⁾	0.5	0.8	1.7	4.0	7.0	10.0 ²⁾	10.0 ²⁾
6		<0.5 ¹⁾	0.5	0.8	1.6	3.6	6.0	10.0 ²⁾	10.0 ²⁾
8			0.5	0.8	1.4	2.8	4.3	8.2	10.02)
10			0.5	0.7	1.3	2.4	3.4	6.0	10.02)
13			<0.51)	0.7	1.2	2.3	3.2	5.3	10.0 ²⁾
16				0.6	1.1	2.2	2.9	4.6	10.0
20					1.1	2.1	2.8	4.4	9.3
25					1.1	2.0	2.7	4.2	8.7
32						2.0	2.6	4.0	8.0
40							2.5	3.8	7.5
50							2.3	3.4	6.7
6									6.2

PLSM	NEOZE	D D01-	D03 gL	gG					
<u>ዜ</u> [A]	10	16	20	25	35	50	63	80	100
0.75	<0.51)	10.0 ²⁾	10.02)	10.02)	10.0 ²⁾				
1.0	<0.51)	10.0 ²⁾	10.02)	10.0 ²⁾	10.02)	10.0 ²⁾	10.0 ²⁾	10.0 ²⁾	10.0 ²⁾
1.5	<0.5 ¹⁾	0.5	0.6	0.9	10.0 ²⁾				
2.0	<0.5 ¹⁾	<0.51)	0.5	0.7	10.0 ²⁾	10.0 ²⁾	10.0 ²⁾	10.0 ²⁾	10.0 ²
2.5	<0.51)	<0.51)	0.5	0.7	10.0 ²⁾	10.0 ²⁾	10.0 ²⁾	10.0 ²⁾	10.0 ²
3.0	<0.51)	<0.51)	<0.51)	0.6	1.9	5.2	10.0 ²⁾	10.0 ²⁾	10.0 ²
3.5	<0.5 ¹⁾	<0.51)	<0.51)	0.6	1.8	4.7	9.5	10.0 ²⁾	10.0 ²
4	<0.51)	<0.51)	<0.5 ¹⁾	0.6	1.6	4.0	7.6	10.0 ²⁾	10.0 ²
5		<0.51)	<0.51)	0.5	1.3	3.1	5.7	10.0 ²⁾	10.02
6		<0.51)	<0.5 ¹⁾	<0.51)	1.2	2.7	4.5	10.0 ²⁾	10.0 ²
8		<0.51)	<0.5 ¹⁾	<0.51)	1.2	2.5	4.0	8.6	10.02
10			<0.51)	<0.51)	1.2	2.3	3.1	5.4	10.0 ²
13					1.1	2.2	3.0	4.9	10.02
16					1.1	2.1	2.8	4.4	9.5
20					1.0	2.0	2.6	4.0	8.3
25						1.9	2.5	3.8	7.8
32							2.5	3.7	7.3
40								3.5	7.0
50									6.5
ឲ									

Short circuit selectivity **characteristic D** towards fuse link **NEOZED***)

PLSM	NEOZE	D D01-	D03 gL/	/gG					
_ዜ [A]	10	16	20	25	35	50	63	80	100
0.5	<0.5 ¹⁾	10.02)	10.02)	10.02)	10.02)	10.0 ²⁾	10.02)	10.02)	10.0 ²⁾
1.0	<0.5 ¹⁾	<0.51)	0.7	1.3	10.02)	10.02)	10.02)	10.02)	10.0 ²⁾
1.5	<0.51)	<0.51)	0.6	0.9	2.8	9.0	10.02)	10.02)	10.0 ²⁾
2.0	<0.51)	<0.51)	0.6	0.8	22	6 7	10 02)	10 02)	10 0 ²⁾
2.5	<0.51)	<0.51)	0.5	0.7	1.9	5.4	10.02)	10.02)	10.02
3.0	<0.5 ¹⁾	<0.5 ¹⁾	0.5	0.7	1.8	4.8	9.3	10.02)	10.02
3.5	<0.5 ¹⁾	<0.51)	0.5	0.7	1.7	4.7	8.6	10.02)	10.02
4		<0.5 ¹⁾	0.5	0.7	1.7	4.6	7.7	10.0 ²⁾	10.0 ^{2]}
5		<0.5 ¹⁾	<0.51)	0.6	1.5	3.5	5.8	10.02)	10.02
6			<0.51)	0.5	1.3	2.9	4.5	9.0	10.02
8			<0.51)	0.5	1.2	2.4	3.5	6.0	10.02
10				0.5	1.1	2.2	3.0	5.0	10.0 ²⁾
13					1.1	2.1	2.9	4.6	10.02
16						1.9	2.6	3.9	9.0
20						1.7	2.3	3.5	8.0
25							2.2	3.4	7.5
32								2.9	6.0
40	8								5.7

¹⁾ Selectivity limit current I_s under 0.5 kA

 $^{^{2)}}$ Selectivity limit current I_s = rated breaking capacity I_{cn} of the MCB no selectivity

Short Circuit Selectivity PLSM towards NH-00 Fuses

In case of short circuit, there is selectivity between the miniature circuit breakers PLSM and the upstream fuses up to the specified values of the selectivity limit current I_s [kA] (i. e. in case of short-circuit currents I_{ks} under I_s, only the MCB will trip, in case of short circuit currents above this value both protective devices will respond).

*) basically in accordance with EN 60898 D.5.2.b

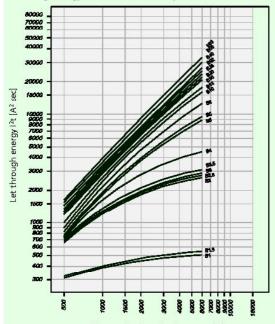
Short circuit selectivity characteristic B towards fuse link NH-00*)

Short circuit selectivity characteristic C towards fuse link NH-00*)

PLSM	NH-00 gL/gG													
ĻΜ	16	20	25	32	35	40	50	8	80	100	125	160		
1.0	0.9	10.02)	10.02)	10.0 ²⁾	10.0 ²⁾	10.0 ²⁾	10.02)	10.02)	10.02)	10.0 ²⁾	10.0 ²⁾	10.04		
1.5	0.8	10.02)	10.02)	10.0 ²⁾	10.0 ²⁾	10.0 ²⁾	10.0 ²⁾	10.02)	10.02)	10.0 ²⁾	10.0 ²⁾	10.02		
2.0	<0.51)	0.5	1.0	2.5	10.0 ²⁾	10.02)	10.02)	10.02)	10.02)	10.02)	10.0 ²⁾	10.04		
2.5	<0.51)	0.5	1.0	2.3	10.0 ²⁾	10.0 ²⁾	10.02)	10.02)	10.02)	10.0 ²⁾	10.0 ²⁾	10.04		
3.0	<0.51)	0.5	0.9	2.1	8.0	10.0 ²⁾	10.02)	10.02)	10.02)	10.0 ²⁾	10.0 ²⁾	10.02		
3.5	<0.51)	0.5	0.9	1.8	5.5	10.0 ²⁾	10.0 ²⁾	10.0 ²⁾	10.02)	10.0 ²⁾	10.0 ²⁾	10.04		
4	<0.51)	<0.51)	8.0	1.3	2.3	4.3	10.02)	10.02)	10.02)	10.0 ²⁾	10.0 ²⁾	10.02		
5	<0.51)	<0.51)	0.7	1.1	1.6	2.2	3.6	4.8	8.9	10.0 ²⁾	10.0 ²⁾	10.02		
6	<0.51)	<0.51)	0.7	1.1	1.5	2.0	3.3	4.3	7.6	10.0 ²⁾	10.0 ²⁾	10.02		
8	<0.51)	<0.51)	0.6	1.0	1.3	1.7	2.6	3.3	5.2	10.0 ²⁾	10.0 ²⁾	10.02		
10		<0.51)	0.6	0.9	1.2	1.5	2.2	2.7	4.0	9.0	10.0 ²⁾	10.02		
13		<0.51)	0.6	8.0	1.1	1.4	2.1	2.6	3.8	7.9	10.0 ²⁾	10.02		
16			0.5	0.7	1.0	1.3	1.9	2.4	3.4	6.4	9.3	10.02		
20				0.7	1.0	1.3	1.9	2.4	3.3	6.0	8.7	10.02		
25				0.7	1.0	1.3	1.8	2.3	3.2	5.7	8.0	10.04		
32					0.9	1.2	1.7	2.2	3.1	5.4	7.6	10.02		
40								2.1	3.0	5.1	7.2	10.02		
50								1.9	2.8	4.7	6.6	9.5		
63										4.4	6.3	8.6		

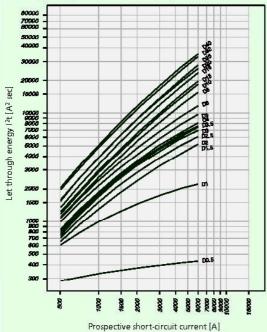
PLSM	NH-0	0 gL/g	ΙG									
ĻΜ	16	20	25	32	35	40	50	8	80	100	125	160
0.75	10.02)	10.02)	10.0 ²⁾	10.0 ²⁾	10.0 ²⁾	10.0 ²⁾	10.02)	10.02)	10.02)	10.0 ²⁾	10.0 ²⁾	10.02
1.0	0.9	10.02)	10.0 ²⁾	10.0 ²⁾	10.0 ²⁾	10.02)	10.0 ²⁾	10.02)	10.02)	10.0 ²⁾	10.0 ²⁾	10.02
1.5	<0.51)	0.6	1.3	4.2	10.0 ²⁾	10.02)	10.02)	10.02)	10.02)	10.0 ²⁾	10.0 ²⁾	10.02
2.0	<0.51)	0.6	1.0	2.5	10.0 ²⁾	10.0 ²⁾	10.0 ²⁾	10.02)	10.0 ²⁾	10.0 ²⁾	10.0 ²⁾	10.0 ²
25	< 0.51)	0.5	1.0	2.1	10.0 ²⁾	10.02)	10.02)	10.02)	10.02)	10.0 ²⁾	10.0 ²⁾	10.02
3.0	< 0.51)	<0.51)	0.7	1.2	1.8	2.6	4.7	6.6	10.02)	10.0 ²⁾	10.0 ²⁾	10.0 ²
3.5	< 0.51)	<0.51)	0.7	1.1	1.7	2.4	4.2	6.0	10.02)	10.0 ²⁾	10.0 ²⁾	10.0 ²
4	< 0.51)	<0.51)	0.7	1.0	1.5	2.1	3.6	5.0	10.0	10.0 ²⁾	10.0 ²⁾	10.0 ²
5	<0.51)	<0.51)	0.6	8.0	1.2	1.7	2.8	3.8	8.7	10.0 ²⁾	10.0 ²⁾	10.0 ²
6	< 0.51)	<0.51)	0.5	8.0	1.2	1.5	2.5	3.3	5.7	10.0 ²⁾	10.02)	10.0 ²
8	< 0.51)	<0.51)	0.5	8.0	1.1	1.5	2.3	2.9	4.9	10.0 ²⁾	10.0 ²⁾	10.0 ²
10			0.5	0.7	1.0	1.4	2.0	2.5	3.8	8.0	10.0 ²⁾	10.02
13					1.0	1.3	1.9	2.4	3.6	7.0	10.0 ²⁾	10.02
16					1.0	1.3	1.8	2.3	3.3	6.0	8.8	10.02
20					1.0	1.2	1.7	2.2	3.2	5.5	7.7	10.02
25							1.6	2.1	3.0	5.2	7.3	10.0 ²
32								2.1	2.9	5.0	7.0	10.0 ²
40									2.8	4.8	6.7	10.0
50										4.5	6.3	9.5
8											5.9	8.4

Short circuit selectivity **characteristic D** towards fuse link **NH-00***)

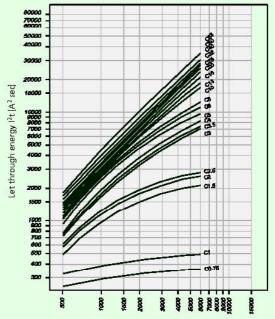

PLSM	NH-0	0 gL/g	jG									
ĻΜ	16	20	25	32	35	40	50	ß	80	100	125	160
0.5	2.1	10.02)	10.02)	10.02)	10.0 ²⁾	10.0 ²⁾	10.02)	10.02)	10.02)	10.0 ²⁾	10.0 ²⁾	10.02)
1.0	<0.51)	0,6	1.4	4.3	10.0 ²⁾	10.02)	10.02)	10.02)	10.02)	10.0 ²⁾	10.0 ²⁾	10.02)
1.5	<0.51)	< 0.51)	0.9	1.6	2.7	4.0	8.0	10.02)	10.02)	10.02)	10.0 ²⁾	10.02)
2.0	<0.51)	<0.5%	0.8	13	21	31	60	86	10 02)	10 0 ²⁾	10 0 ²⁾	10 02)
2.5	<0.51)	<0.51)	0.7	1.2	1.8	2.6	4.8	6.9	10.02)	10.0 ²⁾	10.0 ²⁾	10.02
3.0	<0.51)	<0.51)	0.7	1.1	1.7	2.4	4.3	6.0	10.02)	10.0 ²⁾	10.0 ²⁾	10.02
3.5	<0.51)	<0.51)	0.7	1.1	1.7	2.4	4.2	5.6	10.02)	10.0 ²⁾	10.0 ²⁾	10.02
4	<0.51)	<0.51)	0.7	1.0	1.6	2.2	3.8	5.2	10.0	10.02)	10.02)	10.04
5		<0.51)	0.6	0.9	1.4	1.9	3.2	4.1	7.1	10.02)	10.0 ²⁾	10.02
6		<0.51)	0.5	8.0	1.2	1.6	2.6	3.3	5.5	10.0 ²⁾	10.0 ²⁾	10.0 ²⁾
8			0.5	8.0	1.1	1.5	2.2	2.7	4.1	8.7	10.0 ²⁾	10.02
10			0.5	0.7	1.0	1.3	1.9	2.5	3.6	7.2	10.0 ²⁾	10.0 ²⁾
13					1.0	1.3	1.9	2.3	3.4	6.5	9.5	10.02
16						1.1	1.6	2.0	3.0	5.5	8.0	10.02
20							1.4	1.8	2.8	5.0	7.5	10.02
25								1.8	2.7	4.8	7.0	10.0 ²⁾
32									2.4	4.1	6.2	9.3
40										4.0	6.0	9.0

¹⁾ Selectivity limit current I_s under 0.5 kA

 $^{^{2)}}$ Selectivity limit current I_s = rated breaking capacity I_{cn} of the MCB no selectivity


Let-through Energy PLS6

Let-through energy PLS6, characteristic B, 1-pole



Prospective short-circuit current [A]

Let-through energy PLS6, characteristic D, 1-pole

Let-through energy PLS6, characteristic C, 1-pole

Prospective short-dircuit current [A]

Short Circuit Selectivity PLS6 towards DIAZED Fuses

In case of short circuit, there is selectivity between the miniature circuit breakers PLS6 and the upstream fuses up to the specified values of the selectivity limit current I_s [kA] (i. e. in case of short-circuit currents I_{ks} under I_{sr} only the MCB will trip, in case of short circuit currents above this value both protective devices will respond).

*) basically in accordance with EN 60898 D.5.2.b

Short circuit selectivity characteristic B towards fuse link DIAZED*)

Short circuit selectivity characteristic C towards fuse link DIAZED*)

PLS6	DIAZE	D DII-DI	N gL/g	G					
_ዜ [A]	10	16	20	25	35	50	63	80	100
1.0	<0.51)	1.2	6.0 ²⁾						
1.5	<0.51)	1.0	6.0 ²⁾						
2.0	<0.5 ¹⁾	<0.5 ¹⁾	0.8	1.6	6.0 ²⁾				
2.5	<0.5 ¹⁾	<0.5 ¹⁾	0.8	1.5	6.0 ²⁾				
3.0	<0.51)	<0.51)	0.8	1.4	6.0 ²⁾				
3.5	<0.51)	<0.51)	0.7	1.3	6.0 ²⁾				
4	<0.5 ¹⁾	<0.5 ¹⁾	0.6	1.0	3.6	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾
5	<0.5 ¹⁾	<0.5 ¹⁾	0.6	0.9	2.0	3.5	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾
5		<0.51)	0.6	0.9	1.8	3.2	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾
В		<0.5 ¹⁾	0.5	0.8	1.6	2.6	5.2	6.0 ²⁾	6.0 ²⁾
10		y	0.5	0.8	1.4	2.2	3.9	6.0 ²⁾	6.0 ²⁾
13			0.5	0.7	1.3	2.0	3.6	5.4	6.0 ²⁾
16				0.6	1.2	1.9	3.2	4.6	6.0 ²⁾
20					1.2	1.8	3.1	4.4	6.0 ²⁾
25					1.2	1.8	3.0	4.2	6.0 ²⁾
32						1.7	2.8	3.9	6.0 ²⁾
40							2.7	3.8	6.0 ²⁾
50							2.5	3.5	5.7
53									5.3

PLS6	DIAZE	DIIID	V gL/g6	;					
<u>ዜ [A]</u>	10	16	20	25	35	50	63	80	100
0.75	1.0	6.0 ²⁾							
1.0	<0.5 ¹⁾	1.2	6.0 ²⁾						
1.5	<0.51)	<0.51)	1.0	2.2	6.0 ²⁾				
2.0	<0.51)	<0.51)	0.8	1.6	6.0 ²⁾				
2.5	<0.51)	<0.51)	0.8	1.4	6.0 ²⁾				
3.0	<0.5 ¹⁾	<0.51)	0.8	0.9	6.0 ²⁾				
3.5	<0.51)	<0.51)	0.6	0.9	2.2	4.5	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾
4	<0.51)	<0.51)	0.6	0.8	1.8	3.6	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾
5	<0.51)	<0.51)	0.6	0.7	1.5	2.7	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾
6		<0.51)	0.5	0.6	1.4	2.4	5.5	6.0 ²⁾	6.0 ²⁾
8		<0.51)	<0.51)	0.6	1.3	2.2	4.7	6.0 ²⁾	6.0 ²⁾
10			<0.51)	0.6	1.3	2.0	3.6	6.0 ²⁾	6.0 ²⁾
13					1.3	1.9	3.3	5.0	6.0 ²⁾
16					1.2	1.8	3.2	4.4	6.0 ²⁾
20					1.2	1.8	3.1	4.1	6.0 ²⁾
25						1.7	2.8	3.8	6.0 ²⁾
32							2.7	3.7	6.0 ²⁾
40								3.5	5.9
50									5.5
63									

Short circuit selectivity characteristic D towards fuse link DIAZED*)

PLS6	DIAZE	D DII-DI	V gL/g(3					
_ዜ [A]	10	16	20	25	35	50	63	80	100
0.5	0.5	3.0	6.0 ²⁾						
1.0	<0.51)	<0.5 ¹⁾	1.0	2.4	6.0 ²⁾				
1.5	<0.51)	<0.51)	0.7	1.2	3.5	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾
2.0	<0.51)	<0.51)	0.6	1.0	28	5.8	6 0 ²⁾	6 0 ²⁾	6 0 ²⁾
25	<0.51)	<0.51)	0.6	1.4	2.3	4.6	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾
3.0	<0.51)	<0.51)	0.6	0.9	2.3	4.3	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾
3.5	<0.51)	<0.51)	0.6	0.9	2.1	4.0	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾
4		<0.5 ¹⁾	0.6	0.9	2.0	3.8	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾
5		<0.5 ¹⁾	0.5	0.7	1.7	3.1	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾
6			0.5	0.7	1.5	2.6	5.3	6.0 ²⁾	6.0 ²⁾
8			<0.51)	0.7	1.4	2.2	3.9	6.0 ²⁾	6.0 ²⁾
10				0.7	1.2	1.9	3.4	5.0	6.0 ²⁾
13					1.2	1.8	3.2	4.6	6.0 ²⁾
16						1.6	2.7	4.0	6.0 ²⁾
20						1.5	2.5	3.5	6.0 ²⁾
25							2.4	3.4	6.0 ²⁾
32								2.8	5.0
40									4.8

 $^{^{1)}}$ Selectivity limit current I_s under 0.5 kA

 $^{^{2)}}$ Selectivity limit current I_s = rated breaking capacity I_{cn} of the MCB no selectivity

Short Circuit Selectivity PLS6 towards NEOZED Fuses

In case of short circuit, there is selectivity between the miniature circuit breakers PLS6 and the upstream fuses up to the specified values of the selectivity limit current I_s [kA] (i. e. in case of short-circuit currents I_{ks} under I_s, only the MCB will trip, in case of short circuit currents above this value both protective devices will respond).

*) basically in accordance with EN 60898 D.5.2.b

Short circuit selectivity characteristic B towards fuse link NEOZED*)

Short circuit selectivity characteristic C towards fuse link NEOZED*)

PLS6	NEOZE	D D01-	D03 gL/	gG					
ι, [A]	10	16	20	25	35	50	63	80	100
1.0	<0.51)	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾
1.5	<0.51)	4.1	6.0 ²⁾						
2.0	<0.51)	<0.5 ¹⁾	0.6	1.0	6.0 ²⁾				
2.5	<0.51)	<0.5 ¹⁾	0.6	1.0	6.0 ²⁾				
3.0	<0.51)	<0.51)	0.5	1.0	6.0 ²⁾				
3.5	<0.51)	<0.5 ¹⁾	0.5	0.9	6.0 ²⁾				
4	<0.51)	<0.51)	0.5	0.9	2.5	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾
5		<0.5 ¹⁾	0.5	0.8	1.7	4.0	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾
6		<0.5 ¹⁾	0.5	0.8	1.6	3.6	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾
8			0.5	0.8	1.4	2.8	4.3	6.0 ²⁾	6.0 ²⁾
10			0.5	0.7	1.3	2.4	3.4	6.0 ²⁾	6.0 ²⁾
13			<0.51)	0.7	1.2	2.3	3.2	5.3	6.0 ²⁾
16				0.6	1.1	2.2	2.9	4.6	6.0 ²⁾
20					1.1	2.1	2.8	4.4	6.0 ²⁾
25					1.1	2.0	2.7	4.2	6.0 ²⁾
32						2.0	2.6	4.0	6.0 ²⁾
40							2.5	3.8	6.0 ²⁾
50							2.3	3.4	6.0 ²⁾
63									6.0 ²⁾

PLS6	NEOZE	D D01-	D03 gL	gG					
<u>ዜ</u> [A]	10	16	20	25	35	50	63	80	100
0.75	<0.5 ¹⁾	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾
1.0	<0.5 ¹⁾	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾
1.5	<0.51)	0.5	0.6	0.9	6.0 ²⁾				
2.0	<0.5 ¹⁾	<0.51)	0.5	0.7	6.0 ²⁾				
2.5	<0.51)	<0.51)	0.5	0.7	6.0 ²⁾				
3.0	<0.51)	<0.51)	<0.51)	0.6	1.9	5.2	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾
3.5	<0.5 ¹⁾	<0.51)	<0.51)	0.6	1.8	4.7	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾
4	<0.5 ¹⁾	<0.51)	<0.5 ¹⁾	0.6	1.6	4.0	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾
5		<0.51)	<0.5 ¹⁾	0.5	1.3	3.1	5.7	6.0 ²⁾	6.0 ²⁾
6		<0.51)	<0.51)	<0.51)	1.2	2.7	4.5	6.0 ²⁾	6.0 ²⁾
8		<0.51)	< 0.51)	<0.51)	1.2	2.5	4.0	6.0 ²⁾	6.0 ²⁾
10			<0.51)	<0.51)	1.2	2.3	3.1	5.4	6.0 ²⁾
13					1.1	2.2	3.0	4.9	6.0 ²⁾
16					1.1	2.1	2.8	4.4	6.0 ²⁾
20					1.0	2.0	2.6	4.0	6.0 ²⁾
25						1.9	2.5	3.8	6.0 ²⁾
32							2.5	3.7	6.0 ²⁾
40								3.5	6.0 ²⁾
50									6.0 ²⁾
63									

Short circuit selectivity **characteristic D** towards fuse link **NEOZED***)

PLS6	NEOZE	D D01-	D03 gL/	/gG					
_ዜ [A]	10	16	20	25	35	50	63	80	100
0.5	<0.5 ¹⁾	10.02)	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾				
1.0	<0.51)	<0.5 ¹⁾	0.7	1.3	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾
1.5	<0.51)	<0.51)	0.6	0.9	2.8	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾
2.0	<0.51)	<0.51)	0.6	0.8	22	6 0 ²⁾	6 () ²⁾	6 0 ²⁾	6 0 ²⁾
25	<0.5 ¹⁾	<0.5 ¹⁾	0.5	0.7	1.9	5.4	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾
3.0	<0.51)	<0.5 ¹⁾	0.5	0.7	1.8	4.8	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾
3.5	<0.51)	<0.5 ¹⁾	0.5	0.7	1.7	4.7	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾
4		<0.5 ¹⁾	0.5	0.7	1.7	4.6	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾
5		<0.5 ¹⁾	<0.51)	0.6	1.5	3.5	5.8	6.0 ²⁾	6.0 ²⁾
6			<0.51)	0.5	1.3	2.9	4.5	6.0 ²⁾	6.0 ²⁾
8			<0.51)	0.5	1.2	2.4	3.5	6.0 ²⁾	6.0 ²⁾
10				0.5	1.1	2.2	3.0	5.0	6.0 ²⁾
13					1.1	2.1	2.9	4.6	6.0 ²⁾
16						1.9	2.6	3.9	6.0 ²⁾
20						1.7	2.3	3.5	6.0 ²⁾
25							2.2	3.4	6.0 ²⁾
32								2.9	6.0 ²⁾
40									5.7

 $^{^{1)}}$ Selectivity limit current I_s under 0.5 kA

 $^{^{2)}}$ Selectivity limit current I_s = rated breaking capacity I_{cn} of the MCB no selectivity

Short Circuit Selectivity PLS6 towards NH-00 Fuses

In case of short circuit, there is selectivity between the miniature circuit breakers PLS6 and the upstream fuses up to the specified values of the selectivity limit current I_s [kA] (i. e. in case of short-circuit currents I_{ks} under I_s, only the MCB will trip, in case of short circuit currents above this value both protective devices will respond).

*) basically in accordance with EN 60898 D.5.2.b

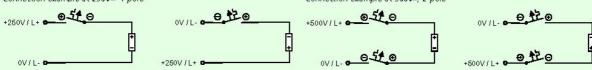
Short circuit selectivity characteristic B towards fuse link NH-00*)

Short circuit selectivity characteristic C towards fuse link NH-00*)

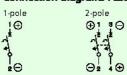
PLS6	NH-0	X) gL/g	jG									
, A	16	20	25	32	35	40	50	8	80	100	125	160
1.0	0.9	6.02)	6.02)	6.0 ²⁾								
15	8.0	6.0 ²⁾										
2.0	<0.51)	0.5	1.0	2.5	6.0 ²⁾							
2.5	<0.51)	0.5	1.0	2.3	6.0 ²⁾							
3.0	<0.51)	0.5	0.9	2.1	6.0 ²⁾	6.02)	6.0 ²⁾					
3.5	<0.51)	0.5	0.9	1.8	5.5	6.0 ²⁾	6.02)					
4	<0.51)	<0.51)	8.0	1.3	2.3	4.3	6.0 ²⁾					
5	<0.51)	<0.51)	0.7	1.1	1.6	2.2	3.6	4.8	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾	6.02)
6	<0.51)	<0.51)	0.7	1.1	1.5	2.0	3.3	4.3	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾	6.02)
8	<0.51)	<0.51)	0.6	1.0	1.3	1.7	2.6	3.3	5.2	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾
10		<0.51)	0.6	0.9	1.2	1.5	2.2	2.7	4.0	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾
13		<0.51)	0.6	8.0	1.1	1.4	2.1	2.6	3.8	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾
16			0.5	0.7	1.0	1.3	1.9	2.4	3.4	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾
20				0.7	1.0	1.3	1.9	2.4	3.3	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾
25				0.7	1.0	1.3	1.8	2.3	3.2	5.7	6.0 ²⁾	6.0 ²⁾
32					0.9	1.2	1.7	2.2	3.1	5.4	6.0 ²⁾	6.0 ²⁾
40								2.1	3.0	5.1	6.0 ²⁾	6.0 ²⁾
50								1.9	2.8	4.7	6.0 ²⁾	6.0 ²⁾
63										4.4	6.0 ²⁾	6.02)

PLS6	NH-0	0 gĽģ	ΙG									
ĻМ	16	20	25	32	35	40	50	8	80	100	125	160
0.75	6.0 ²⁾	6.02)	6.02)	6.02)	6.02)	6.02)	6.02)	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾	6.02)	6.0 ²⁾
1.0	0.9	6.0 ²⁾	6.02)	6.0 ²⁾	6.02)	6.02)	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾	6.02)	6.02)	6.0 ²⁾
1.5	<0.51)	0.6	1.3	4.2	6.02)	6.0 ²⁾	6.02)	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾	6.02)	6.0 ²⁾
2.0	< 0.51)	0.6	1.0	2.5	6.02)	6.02)	6.02)	6.0 ²⁾	6.0 ²⁾	6.02)	6.02)	6.0 ²⁾
2.5	< 0.51)	0.5	1.0	2.1	6.02)	6.02)	6.02)	6.02)	6.0 ²⁾	6.0 ²⁾	6.02)	6.0 ²⁾
3.0	< 0.51)	<0.51)	0.7	1.2	1.8	2.6	4.7	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾	6.02)	6.0 ²⁾
3.5	< 0.51)	<0.51)	0.7	1.1	1.7	2.4	4.2	6.02)	6.0 ²⁾	6.0 ²⁾	6.02)	6.0 ²⁾
4	< 0.51)	<0.51)	0.7	1.0	1.5	2.1	3.6	5.0	6.0 ²⁾	6.02)	6.02)	6.0 ²⁾
5	< 0.51)	<0.51)	0.6	8.0	1.2	1.7	2.8	3.8	6.0 ²⁾	6.0 ²⁾	6.02)	6.0 ²⁾
6	< 0.51)	<0.51)	0.5	8.0	1.2	1.5	2.5	3.3	5.7	6.02)	6.02)	6.0 ²⁾
8	< 0.51)	<0.51)	0.5	8.0	1.1	1.5	2.3	2.9	4.9	6.0 ²⁾	6.02)	6.0 ²⁾
10			0.5	0.7	1.0	1.4	2.0	2.5	3.8	6.0 ²⁾	6.02)	6.0 ²⁾
13					1.0	1.3	1.9	2.4	3.6	6.0 ²⁾	6.02)	6.0 ²⁾
16					1.0	1.3	1.8	2.3	3.3	6.0 ²⁾	6.02)	6.0 ²⁾
20					1.0	1.2	1.7	2.2	3.2	5.5	6.02)	6.0 ²⁾
25							1.6	2.1	3.0	5.2	6.02)	6.0 ²⁾
32								2.1	2.9	5.0	6.02)	6.0 ²⁾
40									2.8	4.8	6.02)	6.0 ²⁾
50										4.5	6.02)	6.0 ²⁾
63											5.9	6.0 ²⁾

Short circuit selectivity characteristic D towards fuse link NH-00*)

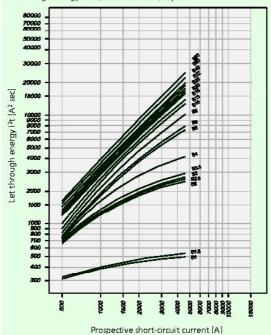

PLS6	NH-0	0 gL/g	jG									
ĻΜ	16	20	25	32	35	40	50	ន	80	100	125	160
0.5	2.1	6.02)	6.02)	6.0 ²⁾	6.02)	6.02)						
1.0	<0.51)	0,6	1.4	4.3	6.0 ²⁾							
1.5	<0.51)	< 0.51)	0.9	1.6	2.7	4.0	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾	6.02)	6.02)
2.0	<0.51)	<0.5 ¹⁾	0.8	13	21	31	6 0 ²⁾					
2.5	<0.51)	<0.51)	0.7	1.2	1.8	2.6	4.8	6.0 ²⁾	6.0 ²⁾	6.0 ²⁾	6.02)	6.02)
3.0	<0.51)	<0.51)	0.7	1.1	1.7	2.4	4.3	6.0 ²⁾	6.0 ²⁾	6.02)	6.02)	6.02)
3.5	<0.51)	<0.51)	0.7	1.1	1.7	2.4	4.2	5.6	6.02)	6.02)	6.02)	6.02)
4	<0.51)	<0.51)	0.7	1.0	1.6	2.2	3.8	5.2	6.02)	6.02)	6.02)	6.02)
5		< 0.51)	0.6	0.9	1.4	1.9	3.2	4.1	6.0 ²⁾	6.0 ²⁾	6.02)	6.02)
6		<0.51)	0.5	8.0	1.2	1.6	2.6	3.3	5.5	6.0 ²⁾	6.02)	6.02)
8			0.5	8.0	1.1	1.5	2.2	2.7	4.1	6.0 ²⁾	6.02)	6.02)
10			0.5	0.7	1.0	1.3	1.9	2.5	3.6	6.02)	6.02)	6.02)
13					1.0	1.3	1.9	2.3	3.4	6.02)	6.02)	6.02)
16						1.1	1.6	2.0	3.0	5.5	6.02)	6.02)
20							1.4	1.8	2.8	5.0	6.02)	6.02)
25								1.8	2.7	4.8	6.02)	6.02)
32									2.4	4.1	6.02)	6.02)
40										4.0	6.02)	6.02)

 $^{^{1)}}$ Selectivity limit current I $_{\rm s}$ under 0.5 kA

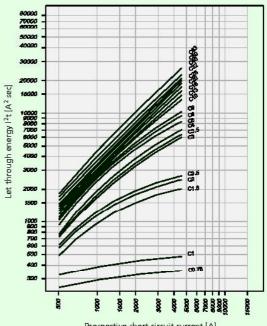


 $^{^{2)}}$ Selectivity limit current I_s = rated breaking capacity I_{cn} of the MCB no selectivity

Miniature Circuit Breakers PLS6-DC for AC/DC, Characteristic C Connection example at 2500/= 1-pole Connection example at 5000/=, 2-pole



Connection diagrams PLS6-DC



Let-through Energy PLS4

Let-through energy PLS4, characteristic B, 1-pole

Let-through energy PLS4, characteristic C, 1-pole

Prospective short-circuit current [A]

Short Circuit Selectivity PLS4 towards DIAZED Fuses

In case of short circuit, there is selectivity between the miniature circuit breakers PLS4 and the upstream fuses up to the specified values of the selectivity limit current \([kA] (i. e. in case of short-circuit currents \(\) \(\) under \(\) only the MCB will trip, in case of short circuit currents above this value both protective devices will respond).

*) basically in accordance with EN 60898 D.5.2.b

- $^{1)}$ Selectivity limit current I $_{\rm s}$ under 0.5 kA
- ²⁾ Selectivity limit current $l_{\rm s}^2$ = rated breaking capacity $l_{\rm cn}$ of the MCB no selectivity

Short circuit selectivity characteristic B towards fuse link DIAZED*)

Short circuit selectivity characteristic C towards fuse link DIAZED*)

PLS4	DIAZE	D DII-D	V gL/g	G					
Ļ [A]	10	16	20	25	35	50	63	80	100
1.0	<0.51)	1.2	4.5 ²⁾	4.52)					
1.5	<0.51)	1.0	4.5 ²⁾	4.52					
20	<0.51)	<0.51)	0.8	1.6	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.52)
25	<0.51)	<0.51)	0.8	1.5	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.52)
3.0	<0.51)	<0.51)	0.8	1.4	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.52
3.5	<0.51)	<0.51)	0.7	1.3	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.52
4	<0.51)	<0.51)	0.6	1.0	3.6	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.52
5	<0.51)	<0.5 ¹⁾	0.6	0.9	2.0	3.5	4.5 ²⁾	4.5 ²⁾	4.5 ²
6		<0.51)	0.6	0.9	1.8	3.2	4.5 ²⁾	4.5 ²⁾	4.52
8		<0.51)	0.5	0.8	1.6	2.6	4.5 ²⁾	4.5 ²⁾	4.52
10			0.5	0.8	1.4	2.2	3.9	4.5 ²⁾	4.52
13			0.5	0.7	1.3	2.0	3.6	4.5 ²⁾	4.52
16				0.6	1.2	1.9	3.2	4.5 ²⁾	4.5 ²
20					1.2	1.8	3.1	4.4	4.52
25	9				1.2	1.8	3.0	4.2	4.52
32						1.7	2.8	3.9	4.52
40							2.7	3.8	4.52
50							2.5	3.5	1.52
ග									4.52

PLS4	DIAZED DII-DIV gL/gG												
Ļ [A]	10	16	20	25	35	50	63	80	100				
0.75	1.0	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.52				
1.0	<0.51)	1.2	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.52				
1.5	<0.51)	<0.51)	1.0	2.2	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.52				
20	<0.51)	<0.51)	0.8	1.6	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²				
25	<0.5 ¹⁾	<0.51)	0.8	1.4	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²				
3.0	<0.51)	<0.51)	0.8	0.9	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²				
3.5	<0.5 ¹⁾	<0.51)	0.6	0.9	2.2	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.52				
4	<0.51)	<0.51)	0.6	0.8	1.8	3.6	4.5 ²⁾	4.5 ²⁾	4.52				
5	<0.5 ¹⁾	<0.51)	0.6	0.7	1.5	2.7	4.5 ²⁾	4.5 ²⁾	4.52				
6		<0.51)	0.5	0.6	1.4	2.4	4.5 ²⁾	4.5 ²⁾	4.52				
8		<0.51)	<0.5 ¹⁾	0.6	1.3	2.2	4.5 ²⁾	4.5 ²⁾	4.5 ²				
10			<0.5 ¹⁾	0.6	1.3	2.0	3.6	4.5 ²⁾	4.52				
13					1.3	1.9	3.3	4.5 ²⁾	4.5 ²				
16					1.2	1.8	3.2	4.4	4.52				
20					1.2	1.8	3.1	4.1	4.5 ²				
25						1.7	2.8	3.8	4.52				
32							2.7	3.7	4.52				
40								3.5	1.5 ²				
50									4.52				
63													

In case of short circuit, there is selectivity between the miniature circuit breakers PLS4 and the upstream fuses up to the specified values of the selectivity limit current I_s [kA] (i. e. in case of short-circuit currents I_{ks} under I_s, only the MCB will trip, in case of short circuit currents above this value both protective devices will respond).

*) basically in accordance with EN 60898 D.5.2.b

 $^{1)}$ Selectivity limit current I $_{\rm s}$ under 0.5 kA

²⁾ Selectivity limit current $\vec{l_s}$ = rated breaking capacity l_{cn} of the MCB

no selectivity

Short Circuit Selectivity PLS4 towards NEOZED Fuses

Short circuit selectivity characteristic C towards fuse link NEOZED*)

PLS4	NEOZED D01-D03 gL/gG												
Ļ [A]	10	16	20	25	35	50	63	80	100				
1.0	<0.51)	4.5 ²⁾	4.5 ²⁾										
1.5	<0.51)	4.1	4.5 ²⁾	4.5 ²⁾									
20	<0.51)	<0.51)	0.6	1.0	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾				
25	<0.51)	<0.51)	0.6	1.0	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾				
3.0	<0.51)	<0.51)	0.5	1.0	4.5 ²⁾	4.5 ²⁾	4.52)	4.52)	4.52)				
3.5	<0.51)	<0.51)	0.5	0.9	4.52)	4.52)	4.52)	4.5 ²)	4.52)				
4	<0.51)	<0.51)	0.5	0.9	2.5	4.52)	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾				
5		<0.51)	0.5	0.8	1.7	4.0	4.5 ²⁾	4.5 ²⁾	4.5 ²)				
5		<0.51)	0.5	0.8	1.6	3.6	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾				
8			0.5	0.8	1.4	2.8	4.3	4.5 ²⁾	4.5 ²⁾				
10			0.5	0.7	1.3	2.4	3.4	4.5 ²⁾	4.5 ²⁾				
13			<0.51)	0.7	1.2	2.3	3.2	4.5 ²⁾	4.5 ²⁾				
16				0.6	1.1	2.2	2.9	4.5 ²⁾	4.5 ²⁾				
20					1.1	2.1	2.8	4.4	4.5 ²⁾				
25					1.1	2.0	2.7	4.2	4.5 ²)				
32						2.0	2.6	4.0	4.5 ²⁾				
10							2.5	3.8	4.52)				
50							2.3	3.4	4.5 ²⁾				
53									4.5 ²)				

PLS4	NEOZED D01-D03 gL/gG												
니(A)	10	16	20	25	35	50	63	80	100				
0.75	<0.5 ¹⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾				
1.0	<0.5 ¹⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾				
1.5	<0.5 ¹⁾	0.5	0.6	0.9	4.5 ²⁾								
20	<0.5 ¹⁾	<0.51)	0.5	0.7	4.5 ²⁾								
25	<0.5 ¹⁾	<0.51)	0.5	0.7	4.5 ²⁾								
3.0	<0.51)	<0.51)	<0.51)	0.6	1.9	4.52)	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾				
3.5	<0.5 ¹⁾	<0.51)	<0.51)	0.6	1.8	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾				
4	<0.5 ¹⁾	<0.51)	<0.5 ¹⁾	0.6	1.6	4.0	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾				
5		<0.51)	<0.5 ¹⁾	0.5	1.3	3.1	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾				
6		<0.51)	<0.5 ¹⁾	<0.51)	1.2	2.7	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾				
8		<0.51)	<0.51)	<0.51)	1.2	2.5	4.0	4.5 ²⁾	4.5 ²⁾				
10			<0.5 ¹⁾	<0.51)	1.2	2.3	3.1	4.5 ²⁾	4.5 ²⁾				
13					1.1	2.2	3.0	4.5 ²⁾	4.5 ²⁾				
16					1.1	2.1	2.8	4.4	4.5 ²⁾				
20					1.0	2.0	2.6	4.0	4.5 ²⁾				
25						1.9	2.5	3.8	4.5 ²⁾				
32							2.5	3.7	4.5 ²⁾				
40								3.5	4.5 ²⁾				
50									4.5 ²⁾				
63													

Short Circuit Selectivity PLS4 towards NH-00 Fuses

Short circuit selectivity characteristic B towards fuse link NH-00*)

Short circuit selectivity characteristic C towards fuse link NH-00*)

PL54	NH-00 gL/gG												
ĻΜ	15	20	25	32	35	40	50	ឆ	80	100	125	160	
1.0	0.9	4.5 ²⁾	4.52)	4.5 ²⁾	4.5 ²⁾	4.52)	4.52)	4.52)	4.52)	4.52)	4.52)	4.52)	
15	0.8	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.52)	4.52)	4.5 ²⁾	4.52)	4.52)	
2.0	<0.51)	0.5	1.0	2.5	4.52)	4.52)	4.52)	4.52)	4.52)	4.52)	4.52)	4.52)	
25	<0.51)	0.5	1.0	2.3	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.52)	4.5 ²⁾	4.5 ²⁾	4.52)	
3.0	<0.51)	0.5	0.9	2.1	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.52)	4.52)	4.52)	4.52)	
3.5	<0.51)	0.5	0.9	1.8	4.52)	4.5 ²⁾	4.52)						
4	<0.51)	<0.51)	8.0	1.3	2.3	4.3	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.52)	4.52)	
5	<0.51)	<0.51)	0.7	1.1	1.6	2.2	3.6	4.5 ²⁾	4.52)	4.5 ²⁾	4.52)	4.52)	
6	<0.51)	<0.51)	0.7	1.1	1.5	2.0	3.3	4.3	4.52)	4.5 ²⁾	4.52)	4.52)	
8	<0.51)	<0.51)	0.6	1.0	1.3	1.7	2.6	3.3	4.52)	4.52)	4.5 ²⁾	4.52)	
10		<0.5 ¹⁾	0.6	0.9	1.2	1.5	2.2	2.7	4.0	4.5 ²⁾	4.52)	4.52)	
13		<0.51)	0.6	8.0	1.1	1.4	2.1	2.6	3.8	4.52)	4.5 ²⁾	4.52)	
16			0.5	0.7	1.0	1.3	1.9	2.4	3.4	4.52)	4.52)	4.52)	
20	Ű,			0.7	1.0	1.3	1.9	2.4	3.3	4.52)	4.52)	4.52)	
25				0.7	1.0	1.3	1.8	2.3	3.2	4.5 ²⁾	4.52)	4.52)	
32					0.9	1.2	1.7	2.2	3.1	4.52)	4.52)	4.52)	
40								2.1	3.0	4.52)	4.52)	4.52)	
50								1.9	2.8	4.52)	4.52)	4.52)	
a										4.4	4.52)	4.52)	

PLS4	NH-0	0 gL/g	ΙG									
цM	16	20	25	32	35	40	50	8	80	100	125	160
0.75	4.5 ²⁾	4.52)	4.5 ²⁾	4.52)	4.5 ²⁾	4.52)	4.52)	4.5 ²⁾				
1.0	0.9	4.5 ²⁾	4.52)	4.52)	4.5 ²⁾	4.52)	4.52)	4.5 ²⁾				
15	<0.51)	0.6	1.3	4.2	4.5 ²⁾							
2.0	<0.5 ¹⁾	0.6	1.0	2.5	4.5 ²⁾	4.52)	4.52)	4.5 ²⁾				
25	<0.5 ¹⁾	0.5	1.0	2.1	4.5 ²⁾	4.52)	4.52)	4.5 ²⁾				
3.0	<0.5 ¹⁾	<0.51)	0.7	1.2	1.8	2.6	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾	4.52)	4.52)	4.5 ²⁾
35	<0.5 ¹⁾	<0.5 ¹⁾	0.7	1.1	1.7	2.4	4.2	4.5 ²⁾				
4	<0.5 ¹⁾	<0.5 ¹⁾	0.7	1.0	1.5	2.1	3.6	4.5 ²⁾				
5	<0.51)	<0.51)	0.6	8.0	1.2	1.7	2.8	3.8	4.52)	4.52)	4.52)	4.5 ²⁾
6	<0.51)	<0.51)	0.5	8.0	1.2	1.5	2.5	3.3	4.5 ²⁾	4.52)	4.52)	4.5 ²⁾
8	<0.51)	<0.51)	0.5	8.0	1.1	1.5	2.3	2.9	4.52)	4.52)	4.52)	4.5 ²⁾
10			0.5	0.7	1.0	1.4	2.0	2.5	3.8	4.52)	4.52)	4.5 ²⁾
13					1.0	1.3	1.9	2.4	3.6	4.52)	4.52)	4.5 ²⁾
16					1.0	1.3	1.8	2.3	3.3	4.52)	4.52)	4.5 ²⁾
20					1.0	1.2	1.7	2.2	3.2	4.5 ²⁾	4.5 ²⁾	4.5 ²⁾
25							1.6	2.1	3.0	4.52)	4.52)	4.5 ²⁾
32								2.1	2.9	4.52)	4.52)	4.5 ²⁾
40									2.8	4.52)	4.5 ²⁾	4.5 ²⁾
50										4.52)	4.5 ²⁾	4.5 ²⁾
8											4.5 ²⁾	4.5 ²⁾

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for eaton manufacturer:

Other Similar products are found below:

BK-MDL-3-R BK1-S506-500-R BK1-S506-6-3-R BK1-S506-2-R MPI4040R4-1R5-R BK/MDA-15 TDC600-10A 8946K153 8961K155 M22-D-R-GB0/K11 M22-L-R/R 630NHG3B 63ET 6422 6580 CTX20-16-52LP-R CWL530FI CXM/CO/GP/R/BB 6HD36 714125 MBO-2 7314K36 7321K2 F02A-1-1/2A F02A-1-1/2AS F02A-1AS F02A-2AS F02A-3/4A F03A250V12A F03B125V4A MCR-4 MDA-2-8/10-R MDA-30A MDA-V-1/16 F60C500V10AS F60C500V15AS 7563K84 7634K36 MDQ-3/16 MDQ-7/10 MDQ-V-1/10 MDQ-V-1/4 MDQ-V-1/16 M