KUSB-3100 Series

- USB 2.0 and USB 1.1, true plug-and-play compatibility
- Five different USB-based compact measurement systems
- 12- and 16-bit resolution
- High and low programmable gains
- Input/output speeds up to $500 \mathrm{kS} / \mathrm{s}$
- Up to 96 digital lines for monitoring or control
- 500 V isolation barrier protects the computer and module from voltage spikes, ESD, and surges
- Runs under Windows ${ }^{\circledR}$ 2000, XP, Vista, and 7 platforms

USB-Based Data Acquisition Modules

Now, adding data acquisition capabilities to your PC is as easy as plugging in a mouse or keyboard. Within minutes of connecting one of our compact data acquisition modules to your computer and your sensor directly to the module, you're ready to make measurements of voltage, temperature, pressure-whatever you need. And you have done this without opening your PC, without complicated programming, and without spending time configuring the module, power requirements, or connection schemes.

The Keithley KUSB-3100 Series brings true plug-and-play data acquisition to computers that contain Universal Serial Bus (USB) 2.0 and 1.1 ports. No more opening up your computer chassis to install boards-just plug in the module, install the included software, and you are ready to make measurements. It's easy and efficient.

KUSB-3100 Series

Ordering Information

 KUSB-3100Economical Multifunction Data Acquisition USB Module KUSB-3102

Low Gain Multifunction Data Acquisition USB Module
KUSB-3108
High Gain Multifunction
Data Acquisition USB Module

KUSB-3116

High Performance
Multifunction Data
Acquisition USB Module
KUSB-3160
96-Channel Digital
I/O USB Module

Accessories Supplied

- USB cable
- CD-ROM containing a single user license, all user manuals, and the following software: KUSB device driver, Quick DataAcq application, DataAcq SDK, DTx-EZ, DT-LV Link.
- Power Supply with

KUSB-3116 ONLY

TYPICAL APPLICATIONS

- Voltage, temperature, strain, and vibration measurements
- Analog stimulus/response testing
- Relay control
- Switch closure sensing
- System automation
- Security systems and monitoring
- Burn-in
- Position measurements
- Frequency/event counting
- In-vehicle automotive testing
- Life science research
- Educational teaching labs

USB-Based Data Acquisition Modules

Protecting Your Investment

The KUSB-3100 Series modules are external to the computer. This external location provides performance benefits for noise-sensitive devices like data acquisition systems. They can be placed away from the noisy environment of the PC and power supplies and can be positioned closer to the signals you need to measure.
Because USB modules reside outside the computer, they can be susceptible to ground spikes, ESD, surges, and other damaging conditions. These spikes can cause system failure and may even cause permanent damage to your computer. The KUSB-3100 Series modules feature a 500V isolation barrier (except the KUSB-3100), which protects your computer and ensures a reliable stream of data.

Solutions for Demanding Applications

Keithley offers a variety of KUSB solutions to meet your demanding measurement needs.

	KUSB-3100	KUSB-3102	KUSB-3108	KUSB-3116	KUSB-3160		
Description	Low cost, multifunction	Low gain, multifunction	High gain, multifunction	High performance, multifunction	96 -channel digital I/O		
Resolution	12 -bit	$12-\mathrm{bit}$	16 -bit	16 -bit			
Throughput	$50 \mathrm{kS} / \mathrm{s}$	$100 \mathrm{kS} / \mathrm{s}$	$50 \mathrm{kS} / \mathrm{s}$	$500 \mathrm{kS} / \mathrm{s}$			
Analog Input Channels	8 SE	$16 \mathrm{SE} / 8 \mathrm{DI}$	$16 \mathrm{SE} / 8 \mathrm{DI}(1 \mathrm{CJC})$	$16 \mathrm{SE} / 8 \mathrm{DI}$			
Analog Output Channels	2	2	2	4 waveform quality			
Digital I/O Channels	16	17	17	33	96		
Counter/Timers	1	2	2	5			
Gain	$1,2,4,8$	$1,2,4,8$	$1,10,100,500$	$1,2,4,8$			
Connectivity	Built-in screw						
terminals	Built-in/Removable						
screw terminals							Built-in/Removable
:---:							
screw terminals		BNC and 37-pin					
:---:							
D-type connectors		Mass termination					
:---:							
connector; Optional							
external cable and							
screw terminal panel							

KUSB-3100

The KUSB-3100 module, our economical solution, provides eight single-ended inputs with 12 -bit resolution, up to 50 kS / s throughput, two 12 -bit $\pm 10 \mathrm{~V}$ analog outputs, 16 digital I/O lines, and 1 counter/timer.

KUSB-3102

The KUSB-3102 module offers 16 single-ended or eight differential inputs with 12 -bit resolution, up to $100 \mathrm{kS} / \mathrm{s}$ throughput, two 12-bit analog outputs, 17 digital I/O lines, and two counter/timers. The 500 V isolation barrier protects your computer and ensures a reliable stream of data.

KUSB-3108

The KUSB-3108 module features a variety of analog input channels, including a Cold Junction Compensation (CJC) channel, as well as single-ended/differential analog input channels. The CJC channel provides $10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ with an accuracy of $1^{\circ} \mathrm{C}$. The differential analog input channels can be used for B, E, J, K, N, R, S, or T type thermocouples. To measure other low-level analog input signals, such as pressure and flow sensors, you can use these channels to connect up to 16 single-ended/eight differential analog inputs. Thermocouple break detection is also provided to set the value to full-scale if an open circuit is detected at the input.

In addition, the KUSB-3108 provides two analog output channels for high resolution, single-value output operations, 17 digital I/O lines, and two counter/timer channels. The 500 V isolation barrier protects your computer and ensures a reliable stream of data.

KUSB-3100

KUSB-3102, KUSB-3108

KUSB-3100 Series

USB-Based Data Acquisition Modules

KUSB-3116

The KUSB-3116 module combines the functionality of multiple boards in a single USB 2.0 module to provide simultaneous analog input, analog output, digital I/O, and counter/timer operations. The KUSB-3116 provides maximum flexibility: 16-bit resolution, 16 single-ended inputs, four 16-bit waveform quality analog outputs at sampling rates up to $500 \mathrm{kSamples} / \mathrm{s}, 16$ digital input lines, 16 digital output lines, and five 32 -bit counter/timer channels. This module is enclosed in a metal box with standard BNC and D-sub connectors for analog I/O and digital I/O, and for connecting external clocks and triggers. The metal box makes this module perfect for industrial applications and environments that require enclosures that protect the instrumentation. The 500 V isolation barrier protects your computer and ensures a reliable stream of data.

The KUSB-3116 is fully compliant with USB 2.0. USB 2.0 extends the speed of connection to up to 480 Mbps . For optimal performance, it is recommended that you use the KUSB-3116 with a USB 2.0 port. The KUSB-3116 can be used with a USB 1.1 port, but at USB 1.1 performance.

KUSB-3160

The KUSB-3160 module provides 96 digital lines, $64 \mathrm{I} / \mathrm{O}$ and 32 input, grouped into twelve 8-bit ports. Eight ports are either input or output with four ports dedicated as inputs. Digital outputs are capable of driving external solid-state relays (12 mA sink). The KUSB-3160 can generate an interrupt when any of the eight digital I / O lines corresponding to ports 1 or 2 changes state. This feature is useful when you want to monitor critical signals or when you want
 to signal the host computer to transfer data to or from the board. You can enable the interrupts on a bit-by-bit basis on this port. All signals are brought out to a dedicated, standard 100 -pin connector on the backplate of the KUSB-3160 module. The KUSB-STP100 screw terminal panel and KUSB-CABDIO are available to simplify connections. The 500 V isolation barrier protects your computer and ensures a reliable stream of data.

Analog Inputs

All KUSB-3100 Series modules (except KUSB-3160) feature up to 16 single-ended or eight differential inputs. In addition, an Amp Low connection (KUSB-3102 and KUSB-3108 only) allows single-ended inputs to be referenced to a common point other than ground to provide up to 16 pseudo-differential inputs. Software-selectable gain settings on the KUSB-$3100,-3102 \mathrm{~A}$, and -3116 are $1,2,4$, and 8 , which provide input ranges of $\pm 1.25 \mathrm{~V}, \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}$, and $\pm 10 \mathrm{~V}$.

KUSB-3116

The KUSB-3108 provides four programmable gains ($1,10,100$, and 500) to support input signal ranges of $\pm 10 \mathrm{~V}, \pm 1 \mathrm{~V}, \pm 0.10 \mathrm{~V}$, and $\pm 0.020 \mathrm{~V}$. For thermocouple inputs, which are typically in the range of 20 mV , the KUSB-3108 module provides a dynamic range of $100,000: 1(100 \mathrm{~dB})$ to ensure that the input signals are amplified to the full $\pm 10 \mathrm{~V}$ range of the A / D converter and digitized to 16 bits for maximum accuracy.
The KUSB-3108 module also supports auto-ranging, where the software can determine the appropriate gain based on the input range you specify (in single value mode). The maximum sampling rate depends on the gain that is used: $50 \mathrm{kSamples} / \mathrm{s}$ when the gain is 1 or $10,10 \mathrm{kSamples} / \mathrm{s}$ when the gain is 100 , and $2 \mathrm{kSamples} / \mathrm{s}$ when the gain is 500 . The minimum sampling rate is 0.75 Hz .

Analog Input Acquisition Modes

The analog inputs allow you to acquire a single value from any channel or a number of samples from multiple channels. To acquire data from multiple channels, two scan modes are provided: continuously paced and triggered. With the continuously paced mode, the module scans the chan-nel-gain list continuously and acquires data until you stop the operation or until a specific number of samples are acquired. With triggered scan mode, the module scans the channel-gain list at high speeds with a programmed interval between scans, emulating a simultaneous sample-and-hold operation. You can pace either scan mode using an internal or external clock.

For added flexibility, a multi-location channel-gain list allows you to sample non-sequential channels and channels with different gains. The A/D resolution and maximum sampling rate vary depending on the module type.

Analog Trigger Modes

Internal Triggers: Software Trigger, Triggered Scan Counter External Trigger: External TTL Trigger Input

The external A/D sample clock and the digital trigger input signals are accessible through the user connector.

Analog Outputs

Each KUSB-3100 Series module provides a different selection of analog output specifications. The KUSB-3100 module features two $\pm 10 \mathrm{~V}$ analog outputs at 12 -bit resolution with a 50 kHz throughput. The KUSB-3102 module features two 12 -bit analog output channels. These analog outputs offer output ranges of $\pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}, 0-5 \mathrm{~V}$, and $0-10 \mathrm{~V}$. The KUSB- 3108 and KUSB-3116 modules feature 16 -bit analog outputs with a range of $\pm 10 \mathrm{~V}$. The KUSB-3108 offers two analog output channels, while the KUSB-3116 provides four deglitched waveform quality analog outputs with sampling rates up to $500 \mathrm{kS} / \mathrm{s}$. The KUSB-3116 analog outputs offer a continuous output mode and a waveform mode where the waveform can contain up to 128 kSamples for a single channel or a set of waveforms for all analog output channels with waveforms containing 24 kSamples .

Digital I/O

All KUSB-3100 Series modules feature a wide range of digital I/O lines. These lines are divided into sets of input and output ports. You can read the status of input ports at rates as high as the maximum speed of the A/D. A dynamic digital input feature allows you to "time stamp" the digital inputs in relation to the analog inputs.

KUSB-3100 Series

Counter/Timers

Dedicated counter/timers are available on the KUSB-3100 Series (except KUSB-3160) for counting events, creating a one-shot or frequency output, or measuring a frequency input. If applicable, you can cascade two counters internally through software or cascade more than two counters externally on the user connections. You can also set the duty cycle, frequency, and output polarity of the output pulse from the user counter/timers.

User Connections

A single USB cable, shipped with each KUSB-$3100,-3102,-3108$, and -3160 module, provides both power and signal connections from your PC. No external power supply or battery is required. The KUSB-3116 includes a USB cable and +5 V 2 A power supply and power cable.

Signal connections are made directly to each module using either screw terminals, BNC connectors, or 37-pin D-type connectors located on the module itself. The KUSB-3102 and -3108 provide removable screw terminal blocks. Pin assignments are clearly marked on the module labels for quick setup.

KUSB-3100 Series Specifications

ANALOG INPUT SPECIFICATIONS

	KUSB-3100	KUSB-3102	KUSB-3108	KUSB-3116
Number of Analog Input Channels	8 SE	$\begin{gathered} \hline 16 \mathrm{SE} / \text { pseudo-DI, } \\ 8 \mathrm{DI} \end{gathered}$	$\begin{aligned} & 16 \text { SE/pseudo-DI, } \\ & 8 \mathrm{DI}(7 \mathrm{~T} / \mathrm{C}, 1 \mathrm{CJC}) \end{aligned}$	16 SE/8 DI
Resolution	12-bit	12-bit	16-bit	16-bit
Channel-Gain List	16 locations	32 locations	32 locations	1024 locations
Input FIFO Size	20003 samples	512 samples	2048 samples	2048 samples
Gains	1, 2, 4, 8	1, 2, 4, 8	1, 10, 100, 500	1, 2, 4, 8
Input Range Bipolar Unipolar	$\pm 10,5,2.5,1.25 \mathrm{~V}$	$\begin{gathered} \pm 10,5,2.5,1.25 \mathrm{~V} \\ 0-10,5,2.5,1.25 \mathrm{~V} \end{gathered}$	$\pm 10,1,0.1,0.02 \mathrm{~V}$	$\pm 10,5,2.5,1.25 \mathrm{~V}$
System Accuracy to \% of FSR (averaged over 50 readings)	$\begin{aligned} & 0.04 \% @ \text { Gain }=1 \\ & 0.06 \% \text { Gain }=2 \\ & 0.08 \% \text { Gain }=4 \\ & 0.15 \% @ \text { Gain }=8 \end{aligned}$	$\begin{aligned} & 0.03 \% @ \text { Gain }=1 \\ & 0.04 \% \text { Gain }=2 \\ & 0.05 \% \text { Gain }=4 \\ & 0.05 \% \text { Gain }=8 \end{aligned}$	$\begin{aligned} & 0.01 \% @ \text { Gain }=1 \\ & 0.02 \% \text { Gain }=10 \\ & 0.03 \% \text { Gain }=100 \\ & 0.04 \% \text { Gain }=500 \end{aligned}$	See note 2
Nonlinearity	0.05\%	± 1 LSB	± 4 LSB	<0.5 LSB
Differential Nonlinearity	± 0.5 LSB	$\begin{gathered} \pm 0.5 \text { LSB } \\ \text { (no missing codes) } \end{gathered}$	$\begin{gathered} \pm 1.2 \text { LSB } \\ \text { (no missing codes) } \end{gathered}$	0.5 LSB
Drift				
Zero	$\pm 100 \mu \mathrm{~V}$	$\begin{gathered} \pm 30 \mu \mathrm{~V}+ \\ (20 \mu \mathrm{~V} \cdot \text { Gain }) /{ }^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \pm 25 \mu \mathrm{~V}+ \\ (5 \mu \mathrm{~V} \cdot \text { Gain }) /{ }^{\circ} \mathrm{C}^{4} \end{gathered}$	$\pm 10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
Gain	$\pm 100 \mathrm{ppm}$	$\pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Differential Linearity	Monotonic			$\pm 2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Input Impedance ${ }^{1}$				
Off Channel	$10 \mathrm{M} \Omega, 10 \mathrm{pF}$	$100 \mathrm{M} \Omega, 10 \mathrm{pF}$	$100 \mathrm{M} \Omega, 10 \mathrm{pF}$	$100 \mathrm{M} \Omega, 10 \mathrm{pF}$
On Channel	$10 \mathrm{M} \Omega, 100 \mathrm{pF}$	$100 \mathrm{M} \Omega, 100 \mathrm{pF}$	$100 \mathrm{M} \Omega, 100 \mathrm{pF}$	$100 \mathrm{M} \Omega, 100 \mathrm{pF}$
Input Bias Current	$\pm 10 \mathrm{nA}$	$\pm 20 \mathrm{nA}$	$\pm 10 \mathrm{nA}$	$\pm 20 \mathrm{nA}$
Maximum Input Voltage (without damage)				
Power On	$\pm 35 \mathrm{~V}$	$\pm 40 \mathrm{~V}$	$\pm 40 \mathrm{~V}$	$\pm 35 \mathrm{~V}$
Power Off	$\pm 20 \mathrm{~V}$	$\pm 20 \mathrm{~V}$	$\pm 20 \mathrm{~V}$	$\pm 20 \mathrm{~V}$
Common Mode Voltage	$\pm 11 \mathrm{~V}$ max. (operational)	$\pm 11 \mathrm{~V}$ max. (operational)	$\pm 11 \mathrm{~V}$ max. (operational)	$\underset{\text { (operational) }}{ \pm 11 \mathrm{~V} \text { max. }}$
Common Mode Rejection	N/A	$>74 \mathrm{~dB}$	$>74 \mathrm{~dB}$	$\begin{gathered} 80 \mathrm{~dB} \\ (\text { gain }=1 @ 1 \mathrm{k} \Omega) \end{gathered}$
A/D Conversion Time	$8 \mu \mathrm{~s}$	6.6μ s	$8 \mu \mathrm{~s}$	$2 \mu \mathrm{~s}$
A/D Converter Noise	0.6 LSB rms	0.3 LSB rms	0.4 LSB rms	0.4 LSB rms
Channel Acquisition Time	$20 \mu \mathrm{~s}(\pm 0.5 \mathrm{LSB})$	$3 \mu \mathrm{~s}$	$\begin{gathered} 6 \mu \mathrm{~s}(\text { gain }=1) \\ 250 \mu \mathrm{~s}(\text { gain }=500) \end{gathered}$	$\underset{\text { typical }}{1 \mu \mathrm{~S}(\pm 0.5 \text { LSB })}$
Channel-to-Channel Offset	0.1 mV	$\pm 40 \mu \mathrm{~V}$	$\pm 40 \mu \mathrm{~V}$	$\pm 40 \mu \mathrm{~V}$
Throughput	$50 \mathrm{kS} / \mathrm{s}$	$100 \mathrm{kS} / \mathrm{s}$	$50 \mathrm{kS} / \mathrm{s}$	$500 \mathrm{kS} / \mathrm{s}$ (single channel), $500 \mathrm{kS} / \mathrm{s}+0.05 \%$ (multiple channel)
CJC Voltage @ $25^{\circ} \mathrm{C}$			0.25 V	
CJC Accuracy			1° from 5° to $45^{\circ} \mathrm{C}$	
CJC Warm-up Time			10 to 20 minutes	

KUSB-3100 Series

RECOMMENDED ACCESSORIES

KUSB-CABDIO $\quad 100$-pin Cable for KUSB-STP100 and KUSB-3160 KUSB-STP100 Screw Terminal Panel for KUSB-3160

OPTIONAL ACCESSORIES

$480148^{\prime \prime}$ Low Noise Coax BNC to BNC Cable. For KUSB-3116
7051-2 2' General Purpose BNC to BNC Cable. For KUSB-3116
7051-5 $\quad 5^{\prime}$ General Purpose BNC to BNC Cable. For KUSB-3116
7051-10 10 General Purpose BNC to BNC Cable.
For KUSB-3116
7401 Type K thermocouple Wire Kit, 100 ft. For KUSB-3108
C1800 $\quad 18^{\prime \prime}$ Ribbon Cable with one 37-Pin D-type female connector and one 37-Pin D-type male connector. For KUSB-3116
C-1800/M 18" Ribbon Cable with two 37-Pin D-type female connectors. For KUSB-3116
KUSB-BNC-DIN-KIT DIN Rail Kit for KUSB-3116
KUSB-DIN-MOUNT-KIT
DIN Rail Mount Kit for KUSB-3102, -3108, -3160
KUSB-ST Extra Screw Terminal Blocks for KUSB-3102 and KUSB-3108
S1803 Shielded 4.5^{\prime} Cable with 37-Pin D-type female connectors. For KUSB-3116
S1805 Shielded 6.5 Cable with 37-Pin D-type female connectors. For KUSB-3116
STA-U Universal Screw Terminal Accessory for KUSB-3116

SYSTEM REQUIREMENTS:

PC with Pentium 466 MHz processor minimum
512MB RAM or higher recommended
Windows 2000/XP/Vista/7 operating system
USB ports - One or more (version 2.0 or 1.1) (USB version 2.0 is required to reach full speed capabilities of some modules.)
Super VGA (800×600) or higher resolution monitor
CD-ROM drives - one or more

USB-Based Data Acquisition Modules

KUSB-3100 Series Specifications (continued)

ANALOG INPUT SPECIFICATIONS (continued)

	KUSB-3100	KUSB-3102	KUSB-3108	KUSB-3116
Thermocouple Break Detection Current			50 nA (high-side differential) outputs fullscale for gains greater than 1 , or 2.5 V for gains of 1	
Effective Number of Bits (ENOB)	10.5 bts typical	11.5 bits	14.1 bits	14.6 bits
Total Harmonic Distortion (THD)	$<-70 \mathrm{~dB}$ typical	-80 dB typical	-90 dB typical	-90 dB typical
Channel Crosstalk	-74 dB@1kHz	-80 dB@1kHz	-80 dB @ 1 kHz	-80 dB@1kHz
Maximum A/D Pacer Clock				
Single Analog Input Throughput	50 kHz	$100 \mathrm{kS} / \mathrm{s} @ 0.03 \%$ accuracy	$50 \mathrm{kS} / \mathrm{s} @ 0.01 \%$ accuracy at gain of 1-10	$50 \mathrm{kS} / \mathrm{s}$
Multiple Analog Input Throughput	50 kHz	$100 \mathrm{kS} / \mathrm{s} @ 0.03 \%$ accuracy	$50 \mathrm{kS} / \mathrm{s} @ 0.01 \%$ accuracy at gain of 1-10	$50 \mathrm{kS} / \mathrm{s} @ \pm 0.05 \%$
			$10 \mathrm{kS} / \mathrm{s} @ 0.03 \%$ accuracy at gain of 100	
			$2 \mathrm{kS} / \mathrm{s} @ 0.04 \%$ accuracy at gain of 500	
Minimum A/D Pacer Clock Throughput	0.75 S/s	0.75 S/s	0.75 S/s	$0.00419 \mathrm{~S} / \mathrm{s}$
External A/D Sample Clock				
Minimum Pulse Width	200 ns (high) 200 ns (low)	600 ns (high) 600 ns (low)	600 ns (high) 600 ns (low)	25 ns (high) 25 ns (low)
Maximum Frequency (Analog Inputs)	50 kHz	100 kHz	50 kHz	500 kHz
Maximum Frequency (Digital Inputs Only)	N/A	Maximum A/D rate	Maximum A / D rate	Maximum A / D rate
External Digital (TTL) Trigger				
High Input Voltage	2.4 V min .	2.4 V min.	2.4 V min .	3.3 V min .
Low Input Voltage	0.8 V max.	0.8 V max.	0.8 V max.	0.8 V max.
Minimum Pulse Width	200 ns (high)	600 ns (high)	600 ns (high)	25 ns (high)
	200 ns (low)	600 ns (low)	600 ns (low)	25 ns (low)

NOTES

1. Very high input impedance minimizes any source error
2. System accuracy (\% of FSR) of KUSB-3116

	$\mathbf{5 0 0 k} \mathrm{kHz}$	$\mathbf{4 0 0 k} \mathrm{kHz}$	$\mathbf{2 5 0 k H z}$
Gain $=1$	$\pm 0.05 \%$	$\pm 0.03 \%$	$\pm 0.01 \%$
Gain $=2$	$\pm 0.06 \%$	$\pm 0.04 \%$	$\pm 0.02 \%$
Gain $=4$	$\pm 0.07 \%$	$\pm 0.05 \%$	$\pm 0.02 \%$
Gain $=8$	$\pm 0.09 \%$	$\pm 0.07 \%$	$\pm 0.03 \%$

3. Total FIFO size used for both A / D and D / A on the module is $2 k$
4. This value is referenced to voltage entering the A / D converter. To reference this value to the original voltage signal, use $\{[\pm 25 \mu \mathrm{~V}+(5 \mu \mathrm{~V} \cdot$ Gain $)] /$ Gain $\} /{ }^{\circ} \mathrm{C}$.

NOTES

1. The minimum pulse width applies only to interrupt-on-change detection for Ports 1 and 2.

Pulses less than the minimum may not be detected as a change. All diodes back EMF protected for inductive loads.
2. The mass termination connector is a 100 -pin D, Robinson Nugent part \#P50E-100P1-SR1-TG.

The mating connector is a 100 -pin Robinson Nugent part \#P50E-100S-TG

KUSB-3100 Series

COUNTER/TIMER SPECIFICATIONS

	KUSB-3100	KUSB-3102	KUSB-3108	KUSB-3116
Number of Counter/Timers	1	2	2	$5{ }^{1}$
Resolution	32-bit	16-bit	16-bit	32-bit
Minimum Pulse Width (minimum amount of time for a C / T to recognize an input pulse)	200 ns	600 ns (high); 600 ns (low)	600 ns (high); 600 ns (low)	55.5 ns
Logic Family	TTL	TTL	TTL	LVTTL
Inputs	Level sensitive	Level sensitive	Level sensitive	Edge sensitive
Input Logic Load	1 TTL load	1 TTL load	1 TTL load	1 LVTTL load
High Input Voltage	2.4 V min .	2.4 V min .	2.4 V min .	2.0 V max.
Low Input Voltage	0.8 V max.	0.8 V max.	0.8 V max.	0.8 V max.
Low Input Current	-0.4 mA max.	0.4 mA max.	0.4 mA max.	-0.4 mA max.
Clock Inputs				
High Input Voltage	2.4 V min.	2.4 V min .	2.4 V min.	2.0 V
Low Input Voltage	0.8 V max.	0.8 V max.	0.8 V max.	0.8 V
Min. Pulse Width	200 ns	600 ns (high) 600 ns (low)	600ns (high) 600ns (low)	25 ns
Max. Frequency	6 MHz	750 kHz	750 kHz	9 MHz
Gate Inputs				
High Input Voltage	2.4 V min.	2.4 V min .	2.4 V min.	2.4 V min .
Low Input Voltage	0.8 V max.	0.8 V max.	0.8 V max.	0.8 V max.
Outputs				
Fan Out	12 mA	12 mA	12 mA	12 mA
High Voltage Output	2.8 V min .	3.0 V min.	3.0 V min .	2.0 V min.
Low Voltage Output	0.6 V max.	0.4 V max.	0.4 V max.	0.8 V max.
High Output Current (Source)	2 mA	1 mA	1 mA	-12 mA max.
Low Output Current (Sink)	12 mA	2 mA	2 mA	12 mA max.

NOTES

1. Has same logic high and low voltage and current specifications as the digital I/O lines.

POWER, PHYSICAL, AND ENVIRONMENTAL SPECIFICATIONS

	KUSB-3100	KUSB-3102	KUSB-3108	KUSB-3116	KUSB-3160
Power	$<100 \mathrm{~mA}$			$\pm 5 \%$ @ ${ }^{\text {A max. }}$	
+5V Enumeration Operation	$<250 \mathrm{~mA}$	100 mA max.	100 mA max.		100 mA max.
+5V Standby		0.5 mA max.	$0.5 \mu \mathrm{~A}$ max.		0.5 mA max.
+5V Power On		500 mA max.	500 mA max.		500 mA max.
+5 V Isolated Power Out (TB 27)		10 mA max.	10 mA max.		
Physical					
Dimensions	$\begin{gathered} 100 \mathrm{~mm}(\mathrm{~L}) \times \\ 100 \mathrm{~mm}(\mathrm{~W}) \times \\ 25 \mathrm{~mm}(\mathrm{H}) \end{gathered}$	$\begin{aligned} & 6.5 \text { in }(\mathrm{L}) \times 4.5 \text { in } \\ & (\mathrm{W}) \times 1.4 \text { in }(\mathrm{H}) \end{aligned}$	$\begin{aligned} & 6.5 \text { in }(\mathrm{L}) \times 4.5 \text { in } \\ & (\mathrm{W}) \times 1.4 \text { in }(\mathrm{H}) \end{aligned}$	$190 \mathrm{~mm} \times 100 \mathrm{~mm}$	$150 \mathrm{~mm} \times 100 \mathrm{~mm}$
Weight	4.8 oz. (136 g)	9 oz . $(255 \mathrm{~g}$)	9 oz . (255 g)	2 lbs. (906 g)	9 oz . 2555 g)
Environmental					
Operating Temperature	0° to $70^{\circ} \mathrm{C}$	0° to $55^{\circ} \mathrm{C}$	0° to $55^{\circ} \mathrm{C}$	0° to $55^{\circ} \mathrm{C}$	0° to $50^{\circ} \mathrm{C}$
Storage Temperature	-40° to $125^{\circ} \mathrm{C}$	-25° to $85^{\circ} \mathrm{C}$			
Relative Humidity	To 95% noncondensing				
Certification and Compliance	FCC Part 15 Class B verified; will not compromise FCC compliance of host computer	FCC Part 15 Class B verified; will not compromise FCC compliance of host computer	FCC Part 15 Class B verified; will not compromise FCC compliance of host computer	FCC Part 15 Class B verified; will not compromise FCC compliance of host computer	FCC Part 15 Class B verified; will not compromise FCC compliance of host computer
	CE	CE	CE	CE	CE

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for keithley manufacturer:
Other Similar products are found below :
2000/E 6485/E 2401 2450-TLINK 2290-5-SHV KTTI-TSP 2260B-250-13 ENCORE 2220-30-1 2280S-32-6 2110-240 2000-SCAN
DMM7510 2231A-30-3 4288-1 7078-TRX-5 USB-B-1 7078-TRX-BNC 7708 7078-TRX-GND DMM6500

