5V 128K X 8 CMOS SRAM (Center power and ground)

Features

- Industrial and commercial temperatures
- Organization: $131,072 \times 8$ bits
- High speed
- 10/12/15/20 ns address access time
- 5/6/7/8 ns output enable access time
- Low power consumption: ACTIVE
- 605mW / max @ 10 ns
- Low power consumption: STANDBY
- $55 \mathrm{~mW} /$ max CMOS
- 6 T 0.18 u CMOS technology
- Easy memory expansion with $\overline{\mathrm{CE}}, \overline{\mathrm{OE}}$ inputs
- Center power and ground
- TTL/LVTTL-compatible, three-state I/O

Logic block diagram

- JEDEC-standard packages
- 32-pin, 300 mil SOJ
- 32-pin, 400 mil SOJ
- ESD protection ≥ 2000 volts
- Latch-up current $\geq 200 \mathrm{~mA}$

Pin arrangement

Selection guide

	$\mathbf{- 1 0}$	$\mathbf{- 1 2}$	$\mathbf{- 1 5}$	$\mathbf{- 2 0}$	Unit
Maximum address access time	10	12	15	20	ns
Maximum output enable access time	5	6	7	8	ns
Maximum operating current	110	100	90	80	mA
Maximum CMOS standby current	10	10	10	10	mA

Functional description

The AS7C1025B is a high-performance CMOS 1,048,576-bit Static Random Access Memory (SRAM) devices organized as $131,072 \times 8$ bits. They are designed for memory applications where fast data access, low power, and simple interfacing are desired.
Equal address access and cycle times ($\mathrm{t}_{\mathrm{AA}}, \mathrm{t}_{\mathrm{RC}}, \mathrm{t}_{\mathrm{WC}}$) of $10 / 12 / 15 / 20 \mathrm{~ns}$ with output enable access times (t_{OE}) of 5/6/7/8 ns are ideal for highperformance applications. The chip enable input $\overline{\mathrm{CE}}$ permits easy memory and expansion with multiple-bank memory systems.
When $\overline{\mathrm{CE}}$ is high, the device enters standby mode. If inputs are still toggling, the device will consume I_{SB} power. If the bus is static, then full standby power is reached $\left(\mathrm{I}_{\mathrm{SB} 1}\right)$. For example, the AS7C1026B is guaranteed not to exceed 55 mW under nominal full standby conditions.

A write cycle is accomplished by asserting write enable ($\overline{\mathrm{WE}})$ and chip enable $(\overline{\mathrm{CE}})$. Data on the input pins I/O0 through I/O7 is written on the rising edge of $\overline{\mathrm{WE}}$ (write cycle 1) or $\overline{\mathrm{CE}}$ (write cycle 2). To avoid bus contention, external devices should drive I/O pins only after outputs have been disabled with output enable ($\overline{\mathrm{OE}})$ or write enable $(\overline{\mathrm{WE}})$.
A read cycle is accomplished by asserting output enable ($\overline{\mathrm{OE}}$) and chip enable ($\overline{\mathrm{CE}}$), with write enable ($\overline{\mathrm{WE}}$) high. The chips drive I/O pins with the data word referenced by the input address. When either chip enable or output enable is inactive or write enable is active, output drivers stay in high-impedance mode.
All chip inputs and outputs are TTL-compatible, and operation is from a single 5 V supply. The AS7C1025B is packaged in common industry standard packages.

Absolute maximum ratings

Parameter	Symbol	Min	Max	Unit
Voltage on V_{CC} relative to GND	$\mathrm{V}_{\mathrm{t} 1}$	-0.50	+7.0	V
Voltage on any pin relative to GND	$\mathrm{V}_{\mathrm{t} 2}$	-0.50	$\mathrm{~V}_{\mathrm{CC}}+0.5$	V
Power dissipation	P_{D}	-	1.0	W
Storage temperature (plastic)	$\mathrm{T}_{\text {stg }}$	-65	+150	${ }^{\circ} \mathrm{C}$
Ambient temperature with V_{CC} applied	$\mathrm{T}_{\text {bias }}$	-55	+125	${ }^{\circ} \mathrm{C}$
DC current into outputs (low)	$\mathrm{I}_{\mathrm{OUT}}$	-	20	mA

NOTE: Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Truth table

$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Data	Mode
H	X	X	High Z	Standby $\left(\mathrm{I}_{\mathrm{SB}}, \mathrm{I}_{\mathrm{SB} 1}\right)$
L	H	H	High Z	Output disable $\left(\mathrm{I}_{\mathrm{CC}}\right)$
L	H	L	$\mathrm{D}_{\mathrm{OUT}}$	Read $\left(\mathrm{I}_{\mathrm{CC}}\right)$
L	L	X	D_{IN}	Write $\left(\mathrm{I}_{\mathrm{CC}}\right)$

Key: $\mathrm{X}=$ don't care, $\mathrm{L}=$ low, $\mathrm{H}=$ high.

Recommended operating conditions

Parameter		Symbol	Min	Nominal	Max	Unit
Supply voltage	V_{CC}	4.5	5.0	5.5	V	
Input voltage	V_{IH}	2.2	-	$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
	$\mathrm{~V}_{\mathrm{IL}}$	-0.5	-	0.8	V	
Ambient operating temperature	commercial	T_{A}	0	-	70	${ }^{\circ} \mathrm{C}$
	industrial	T_{A}	-40	-	85	${ }^{\circ} \mathrm{C}$

$\mathrm{V}_{\mathrm{IL}} \min =-1.0 \mathrm{~V}$ for pulse width less than 5 ns
$\mathrm{V}_{\mathrm{IH}} \max =\mathrm{V}_{\mathrm{CC}}+2.0 \mathrm{~V}$ for pulse width less than 5 ns.

DC operating characteristics (over the operating range) ${ }^{1}$

Parameter	Symbol	Test conditions	-10		-12		-15		-20		Unit
			Min	Max	Min	Max	Min	Max	Min	Max	
Input leakage current	$\left\|\mathrm{I}_{\text {LI }}\right\|$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {IN }}=\mathrm{GND}$ to $\mathrm{V}_{\text {CC }}$	-	1	-	1	-	1	-	1	$\mu \mathrm{A}$
Output leakage current	$\left\|\mathrm{I}_{\mathrm{LO}}\right\|$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{~V}_{\text {out }}=\mathrm{GND} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	-	1	-	1	-	1	-	1	$\mu \mathrm{A}$
Operating power supply current	I_{CC}	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \overline{\mathrm{CE}} \leq \mathrm{V}_{\mathrm{IL}}, \mathrm{f}=\mathrm{f}_{\mathrm{Max},}, \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	-	110	-	100	-	90	-	80	mA
Standby power supply current ${ }^{1}$	$\mathrm{I}_{\text {SB }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max} \\ & \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}, \mathrm{f}=\mathrm{f}_{\mathrm{Max}} \end{aligned}$	-	50	-	45	-	45	-	40	mA
	$\mathrm{I}_{\text {SB1 }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{f}=0 \end{aligned}$	-	10		10		10		10	mA
Output voltage	$\mathrm{V}_{\text {OL }}$	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=$ Min	-	0.4	-	0.4	-	0.4	-	0.4	V
	V_{OH}	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=$ Min	2.4		2.4	-	2.4	-	2.4	-	V

Capacitance ($\mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=$ NOMINAL) ${ }^{2}$

Parameter	Symbol	Signals	Test conditions	Max	Unit
Input capacitance	C_{IN}	$\mathrm{A}, \overline{\mathrm{CE}}, \overline{\mathrm{WE}}, \overline{\mathrm{OE}}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	5	pF
I / O capacitance	$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	I / O	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}$	7	pF

Read cycle (over the operating range), ${ }^{3,9}$

Parameter	Symbol	-10		-12		-15		-20		Unit	Notes
		Min	Max	Min	Max	Min	Max	Min	Max		
Read cycle time	t_{RC}	10	-	12	-	15	-	20	-	ns	
Address access time	$\mathrm{t}_{\text {AA }}$	-	10	-	12	-	15	-	20	ns	3
Chip enable ($\overline{\mathrm{CE}}$) access time	$\mathrm{t}_{\text {ACE }}$	-	10	-	12	-	15	-	20	ns	3
Output enable ($\overline{\mathrm{OE}}$) access time	$\mathrm{t}_{\text {OE }}$	-	5	-	6	-	7	-	8	ns	
Output hold from address change	t_{OH}	3	-	3	-	3	-	3	-	ns	5
$\overline{\mathrm{CE}}$ low to output in low Z	$\mathrm{t}_{\text {CLZ }}$	3	-	3	-	3	-	3	-	ns	4, 5
$\overline{\mathrm{CE}}$ low to output in high Z	${ }^{\text {t }}$ CHZ	-	4	-	5	-	6	-	7	ns	4, 5
$\overline{\mathrm{OE}}$ low to output in low Z	$\mathrm{t}_{\text {OLZ }}$	0	-	0	-	0	-	0	-	ns	4, 5
$\overline{\mathrm{OE}}$ high to output in high Z	$\mathrm{t}_{\mathrm{OHZ}}$	-	4	-	5	-	6	-	7	ns	4, 5
Power up time	$t_{\text {PU }}$	0	-	0	-	0	-	0	-	ns	4, 5
Power down time	$\mathrm{t}_{\text {PD }}$	-	10	-	12	-	15	-	20	ns	4, 5

Key to switching waveforms

Read waveform 1 (address controlled) 3,6,7,9

Read waveform $2(\overline{\mathrm{CE}} \text { and } \overline{\mathrm{OE}} \text { controlled) })^{3,6,8,9}$

Write cycle (over the operating range) ${ }^{11}$

Parameter	Symbol	-10		-12		-15		-20		Unit	Notes
		Min	Max	Min	Max	Min	Max	Min	Max		
Write cycle time	t_{WC}	10	-	12	-	15	-	20	-	ns	
Chip enable ($\overline{\mathrm{CE}}$) to write end	t_{CW}	8	-	9	-	10	-	12	-	ns	
Address setup to write end	$\mathrm{t}_{\text {AW }}$	8	-	9	-	10	-	10	-	ns	
Address setup time	t_{AS}	0	-	0	-	0	-	0	-	ns	
Write pulse width	t_{WP}	7	-	8	-	9	-	12	-	ns	
Write recovery time	t_{WR}	0	-	0	-	0	-	0	-	ns	
Address hold from end of write	t_{AH}	0	-	0	-	0	-	0	-	ns	
Data valid to write end	$\mathrm{t}_{\text {DW }}$	5	-	6	-	8	-	10	-	ns	
Data hold time	$\mathrm{t}_{\text {DH }}$	0	-	0	-	0	-	0	-	ns	4, 5
Write enable to output in high Z	t_{WZ}	-	5	-	6	-	7	-	8	ns	4, 5
Output active from write end	${ }^{\text {OW }}$	1	-	1	-	1	-	2	-	ns	4, 5

Write waveform 1 ($\overline{\mathrm{WE}}$ controlled) $)^{10,11}$

Write waveform $2(\overline{\mathrm{CE}} \text { controlled) })^{10,11}$

AC test conditions

- Output load: see Figure B.
- Input pulse level: GND to 3.5 V . See Figure A.
- Input rise and fall times: 2 ns . See Figure A.
- Input and output timing reference levels: 1.5 V .

Figure A: Input pulse

Figure B: 5 V Output load

Notes

During V_{CC} power-up, a pull-up resistor to V_{CC} on $\overline{\mathrm{CE}}$ is required to meet I_{SB} specification.
2 This parameter is sampled, but not 100% tested.
3 For test conditions, see AC Test Conditions, Figures A and B.
$4 \mathrm{t}_{\mathrm{CLZ}}$ and $\mathrm{t}_{\mathrm{CHZ}}$ are specified with $\mathrm{CL}=5 \mathrm{pF}$, as in Figure B. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
5 This parameter is guaranteed, but not 100% tested.
$6 \quad \overline{\mathrm{WE}}$ is high for read cycle.
$7 \quad \overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ are low for read cycle.
8 Address is valid prior to or coincident with $\overline{\mathrm{CE}}$ transition low.
9 All read cycle timings are referenced from the last valid address to the first transitioning address.
10 N/A
11 All write cycle timings are referenced from the last valid address to the first transitioning address.
2 N/A.
$3 \mathrm{C}=30 \mathrm{pF}$, except all high Z and low Z parameters where $\mathrm{C}=5 \mathrm{pF}$.

Package dimensions

Symbol	32-pin SOJ 300 mil		32-pin SOJ 400 mil					
	Min	Max	Min	Max				
	0.128	0.145	0.132	0.146				
A1	0.025	-	0.025	-				
A2	0.095	0.105	0.105	0.115				
B	0.026	0.032	0.026	0.032				
b	0.016	0.020	0.015	0.020				
c	0.007	0.010	0.007	0.013				
D	0.820	0.830	0.820	0.830				
E	0.255	0.275	0.354	0.378				
E1	0.295	0.305	0.395	0.405				
E2	0.330	0.340	0.435	0.445				
e	0.050					BSC	0.050	BSC

Ordering Codes

Package Access time	Temperature	$\mathbf{1 0} \mathbf{n s}$	$\mathbf{1 2 n s}$	$\mathbf{1 5} \mathbf{n s}$	20 ns
300-mil SOJ	Commercial	AS7C1025B-10TJC	AS7C1025B-12TJC	AS7C1025B-15TJC	AS7C1025B-20TJC
	Industrial	AS7C1025B-10TJI	AS7C1025B-12TJI	AS7C1025B-15TJI	AS7C1025B-20TJI
400-mil SOJ	Commercial	AS7C1025B-10JC	AS7C1025B-12JC	AS7C1025B-15JC	AS7C1025B-20JC
	Industrial	AS7C1025B-10JI	AS7C1025B-12JI	AS7C1025B-15JI	AS7C1025B-20JI

Note: Add suffix ' N ' to the above part number for LEAD FREE parts. (Ex AS7C1025B-10TJCN)

Part numbering system

AS7C	1025B	-XX	X	X	X
SRAM prefix	Device number	Access time	$\begin{gathered} \text { Package: } \\ \text { TJ = SOJ } 300 \mathrm{mil} \\ \mathrm{~J}=\mathrm{SOJ} 400 \mathrm{mil} \end{gathered}$	$\begin{gathered} \text { Temperature range } \\ \mathrm{C}=\text { commercial, } 0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ \mathrm{I}=\text { industrial, }-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \mathrm{N}=\mathrm{LEAD} \text { FREE } \\ \text { PART } \end{gathered}$

Alliance Memory, Inc.
511 Taylor Way,
San Carlos, CA 94070
Tel: 650-610-6800
Fax: 650-620-9211
Copyright © Alliance Memory
All Rights Reserved
Part Number: AS7C1025B
Document Version: v. 1.3
www.alliancememory.com
© Copyright 2003 Alliance Memory, Inc. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify Alliance against all claims arising from such use.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for SRAM category:
Click to view products by Alliance Memory manufacturer:
Other Similar products are found below :
5962-8855206XA CY6116A-35DMB CY7C128A-45DMB CY7C1461KV33-133AXI CY7C199-45LMB GS8161Z36DD-200I GS88237CB200I R1QDA7236ABB-20IB0 RMLV0408EGSB-4S2\#AA0 IS64WV3216BLL-15CTLA3 IS66WVE4M16ECLL-70BLI PCF8570P K6T4008C1B-GB70 CY7C1353S-100AXC AS6C8016-55BIN AS7C164A-15PCN 515712X IS62WV51216EBLL-45BLI

IS63WV1288DBLL-10HLI IS66WVE2M16ECLL-70BLI 47L16-E/SN IS66WVE4M16EALL-70BLI IS62WV6416DBLL-45BLI IS61WV102416DBLL-10TLI CY7C1381KV33-100AXC CY7C1381KV33-100BZXI CY7C1373KV33-100AXC CY7C1381KVE33-133AXI CY7C4042KV13-933FCXC 8602501XA 5962-3829425MUA 5962-8855206YA 5962-8866201XA 5962-8866201YA 5962-8866204TA 5962-8866206MA 5962-8866207NA 5962-8866208UA 5962-8872502XA 5962-8959836MZA 5962-8959841MZA 5962-9062007MXA 5962-9161705MXA N08L63W2AB7I 7130LA100PDG M38510/28902BVA 5962-8971203XA 5962-8971202ZA 5962-8872501LA 59628866207UA

