
AUTOMOTIVE GRADE

Features

- Advanced Process Technology
- Low On-Resistance
- P-Channel MOSFET
- Dynamic dV/dT Rating
- 150°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- · Lead-Free, RoHS Compliant
- Automotive Qualified*

AUIRF7416Q

HEXFET® Power MOSFET

V _{(BR)DSS}	-30V
R _{DS(on)} max.	0.02Ω
I _D	-10A

Description

Specifically designed for Automotive applications, this cellular design of HEXFET® Power MOSFETs utilizes the latest processing techniques to achieve low on-resistance per silicon area. This benefit combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in Automotive and a wide variety of other applications.

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (T_a) is 25°C, unless otherwise specified.

	Parameter	Max.	Units
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ -10V	-10	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ -10V	-7.1	Α
I _{DM}	Pulsed Drain Current ①	-45	1
P _D @T _A = 25°C	Power Dissipation	2.5	W
	Linear Derating Factor	0.02	mW/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy®	370	mJ
dv/dt	Peak Diode Recovery dv/dt ③	-5.0	V/ns
T_J	Operating Junction and	-55 to + 150	°C
T _{STG}	Storage Temperature Range	-55 10 + 150	

Thermal Resistance

	Parameter	Max.	Units
$R_{\theta JA}$	Junction-to-Ambient ®	50	°C/W

HEXFET® is a registered trademark of International Rectifier.

^{*}Qualification standards can be found at http://www.irf.com/

Static Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	-30			V	$V_{GS} = 0V, I_D = -250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		-0.024		V/°C	Reference to 25°C, $I_D = -1 \text{mA}$
D	Static Drain-to-Source On-Resistance			0.020	Ω	$V_{GS} = -10V, I_D = -5.6A ext{ } $
R _{DS(on)} Static Drain-to-Source On-Resistance				0.035	52	$V_{GS} = -4.5V, I_D = -2.8A$ @
$V_{GS(th)}$	Gate Threshold Voltage	-1.0		-2.04	V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$
gfs	Forward Transconductance	5.6			S	$V_{DS} = -10V, I_{D} = -2.8A$
I _{DSS}	Drain-to-Source Leakage Current			-1.0		$V_{DS} = -24V, V_{GS} = 0V$
				-25	μA	$V_{DS} = -24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage			-100	nA	$V_{GS} = -20V$
				100	IIA	V _{GS} = 20V

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
Q_g	Total Gate Charge		61	92		$I_{D} = -5.6A$
Q_{gs}	Gate-to-Source Charge		8.0	12	nC	$V_{DS} = -24V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		22	32		V_{GS} = -10V, See Fig. 6 & 9 @
t _{d(on)}	Turn-On Delay Time		18			$V_{DD} = -15V$
t _r	Rise Time		49			$I_{D} = -5.6A$
t _{d(off)}	Turn-Off Delay Time		59		ns	$R_G = 6.2\Omega$
t _f	Fall Time		60			$R_D = 2.7\Omega$, See Fig. 10 \oplus
C _{iss}	Input Capacitance		1700			$V_{GS} = 0V$
C _{oss}	Output Capacitance		890		pF	$V_{DS} = -25V$
C _{rss}	Reverse Transfer Capacitance		410			f = 1.0MHz, See Fig. 5

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			-3.1		MOSFET symbol
	(Body Diode)			-3.1	A	showing the
I _{SM}	Pulsed Source Current			-45	1 ^	integral reverse
	(Body Diode) ①			-43		p-n junction diode.
V_{SD}	Diode Forward Voltage			-1.0	V	$T_J = 25^{\circ}C$, $I_S = -5.6A$, $V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		56	85	ns	$T_J = 25^{\circ}C, I_F = -5.6A$
Q _{rr}	Reverse Recovery Charge		99	150	nC	di/dt = 100A/µs ③

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② Starting T_J = 25°C, L = 25mH R_G = 25 Ω , I_{AS} = -5.6A. (See Figure 12)
- $\label{eq:loss_loss} \begin{array}{l} \text{ } \\ \text$
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.

Qualification Information[†]

			Automotive				
			(per AEC-Q101) ^{††}				
Qualification	Level	Comments: This part number(s) passed Automotive qualification. IR's Industrial and Consumer qualification level is granted by extension of the higher Automotive level.					
Moisture Sensitivity Level		SO-8	MSL1				
	Machine Model		Class M4 (+/- 425V) ^{†††} AEC-Q101-002				
Human Body Model		Class H1B (+/- 1000V) ^{†††} AEC-Q101-001					
	Charged Device Model	Class C5 (+/- 1125V) ^{†††} AEC-Q101-005					
RoHS Compliant Yes			Yes				

- † Qualification standards can be found at International Rectifier's web site: http://www.irf.com/
- †† Exceptions to AEC-Q101 requirements are noted in the qualification report.
- ††† Highest passing voltage.

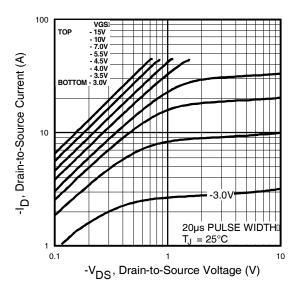
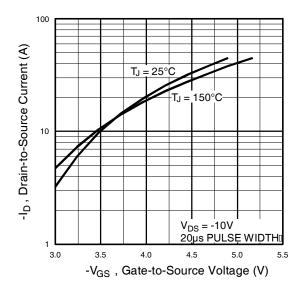



Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

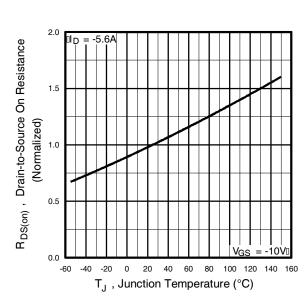
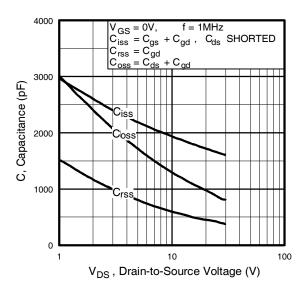
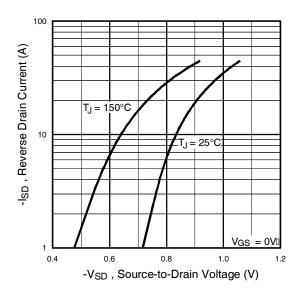



Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature



Since the state of the state of

I_D = -5.6A

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

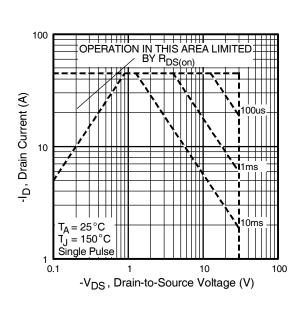


Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

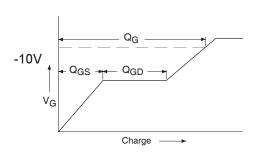


Fig 9a. Basic Gate Charge Waveform

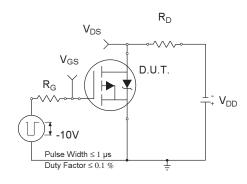
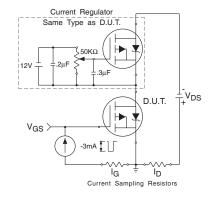



Fig 10a. Switching Time Test Circuit



Fig 10b. Switching Time Waveforms

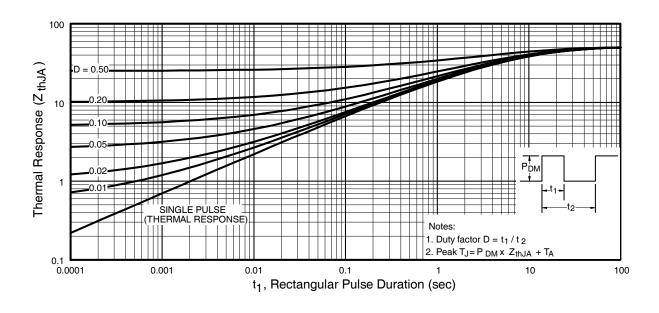


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

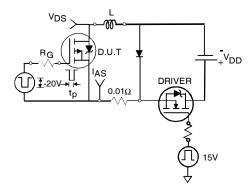


Fig 12a. Unclamped Inductive Test Circuit

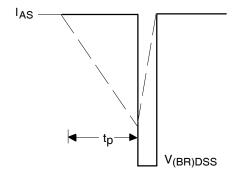


Fig 12b. Unclamped Inductive Waveforms

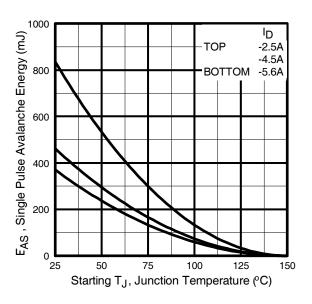
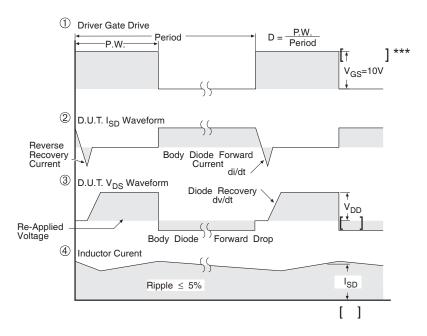
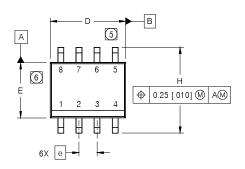



Fig 12c. Maximum Avalanche Energy Vs. Drain Current

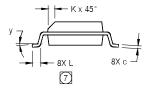
Peak Diode Recovery dv/dt Test Circuit

- * Reverse Polarity for P-Channel
- ** Use P-Channel Driver for P-Channel Measurements

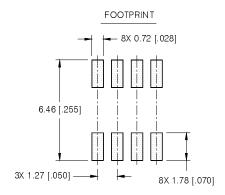


*** V_{GS} = 5.0V for Logic Level and 3V Drive Devices

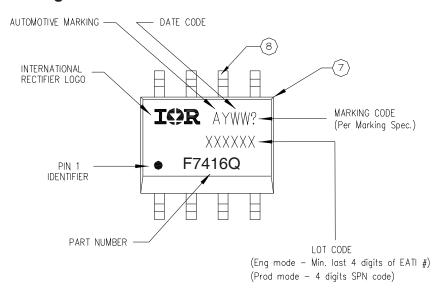
Fig 13. For P-Channel HEXFETS


SO-8 Package Outline

Dimensions are shown in millimeters (inches)

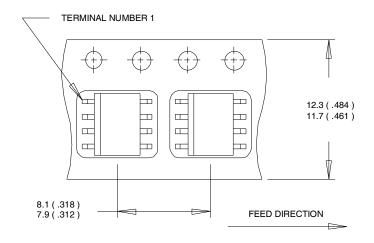

	- 8X b	<u>-</u>	e1] 	0.10 [004]
Ф	0.25 [.010] M	С	Α	В	

DIM	INC	HES	MILLIM	ETERS		
DIM	MIN	MAX	MIN	MAX		
Α	.0532	.0688	1.35	1.75		
A1	.0040	.0098	0.10	0.25		
b	.013	.020	0.33	0.51		
С	.0075	.0098	0.19	0.25		
D	.189	.1968	4.80	5.00		
Е	.1497	.1574	3.80	4.00		
е	.050 B	050 BASIC		1.27 BASIC		
e 1	.025 B	ASIC	0.635 E	BASIC		
Н	.2284	.2440	5.80	6.20		
K	.0099	.0196	0.25	0.50		
L	.016	.050	0.40	1.27		
у	O°	8°	0°	8°		

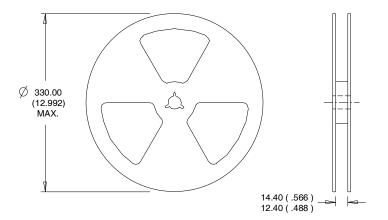


NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
- (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
- [7] DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.



SO-8 Part Marking


SO-8 Tape and Reel

Dimensions are shown in millimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:

- 1. CONTROLLING DIMENSION : MILLIMETER.
- 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Ordering Information

Base part number	Package Type	Standard Pack		Complete Part Number
		Form	Quantity	
AUIRF7416Q	SO-8	Tube	95	AUIRF7416Q
		Tape and Reel	2500	AUIRF7416QTR

IMPORTANT NOTICE

Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or services without notice. Part numbers designated with the "AU" prefix follow automotive industry and / or customer specific requirements with regards to product discontinuance and process change notification. All products are sold subject to IR's terms and conditions of sale supplied at the time of order acknowledgment.

IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR's standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using IR components. To minimize the risks with customer products and applications, customers should provide adequate design and operating safeguards.

Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alterations is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive business practice. IR is not responsible or liable for any such statements.

IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of the IR product could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product.

IR products are neither designed nor intended for use in military/aerospace applications or environments unless the IR products are specifically designated by IR as military-grade or "enhanced plastic." Only products designated by IR as military-grade meet military specifications. Buyers acknowledge and agree that any such use of IR products which IR has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation "AU". Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be responsible for any failure to meet such requirements.

For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/

WORLD HEADQUARTERS:

101 N. Sepulveda Blvd., El Segundo, California 90245 Tel: (310) 252-7105

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Infineon manufacturer:

Other Similar products are found below:

614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201

JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DLE 2SK2545(Q,T) D2294UK 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1

RJK60S3DPP-E0#T2 RJK60S5DPK-M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3 2SK2614(TE16L1,Q)