MODEL PAXLI - PAX LITE CURRENT METERS \& MODEL PAXLV - PAX LITE VOLTMETERS

- FOUR MULTI-RANGE UNITS COVER:
$199.9 \mu \mathrm{~A}$ to $1.999 \mathrm{~A}^{*}, 199.9 \mathrm{mV}$ (AC or DC)
1.999 V to 300 V (AC or DC)
- 3 1/2-DIGIT, 0.56" (14.2 mm) HIGH RED LED DISPLAY W/POLARITY
- BUILT-IN SCALING PROVISIONS
- SELECTABLE DECIMAL POINT LOCATION
- AUTO ZEROING CIRCUITS
- OVER-RANGE INDICATION
- NEMA 4X/IP65 SEALED FRONT BEZEL
- OPTIONAL CUSTOM UNITS OVERLAY W/BACKLIGHT
* Accessory Shunts Available For Higher Current Ranges.

GENERAL DESCRIPTION

PAX Lite Current and Volt Meters are premium quality instruments designed for tough industrial applications. With multi-range capability, built-in provision for scaling, and DIP switch selectable decimal points, these meters offer the ultimate in application flexibility. Four models cover your voltage and current indicator needs. The meter can provide direct readout from pressure, speed or flow transducers, or any other variable that can be translated to voltage or current. The built-in scaling allows the display to be scaled to the desired engineering unit.

The $31 / 2$-digit bi-polar display (minus sign displayed when current or voltage is negative) features a $0.56^{\prime \prime}$ high, 7 -segment LEDs for easy reading. The meter is also available with custom units label capability. Using the PAX label kit (PAXLBK30), the selected label is installed behind the panel, keeping it safe from washdown or other environmental conditions. A DIP switch is used to control the backlight for the units label.

The meters have a NEMA 4X/IP65 sealed bezel and extensive testing of noise effects to CE requirements, allowing the meter to provide a tough yet reliable application solution.

CAUTION: Risk of electric shock.

SAFETY SUMMARY

All safety related regulations, local codes and instructions that appear in the literature or on equipment must be observed to ensure personal safety and to prevent damage to either the instrument or equipment connected to it. If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

DEFINITION OF TERMS

INSTALLATION CATEGORY (overvoltage category) I, (CAT I): Signal level, special equipment or parts of equipment, telecommunication, electronic, etc. with smaller transient overvoltages than Installation Category (overvoltage category) II. (See IEC 664 \& IEC 61010)

INSTALLATION CATEGORY (overvoltage category) II, (CAT II): Local level, appliances, portable equipment, etc. with smaller transient overvoltages than Installation Category (overvoltage category) III. (See IEC 664 \& IEC 61010)

CAUTION: Risk of Danger.
Read complete instructions prior to installation and operation of the unit.

Note: Recommended minimum clearance (behind the panel) for mounting clip installation is 2.1" (53.4) H x 5.0" (127) W.

Ordering Information 2 Wiring the Meter 5
General Meter Specifications 3 Scaling the Meter 6
Accessories 3 Troubleshooting 7
Installing the Meter 4
Setting the Jumpers and Switches 4

Ordering I nformation

Meter Part Numbers

Accessories Part Numbers

TYPE	MODEL NO.	DESCRIPTION	PART NUMBERS
Accessories	PAXLBK	Units Label Kit Accessory	PAXLBK30
	APSCM	10 Amp DC Current Shunt	APSCM010
		100 Amp DC Current Shunt	APSCM100

General Meter Specifications

1. DISPLAY: $31 / 2$-digit, $0.56^{\prime \prime}(14.2 \mathrm{~mm})$ high, 7 -segment red LED, (-) minus sign displayed when current or voltage is negative. Decimal points inserted before 1st, 2nd, or 3rd least significant digits by DIP switch selection.
2. POWER: 115/230 VAC, switch selectable. Allowable power line variation $\pm 10 \%, 50 / 60 \mathrm{~Hz}, 6 \mathrm{VA}$.
Isolation: 2300 Vrms for 1 min . between input and supply Working Voltage: 300 V max. , CAT II
3. INPUT RANGES/RESOLUTION: (Selectable by jumper connections.):

AC Voltmeters	AC Current Meters	DC
$0-1.999 \mathrm{~V} / 1 \mathrm{mV}$	$0-199.9 \mu \mathrm{~A} / 0.1 \mu \mathrm{~A}$	± 1.99
$0-19.99 \mathrm{~V} / 10 \mathrm{mV}$	$0-1.999 \mathrm{~mA} / 1 \mu \mathrm{~A}$	± 19
$0-199.9 \mathrm{~V} / 100 \mathrm{mV}$	$0-19.99 \mathrm{~mA} / 10 \mu \mathrm{~A}$	± 19
$0-300 \mathrm{~V} / 1 \mathrm{~V}$	$0-199.9 \mathrm{~mA} / 100 \mu \mathrm{~A}$	± 30
	$0-1.999 \mathrm{~A} / 1 \mathrm{~mA}$	
	$0-199.9 \mathrm{mV} / 100 \mu \mathrm{~V}$	
Input Impedance:		
Voltage: All ranges $1 \mathrm{M} \Omega$		
Current: $199.9 \mu \mathrm{~A}$	$1000.1 \mathrm{~K} \Omega$	
1.999 mA	100.1Ω	
19.99 mA	10.1Ω	
199.9 mA	1.1Ω	
1.999 A	0.1Ω	

Working Voltage: 300 V max., CAT II
4. ACCURACY:

AC Voltmeters: $\pm(0.1 \%$ of Reading +3 digits) $(45-500 \mathrm{~Hz})$
AC Current Meters ($45-500 \mathrm{~Hz}$):
$199.9 \mu \mathrm{~A} / 199.9 \mathrm{mV}, 1.999 \mathrm{~mA}, 19.99 \mathrm{~mA}: \pm(0.1 \%$ of Reading +3 digits $)$ $199.9 \mathrm{~mA}: \pm(0.15 \%$ of Reading +3 digits $)$
$1 \mathbf{A}: \pm(0.5 \%$ of Reading +3 digits $)$
DC Voltmeters: $\pm(0.1 \%$ of Reading +1 digit $)$
DC Current Meters:
$199.9 \boldsymbol{\mu A} / 199.9 \mathbf{~ m V}, 1.999 \mathbf{m A}, 19.99 \mathbf{~ m A}: \pm(0.1 \%$ of Reading +1 digit $)$ $199.9 \mathrm{~mA}: \pm(0.15 \%$ of Reading +1 digit $)$
$1.999 \mathbf{A}: \pm(0.5 \%$ of Reading +1 digit $)$
Note: Any individual range may be recalibrated (scaled) to 0.1% accuracy with appropriate calibration equipment.
5. OVER-RANGE INDICATION: on all modes is indicated by blanking 3 least significant digits.
6. MAX. VOLTAGE ON LOWEST INPUT RANGE: 75 VAC or DC (Both voltmeters and current meters).
7. MAX. VOLTAGE ON TERMINAL BLOCK: 300 VAC or DC (Both voltmeters and current meters).
8. MAX. CURRENTS (FOR CURRENT METERS):
199.9μ A through 19.99 mA : 10 times max. range current
199.9 mA : 1 A
1.999 A: 3 A

Caution: In circuits where fault currents can exceed the maximum shunt current, a fast-blow fuse should be installed in series with the input signal. Otherwise, a slow blow 10 amp fuse is recommended that will allow for start-up over current situations, while still protecting the instrument.
9. TEMPERATURE COEFFICIENTS:

Current meters Voltmeters
$\mathrm{DC}: \pm 100 \mathrm{PPM} /{ }^{\circ} \mathrm{C} \quad \mathrm{DC}: \pm 75 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$
$\mathrm{AC}: \pm 200 \mathrm{PPM} /{ }^{\circ} \mathrm{C} \quad \mathrm{AC}: \pm 150 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$
10. ENVIRONMENTAL CONDITIONS:

Operating Temperature: 0° to $60^{\circ} \mathrm{C}$
Storage Temperature: -40° to $80^{\circ} \mathrm{C}$

Operating and Storage Humidity: 85% max. relative humidity (noncondensing)
Vibration According to IEC 68-2-6: Operational 5 to 150 Hz , in X, Y, Z direction for 1.5 hours, 2 g .
Shock According to IEC 68-2-27: Operational $30 \mathrm{~g}, 11 \mathrm{msec}$ in 3 directions.
Altitude: Up to 2000 meters
11. RESPONSE TIME TO STEP CHANGE INPUT: 1 sec . nominal
2. READING RATE: 2.5 readings/sec., nominal
3. NORMAL MODE REJECTION: $50 \mathrm{~dB} 50 / 60 \mathrm{~Hz}$ (DC units only)
4. COMMON MODE REJECTION: 110 dB DC or $50 / 60 \mathrm{~Hz}$ (DC units only)
5. COMMON MODE VOLTAGE (COMM. TO EARTH): 350 volt peak
16. CERTIFICATIONS AND COMPLIANCES:

SAFETY
UL Recognized Component, File \#E179259, UL61010A-1, CSA C22.2 No. 61010-1

Recognized to U.S. and Canadian requirements under the Component Recognition Program of Underwriters Laboratories, Inc.
UL Listed, File \#E137808, UL508, CSA C22.2 No. 14-M95
LISTED by Und. Lab. Inc. to U.S. and Canadian safety standards
Type 4X Enclosure rating (Face only), UL50
IECEE CB Scheme Test Report \#04ME11209-20041018
Issued by Underwriters Laboratories, Inc.
IEC 61010-1, EN 61010-1: Safety requirements for electrical equipment for measurement, control, and laboratory use, Part 1.
IP65 Enclosure rating (Face only), IEC 529
ELECTROMAGNETIC COMPATIBILITY:
Emissions and Immunity to EN 61326: Electrical Equipment for Measurement, Control and Laboratory use.
Immunity to Industrial Locations:
Electrostatic discharge EN 61000-4-2 Criterion A 4 kV contact discharge 8 kV air discharge
$\begin{array}{lll}\text { Electromagnetic RF fields } & \text { EN 61000-4-3 } & \begin{array}{l}\text { Criterion B } \\ 10 \mathrm{~V} / \mathrm{m}\end{array}\end{array}$
Fast transients (burst) EN 61000-4-4 Criterion B
2 kV power
2 kV signal
Surge EN 61000-4-5 Criterion A
1 kV L-L,
2 kV L\&N-E power
RF conducted interference EN 61000-4-6 Criterion A
EN 61000-4-11 3 V/rms
Emissions:
Emissions EN 55011 Class B
Notes:

1. Criterion A: Normal operation within specified limits.
2. Criterion B: Temporary loss of performance from which the unit selfrecovers.
3. CONNECTIONS: High compression cage-clamp terminal block

Wire Strip Length: $0.3^{\prime \prime}(7.5 \mathrm{~mm})$
Wire Gage: 30-14 AWG copper wire
Torque: 4.5 inch-lbs ($0.51 \mathrm{~N}-\mathrm{m}$) max.
18. CONSTRUCTION: This unit is rated for NEMA 4X/IP65 outdoor use. Installation Category II, Pollution Degree 2. One piece bezel/case. Flame resistant. Panel gasket and mounting clip included.
19. WEIGHT: 0.65 lbs . $(0.24 \mathrm{Kg})$

AcCessories

UNITS LABEL KIT (PAXLBK)

Each meter has a units indicator with backlighting that can be customized using the Units Label Kit. The backlight is controlled by a DIP switch.

EXTERNAL CURRENT SHUNTS (APSCM)

To measure DC current signals greater than 2 ADC , a shunt must be used. The APSCM010 current shunt converts a maximum 10 ADC signal into 100.0 mV . The APSCM100 current shunt converts a maximum 100 ADC signal into 100.0 mV . The continuous current through the shunt is limited to 115% of the rating.

1.0 Installing the Meter

Installation

The PAX meets NEMA 4X/IP65 requirements when properly installed. The unit is intended to be mounted into an enclosed panel. Prepare the panel cutout to the dimensions shown. Remove the panel latch from the unit. Slide the panel gasket over the rear of the unit to the back of the bezel. The unit should be installed fully assembled. Insert the unit into the panel cutout.

While holding the unit in place, push the panel latch over the rear of the unit so that the tabs of the panel latch engage in the slots on the case. The panel latch should be engaged in the farthest forward slot possible. To achieve a proper seal, tighten the latch screws evenly until the unit is snug in the panel (Torque to approximately $7 \mathrm{in}-\mathrm{lbs}[79 \mathrm{~N}-\mathrm{cm}]$). Do not over-tighten the screws.

Installation Environment

The unit should be installed in a location that does not exceed the maximum operating temperature and provides good air circulation. Placing the unit near devices that generate excessive heat should be avoided.

The bezel should be cleaned only with a soft cloth and neutral soap product. Do NOT use solvents. Continuous exposure to direct sunlight may accelerate the aging process of the bezel.

PANEL CUT-OUT

2.0 Setting the Jumpers and Switches

The meter has an input jumper and switches, which must be checked and/or changed prior to applying power. To access the input jumper and switches, remove the meter base from the case by firmly squeezing and pulling back on the side rear finger tabs. This should lower the latch below the case slot (which is located just in front of the finger tabs). It is recommended to release the latch on one side, then start the other side latch.

Power Selection Switch

今
Caution: Insure the AC power selection switch is set for the proper voltage before powering the meter. The meter is shipped from the factory in the 230 VAC position.

Set-Up DIP Switches

A DIP switch is located inside the meter. It is used for the selection of decimal points, backlight annunciator, and scaling. Selecting the "ON" position enables the function.

```
SWITCH
    1
    2
    3
    4
    5
```

FUNCTION
Decimal Point 1 (000.0)
Decimal Point 2 (00.00)
Decimal Point 3 (0.000)
Backlight Annunciator for Units Label Enables the Scaling Pot

Input Range Jumper

A jumper is used for selection of the voltage or current input range. Select the proper input range that will be high enough to avoid input signal overload. It is important that only one jumper position is used at a time. Avoid placing a jumper across two different input ranges.

PAXLI Jumper Selection

3.0 Wiring the Meter

WIRING OVERVIEW

Electrical connections are made via screw-clamp terminals located on the back of the meter. All conductors should conform to the meter's voltage and current ratings. All cabling should conform to appropriate standards of good installation, local codes and regulations. It is recommended that power supplied to the meter (AC) be protected by a fuse or circuit breaker.

When wiring the meter, compare the numbers embossed on the back of the meter case against those shown in wiring drawings for proper wire position. Strip the wire, leaving approximately $0.3^{\prime \prime}(7.5 \mathrm{~mm})$ bare lead exposed (stranded wires should be tinned with solder). Insert the lead under the correct screw-clamp terminal and tighten until the wire is secure. (Pull wire to verify tightness.)

EMC INSTALLATION GUIDELINES

Although this meter is designed with a high degree of immunity to ElectroMagnetic Interference (EMI), proper installation and wiring methods must be followed to ensure compatibility in each application. The type of the electrical noise, its source or the method of coupling into the unit may be different for various installations. Listed below are some EMC guidelines for successful installation in an industrial environment.

1. The meter should be mounted in a metal enclosure, which is properly connected to protective earth.
2. Never run Signal or Control cables in the same conduit or raceway with AC power lines, conductors feeding motors, solenoids, SCR controls, and heaters, etc. The cables should be run in metal conduit that is properly grounded. This is especially useful in applications where cable runs are long and portable two-way radios are used in close proximity or if the installation is near a commercial radio transmitter.
3. Signal or Control cables within an enclosure should be routed as far away as possible from contactors, control relays, transformers, and other noisy components.
4. In extremely high EMI environments, the use of external EMI suppression devices, such as ferrite suppression cores, is effective. Install them on Signal and Control cables as close to the unit as possible. Loop the cable through the core several times or use multiple cores on each cable for additional protection. Install line filters on the power input cable to the unit to suppress power line interference. Install them near the power entry point of the enclosure. The following EMI suppression devices (or equivalent) are recommended:

Ferrite Suppression Cores for signal and control cables:
Fair-Rite \# 0443167251 (RLC \#FCOR0000)
TDK \# ZCAT3035-1330A
Steward \#28B2029-0A0
Line Filters for input power cables:
Schaffner \# FN610-1/07 (RLC \#LFIL0000)
Schaffner \# FN670-1.8/07
Corcom \#1VR3
Note: Reference manufacturer's instructions when installing a line filter.
5. Long cable runs are more susceptible to EMI pickup than short cable runs. Therefore, keep cable runs as short as possible.
6. Switching of inductive loads produces high EMI. Use of snubbers across inductive loads suppresses EMI.

Snubber: RLC\#SNUB0000.

3.1 POWER WIRING

AC Power
Terminal 1: VAC
Terminal 2: VAC

3.2 INPUT SIGNAL WIRING

Before connecting signal wires, the Input Range Jumper should be verified for proper position.

PAXLV
Voltage Signal (self powered)
Terminal 4: + Volts DC/AC
Terminal 3: - Volts DC/AC

PAXLI
Current Signal (self powered)
Terminal 4: + Amps DC/AC
Terminal 3: - Amps DC/AC

2A MAX.

4.0 Scaling the Meter

PAXLV

DIRECT VOLTMETER READOUT

When the application requires direct voltmeter readout, the Scale Switch should remain in the "OFF" position. The Input Range Jumper is set to the voltage range being applied. It is possible to select a range higher than being applied to get lower resolution. The Decimal Point switches are set to resolution of the selected Input Range Jumper.

SCALING VOLTMETER READOUT

In many industrial applications, a voltmeter is required to display a reading in terms of PSI, RPM, or some other unit of measure. The signal voltage being measured can be generated by a transducer that senses the variations and delivers a linear output voltage. To provide the desired readout at the specified voltage, the voltmeter must be scaled.

Place the Scale Switch in the "ON" position. This enables the Scale Potentiometer which is accessible from the back of the meter. (Enabling the Scale Potentiometer does NOT affect the calibration of the meter.) Place the Decimal Point Switches to the proper location. To properly set the Input Range Jumper, the Division Factor must be determined by first using the below formula. After the Division Factor is calculated, use the Division Factor Range Selection Chart to choose the proper Input Range Jumper setting. Apply the meter power and the voltage signal. Adjust the Scale Potentiometer to the desired value.

This scaling only effects the span. There is no offset scaling. This means that only zero voltage can display a value of zero.

> DIVISION FACTOR FORMULA: $$
\frac{\mathrm{VT} \times \text { D.D.P. }}{\text { D.R. }}=\text { D.F. }
$$

WHERE:

VT	$=$ Maximum Transducer Output
D.D.P	$=$ Display Decimal Point
D.F.	$=$ Division Factor
D.R.	$=$ Desired Reading

D.D.P.
$0.000=1 \quad$ The Display Decimal Point
$00.00=10$ (D.D.P.) is determined by
$000.0=100$ the desired decimal point
$0000=1000$ placement in the readout.
After the Division Factor for the application has been calculated, the proper voltage range jumper can be selected. Use the "Division Factor Range Selection Chart" to choose the proper jumper setting.

DIVISION FACTOR RANGE SELECTION CHART
D.F. Use Input Position
0.1 to $1.2 \quad$ Pos 1: 0-1.999 VDC
1.2 to $10.5 \quad$ Pos 2: 0-19.99
10.5 to $100.5 \quad$ Pos 3: 0-199.9
100.5 to $1300 \quad$ Pos 4: 0-300

Note: Only one voltage jumper should be selected. Install the jumper before the voltage signal is applied.

BLOCK DIAGRAM PAXLV

EXAMPLE: A relative humidity transducer delivers a 7.0 VDC voltage at a relative humidity of 75%.

$$
\text { D.F. }=\frac{\mathrm{VT} \times \text { D.D.P. }}{\text { D.R. }}=\frac{7.0 \times 1000}{75}=93.3
$$

This Division Factor is between 10.5 and 100.5, therefore jumper position 3 (199.9 V) is selected. The Scaling Potentiometer is then adjusted for the desired readout at a known relative humidity.

DIRECT CURRENT METER READOUT

When the application requires direct current meter readout, the Scale Switch should remain in the "OFF" position. The Input Range Jumper is set to the current range being applied. It is possible to select a range higher than being applied to get lower resolution. The Decimal Point switches are set to resolution of the selected Input Range Jumper.

SCALING CURRENT METER READOUT

In many industrial applications, a current meter is required to display a reading in terms of PSI, RPM, or some other unit of measure. The signal voltage being measured can be generated by a transducer that senses the variations and delivers a linear output voltage. To provide the desired readout at the specified current, the current meter must be scaled.

Place the Scale Switch in the "ON" position. This enables the Scale Potentiometer which is accessible from the back of the meter. (Enabling the Scale Potentiometer does NOT affect the calibration of the meter.) Place the Decimal Point Switches to the proper location. The Input Range Jumper is set to the current range being applied. Apply the meter power and the current signal. Adjust the Scale Potentiometer to the desired value. Scaling to obtain a numerical readout higher than the normal value of the current can also be accomplished, in most cases, by selecting a lower current range. However, the maximum current for the range must not be exceeded. (See Specifications for maximum input currents.)

This scaling only effects the span. There is no offset scaling. This means that only zero amps can display a value of zero.

BLOCK DIAGRAM PAXLI

EXAMPLE: The Pax Current Meter has been connected to measure a circuit current to 120.0 mA maximum. However, in this application, the display is to indicate percent of load current with 120.0 mA equivalent to 100.0 percent. The scale potentiometer is adjusted to reduce the normal 120.0 mA signal input display reading of 120.0 to indicate the desired reading of 100.0 on the display. Scaling to obtain a numerical readout higher than the normal value of the current can also be accomplished in most cases by selecting a lower current range. However, the maximum current for the range must not be exceeded. (See Specifications for maximum input currents.)

5.0 TROUBLESHOOTI NG

PROBLEM	REMEDIES
NO DISPLAY	CHECK: Power switch and line voltage
INCORRECT DISPLAY	CHECK: Input jumper position CHECK: Scaling adjustment pot DIP switch position ADJUST: Scaling pot VERIFY: Input Signal
OVER-RANGE INDICATION	CHECK: Input jumper position VERIFY: Input signal

For further assistance, contact technical support at the appropriate company numbers listed.

6.0 CALI BRATI ON

The meter has been fully calibrated at the factory. Scaling to convert the input signal to a desired display value is performed by enabling the scale pot DIP switch. If the meter appears to be indicating incorrectly or inaccurately, refer to Troubleshooting before attempting to calibrate the meter.

When recalibration is required (generally every 2 years), it should only be performed by qualified technicians using appropriate equipment.

Input Calibration

\triangleWARNING: Calibration of this meter requires a signal source with an accuracy of 0.01% or better and an external meter with an accuracy of 0.005% or better.
Before starting, verify that the Input Range Jumper is set for the range to be calibrated. Also verify that the precision signal source is connected and ready. Allow a 30 minute warm-up period before calibrating the meter.

Then perform the following procedure:

1. Place jumper in 2 V range (PAXLV) or 2 mA range (PAXLI).
2. Set the DIP switch off to disable the scaling pot.
3. Apply half scale input signal.
4. Adjust calibration potentiometer as necessary for the display to read 1000 (ignore decimal point).
5. Apply zero signal and ensure display reads zero.
6. Apply full scale signal and ensure display reads 1999.

Note: Any individual range may be recalibrated (scaled) to 0.1% accuracy with appropriate calibration equipment.

LIMITED WARRANTY

The Company warrants the products it manufactures against defects in materials and workmanship for a period limited to two years from the date of shipment, provided the products have been stored, handled, installed, and used under proper conditions. The Company's liability under this limited warranty shall extend only to the repair or replacement of a defective product, at The Company's option. The Company disclaims all liability for any affirmation, promise or representation with respect to the products.
The customer agrees to hold Red Lion Controls harmless from, defend, and indemnify RLC against damages, claims, and expenses arising out of subsequent sales of RLC products or products containing components manufactured by RLC and based upon personal injuries, deaths, property damage, lost profits, and other matters which Buyer, its employees, or sub-contractors are or may be to any extent liable, including without limitation penalties imposed by the Consumer Product Safety Act (P.L. 92-573) and liability imposed upon any person pursuant to the Magnuson-Moss Warranty Act (P.L. 93-637), as now in effect or as amended hereafter.

No warranties expressed or implied are created with respect to The Company's products except those expressly contained herein. The Customer acknowledges the disclaimers and limitations contained herein and relies on no other warranties or affirmations.

Red Lion Controls	Red Lion Controls
Headquarters	Europe
20 Willow Springs Circle	Printerweg 10
York PA 17406	NL -3821 AD Amersfoort
Tel $+1(717) 767-6511$	Tel $+31(0) 334723225$
Fax $+1(717) 764-0839$	Fax $+31(0) 334893793$

Red Lion Controls

India
54, Vishvas Tenement
GST Road, New Ranip,
Ahmedabad-382480 Gujarat, India Tel +91987954 0503 Fax +91 7927531350

Red Lion Controls
China
Unit 101, XinAn Plaza
Building 13, No. 99 Tianzhou Road ShangHai, P.R. China 200223

Tel +86 21 6113-3688
Fax +86 21 6113-3683

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Red Lion manufacturer:
Other Similar products are found below :
CUB5B000 IFMA0035 LD400400 MLPS2000 508TX-A PAXLVA00 ZBH06002 CUB4CL20 CUB4LP40 SLX-8ES-1 TORF1000 WF1000BF EB-PD-24V-1 FANWAND721SMA FCOPPER-SFP-100 NTSFP-LX-10 PSDR060W 308TX 508TX CUB5SNK0 PAXLCR00 CRM000CMCMOD0000 CRM000CMJ1939000 CR10000700000210 CR10001000000210 CR30000400000310 CR30000700000420 CR30001000000420 CRM000CMCAN00000 PAXDP000 NT24K-16M12-POE NT24K-16M12-POE-PT NT24K-16M12-POE-R NT24K-16M12-POE-R-PT NT24K-16M12-PT NT24K-16M12-R NT24K-16M12-R-PT IAMA6262 CUB5PB00 FMFIBER-SFP-4K PAXLA000 LSAHC001 CBLGEN01 CUB5USB0 516TX 1002MC-SX 102MCE-SC-15 105FX-ST 106FX2-ST 304TX

