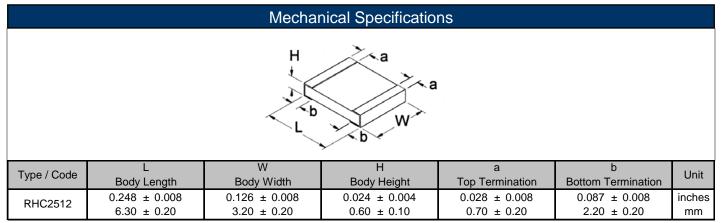
RHC Series

High Power Thick Film Chip Resistor

•

Resistive Product Solutions

Features:


- Handles 2W of power Resistances from 0.1Ω to $1M\Omega$
- RoHS compliant
- TCR of ± 100 ppm/°C
- 1% and 5% tolerances
- Runs significantly cooler than standard thick film 2512 chip

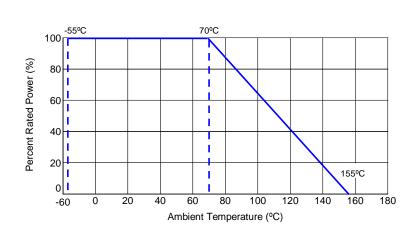
Electrical Specifications							
Type / Code	Package Type	Power Rating (Watts) @ 70ºC	Maximum Working	Maximum Overload		Ohmic Range (Ω) and Tolerance	
			Voltage (1)	Voltage	Coefficient	1%, 5%	
RHC2512	2512	2W	200V	400V	±100 ppm/ºC	0.1 - 1M	

(1) Lesser of \sqrt{PR} or maximum working voltage

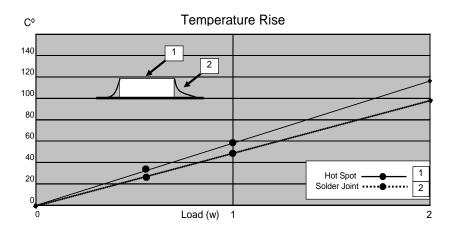
Please refer to the High Power Resistor Application Note (page 4) for more information on designing and implementing high power resistor types.

Solder Pad Dimensions							
Type / Code	L Total Length	W Total Width	D Pad Depth	Unit			
RHC2512	0.315 8.00	0.138 3.50	0.118 3.00	inches mm			

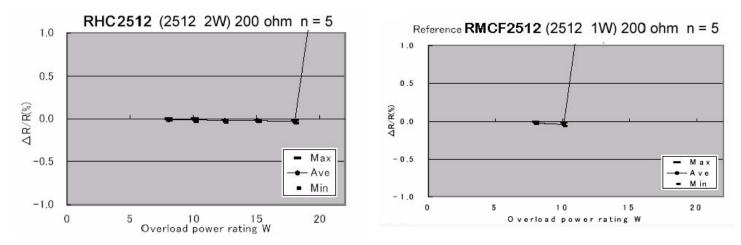
Performance Characteristics					
Typical					
±1%					
±1%					
±1%					
±1%					
±1%					
±1%					
≥1MΩ					


Operating Temperature Range: -55°C to +155°C

RHC Series


High Power Thick Film Chip Resistor

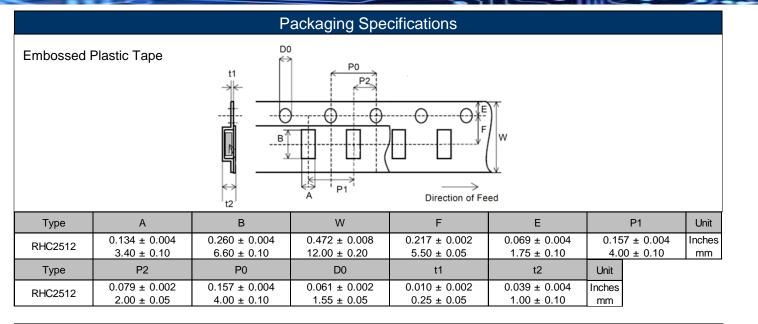
Resistive Product Solutions



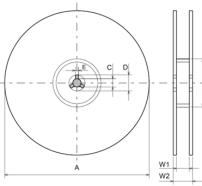
Temperature Rise:

Repeated Overload:

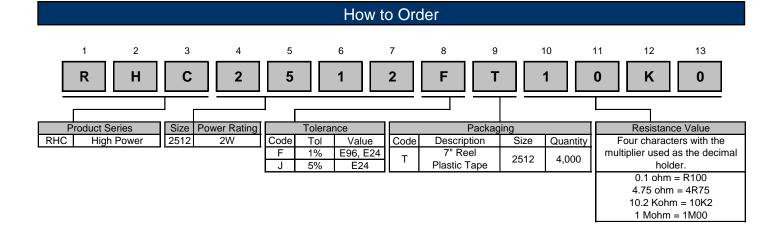
Test condition:


Voltage (Power): 2.0, 2.25, 2.5, 2.75, 3.0, 3,25 times of rated voltage. (8W, 10.1W, 12.5W, 15.1W, 18W, 21.1W)

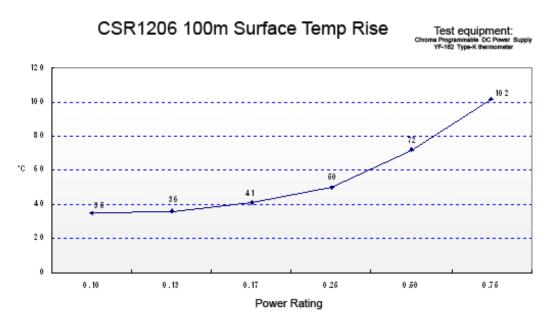
Applied time:


Each voltage 5 seconds.

As a reference test, the RMC was tested with the same rated voltage and testing substrate.


High Power Thick Film Chip Resistor

Туре	А	В	С	D	E	W1	W2	Unit
RHC2512	7.087 ± 0.118	2.362 ± 0.039	0.512 ± 0.008	0.827 ± 0.031	0.079 ± 0.020	0.512 ± 0.012	0.606 ± 0.039	Inches
	180.00 ± 3.00	60.00 ± 1.00	13.00 ± 0.20	21.00 ± 0.80	2.00 ± 0.50	13.00 ± 0.30	15.40 ± 1.00	mm



Please confirm technical specifications before you order and/or use.

High Power Chip Resistors and Thermal Management

Stackpole has developed several surface mount resistor series in addition to our current sense resistors, which have had higher power ratings than standard resistor chips. This has caused some uncertainty and even confusion by users as to how to reliably use these resistors at the higher power ratings in their designs.

The data sheets for the RHC, RMCP, RNCP, CSR, CSRN, CSRF, CSS, and CSSH state that the rated power assumes an ambient temperature of no more than 100 degrees C for the CSS / CSSH series and 70 degrees C for all other high power resistor series. In addition, IPC and UL best practices dictate that the combined temperature on any resistor due to power dissipated and ambient air shall be no more than 105C. At first glance this wouldn't seem too difficult, however the graph below shows typical heat rise for the CSR ½ 100 milliohm at full rated power. The heat rise for the RMCP and RNCP would be similar. The RHC with its unique materials, design, and processes would have less heat rise and therefore would be easier to implement for any given customer.

The 102 degrees C heat rise shown here would indicate there will be additional thermal reduction techniques needed to keep this part under 105C total hot spot temperature if this part is to be used at 0.75 watts of power. However, this same part at the usual power rating for this size would have a heat rise of around 72 degrees C. This additional heat rise may be dealt with using wider conductor traces, larger solder pads and land patterns under the solder mask, heavier copper in the conductors, vias through PCB, air movement, and heat sinks, among many other techniques. Because of the variety of methods customers can use to lower the effective heat rise of the circuit, resistor manufacturers simply specify power ratings with the limitations on ambient air temperature and total hot spot temperatures and leave the details of how to best accomplish this to the design engineers. Design guidelines for products in various market segments can vary widely so it would be unnecessarily constraining for a resistor manufacturer to recommend the use of any of these methods over another.

Note: The final resistance value can be affected by the board layout and assembly process, especially the size of the mounting pads and the amount of solder used. This is especially notable for resistance values \leq 50 m Ω . This should be taken into account when designing.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for stackpole manufacturer:

Other Similar products are found below :

CF14JB5K60 WWF2JT8R20 RMCF0402FT23K2 RC12JB3R30 KIT-RMCF0402FT-05 TR50JBD10R0 KIT-RMCF0603FT-03 CF12JT3M30 RNCP0805FTD1K10 RNCP1206FTD7K50 EWT225JB500R RNCP0805FTD301R KIT-RMCF0201FT-05 KIT-RMCF0402FT-03 KIT-RNCS0603BKE EWT225JB2K50 EWT50JB20K0 RMCF2512ZT0R00 RMCF2512FT4K02 EWT225JB30K0 EWT225JB50R0 EWT100JB1K00 KIT-RMCF0805FT-06 CB5JB5R00 RMCF2010JT33K0 RSF1JTR220 RSMF3JT2K70 CFM12JT680R RNV14FAL4M70 CFM14JT180R EWT225JB2R00 EWT225JB100R EWT50JB1K00 RSF1JT33K0 CSR0603FKR250 RNCS1206BKE1M00 TR35JBL2R20 KIT-RMCF0201FT-06 RSMF3JT1R00 RMCF0201FT1K00 EWT225JB3R00 EWT100JB5K00 RMCF1206FT33K0 RC14JB330R RNMF14FTC300K RNCF0805BKC10K0 RNCF0805CKC10K0 KIT-CSR2010FT RC1/4-12K-5%-TR RMCF0805FT32K4