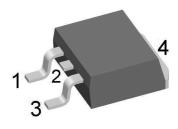


DHG30IM600PC

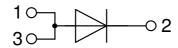
preliminary

600 V V_{RRM} =

I_{FAV} 30 A


35 ns

High Performance Fast Recovery Diode Low Loss and Soft Recovery Single Diode


Sonic Fast Recovery Diode

Part number

DHG30IM600PC

Backside: cathode

Features / Advantages:

- Planar passivated chips
- Very low leakage current
- Very short recovery time
- Improved thermal behaviour
- Very low Irm-values
- Very soft recovery behaviour
- Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
- Low Irm reduces:
- Power dissipation within the diode
- Turn-on loss in the commutating switch

Applications:

- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

Package: TO-263 (D2Pak)

- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0

Terms _Conditions of usage:

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact your local sales office.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact your local sales office.

Should you intend to use the product in aviation, in health or life endangering or life support applications, please notify. For any such application we urgently recommend

to perform joint risk and quality assessments;
the conclusion of quality agreements;

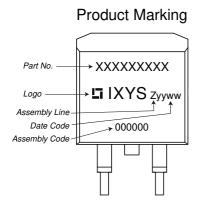
- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

Data according to IEC 60747 and per semiconductor unless otherwise specified

20131126a

preliminary

Fast Diode				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM}	max. non-repetitive reverse blocki	ing voltage	$T_{VJ} = 25^{\circ}C$			600	V
V _{RRM}	max. repetitive reverse blocking v	oltage	$T_{VJ} = 25^{\circ}C$			600	V
I _R	reverse current, drain current	V _R = 600 V	$T_{VJ} = 25^{\circ}C$			50	μΑ
		$V_R = 600 \text{ V}$	$T_{VJ} = 125^{\circ}C$			4	mΑ
V _F	forward voltage drop	I _F = 30 A	$T_{VJ} = 25^{\circ}C$			2.26	V
		$I_F = 60 \text{ A}$				3.11	٧
		I _F = 30 A	T _{vJ} = 125°C			2.22	V
		$I_F = 60 \text{ A}$				3.20	٧
I _{FAV}	average forward current	$T_c = 95^{\circ}C$	T _{VJ} = 150°C			30	Α
		rectangular $d = 0.5$					i
V _{F0}	threshold voltage		T _{vJ} = 150°C			1.17	V
$\mathbf{r}_{\scriptscriptstyleF}$	slope resistance	oss calculation only				32	mΩ
R _{thJC}	thermal resistance junction to cas	e				0.6	K/W
R _{thCH}	thermal resistance case to heatsing	nk			0.25		K/W
P _{tot}	total power dissipation		$T_{C} = 25^{\circ}C$			210	W
I _{FSM}	max. forward surge current	$t = 10 \text{ ms}$; (50 Hz), sine; $V_R = 0 \text{ V}$	$T_{VJ} = 45^{\circ}C$			200	Α
C	junction capacitance	$V_R = 400 \text{V}$ f = 1 MHz	$T_{VJ} = 25^{\circ}C$		16		pF
I _{RM}	max. reverse recovery current	\ \	T _{VJ} = 25 °C		12		Α
		$I_F = 35 \text{ A}; V_R = 400 \text{ V}$	$T_{VJ} = {}^{\circ}C$		tbd		Α
t _{rr}	reverse recovery time	$\begin{cases} I_F = 35 \text{ A}; V_R = 400 \text{ V} \\ -di_F /dt = 600 \text{ A/}\mu\text{s} \end{cases}$	$T_{VJ} = 25 ^{\circ}\text{C}$		35		ns
)	$T_{VJ} = {}^{\circ}C$		tbd		ns



DHG30IM600PC

preliminary

Package TO-263 (D2Pak)				Ratings			
Symbol	Definition	Conditions	min.	typ.	max.	Unit	
RMS	RMS current	per terminal 1)			35	Α	
T _{VJ}	virtual junction temperature		-55		150	°C	
Top	operation temperature		-55		125	°C	
T _{stg}	storage temperature		-55		150	°C	
Weight				2		g	
F _c	mounting force with clip		20		60	N	

¹⁾ l_{nusc} is typically limited by the pin-to-chip resistance (1); or by the current capability of the chip (2). In case of (1) and a product with multiple pins for one chip-potential, the current capability can be increased by connecting the pins as one contact.

Part description

D = Diode

H = Sonic Fast Recovery Diode

G = extreme fast

30 = Current Rating [A]

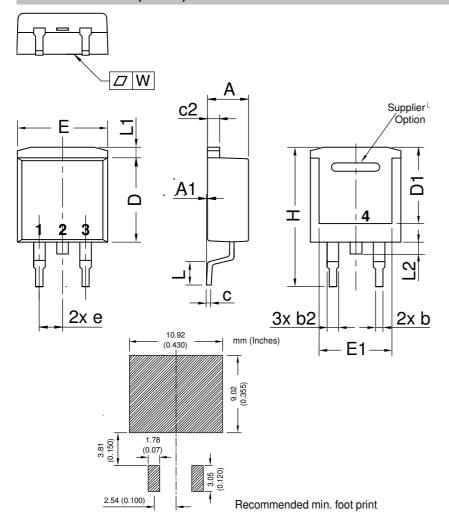
IM = Single Diode

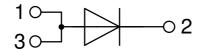
600 = Reverse Voltage [V]

PC = TO-263AB (D2Pak) (2)

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	DHG30IM600PC	DHG30IM600PC	Tape & Reel	800	503501

Similar Part	Package	Voltage class
DHG30I600PA	TO-220AC (2)	600
DHG30I600HA	TO-247AD (2)	600


Equivalent Circuits for Simulation			* on die level	T _{vJ} = 150 °C
$I \rightarrow V_0$)— <u>R</u> o	Fast Diode		
V _{0 max}	threshold voltage	1.17		V
$R_{0 max}$	slope resistance *	29		$m\Omega$


preliminary

Outlines TO-263 (D2Pak)

	Millin	notor	lno	hoo
Dim.	Millir	neter		hes
	min	max	min	max
Α	4.06	4.83	0.160	0.190
A1	typ.	0.10	typ. C	0.004
A2	2.	41	0.0	95
b	0.51	0.99	0.020	0.039
b2	1.14	1.40	0.045	0.055
С	0.40	0.74	0.016	0.029
c2	1.14	1.40	0.045	0.055
D	8.38	9.40	0.330	0.370
D1	8.00	8.89	0.315	0.350
D2	2.5		0.098	
Е	9.65	10.41	0.380	0.410
E1	6.22	8.50	0.245	0.335
е	2,54 BSC		0,100 BSC	
e1	4.28		0.169	
Н	14.61	15.88	0.575	0.625
L	1.78	2.79	0.070	0.110
L1	1.02	1.68	0.040	0.066
W	typ. 0.02	0.040	typ. 0.0008	0.002

All dimensions conform with and/or within JEDEC standard.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Diodes - General Purpose, Power, Switching category:

Click to view products by IXYS manufacturer:

Other Similar products are found below:

MCL4151-TR3 MMBD3004S-13-F RD0306T-H RD0506LS-SB-1H RGP30G-E373 DSE010-TR-E BAQ333-TR BAQ335-TR BAQ33-GS18 BAS1602VH6327XT BAV17-TR BAV19-TR BAV301-TR BAW27-TAP HSC285TRF-E NSVBAV23CLT1G NTE525 1SS181-TP 1SS184-TP 1SS193,LF 1SS193-TP 1SS400CST2RA SBAV99LT3G SDAA13 LL4448-GS18 SHN2D02FUTW1T1G LS4150GS18 LS4151GS08 SMMBD7000LT3G FC903-TR-E 1N4449 1N4934-E3/73 1SS226-TP APT100DL60HJ RFUH20TB3S RGP30G-E354 RGP30M-E3/73 D291S45T MCL4151-TR BAS 16-02V H6327 BAS 21U E6327 BAS 28 E6327 BAS33-TAP BAS 70-02V H6327 BAV300-TR BAV303-TR3 BAW27-TR BAW56DWQ-7-F BAW56M3T5G BAW75-TAP