


# **OLED DISPLAY MODULE**

# **Application Notes**

PRODUCT NUMBER

## DD-32645C-1A with EVK board





## **TABLE OF CONTENTS**

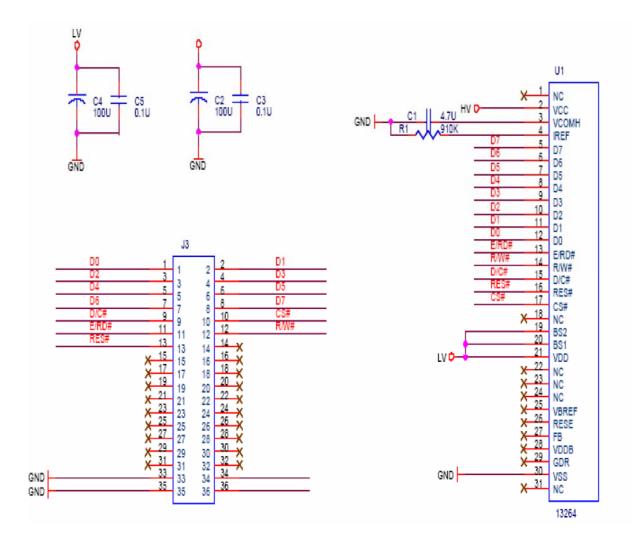
| 1 | EV  | K SCHEMATIC                    | 4  |
|---|-----|--------------------------------|----|
| 2 | SY  | MBOL DEFINITION                | 5  |
| 3 | TI  | MING CHARACTERISTICS           | 6  |
| 4 | CC  | ONNECTION BETWEEN OLED AND EVK | 7  |
| 5 | НС  | OW TO USE THE DD-32645C-1A     | 9  |
|   | 5.1 | RECOMMENDED INITIAL CODE       | 10 |

| Product No. | DD-32645C-1A | REV. A |
|-------------|--------------|--------|
| Floduct No. |              |        |

| Page | 2 / 11 |
|------|--------|
|------|--------|



#### REVISION RECORD


| Rev. | Date       | Page | Chapt. | Comment     | ECR no. |
|------|------------|------|--------|-------------|---------|
| A    | 21 Jun. 06 |      |        | First Issue |         |
|      |            |      |        |             |         |
|      |            |      |        |             |         |
|      |            |      |        |             |         |
|      |            |      |        |             |         |
|      |            |      |        |             |         |
|      |            |      |        |             |         |
|      |            |      |        |             |         |

| Product No. | DD-32645C-1A | REV. A |
|-------------|--------------|--------|
| Floduct No. |              |        |

| Page | 3 / 11 |
|------|--------|
|------|--------|



### 1 EVK Schematic



| Product No. | DD-32645C-1A | REV. A |
|-------------|--------------|--------|
| Flouuct No. |              |        |

| Page | 4 / 11 |
|------|--------|
|------|--------|



## 2 Symbol Definition

**Note:** The EVK has been hard wired to 8080 parallel interface

**D0-D7**: These pins are 8-bit bi-directional data bus to be connected to the MCU's data bus.

**E/RD#**: This pin is MCU interface input. When connecting to an 8080-microprocessor, this pin receives the Read (RD) signal. Data read operation is initiated when this pin is pulled low and the chip is selected.

**R/W#**: This pin is MCU interface input. When 8080 interface mode is selected, this pin is the Write (WR) input. Data write operation is initiated when this pin is pulled low and the chip is selected.

**D/C#**: This pin is Data/Command control pin. When the pin is pulled high, the data at D0-D7 is treated as display data. When the pin is pulled low, the data at D0-D7 is transferred to the command register. For detail relationship to MCU interface signals, please refer to the timing characteristics diagrams at following pages and datasheet.

**RES#**: This pin is reset signal input. When the pin is low, initialization of the chip is executed.

**CS#**: This pin is the chip select input. The chip is enabled for MCU communication only when CS is pulled low.

**HV:** This is the most positive voltage supply pin of the chip.

LV: Power supply pin for logic operation of the driver.

**VCC**: This is the most positive voltage supply pin of the chip.

**VSS**: This is the ground pin and also acts as a reference for logic pins and OLED driving voltages. This should be connected to the external ground

**VCOMH**: This is an input pin for the voltage output high level for COM signals. A capacitor should be connected between this pin and VSS.

NC: Dummy pad, do not group or short NC pins together.

| Product No. | DD-32645C-1A | REV. A |
|-------------|--------------|--------|
| Floduct No. |              |        |



## 3 Timing characteristics

 $VDD = 2.4 \text{ to } 3.5V, TA = -40 \text{ to } 85^{\circ}C$ 

| Symbol             | Parameter                            | Min | Тур | Max | Unit |
|--------------------|--------------------------------------|-----|-----|-----|------|
| t <sub>cycle</sub> | Clock Cycle Time                     | 300 | -   | -   | ns   |
| t <sub>AS</sub>    | Address Setup Time                   | 0   | -   |     | ns   |
| t <sub>AH</sub>    | Address Hold Time                    | 0   | -   | -   | ns   |
| t <sub>DSW</sub>   | Write Data Setup Time                | 40  | -   | •   | ns   |
| t <sub>DHW</sub>   | Write Data Hold Time                 | 15  | 1   | 1   | ns   |
| tohr               | Read Data Hold Time                  | 20  | -   | -   | ns   |
| tон                | Output Disable Time                  | -   | -   | 70  | ns   |
| t <sub>ACC</sub>   | Access Time                          | -   | -   | 140 | ns   |
| PW <sub>csL</sub>  | Chip Select Low Pulse Width (read)   | 120 | -   | -   | ns   |
|                    | Chip Select Low Pulse Width (write)  | 60  |     |     |      |
| PWcsh              | Chip Select High Pulse Width (read)  | 60  | -   | -   | ns   |
|                    | Chip Select High Pulse Width (write) | 60  |     |     |      |
| t <sub>R</sub>     | Rise Time                            |     | -   | 15  | ns   |
| t <sub>F</sub>     | Fall Time                            | -   | -   | 15  | ns   |

**Table 3 8080-Series MPU Parallel Interface Timing Characteristics** 

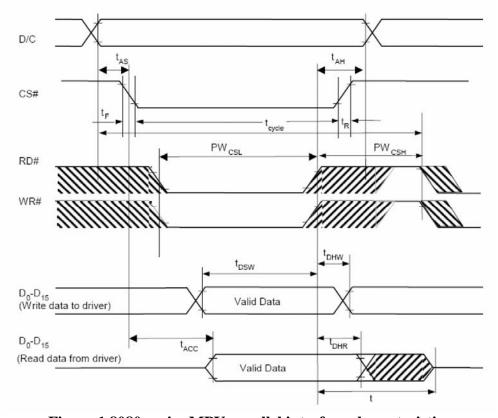



Figure 1 8080-series MPU parallel interface characteristics

| Product No  | DD-32645C-1A | REV. A | Dogo | 6 / 11 |
|-------------|--------------|--------|------|--------|
| Product No. |              |        | Page | 0 / 11 |



## 4 Connection Between OLED and EVK

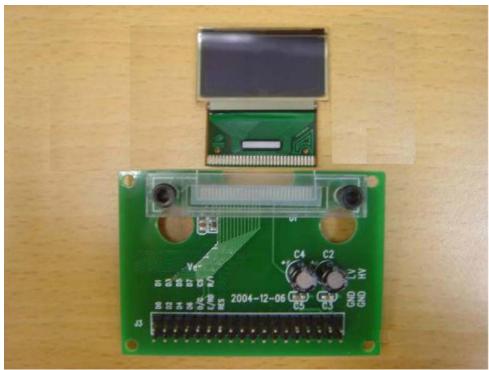



Figure 2 EVK PCB and DD-32645C-1A Module

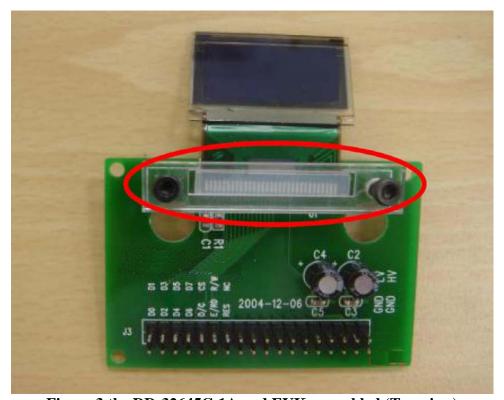



Figure 3 the DD-32645C-1A and EVK assembled (Top view)

| Product No. | DD-32645C-1A | REV. A | Dogo | 7 / 11 |
|-------------|--------------|--------|------|--------|
| Product No. |              |        | Page | //11   |



As the package is TCP, the connector pads are double sided. When assembling the OLED, make sure it in the right direction as shown in Figure 3 and tightened with the two hexagonal bolts.

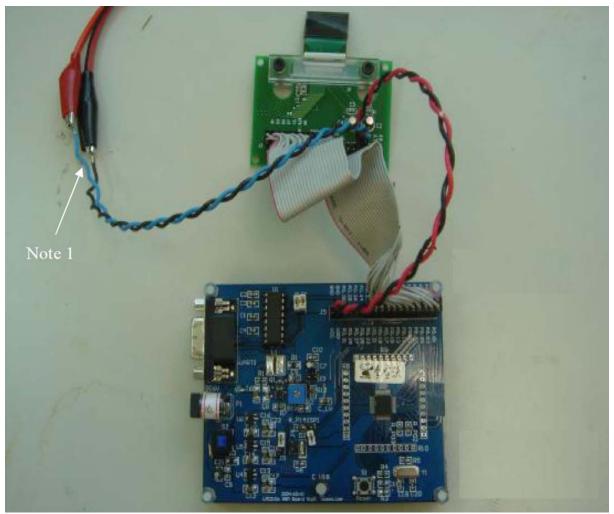
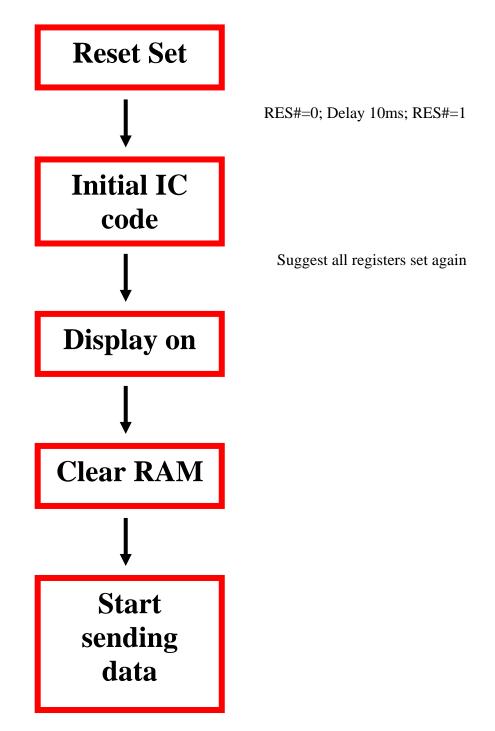



Figure 4 control MCU (not supplied) connected with EVK


Note 1: It is the external most positive voltage supply. In this sample is connected to power supply.

| Product No. | DD-32645C-1A | REV. A |
|-------------|--------------|--------|
| Floduct No. |              |        |

| Page | 8 / 11 |
|------|--------|
|------|--------|



### 5 How to use the DD-32645C-1A



| Product No. | DD-32645C-1A | REV. A |
|-------------|--------------|--------|
| Product No. |              |        |

| Page | 9 / 11 |
|------|--------|
|------|--------|



#### 5.1 Recommended Initial code

```
void initial(void)
                            // use 8080 interface
       BS1=1;
       BS2=1;
       DC=0;
       WR=0;
       RD=0;
       CS=0;
       RES=0:
       delay(100);
       RES=1;
                            //display off
       write_c(0xAE);
       write_c(0x81);
                            //set contrast
       write_c(0xff);
                            //max current
       write_c(0xa8);
                            //set duty
       write_c(0x3F);
                            //duty 63
       write_c(0xA0);
                            //Set Segment Re-map
       write_c(0xd3);
                            //display offset
       write_c(0x00);
                            //set 00
       write_c(0x40);
                            //Start line
       write_c(0xC8);
                            //Set COM Output Scan Direction
       write_c(0xda);
                            //Set COM pins hardware configuration
                            //Set COM pins hardware configuration
       write_c(0x12);
       write_c(0xD9);
                            //Set precharge
       write_c(0xf1);
                            //precharge=fh , discharge=1h
                            //Set VcomH
       write_c(0xDB);
       write_c(0x49);
                            //VcomH=73
       write_c(0xA4);
                            //Normal Mode
       write_c(0xA6);
                            //No Inverse
       write_c(0xAF);
                            //display on
}
void write_c(unsigned char ins_c)
       DC=0;
       CS=0;
       RD=1; /*tell system only write*/
       WR=0;
       d_bus=ins_c;
       WR=1;
       CS=1;
       DC=1;
}
```

| Product No. | DD-32645C-1A | REV. A |
|-------------|--------------|--------|
| Floduct No. |              |        |

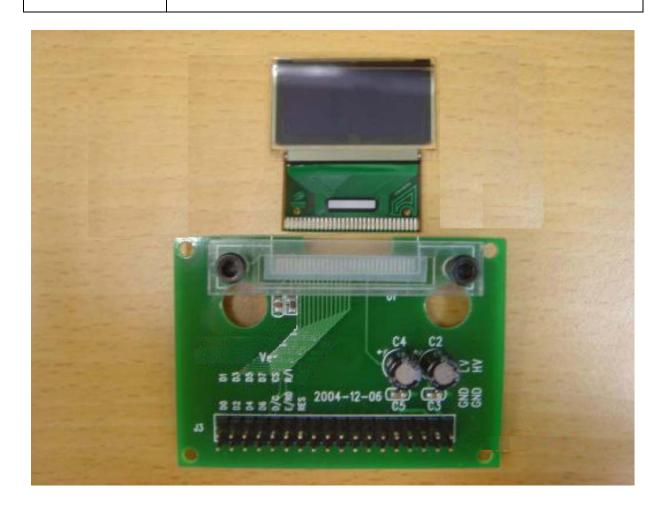
| Page | 10 / 11 |
|------|---------|
|------|---------|



```
void write_d(unsigned char ins_d)
       DC=1;
       CS=0;
       RD=1; /*tell system only write*/
       WR=0;
       d_bus=ins_d;
       CS=1;
       WR=1;
       DC=1;
}
void delay(int count)
       int i,j;
       for(i=0;i \le count;i++)
       for(j=0;j<=1000;j++)
}
* write_c= Write Command , write_d= Write Data
```

| Product No. | DD-32645C-1A | REV. A |
|-------------|--------------|--------|
| Flouuct No. |              |        |

| Page | 11 / 11 |
|------|---------|
|------|---------|




# **OLED DISPLAY MODULE**

# **Application Notes**

PRODUCT NUMBER

### DD-2864BY-1A with EVK board





## **TABLE OF CONTENTS**

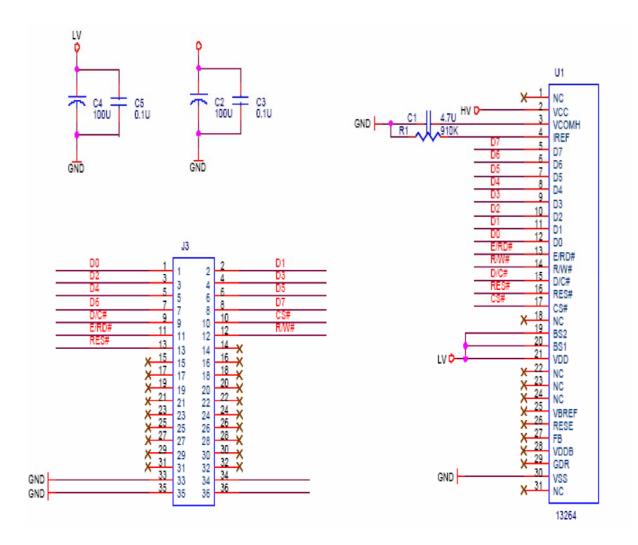
| 1 | EV  | VK SCHEMATIC                   | 4  |
|---|-----|--------------------------------|----|
| 2 | SY  | MBOL DEFINITION                | 5  |
| 3 | TI  | MING CHARACTERISTICS           | 6  |
| 4 | CC  | ONNECTION BETWEEN OLED AND EVK | 8  |
| 5 | Н   | OW TO USE THE DD-2864BY-1A     | 10 |
|   | 5.1 | RECOMMENDED INITIAL CODE       | 11 |

| Product No. | DD-2864BY-1A | REV. A |
|-------------|--------------|--------|
| Flouuci No. |              |        |

| Page | 2 / 12 |
|------|--------|
|------|--------|



#### REVISION RECORD


| Rev. | Date      | Page | Chapt. | Comment     | ECR no. |
|------|-----------|------|--------|-------------|---------|
| A    | 24 Nov 06 |      |        | First Issue |         |
|      |           |      |        |             |         |
|      |           |      |        |             |         |
|      |           |      |        |             |         |
|      |           |      |        |             |         |
|      |           |      |        |             |         |
|      |           |      |        |             |         |
|      |           |      |        |             |         |

| Product No  | DD-2864BY-1A | REV. A |
|-------------|--------------|--------|
| Product No. |              |        |

| Page 3 / 12 |
|-------------|
|-------------|



### 1 EVK Schematic



| Product No. | DD-2864BY-1A | REV. A |
|-------------|--------------|--------|
| Floduct No. |              |        |

| Page | 4 / 12 |
|------|--------|
|------|--------|



## **2 Symbol Definition**

**Note:** The EVK has been hard wired to 8080 parallel interface

**D0-D7**: These pins are 8-bit bi-directional data bus to be connected to the MCU's data bus.

**E/RD#**: This pin is MCU interface input. When connecting to an 8080-microprocessor, this pin receives the Read (RD) signal. Data read operation is initiated when this pin is pulled low and the chip is selected.

**R/W#**: This pin is MCU interface input. When 8080 interface mode is selected, this pin is the Write (WR) input. Data write operation is initiated when this pin is pulled low and the chip is selected.

**D/C#**: This pin is Data/Command control pin. When the pin is pulled high, the data at D0-D7 is treated as display data. When the pin is pulled low, the data at D0-D7 is transferred to the command register. For detail relationship to MCU interface signals, please refer to the timing characteristics diagrams at following pages and datasheet.

**RES#**: This pin is reset signal input. When the pin is low, initialization of the chip is executed.

**CS#**: This pin is the chip select input. The chip is enabled for MCU communication only when CS is pulled low.

**HV:** This is the most positive voltage supply pin of the chip.

**LV**: Power supply pin for logic operation of the driver.

**VCC**: This is the most positive voltage supply pin of the chip.

**VSS**: This is the ground pin and also acts as a reference for logic pins and OLED driving voltages. This should be connected to the external ground

**VCOMH**: This is an input pin for the voltage output high level for COM signals. A capacitor should be connected between this pin and VSS.

**NC**: Dummy pad, do not group or short NC pins together.

| Product No. | DD-2864BY-1A | REV. A |
|-------------|--------------|--------|
| Flouuct No. |              |        |

| Page | 5 / 12 |
|------|--------|
|------|--------|



# 3 Timing characteristics

 $VDD = 2.4 \text{ to } 3.5V, TA = -40 \text{ to } 85^{\circ}C$ 

| Symbol             | Parameter                                                                   | Min       | Тур | Max | Unit |
|--------------------|-----------------------------------------------------------------------------|-----------|-----|-----|------|
| t <sub>cycle</sub> | Clock Cycle Time                                                            | 300       | -   | -   | ns   |
| t <sub>AS</sub>    | Address Setup Time                                                          | 0         | -   | -   | ns   |
| t <sub>AH</sub>    | Address Hold Time                                                           | 0         | -   | -   | ns   |
| t <sub>DSW</sub>   | Write Data Setup Time                                                       | 40        | -   | -   | ns   |
| t <sub>DHW</sub>   | Write Data Hold Time                                                        | 15        | -   | -   | ns   |
| t <sub>DHR</sub>   | Read Data Hold Time                                                         | 20        | -   | -   | ns   |
| tон                | Output Disable Time                                                         | -         | -   | 70  | ns   |
| t <sub>ACC</sub>   | Access Time                                                                 | -         | -   | 140 | ns   |
| PW <sub>csL</sub>  | Chip Select Low Pulse Width (read) Chip Select Low Pulse Width (write)      | 120<br>60 | -   | -   | ns   |
| PWcsh              | Chip Select High Pulse Width (read)<br>Chip Select High Pulse Width (write) | 60<br>60  | -   | -   | ns   |
| t <sub>R</sub>     | Rise Time                                                                   | -         | -   | 15  | ns   |
| t <sub>F</sub>     | Fall Time                                                                   | -         | -   | 15  | ns   |

**Table 3 8080-Series MPU Parallel Interface Timing Characteristics** 

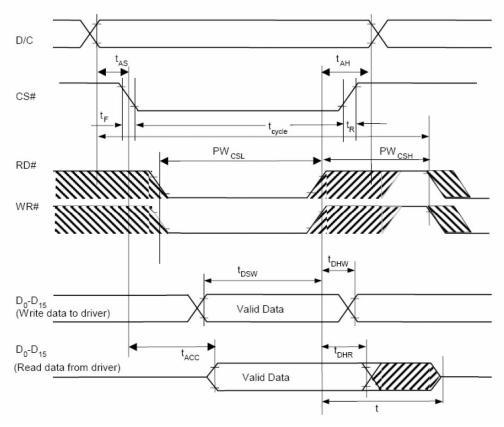



Figure 1 8080-series MPU parallel interface characteristics

| Product No. | DD-2864BY-1A | REV. A | Dogo | 6 / 12 |
|-------------|--------------|--------|------|--------|
| Product No. |              |        | Page | 0 / 12 |



| Product No. | DD-2864BY-1A | REV. A |
|-------------|--------------|--------|
| Floduct No. |              |        |

| 7 / 12 |
|--------|
|        |



## 4 Connection Between OLED and EVK

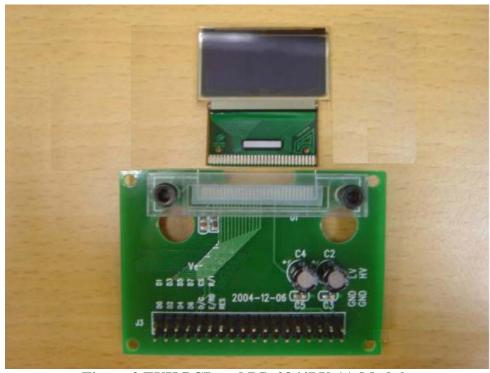



Figure 2 EVK PCB and DD-2864BY-1A Module

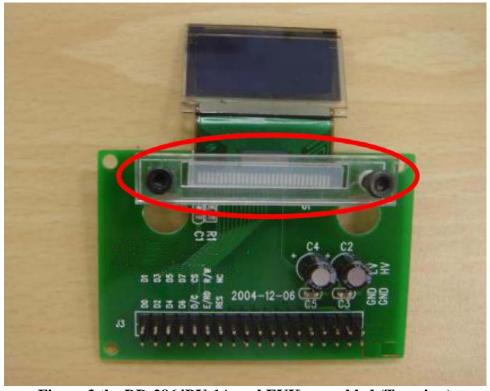



Figure 3 the DD-2864BY-1A and EVK assembled (Top view)

| Product No. | DD-2864BY-1A | REV. A | Dogo | 9 / 12 |
|-------------|--------------|--------|------|--------|
| Floduct No. |              |        | Page | 0/12   |



As the package is TCP, the connector pads are double sided. When assembling the OLED, make sure it in the right direction as shown in Figure 3 and tightened with the two hexagonal bolts.

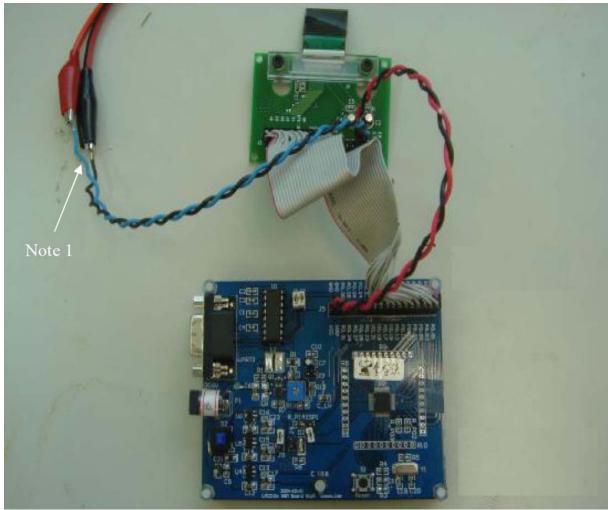
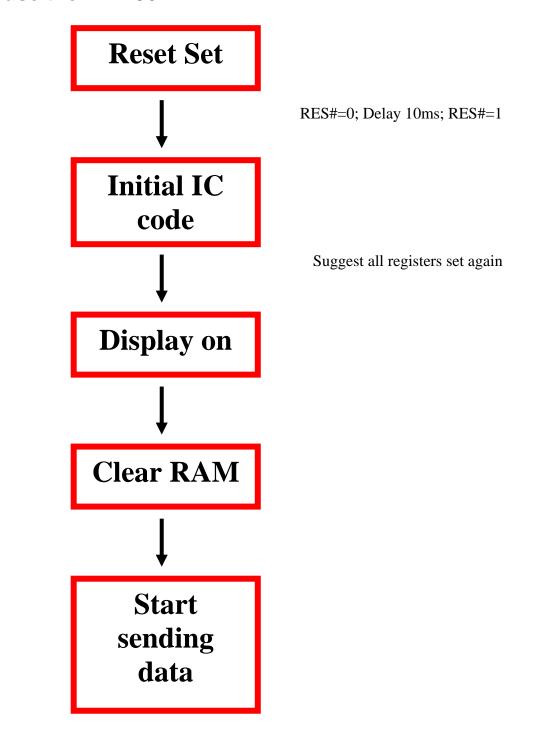



Figure 4 control MCU (not supplied) connected with EVK


Note 1: It is the external most positive voltage supply. In this sample is connected to power supply.

| Product No. | DD-2864BY-1A | REV. A |
|-------------|--------------|--------|
| Floduct No. |              |        |

| Page | 9 / 12 |
|------|--------|
|------|--------|



## 5 How to use the DD-2864BY-1A



| Product No. | DD-2864BY-1A | REV. A |
|-------------|--------------|--------|
| Floduct No. |              |        |

| Page | 10 / 12 |
|------|---------|
|------|---------|



#### 5.1 Recommended Initial code

```
void initial(void)
{
BS1=1;
                            // use 8080 interface
BS2=1;
DC=0:
WR=0;
RD=0;
CS=0;
RES=0;
delay(100);
RES=1;
write_c(0xAE);
                            //display off
write_c(0x81);
                     //set contrast
write_c(0xff);
                     //max current
write_c(0xa8);
                            //set duty
write c(0x3F);
                            //duty 63
write_c(0xA0);
                            //Set Segment Re-map
write_c(0xd3);
                            //display offset
write_c(0x00);
                            //set 00
write_c(0x40);
                            //Start line
write_c(0xC8);
                            //Set COM Output Scan Direction
write_c(0xda);
                            //Set COM pins hardware configuration
                            //Set COM pins hardware configuration
write_c(0x12);
                            //Set precharge
write_c(0xD9);
write_c(0xf1);
                            //precharge=fh , discharge=1h
write_c(0xDB);
                            //Set VcomH
write_c(0x49);
                            //VcomH=73
                            //Normal Mode
write_c(0xA4);
write_c(0xA6);
                            //No Inverse
write_c(0xAF);
                            //display on
void write_c(unsigned char ins_c)
DC=0;
CS=0;
                     /*tell system only write*/
RD=1;
WR=0;
d_bus=ins_c;
WR=1;
CS=1:
DC=1;
}
```

| Product No. | DD-2864BY-1A | REV. A |
|-------------|--------------|--------|
| Flouuct No. |              |        |

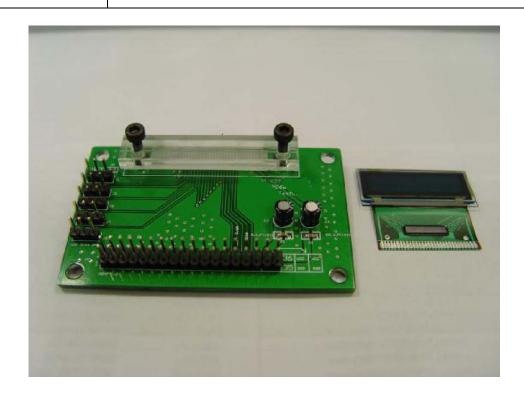
| Page | 11 / 12 |
|------|---------|
|------|---------|



```
\label{eq:continuous} $$ void write_d(unsigned char ins_d) $$ \{$ DC=1;$ CS=0;$ RD=1;$ /*tell system only write*/$ WR=0;$ d_bus=ins_d;$ CS=1;$ WR=1;$ DC=1;$ }$ void delay(int count) $$ \{$ int i,j;$ for(i=0;i<=count;i++)$ for(j=0;j<=1000;j++)$;$ }$   * write_c= Write Command , write_d= Write Data $$$ $$
```

| Product No. | DD-2864BY-1A | REV. A |
|-------------|--------------|--------|
| Floduct No. |              |        |

| Page | 12 / 12 |
|------|---------|
|------|---------|




# **OLED DISPLAY MODULE**

# **Application Notes**

PRODUCT NUMBER

## DD-2832BE-1A with EVK board





## **TABLE OF CONTENTS**

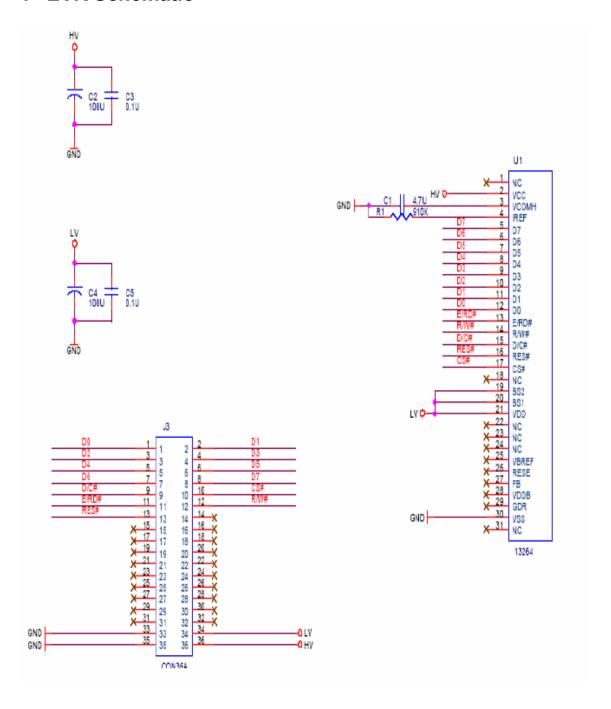
| 1 | EV  | K SCHEMATIC                   | . 4 |
|---|-----|-------------------------------|-----|
| 2 | SY  | MBOL DEFINITION               | . 5 |
| 3 | TIN | MING CHARACTERISTICS          | . 6 |
| 4 | CO  | NNECTION BETWEEN OLED AND EVK | .7  |
| 5 | НО  | W TO USE THE DD-2832BE-1A     | .9  |
|   | 5.1 | RECOMMENDED INITIAL CODE      | 10  |

| Product No. | DD-2832BE-1A | REV. A |
|-------------|--------------|--------|
| Floduct No. |              |        |

| Page | 2 / 11 |
|------|--------|
|------|--------|



#### **REVISION RECORD**


| Rev. | Date       | Page | Chapt. | Comment                                     | ECR no. |
|------|------------|------|--------|---------------------------------------------|---------|
| A    | 21 May. 06 |      |        | First Issue                                 |         |
| В    | 10 June 06 |      |        | Second Issue: change in schematics and code |         |
|      |            |      |        |                                             |         |
|      |            |      |        |                                             |         |
|      |            |      |        |                                             |         |
|      |            |      |        |                                             |         |
|      |            |      |        |                                             |         |
|      |            |      |        |                                             |         |

| Product No. | DD-2832BE-1A | REV. A |
|-------------|--------------|--------|
| Floduct No. |              |        |

| Page | 3 / 11 |
|------|--------|
|------|--------|



### 1 EVK Schematic



| Product No. | DD-2832BE-1A | REV. A |  |
|-------------|--------------|--------|--|
| Product No. |              |        |  |



### 2 Symbol Definition

Note: The EVK has been hard wired to 8080 parallel interface

**D0-D7**: These pins are 8-bit bi-directional data bus to be connected to the MCU's data bus.

**E/RD#**: This pin is MCU interface input. When connecting to an 8080-microprocessor, this pin receives the Read (RD) signal. Data read operation is initiated when this pin is pulled low and the chip is selected.

**R/W#**: This pin is MCU interface input. When 8080 interface mode is selected, this pin is the Write (WR) input. Data write operation is initiated when this pin is pulled low and the chip is selected.

**D/C#**: This pin is Data/Command control pin. When the pin is pulled high, the data at D0-D7 is treated as display data. When the pin is pulled low, the data at D7-D0 is transferred to the command register. For detail relationship to MCU interface signals, please refer to the timing characteristics diagrams at following pages and datasheet.

**RES#**: This pin is reset signal input. When the pin is low, initialization of the chip is executed.

**CS#**: This pin is the chip select input. The chip is enabled for MCU communication only when CS is pulled low.

**HV:** This is the most positive voltage supply pin of the chip.

LV: Power supply pin for logic operation of the driver.

**VCC**: This is the most positive voltage supply pin of the chip.

VSS: This is the ground pin and also acts as a reference for logic pins and OLED driving voltages. This should be connected to the external ground

**VCOMH**: This is an input pin for the voltage output high level for COM signals. A capacitor should be connected between this pin and VSS.

NC: Dummy pad, do not group or short NC pins together.

| Product No. | DD-2832BE-1A | REV. A |
|-------------|--------------|--------|
| Floduct No. |              |        |



# 3 Timing characteristics

 $VDD = 2.4 \text{ to } 3.5V, TA = -40 \text{ to } 85^{\circ}C$ 

| liana.                      | Cianal   | Cumahal           | Canditian             | R   | Rating | Huita |
|-----------------------------|----------|-------------------|-----------------------|-----|--------|-------|
| Item                        | Signal   | Symbol            | Condition             | Min | Max    | Units |
| Address hold time           | RS       | t <sub>AH8</sub>  |                       | 10  | _      | ns    |
| Address setup time          | K5       | t <sub>AW8</sub>  |                       | 20  | _      | ns    |
| System cycle time           | RS       | t <sub>CYC8</sub> |                       | 300 | _      | ns    |
| Control L pulse width (/WR) | /WR      | t <sub>CCLW</sub> |                       | 60  | _      | ns    |
| Control L pulse width (/RD) | /RD      | tcclr             |                       | 120 | _      | ns    |
| Control H pulse width (/WR) | /WR      | t <sub>cchw</sub> |                       | 60  | _      | ns    |
| Control H pulse width (/RD) | /RD      | tcchr             |                       | 120 | _      | ns    |
| Data setup time             |          | t <sub>DS8</sub>  |                       | 40  | _      | ns    |
| Address hold time           | D0 to D7 | t <sub>DH8</sub>  |                       | 15  | _      | ns    |
| RD access time              | D0 to D7 | t <sub>ACC8</sub> | C <sub>L</sub> =100pF | _   | 140    | ns    |
| Output disable time         |          | t <sub>oH8</sub>  | C[-100pr              | _   | 70     | ns    |
| Rise Time                   |          | t <sub>R</sub>    |                       | _   | 15     | ns    |
| Fall Time                   |          | t <sub>F</sub>    |                       | _   | 15     | ns    |

Table 2 8080-Series MPU Parallel Interface Timing Characteristics

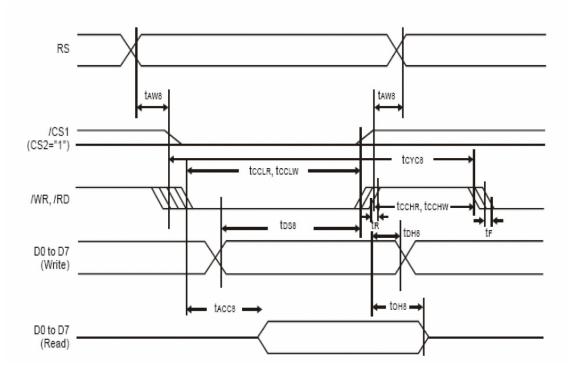



Figure 2 8080-series MPU parallel interface characteristics

| Product No. | DD-2832BE-1A | REV. A | Dogo | 6 / 11 |
|-------------|--------------|--------|------|--------|
| Product No. |              |        | Page | 0 / 11 |



## **Connection Between OLED and EVK**

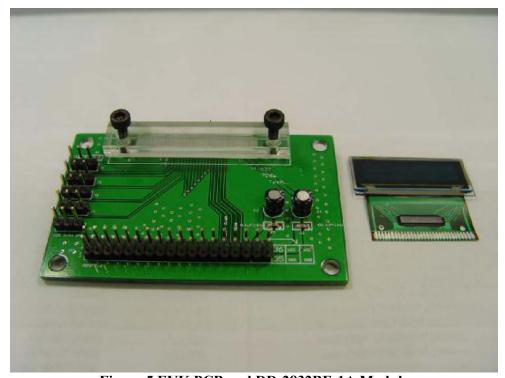



Figure 5 EVK PCB and DD-2832BE-1A Module

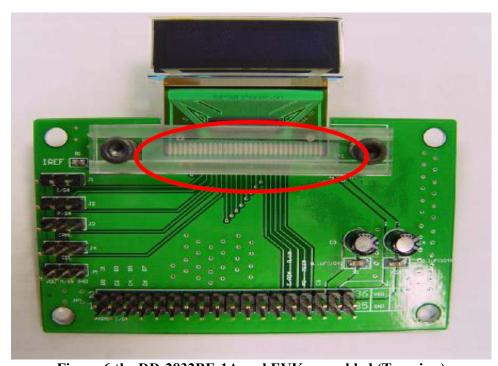



Figure 6 the DD-2832BE-1A and EVK assembled (Top view)

| Droduct No  | DD-2832BE-1A | REV. A | Dogo | 7 / 11 |
|-------------|--------------|--------|------|--------|
| Product No. |              |        | Page | //11   |



As the package is TCP, the connector pads are double sided. When assembling the OLED, make sure it is in the right direction as shown in Figure 6 and tightened with the two hexagonal bolts.

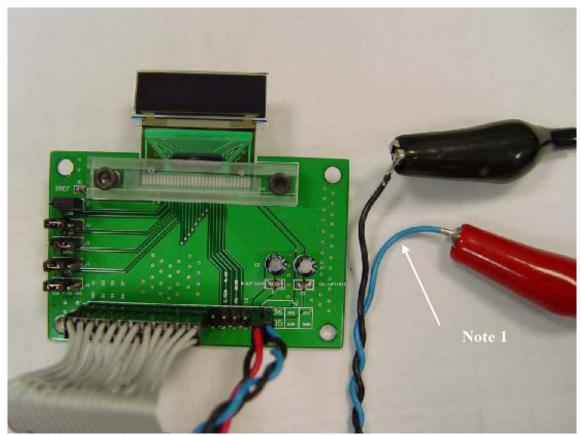
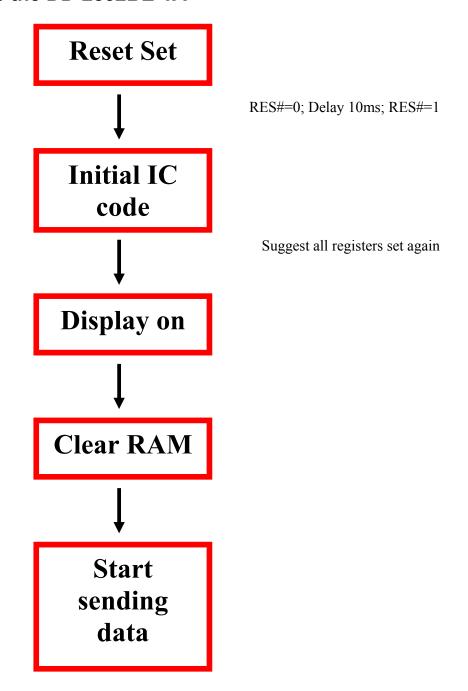



Figure 7 control MCU (not supplied) connected with EVK


Note 1: It is the external most positive voltage supply. In this sample is connected to power supply.

| Product No. | DD-2832BE-1A | REV. A |
|-------------|--------------|--------|
| Floduct No. |              |        |

| Page | 8 / 11 |
|------|--------|
|------|--------|



#### 4 How to use the DD-2832BE-1A



| Product No. | DD-2832BE-1A | REV. A |
|-------------|--------------|--------|
| Floduct No. |              |        |

| Page | 9 / 11 |
|------|--------|
|------|--------|



#### 4.1 Recommended Initial code

```
void initial(void)
                            // use 8080 interface
BS1=1;
BS2=1;
DC=0;
WR=0;
RD=0:
CS=0;
RES=0;
delay(100);
RES=1;
write c(0xAE);
                            //display off
write c(0x81);
                     //set contrast
write c(0xff);
                     //max current
write c(0xa8);
                            //set duty
                            //duty 63
write_c(0x3F);
                            //Set Segment Re-map
write c(0xA0);
write c(0xd3);
                            //display offset
                            //set 00
write c(0x00);
write c(0x40);
                            //Start line
                            //Set COM Output Scan Direction
write c(0xC8);
                            //Set COM pins hardware configuration
write_c(0xda);
write c(0x12);
                            //Set COM pins hardware configuration
write c(0xD9);
                            //Set precharge
                            //precharge=fh , discharge=1h
write c(0xf1);
                            //Set VcomH
write c(0xDB);
write c(0x49);
                            //VcomH=73
write c(0xA4);
                            //Normal Mode
                            //No Inverse
write c(0xA6);
write c(0xAF);
                            //display on
void write c(unsigned char ins c)
DC=0:
CS=0;
RD=1:
                     /*tell system only write*/
WR=0;
d_bus=ins_c;
WR=1;
CS=1;
DC=1;
}
```

| Product No. | DD-2832BE-1A | REV. A |
|-------------|--------------|--------|
| Floduct No. |              |        |

| Page | 10 / 11 |
|------|---------|
|------|---------|



| Product No. | DD-2832BE-1A | REV. A |
|-------------|--------------|--------|
| Floduct No. |              |        |

| Page 11 / 11 |
|--------------|
|--------------|

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Densitron manufacturer:

Other Similar products are found below:

DMT043QQNTNT0-1C DMT066YYHLNT0-1A DMT028QVNTNT0S-1A DMT080YYNLCMU-1A DMT024QVNUNT0-2C DMT028QVHXCMI-1A DMT080YYNLNT0-1A DMT024QVNUCMI-2A DD-160128FC-2B LMR4048BG2C16HNG/5V