

OLED DISPLAY MODULE

Application Notes

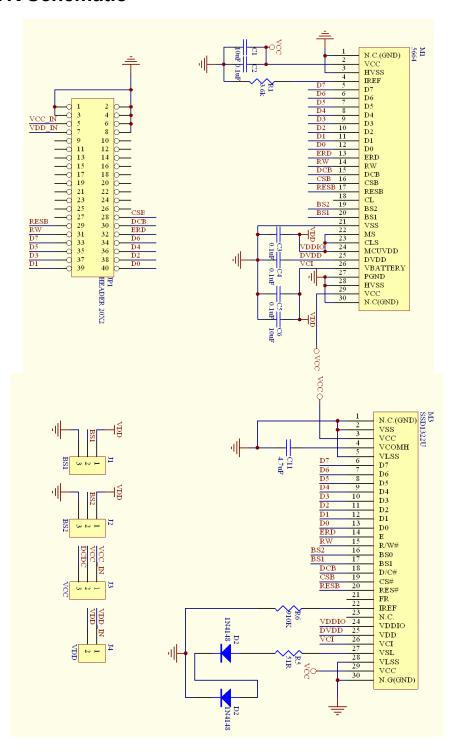
PRODUCT NUMBER	DD-25664YW-3A/4A with EVK board
NOMBER	DD-25664BE-3A/4A with EVK board

TABLE OF CONTENTS

1	EV	VK SCHEMATIC	4
2	SY	YMBOL DEFINITION	5
3	TI	IMING CHARACTERISTICS	6
	3.1	80 SERIES MPU PARALLEL INTERFACE	6
	3.2	6800 Series MPU parallel interface	
	3.3	SPI(4 WIRE) INTERFACE	
	3.4	SPI(3-WIRE) INTERFACE	9
4	C	ONNECTION BETWEEN OLED AND EVK	10
5	PC	OWER DOWN AND POWER UP SEQUENCE	12
6	Н	OW TO USE THE DD-25664XX-3A-4A	13
	6.1	RECOMMENDED INITIAL CODE	14

Product No.	DD-25664XX-3A/4A	REV. A
Floudet No.		

REVISION RECORD


Rev.	Date	Page	Chapt.	Comment	ECR no.
A	28 th May 2008			First Issue	

Product No.	DD-25664XX-3A/4A	REV. A
Floduct No.		

Page	3 / 14
------	--------

1 EVK Schematic

Product No	DD-25664XX-3A/4A	REV. A	Dogo	1/11
Product No.			Page	4/14

2 SYMBOL DEFINITION

D0-D7: These pins are bi-directional data bus connecting to the MCU data bus. Unused pins are recommended to tie LOW. (Except for D2 pin in SPI mode)

E/RD#: This pin is MCU interface input.

When interfacing to a 6800-series microprocessor, this pin will be used as the Enable (E) signal. Read/write operation is initiated when this pin is pulled HIGH and the chip is selected. When connecting to an 8080-microprocessor, this pin receives the Read (RD#) signal. Read operation is initiated when this pin is pulled LOW and the chip is selected. When serial interface is selected, this pin E(RD#) must be connected to VSS.

W/R#: This pin is read / write control input pin connecting to the MCU interface. When interfacing to a 6800-series microprocessor, this pin will be used as Read/Write (R/W#) selection input. Read mode will be carried out when this pin is pulled HIGH and write mode when LOW.

When 8080 interface mode is selected, this pin will be the Write (WR#) input. Data write operation is initiated when this pin is pulled LOW and the chip is selected. When serial interface is selected, this pin R/W (WR#) must be connected to VSS.

D/C#: This pin is Data/Command control pin connecting to the MCU. When the pin is pulled HIGH, the content at D[7:0] will be interpreted as data. When the pin is pulled LOW, the content at D[7:0] will be interpreted as command.

RES#: This pin is reset signal input.

When the pin is pulled LOW, initialization of the chip is executed. Keep this pin pull HIGH during normal operation.

CS#: This pin is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled LOW.

BS0/BS1: These pins are MCU interface selection input. See the following table:

BS[1:0]	Bus Interface Selection
00	4 line SPI
01	3 line SPI
10	8-bit 8080 parallel
11	8-bit 6800 parallel

VCC: This is the most positive voltage supply pin of the chip. It can be supplied externally or generated internally by using internal DC-DC voltage converter.

VDD: This is a voltage supply pin. It must be connected to external source.

VDDIO: Power supply for interface logic level. It should be matched with the MCU interface voltage level.

VCI: Low voltage power supply. VCI must always be equal to or higher than VDD and VDDIO.

VSS: This is a ground pin. It also as a reference for the logic pins and the OLED driving voltages. It must be connected to external ground.

NC: These pins should be left open individually.

Product No	No. DD-25664XX-3A/4A REV. A Page 5 / 14				
Product No.				rage	3 / 14

3 Timing characteristics

3.1 80 Series MPU parallel interface

 $(V_{DD}$ - V_{SS} = 2.4 to 2.6V, $V_{DDIO} \text{=} 1.6\text{V}, \, V_{CI} \text{=} 3.3\text{V}, \, T_{A} \text{=} 25^{\circ}\text{C})$

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	-	ns
t_{AS}	Address Setup Time	10	-	-	ns
t_{AH}	Address Hold Time	0	-	-	ns
t_{DSW}	Write Data Setup Time	40	-	-	ns
t_{DHW}	Write Data Hold Time	7	-	-	ns
t _{DHR}	Read Data Hold Time	20	-	-	ns
t _{OH}	Output Disable Time	-	-	70	ns
t_{ACC}	Access Time	•	-	140	ns
t _{PWLR}	Read Low Time	150	-	-	ns
t_{PWLW}	Write Low Time	60	-	-	ns
t _{PWHR}	Read High Time	60	-	-	ns
t_{PWHW}	Write High Time	60	-	-	ns
t_R	Rise Time	-	-	15	ns
$t_{\rm F}$	Fall Time	-	-	15	ns
t _{CS}	Chip select setup time	0	-	-	ns
t_{CSH}	Chip select hold time to read signal	0	-	-	ns
t _{CSF}	Chip select hold time	20	-	-	ns

Table 1: 80-Series MPU Parallel Interface Write Timing Characteristics

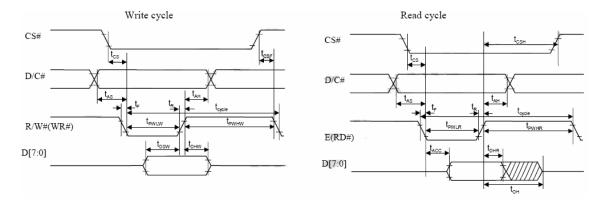


Figure 1: 80-series MPU parallel interface write timing diagram

Product No	oduct No. DD-25664XX-3A/4A REV. A Page 6	6 / 14			
Flouuct No.				rage	0 / 14

3.2 68xx- Series MPU parallel interface

 $(V_{\text{DD}}$ - V_{SS} = 2.4 to 2.6V, $V_{\text{DDIO}}\text{=}1.6\text{V},\,V_{\text{CI}}\text{=}3.3\text{V},\,T_{\text{A}}\text{=}25^{\circ}\text{C})$

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	-	ns
t _{AS}	Address Setup Time	10	-	-	ns
t _{AH}	Address Hold Time	0	-	-	ns
t_{DSW}	Write Data Setup Time	40	-	-	ns
t_{DHW}	Write Data Hold Time	7	-	-	ns
t _{DHR}	Read Data Hold Time	20	-	-	ns
t _{OH}	Output Disable Time	-	-	70	ns
t_{ACC}	Access Time	-	-	140	ns
PW_{CSL}	Chip Select Low Pulse Width (read)	120			*2.0
P W CSL	Chip Select Low Pulse Width (write)	60	-	-	ns
PW_{CSH}	Chip Select High Pulse Width (read)	60	_		*26
r vv CSH	Chip Select High Pulse Width (write)	60	-	-	ns
t_R	Rise Time	-	-	15	ns
$t_{\rm F}$	Fall Time	-	-	15	ns

Table 2: 6800-Series MPU Parallel Interface Write Timing Characteristics

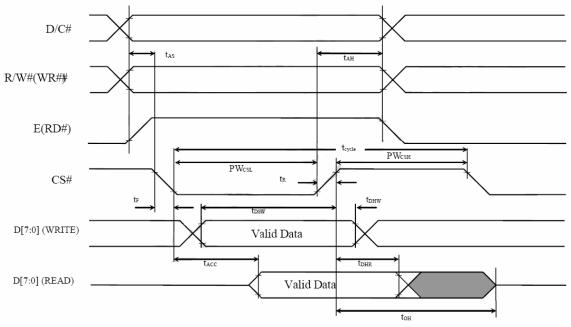
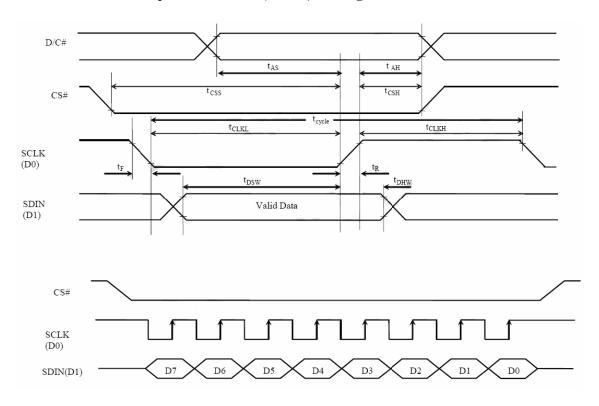


Figure 2: 6800-Series MPU Parallel Interface Write Timing diagram

Duo duot Mo	DD-25664XX-3A/4A	REV. A	Dogo	7 / 14
Product No.			Page	/ / 14



3.3 SPI(4 WIRE) INTERFACE

 $(V_{\text{DD}}$ - V_{SS} = 2.4 to 2.6V, $V_{\text{DDIO}}\text{=}1.6\text{V},\,V_{\text{CI}}$ = 3.3V, T_{A} = 25°C)

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	100	-	-	ns
t_{AS}	Address Setup Time	15	-	-	ns
t _{AH}	Address Hold Time	15	-	-	ns
t _{CSS}	Chip Select Setup Time	20	-	-	ns
t _{CSH}	Chip Select Hold Time	10	-	-	ns
t _{DSW}	Write Data Setup Time	15	-	-	ns
t_{DHW}	Write Data Hold Time	15	-	-	ns
t_{CLKL}	Clock Low Time	20	-	-	ns
t _{CLKH}	Clock High Time	20	-	-	ns
t _R	Rise Time	-	-	15	ns
t _F	Fall Time	-	-	15	ns

Table 3: Serial Peripheral Interface(4-wire) Timing Characteristics

Duo duot Mo	DD-25664XX-3A/4A	REV. A	Dogo	Q / 1/I
Product No.			Page	8 / 14

Figure 3: Serial Peripheral Interface(4 WIRE) Timing diagram

3.4 SPI(3-WIRE) INTERFACE

 $(V_{\text{DD}}$ - V_{SS} = 2.4 to 2.6V, $V_{\text{DDIO}}\text{=}1.6\text{V},\,V_{\text{CI}}\text{=}3.3\text{V},\,T_{\text{A}}\text{=}25^{\circ}\text{C})$

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	100	-	-	ns
t _{AS}	Address Setup Time	15	-	-	ns
t _{AH}	Address Hold Time	15	-	-	ns
t _{CSS}	Chip Select Setup Time	20	-	-	ns
t _{CSH}	Chip Select Hold Time	10	-	-	ns
t_{DSW}	Write Data Setup Time	15	-	-	ns
t_{DHW}	Write Data Hold Time	15	-	-	ns
t _{CLKL}	Clock Low Time	20	-	-	ns
t _{CLKH}	Clock High Time	20	-	-	ns
t _R	Rise Time	-	-	15	ns
t _F	Fall Time	-	-	15	ns

Table 4: Serial Peripheral Interface(3 wire) Timing Characteristics

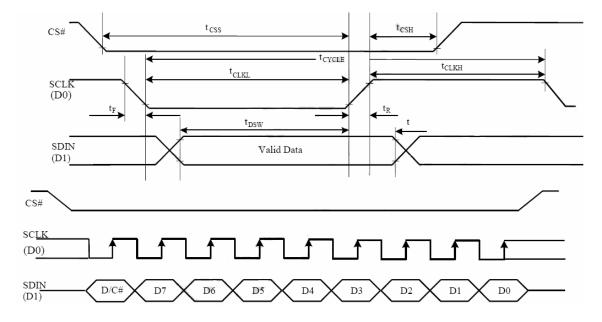
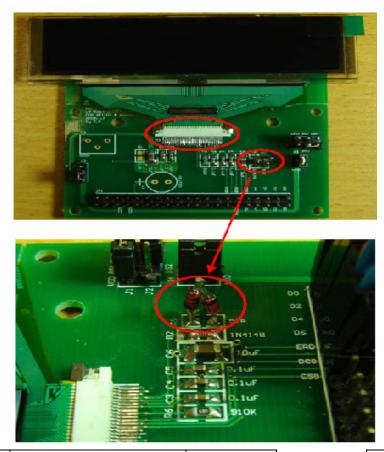


Figure 4: Serial Peripheral Interface(3-wire) Timing diagram

Droduot No	DD-25664XX-3A/4A	REV. A	Dogo	0 / 14
Product No.			Page	9/14



4 Connection Between OLED and EVK

Figure 5 EVK PCB and DD-25664XX-3A-4A Module

The DD-25664XX-3A-4A are COF type module; please refer to figure 1 & 2. User can use leading wire to connect EVK with customers systems. The example shown in Fig 6.

Dec duct Mo	DD-25664XX-3A/4A	REV. A	Page	10 / 14	
Product No.			rage	10 / 14	

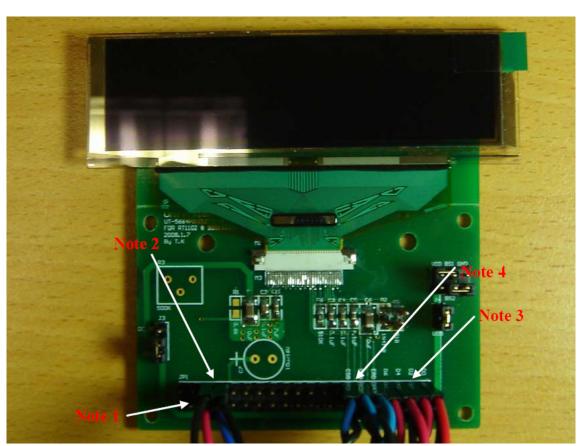


Figure 6 combination of the module and EVK

Figure 7 EVK with test platform

Note 1: It is OLED high voltage supply

Note 2: It is logic voltage supply

Note 3: Those are leading wire connect to control board. Those are data pin (D0~D7)

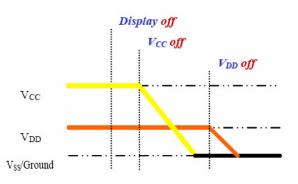
Note 4: Those are leading wore connect to control board. Those are control pin.

(E,R/W,D/C,RES,CS)

Droduct No	DD-25664XX-3A/4A	REV. A	Dogo	11 / 14	l
Product No.			Page	11/14	

5 Power down and Power Up sequence

To protect the OLED panel and extend the panel life time the driver IC power up/down routine should include a delay period between high voltage and low voltage power sources during turn on/off. So that the panel has enough time to charge up or discharge before/ after operation.

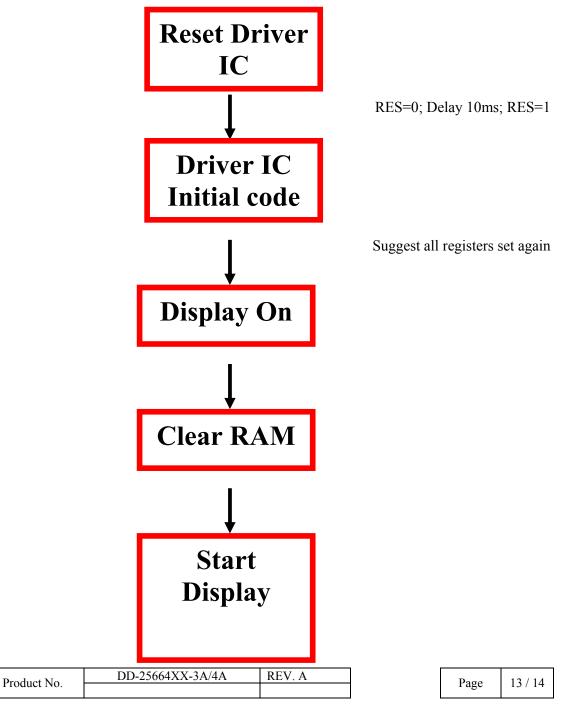

Power up Sequence:

- 1. Power up V_{DD}
- 2. Send Display off command
- 3. Driver IC Initial Setting
- 4. Clear Screen
- 5. Power up V_{CC}
- 6. Delay 100ms (when V_{CC} is stable)
- 7. Send Display on command

V_{DD} on V_{CC} on V_{DD} V_{DD} V_{DD} $V_{SS}/Ground$

Power down Sequence:

- 1. Send Display off command
- 2. Power down V_{CC}
- Delay 100ms
 (when V_{CC} is reach 0 and panel is completely discharges)
- 4. Power down V_{DD}



Product No.	DD-25664XX-3A/4A	REV. A
Floduct No.		

Page	12 / 14
------	---------

6 How to use the DD-25664XX-3A-4A Initial step flow

6.1 Recommended Initial code

Product No.	DD-25664XX-3A/4A	REV. A
rioduct ino.		

Page	14 / 14
------	---------

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Densitron manufacturer:

Other Similar products are found below:

DMT043QQNTNT0-1C DMT066YYHLNT0-1A DMT028QVNTNT0S-1A DMT080YYNLCMU-1A DMT024QVNUNT0-2C DMT028QVHXCMI-1A DMT080YYNLNT0-1A DMT024QVNUCMI-2A DD-160128FC-2B LMR4048BG2C16HNG/5V