Rugged Rotary Encoder

- Absolute model.
- External diameter of 50 mm .
- Resolution of up to 1,024 (10-bit).
- IP65 (improved oil-proof protection with sealed bearings)
- Optimum angle control possible in combination with PLC or Cam Positioner.

For the most recent information on models that have been certified for safety standards, refer to your OMRON website.
Be sure to read Safety Precautions on page 7.

Ordering Information

Encoders [Refer to Dimensions on page 8.]

Power supply voltage	Output configuration	Output code	Resolution (pulses/rotation)	Connection method	Model
12 to 24 VDC	Open-collector output (NPN)	Gray	256, 360, (720) *2	Pre-wired Connector Model (1 m)	E6C3-AG5C-C (resolution) 1M Example: E6C3-AG5C-C 256P/R 1M
			256, 360, 720, 1,024	```Pre-wired Model (1 m) *1```	E6C3-AG5C (resolution) 1M Example: E6C3-AG5C 256P/R1M
		Binary	32, 40		E6C3-AN5C (resolution) 1M Example: E6C3-AN5C 32P/R 1M
		BCD	6, 8, 12		E6C3-AB5C (resolution) 1M Example: E6C3-AB5C 6P/R 1M
	Open-collector output (PNP)	Gray	256, 360, 720, 1,024		E6C3-AG5B (resolution) 1M Example: E6C3-AG5B 256P/R 1M
		Binary	32, 40		E6C3-AN5B (resolution) 1M Example: E6C3-AN5B 32P/R 1M
		BCD	6, 8, 12		E6C3-AB5B (resolution) 1M Example: E6C3-AB5B 6P/R 1M
5 VDC	Voltage output	Binary	256		E6C3-AN1E 256P/R 1M
12 VDC					E6C3-AN2E 256P/R 1M

*1. Standard models are also available with 2-m cables. When ordering, specify the cable length at the end of the model number (example: E6C3-AG5C 360P/R 2M).
*2. When connecting to the H8PS, use the E6C3-AG5C-C 256, 360, 720P/R. (Only a $2-\mathrm{m}$ cable is available for the $720 \mathrm{P} / \mathrm{R} \mathrm{Model}$.)
For the 360/720 resolutions, 2-m cables are standard in-stock.

Accessories (Order Separately)

[Dimensions: Refer to Accessories on page 8 for Extension Cable dimensions and Accessories for the dimensions of other accessories.]

Name	Model		
Couplings	E69-C08B		Remarks
	E69-C68B	Different end diameter (6 to 8 mm)	
Flanges	E69-FCA03		
	E69-FCA04	E69-2 Servo Mounting Bracket provided.	
Servo Mounting Bracket	E69-2	Provided with E69-FCA04 Flange.	
	E69-DF5	5 m	Applicable to the E6C3-AG5C-C.
	E69-DF10	10 m	
	E69-DF20	20 m	

Refer to Accessories for details.

Ratings and Specifications

Item	Model	$\begin{gathered} \text { E6C3- } \\ \text { AG5C-C } \end{gathered}$	E6C3AG5C	E6C3AN5C	E6C3AB5C	$\begin{aligned} & \text { E6C3- } \\ & \text { AG5B } \end{aligned}$	E6C3AN5B	$\begin{aligned} & \text { E6C3- } \\ & \text { AB5B } \end{aligned}$	E6C3AN1E	$\begin{aligned} & \hline \text { E6C3- } \\ & \text { AN2E } \end{aligned}$				
Power supply voltage		12 VDC -10% to 24 VDC $+15 \%$, ripple (p-p): 5% max.							$\begin{aligned} & \text { 5 VDC } \\ & \pm 5 \% \end{aligned}$	$\begin{aligned} & \hline 12 \text { VDC } \\ & \pm 10 \% \end{aligned}$				
Current consumption*1		70 mA max.												
Resolution*2 (pulses/rotation)		$\begin{aligned} & 256,360, \\ & 720 \end{aligned}$	$\begin{aligned} & 256,360, \\ & 720,1,024 \\ & \hline \end{aligned}$	32, 40	6, 8, 12	$\begin{aligned} & \hline 256,360, \\ & 720,1,024 \\ & \hline \end{aligned}$	32, 40	6, 8, 12	256					
Output code		Gray code		Binary	BCD	Gray code	Binary	BCD	Binary					
Output configuration		NPN open-collector output				PNP open-collector output			Voltage output					
Output capacity		Applied voltage: 30 VDC max. Sink current: 35 mA max. Residual voltage: 0.4 V max. (at sink current of 35 mA)				Source current: 35 mA max. Residual voltage: 0.4 V max. (at source current of 35 mA)			Output resistance: $2.4 \mathrm{k} \Omega$	Output resistance: $8.2 \mathrm{k} \Omega$				
		Sink current: 35 mA max. Residual voltage: 0.4 V max. (at sink current of 35 mA)												
Rise and fall times of output						$1 \mu \mathrm{~s} \mathrm{max}$. (Cable length: 2 m , Sink current: 35 mA)							Rise: $3 \mu \mathrm{~s}$ max., Fall: $1 \mu \mathrm{~s}$ max.	Rise: $10 \mu \mathrm{~s}$ max. Fall: $1 \mu \mathrm{~s}$ max.
Maximum response frequency*3		20 kHz							10 kHz					
Logic		Negative logic (high = 0, low = 1)				Positive logic (high = 1, low =0)								
Direction of rotation*4		Output code increases for CW (as viewed from end of shaft).							Switched using rotation direction input.					
Strobe signal		None		Supported		None	Supported		None					
Positioning sig		None			Supported	None		Supported	None					
Parity signal		None		Supported (even)	None		Supported (even)	None						
Starting torque		$10 \mathrm{mN} \cdot \mathrm{m}$ max. at room temperature, $30 \mathrm{mN} \cdot \mathrm{m}$ max. at low temperature												
Moment of inertia		$2.3 \times 10^{-6} \mathrm{~kg} \cdot \mathrm{~m}^{2}$												
Shaft loading	Radial	80 N												
	Thrust	50 N												
Maximum permissible speed		5,000 r/min												
Ambient temperature range		Operating: -10 to $70^{\circ} \mathrm{C}$ (with no icing), Storage: -25 to $85^{\circ} \mathrm{C}$ (with no icing)												
Ambient humidity range		Operating/Storage: 35% to 85% (with no condensation)												
Insulation resistance		$20 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC) between current-carrying parts and case												
Dielectric strength		$500 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between current-carrying parts and case												
Vibration resistance		Destruction: 10 to $500 \mathrm{~Hz}, 150 \mathrm{~m} / \mathrm{s}^{2}$ or 2-mm double amplitude for 11 min 3 times each in X, Y, and Z directions												
Shock resistance		Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2} 3$ times each in X, Y, and Z directions												
Degree of protection		IEC 60529 IP65, in-house standards: oilproof												
Connection method		Connector Models *6	Pre-wired Models (Standard cable length: 1 m)											
Material		Case: Aluminum, Main unit: Aluminum, Shaft: SUS303												
Weight (packed state)		Approx. 300 g												
Accessories		Instruction manual Note: Coupling, mounting bracket and hex-head spanner are sold separately.												

*1. An inrush current of approximately 6 A will flow for approximately 0.8 ms when the power is turned ON
*2. The code is as follows:

Output code	Resolu- tion	Code No.
Binary	32	1 to 32
	40	1 to 40
	256	0 to 255
BCD	6	0 to 5
	8	0 to 7
	12	0 to 11
Gray	256	0 to 255
	360	76 to 435 (gray after 76)
	720	152 to 871 (gray after 152)
	1,024	0 to 1,023

*3. The maximum electrical response speed is determined by the resolution and maximum response frequency as follows:

Maximum electrical response speed $(r p m)=$ Maximum response frequency $\times 60$
Resolution
This means that the Rotary Encoder will not operate electrically if its speed exceeds the maximum electrical response speed
*4. For the E6C3-AN1E and E6C3-AN2E, the rotation direction input (wire color: pink) can be connected to high (Vcc) to increase the output code for CW rotation and connected to low (0 V) to decrease the output code for CW rotation. E6C3-AN1E: High $=1.5$ to 5 V , Low $=0$ to 0.8 V

E6C3-AN2E: $\mathrm{High}=2.2$ to 12 V , Low $=0$ to 1.2 V

Read the code 10μ s or more after the LSB $\left(2^{0}\right)$ of the code changes for the E6C3-AN1E or E6C3-AN2E.
*5. The minimum address of the absolute code is output when cut face D on the shaft and the cable connection direction are as shown in the diagram at the right (output position range: $\pm 15^{\circ}$).

*6. Resolution of 360 or 720: Standard cable
length: 2 m
Resolution of 256: Standard cable length: 1 m

I/O Circuit Diagrams

Model	E6C3-AG5C/-AG5C-C ${ }^{\text {E6C3-AG5B }}$	E6C3-AN5C E6C3-AN5B
Output Circuits	Note: The circuit is the same for all bit outputs. Each E6C3-A Rotary Encoder has one main circuit. Note: The circuit is the same for all bit outputs. Each E6C3-A Rotary Encoder has one main circuit.	Note: The circuit is the same for all bit outputs. Each E6C3-A Rotary Encoder has one main circuit. Note: The circuit is the same for all bit outputs. Each E6C3-A Rotary Encoder has one main circuit.
Output mode	Direction of rotation: CW (as viewed from the end of the shaft)	Direction of rotation: CW (as viewed from the end of the shaft) Resolution/40

Connection Specifications

Connector Models

Model	E6C3-AG5C-C		
	Output signal		
	8-bit (256)	9-bit (360)	10-bit (720)
$\mathbf{1}$	Connected internally	Not connected	2^{9}
$\mathbf{2}$		2^{8}	2^{8}
$\mathbf{3}$	2^{1}	2^{5}	2^{5}
$\mathbf{4}$	2^{0}	2^{1}	2^{1}
$\mathbf{5}$	2^{7}	2^{0}	2^{0}
$\mathbf{6}$	2^{4}	2^{7}	2^{7}
$\mathbf{7}$	2^{2}	2^{4}	2^{4}
$\mathbf{8}$	2^{3}	2^{2}	2^{2}
$\mathbf{9}$	2^{6}	2^{3}	2^{3}
$\mathbf{1 0}$	Shield (ground)		
$\mathbf{1 1}$	12 to 24 VDC		
$\mathbf{1 2}$	0 V (common)		
$\mathbf{1 3}$			

[^0]Pre-wired Models

Model	E6C3-AG5C/E6C3-AG5B		
	Output signal		
Brown	8-bit (256)	9-bit (360)	10-bit (720 or $\mathbf{1 , 0 2 4)}$
Orange	2^{0}	2^{0}	2^{0}
Yellow	2^{2}	2^{1}	2^{1}
Green	2^{3}	2^{2}	2^{2}
Blue	2^{4}	2^{3}	2^{3}
Purple	2^{5}	2^{4}	2^{4}
Gray	2^{6}	2^{5}	2^{5}
White	2^{7}	2^{6}	2^{6}
Pink	Not connected	2^{7}	2^{7}
Light blue	Not connected	Not connected	2^{8}
---	Shield (ground)		
Red	12 to 24 VDC		
Black	0 V (common)		

I/O Circuit Diagrams

Model	E6C3-AB5C ${ }^{\text {E6C3-AB5B }}$	E6C3-AN1E E6C3-AN2E
Output circuits		Note: The circuit is the same for all bit outputs. Note: The circuit is the same for all bit outputs.
	Note: The circuit is the same for all bit outputs. Note: The circuit is the same for all bit outputs.	Rotation Direction Input Circuit
Output mode	Direction of rotation: CW (as viewed from end of shaft) Resolution/12 Resolution of 8 $\begin{aligned} & A=45^{\circ}, B=22.5^{\circ} \\ & C=11.25^{\circ} \\ & \text { Resolution of } 6 \\ & A=60^{\circ}, B=30^{\circ} \\ & C=15^{\circ} \end{aligned}$	Direction of rotation: CW (as viewed from end of shaft) if rotation direction input is high and CCW (as viewed from end of shaft) if rotation direction input is low.

Connection Specifications

Pre-wired Models

Wire color ${ }^{\text {Model }}$	E6C3-AN5C/-AN5B	E6C3-AB5C/-AB5B		E6C3-AN1E/-AN2E
	Output signal	Output signal		Output signal
	6-bit (32 or 40)	3-bit (6 or 8)	5-bit (12)	8-bit (256)
Brown	2^{0}	2^{0}	2^{0}	2^{0}
Orange	2^{1}	2^{1}	2^{1}	2^{1}
Yellow	2^{2}	2^{2}	2^{2}	2^{2}
Green	2^{3}	Not connected	2^{3}	2^{3}
Blue	2^{4}	Not connected	$2^{0} \times 10$	2^{4}
Purple	2^{5}	Not connected	Not connected	2^{5}
Gray	Parity	Positioning	Positioning	2^{6}
White	Strobe	Strobe	Strobe	2^{7}
Pink	Not connected	Not connected	Not connected	Rotation Direction Input
Light blue	Not connected	Not connected	Not connected	Not connected
---	Shield (ground)			
Red	12 to 24 VDC			5 or 12 VDC
Black	0 V (common)			

[^1]
Connection Example

H8PS Cam Positioner Connection Example

Specifications

Rated voltage	24 VDC
Cam precision	0.5° (for 720 resolution), 1° (for 256/360 resolution)
No. of output points	8-point output type: 8 cam outputs, 1 RUN output, 1 pulse output 16-point output type: 16 cam outputs, 1 RUN output, 1 pulse output 32-point output type: 32 cam outputs, 1 RUN output, 1 pulse output
Encoder response	RUN mode, test mode: 256/360 resolution 1,600 r/min max. ($1,200 \mathrm{r} / \mathrm{min}$ when advance compensation is set for four cams or more) 720 resolution \qquad $800 \mathrm{r} / \mathrm{min}$ max. ($600 \mathrm{r} / \mathrm{min}$ when advance compensation is set for four cams or more)
Additional functions	- Origin compensation (zeroing) - Rotation direction switching - Angle display switching - Teaching - Pulse output - Angle/number of rotations display switching - Puncture * - Angle advance - Number of rotations alarm output - Setting with support software (order separately) *

* For 16-point and 32-point output types only

Programmable Controller Connection Example

Connection to the CP1E
(720 Resolution)

Wiring between the E6C3-AG5C and CP1E

E6C3-AG5C out- put signal	CP1E input signal
Brown $\left(2^{0}\right)$	00000
Orange $\left(2^{1}\right)$	00001
Yellow $\left(2^{2}\right)$	00002
Green $\left(2^{3}\right)$	00003
Blue $\left(2^{4}\right)$	00004
Purple $\left(2^{5}\right)$	00005
Gray $\left(2^{6}\right)$	00006
White $\left(2^{7}\right)$	00007
Pink $\left(2^{8}\right)$	00008
Light blue $\left(2^{9}\right)$	00009

Output Timing

Ladder Programming Example
DM Area Setting Example for Comparison Table

DM6200	0000	$\left[\begin{array}{l} \text { Lower limit } 1 \\ \text { Upper limit } 1 \end{array}\right] \text { Bit CIO } 20300$	
6201	0540		
6202	0090	$\left[\begin{array}{l} \text { Lower limit } 2 \\ \text { Upper limit } 2 \end{array}\right] \text { Bit CIO } 20301$	
6203	0360		
6204	0180	$\left.\begin{array}{l}\text { Lower limit } 3 \\ \text { Upper limit } 3\end{array}\right]$ Bit CIO 20302	
6205	0659		
6206	0000	Lower limit 4	
			Not used in this example.
6231	0000	Upper limit 16	

CP1E For details, refer to the following manual: CP1E-E $\square \square$ SD $\square-\square / C P 1 E-N \square \square S \square D \square-\square / C P 1 E-E \square \square D \square-\square / C P 1 E-N \square \square D \square-\square /$ CP1E-NA $\square \square D \square-\square$ SYSMAC CP Series CP1E CPU Unit Instructions Reference Manual (Cat. No. W483).

Safety Precautions

Refer to Warranty and Limitations of Liability.

! WARNING
This product is not designed or rated for ensuring
safety of persons either directly or indirectly.
Do not use it for such purposes.

Precautions for Correct Use

Do not use the Encoder under ambient conditions that exceed the ratings.

- Wiring

Connections
Cable Extension Characteristics

- Conditions will change according to frequency, noise, and other factors. As a guideline, use a cable length of $10 \mathrm{~m}^{*}$ or less.
* Recommended Cable

Conductor cross section: $0.2 \mathrm{~mm}^{2}$
Spiral shield
Conductor resistance: $92 \Omega / \mathrm{km}$ max. $\left(20^{\circ} \mathrm{C}\right)$
Insulation resistance: $5 \Omega / \mathrm{km} \mathrm{min}$. $\left(20^{\circ} \mathrm{C}\right)$

- The output waveform startup time changes not only according to the length of the cable, but also according to the load resistance and the cable type.
- Extending the cable length not only changes the startup time, but also increases the output residual voltage.

- Connection

Spurious pulses may be generated when power is turned ON and OFF. Wait at least 0.1 s after turning ON the power to the Encoder before using the connected device, and stop using the connected device at least 0.1 s before turning OFF the power to the Encoder. Also, turn ON the power to the load only after turning ON the power to the Encoder.

Encoder

E6C3-A $\square \square \square$
E6C3-AN $\square \mathrm{E}$

Note: The E69-C08B Coupling is sold separately.

 conductors (Conductor cross section: $0.2 \mathrm{~mm}^{2}$, Insulator diameter: 1.1 mm), Standard length: 1 m

E6C3-AG5C-C

Note: The E69-C08B Coupling is sold separately.

6 -dia. oil-resistant PVC-insulated shielded cable with 12
conductors (Conductor cross section: $0.2 \mathrm{~mm}^{2}$, Insulato
diameter: 1.1 mm), Standard length: 1 m , Standard length for esolution of 360 or 720 : 2 m

Accessories (Order Separately)

Extension Cable

E69-DF5

*1. 6-dia. oil-resistant PVC-insulated shielded cable with 12 conductors (Conductor cross section: $0.2 \mathrm{~mm}^{2}$, Insulator diameter: 1.1 mm), Standard length: 5 m
Connects to connector on E6C3-AG5C-C.
3. Connects to H8PS Cam Positioner

Note: 1. The E69-DF5 (5 m) is also available with the following cable lengths: $10 \mathrm{~m}, 15 \mathrm{~m}, 20 \mathrm{~m}$, and 98 m
2. Cable can be extended to 100 m when the H8PS Cam Positioner is connected.

Couplings
E69-C08B
E69-C68B
Refer to Accessories for details.

Servo Mounting Bracket
E69-2

Terms and Conditions Agreement

Read and understand this catalog.
Please read and understand this catalog before purchasing the products. Please consult your OMRON representative if you have any questions or comments.

Warranties.
(a) Exclusive Warranty. Omron's exclusive warranty is that the Products will be free from defects in materials and workmanship for a period of twelve months from the date of sale by Omron (or such other period expressed in writing by Omron). Omron disclaims all other warranties, express or implied.
(b) Limitations. OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, ABOUT NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OF THE PRODUCTS. BUYER ACKNOWLEDGES THAT IT ALONE HAS DETERMINED THAT THE
PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE.
Omron further disclaims all warranties and responsibility of any type for claims or expenses based on infringement by the Products or otherwise of any intellectual property right. (c) Buyer Remedy. Omron's sole obligation hereunder shall be, at Omron's election, to (i) replace (in the form originally shipped with Buyer responsible for labor charges for removal or replacement thereof) the non-complying Product, (ii) repair the non-complying Product, or (iii) repay or credit Buyer an amount equal to the purchase price of the non-complying Product; provided that in no event shall Omron be responsible for warranty, repair, indemnity or any other claims or expenses regarding the Products unless Omron's analysis confirms that the Products were properly handled, stored, installed and maintained and not subject to contamination, abuse, misuse or inappropriate modification. Return of any Products by Buyer must be approved in writing by Omron before shipment. Omron Companies shall not be liable for the suitability or unsuitability or the results from the use of Products in combination with any electrical or electronic components, circuits, system assemblies or any other materials or substances or environments. Any advice, recommendations or information given orally or in writing, are not to be construed as an amendment or addition to the above warranty.
See http://www.omron.com/global/ or contact your Omron representative for published information.
Limitation on Liability; Etc.
OMRON COMPANIES SHALL NOT BE LIABLE FOR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR PRODUCTION OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED IN CONTRACT, WARRANTY, NEGLIGENCE OR STRICT LIABILITY.
Further, in no event shall liability of Omron Companies exceed the individual price of the Product on which liability is asserted.

Suitability of Use.

Omron Companies shall not be responsible for conformity with any standards, codes or regulations which apply to the combination of the Product in the Buyer's application or use of the Product. At Buyer's request, Omron will provide applicable third party certification documents identifying ratings and limitations of use which apply to the Product. This information by itself is not sufficient for a complete determination of the suitability of the Product in combination with the end product, machine, system, or other application or use. Buyer shall be solely responsible for determining appropriateness of the particular Product with respect to Buyer's application, product or system. Buyer shall take application responsibility in all cases.
NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY OR IN LARGE QUANTITIES WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCT(S) IS PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

Programmable Products.
Omron Companies shall not be responsible for the user's programming of a programmable Product, or any consequence thereof.

Performance Data.
Data presented in Omron Company websites, catalogs and other materials is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of Omron's test conditions, and the user must correlate it to actual application requirements. Actual performance is subject to the Omron's Warranty and Limitations of Liability.

Change in Specifications.

Product specifications and accessories may be changed at any time based on improvements and other reasons. It is our practice to change part numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the Product may be changed without any notice. When in doubt, special part numbers may be assigned to fix or establish key specifications for your application. Please consult with your Omron's representative at any time to confirm actual specifications of purchased Product.

Errors and Omissions.
Information presented by Omron Companies has been checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical or proofreading errors or omissions.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Encoders category:
Click to view products by Omron manufacturer:

Other Similar products are found below :
6-1393048-5 62AG22-H5-P 62B22-LP-030C 62D22-02-P 62R22-01-040S 63K25 63K32 63KS100 63KS64 63R100 63R50-020 63RS256060 700-09-36 E6C2-CWZ6C-10 500P/R 5M E6C3-CWZ5GH 1000P/R 2M 25LB22-G-Z T101-5C2-111-M1 T101-5C3-111-M1 T101-5C4-111-M1 25LB45-Q-Z HEDS-8905 385001M0439 385001M0216 DPL12SV2424A25K3 E69-1 E69-DF15 E69-FBA-02 E69-FCA E6B2CWZ1X 2000P/R 0.5M E6B2-CWZ3E 600P/R 0.5M E6C3-CWZ3EH 800P/R 2M ENA1D-472-L00050L 61S64-2 62B11-LP-100S 62B11-LPP-P 62C1111-02-020C 62N11-P 62S22-H9-120S 62S30-L0-200C 62V15-02-080S 62V22-02-030C 632911-128 63K64 63KS100-040 63R64-050 63RS256 63RS64 700-16-16 3-1393048-1 63KS128

[^0]: Connector: RP13A-12PD-13SC (Hirose Electric Co., Ltd.)
 Note: Normally connect GND to 0 V or to an external ground.

[^1]: Note: Normally connect GND to 0 V or to an external ground.

