Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Renesas Starter Kit for SH7124

User's Manual
RENESAS SINGLE-CHIP MICROCOMPUTER
SuperH™RISC engine

Table of Contents

Chapter 1. Preface	1
Chapter 2. Purpose	2
Chapter 3. Power Supply	3
3.1. Requirements	3
3.2. Power – Up Behaviour	3
Chapter 4. Board Layout	4
4.1. Component Layout	4
4.2. Board Dimensions	5
Chapter 5. Block Diagram	6
Chapter 6. User Circuitry	7
6.1. Switches	7
6.2. LEDs	7
6.3. Potentiometer	7
6.4. Serial port	8
6.5. LCD Module	8
6.6. Option Links	9
6.7. Oscillator Sources	11
6.8. Reset Circuit	11
Chapter 7. Modes	12
7.1.1. Boot mode	12
7.1.2. User Mode	12
Chapter 8. Programming Methods	13
8.1. E10A Header	13
Chapter 9. Headers	14
9.1. Microcontroller Headers	14
9.2. Application Headers	15
Chapter 10. Code Development	17
10.1. Overview	17
10.2. Compiler Restrictions	17
10.3. Breakpoint Support	17
10.4. Memory Map	18
Chapter 11. Component Placement	19
Chapter 12. Additional Information	20

Chapter 1. Preface

Cautions

This document may be, wholly or partially, subject to change without notice.

All rights reserved. No one is permitted to reproduce or duplicate, in any form, a part or this entire document without the written permission of Renesas Technology Europe Limited.

Trademarks

All brand or product names used in this manual are trademarks or registered trademarks of their respective companies or organisations.

Copyright

- © Renesas Technology Europe Ltd. 2008. All rights reserved.
- © Renesas Technology Corporation. 2008. All rights reserved.
- © Renesas Solutions Corporation. 2008. All rights reserved.

Website: http://www.renesas.com/

Glossary

ADC	Analog to Digital Converter	USB	Universal Serial Bus
CPU	Central Processing Unit	DAC	Digital to Analog Converter
DMA	Direct Memory Access	E10A	"E10A for Starter Kit" debugger
FDT	Flash Development Tool	RSK	Renesas Starter Kit
LED	Light Emitting Diode	LCD	Liquid Crystal Display

Chapter 2.Purpose

This RSK is an evaluation tool for Renesas microcontrollers.

Features include:

- Renesas Microcontroller Programming.
- User Code Debugging.
- User Circuitry such as switches, LEDs and potentiometer(s).
- Sample Application.
- Sample peripheral device initialisation code.

The CPU board contains all the circuitry required for microcontroller operation.

This manual describes the technical details of the RSK hardware. The Quick Start Guide and Tutorial Manual provide details of the software installation and debugging environment.

Chapter 3. Power Supply

3.1.Requirements

This CPU board operates from a 5V power supply and are supplied with a suitable PSU.

A diode provides reverse polarity protection only if a current limiting power supply is used.

All CPU boards are supplied with an E10A debugger.

When the CPU board is connected to another system that system should supply power to the CPU board.

All CPU boards have an centre positive supply connector using a 2.0mm barrel power jack.

Warning

The CPU board is neither under not over voltage protected. Use a centre positive supply for this board.

3.2. Power - Up Behaviour

When the RSK is purchased the CPU board has the 'Release' or stand alone code from the example tutorial code pre-programmed into the Renesas microcontroller. On powering up the board the user LEDs will start to flash. Switch 2 will cause the LEDs to flash at a rate controlled by the potentiometer.

Chapter 4.Board Layout

4.1.Component Layout

The following diagram shows top layer component layout of the board.

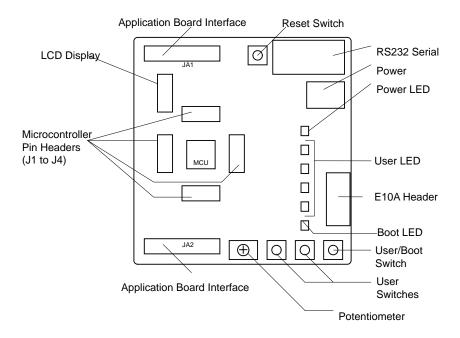


Figure 4-1: Board Layout

4.2.Board Dimensions

The following diagram gives the board dimensions and connector positions. All through hole connectors are on a common 0.1" grid for easy interfacing.

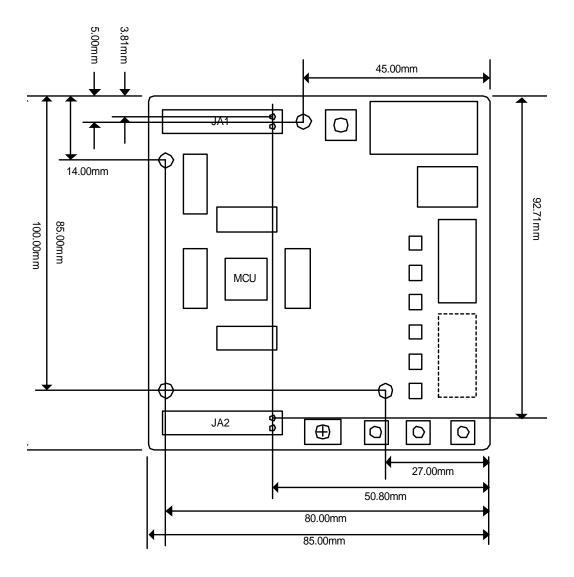


Figure 4-2: Board Dimensions

Chapter 5.Block Diagram

Figure 5-1 shows the CPU board components and their connectivity.

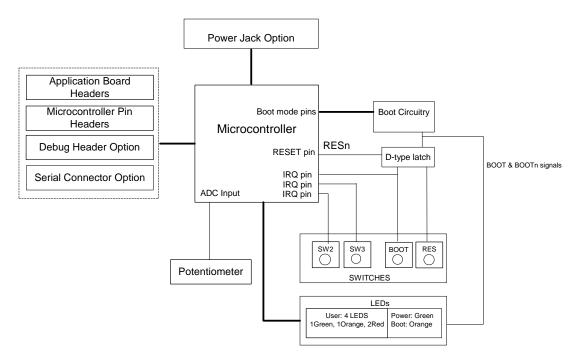


Figure 5-1: Block Diagram

Figure 5-2 shows the connections to the RSK.

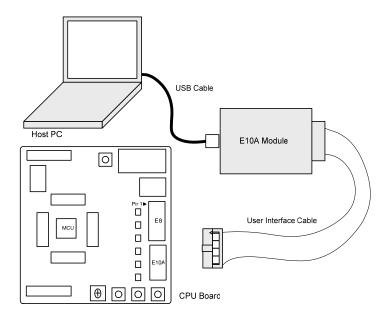


Figure 5-2: RSK Connctions

Chapter 6.User Circuitry

6.1.Switches

There are four switches located on the CPU board. The function of each switch and its connection are shown in Table 6-1.

Switch	Function	Microcontroller
RES	When pressed; the CPU board microcontroller is reset.	RESn
SW1/BOOT*	Connects to an IRQ input for user controls.	IRQ1, Pin 37
		(Port B, pin 3)
SW2*	Connects to an IRQ line for user controls.	IRQ3 , Pin 36
		(Port B, pin 5)
SW3*	Connects to the ADC analogue input.	AN3 , Pin 44
		(Port F, pin 3)

Table 6-1: Switch Functions

6.2.LEDs

There are six LEDs on the CPU board. The green 'POWER' LED lights when the board is powered. The orange BOOT LED indicates the device is in BOOT mode when lit. The four user LEDs are connected to an IO port and will light when their corresponding port pin is set low.

Table 6-2, below, shows the LED pin references and their corresponding microcontroller port pin connections.

LED Reference (As	Microcontroller Port Pin	Microcontroller Pin	Polarity
shown on silkscreen)	function	Number	
LED0	Port E12	5	Active Low
LED1	Port E13	3	Active Low
LED2	Port E14	2	Active Low
LED3	Port E15	1	Active Low

Table 6-2:LED Port

6.3.Potentiometer

A single turn potentiometer is connected to AN2 of the microcontroller. This may be used to vary the input analog voltage value to this pin between AVCC and Ground.

^{*}Refer to schematic for detailed connectivity information.

6.4. Serial port

The microcontroller programming serial port (SCI) is connected to the 'E8' connector. This serial port can optionally be connected to the RS232 transceiver by fitting option resistors and the D connector in position J7. The connections to be fitted are listed in the following table.

Description	Function	Fit for RS232
TxD1	Programming Serial Port	R48
RxD1	Programming Serial Port	R49

Table 6-3: Serial Options Links

N.B. Do not connect an E8a debugger module (not supplied) if the RS232 port is used.

The board is designed to accept a straight through RS232 cable.

6.5.LCD Module

A LCD module can be connected to the connector J8. Any module that conforms to the pin connections and has a KS0066u compatible controller can be used with the tutorial code. The LCD module uses a 4bit interface to reduce the pin allocation. No contrast control is provided; this must be set on the display module.

Table 6-4 shows the pin allocation and signal names used on this connector.

The module supplied with the CPU board only supports 5V operation.

	J13				
Pin	Circuit Net Name	Device	Pin	Circuit Net Name	Device
		Pin			Pin
1	Ground	-	2	5V Only	-
3	No Connection	-	4	LCD_RS	26
5	R/W (Wired to Write only)	-	6	LCD_E	24
7	No Connection	-	8	No connection	-
9	No Connection	-	10		-
11	LCD_D4	11	12	LCD_D5	9
13	LCD_D6	10	14	LCD_D7	7

Table 6-4 LCD Module Connections

6.6.Option Links

Table 6-5 below describes the function of the option links contained on this CPU board. The default configuration is indicated by **BOLD** text.

	Option Link Settings			
Reference	Function	Fitted	Alternative (Removed)	Related To
R1	Oscillator	Feedback Resistor across X1	No feedback	
R2	Oscillator	Connects X1 to Microcontroller	Disconnects X1 from Microcontroller	R3, 4, 5
R3	Oscillator	Connects X1 to Microcontroller	Disconnects X1 from Microcontroller	R2, 4, 5
R4	Oscillator	Connects external clock to	Disconnects external clock from	R2, 3, 5
		Microcontroller	Microcontroller	
R5	Oscillator	Connects external clock to	Disconnects external clock from	R2, 3, 4
		Microcontroller	Microcontroller	
R10	Power	Connect J5 to CON_5V	Disconnect J5	
R11	Power	UC_VCC Connected	Disconnect to enable Microcontroller	
			supply current to be measured.	
R12	Power	Connect Board_VCC to	Disconnect Board_VCC from CON_5V	
		CON_5V		
R13	Power	Connect AVCC to CON_5V	Disconnect AVCC from CON_5V	
R14	Power	Connect AVSS to GND	Disconnect AVSS from GND	
R15	Power	Connect AVSS to GND	Disconnect AVSS from GND	
R47	RS232 Serial	Shutdown RS232 Transceiver	Do not shutdown RS232 Transceiver	
R48	RS232 Serial	Connect TTX to RS232 Serial port	Only E8 connected	R49

Option Link Settings				
Reference	Function	Fitted	Alternative (Removed)	Related To
R49	RS232 Serial	Connect TRX to RS232 Serial	Only E8a connected	R48
		port		
R50	E8a (not	E8a enabled	E8a disabled	
	supplied)			
R51	E8a	E8a connected to FWE	E8a not connected to FWE	
R54	Application	Connect SCIaTX of application	Disconnect SCIaTX of application board	R55
	Board Interface	board interface to PA_9	interface	
R55	Application	Connect TDO of application board	Disconnect TDO of application board	R54
	Board Interface	interface to PA_9	interface	
R56	Application	Connect SCIaRX of application	Disconnect SCIaRX of application board	R57
	Board Interface	board interface to PA_8	interface	
R57	Application	Connect TDI of application board	Disconnect TDI of application board	R56
	Board Interface	interface to PA_8	interface	
R58	Application	Connect SCIaCK of application	Disconnect SCIaCK of application board	R59, 60
	Board Interface	board interface to PA_7	interface	
R59	Application	Connect IO_3 of application board	Disconnect IO_3 of application board	R58, 60
	Board Interface	interface to PA_7	interface	
R60	Application	Connect TCK of application board	Disconnect TCK of application board	R58, 59
	Board Interface	interface to PA_7	interface	
R61	Application	Connect TMR1 of application	Disconnect TMR1 of application board	R62
	Board Interface	board interface to PE_0	interface	
R62	Application	Connect IO_4 of application board	Disconnect IO_4 of application board	R61
	Board Interface	interface to PE_0	interface	
R63	Application	Connect TRIGb of application	Disconnect TRIGb of application board	R64
	Board Interface	board interface to PE_2	interface	
R64	Application	Connect IO_6 of application board	Disconnect IO_6 of application board	R63
	Board Interface	interface to PE_2	interface	
R65	Application	Connect MO_UD of application	Disconnect MO_UD of application board	R66
	Board Interface	board interface to PB_1	interface	
R66	Application	Connect TRISTn of application	Disconnect TRISTn of application	R65
	Board Interface	board interface to PB_1	board interface	
R68	LCD module	Connect LCD_E of application	Disconnect LCD_E	
		board interface to PA_1		
R69	LCD module	Connect LCD_D5 of application	Disconnect LCD_D5	
		board interface to PE_9		

Table 6-5 Option Links

6.7.Oscillator Sources

A crystal oscillator is fitted on the CPU board and used to supply the main clock input to the Renesas microcontroller. Table 6- details the oscillators that are fitted and alternative footprints provided on this CPU board:

Component				
		Value : Package		Manufacturer
Crystal (X1)	Fitted	10Mhz	Approved	See <u>www.renesas.com</u> for details
			CPU board	

Table 6-6: Oscillators / Resonators

Warning: When replacing the default oscillator with that of another frequency, the debugging monitor will not function unless the following are corrected:

• FDT programming kernels supplied are rebuilt for the new frequency

6.8.Reset Circuit

The CPU Board includes a simple latch circuit that links the mode selection and reset circuit. This provides an easy method for swapping the device between Boot Mode and User mode. This circuit is not required on customers' boards as it is intended for providing easy evaluation of the operating modes of the device on the RSK. Please refer to the hardware manual for more information on the requirements of the reset circuit.

The reset circuit operates by latching the state of the boot switch on pressing the reset button. This control is subsequently used to modify the mode pin states as required.

The mode pins should change state only while the reset signal is active to avoid possible device damage.

The reset is held in the active state for a fixed period by a pair of resistors and a capacitor. Please check the reset requirements carefully to ensure the reset circuit on the user's board meets all the reset timing requirements.

Chapter 7. Modes

The CPU board can be configured in User mode and Boot mode. User mode may be used to run and debug user code, while Boot mode may only be used to program the Renesas microcontroller with program code via the SCI1 interface. Further details of programming the flash are available in the SH7124 device hardware manual.

The CPU board provides the capability of changing between User and Boot / User Boot modes using a simple latch circuit. This is only to provide a simple mode control on this board when the E10A debugger is not in use.

To manually enter boot mode, press and hold the SW1/BOOT. The mode pins are held in their boot states while reset is pressed and released. Release the boot button. The BOOT LED will be illuminated to indicate that the microcontroller is in boot mode.

More information on the operating modes can be found in the device hardware manual.

7.1.1. Boot mode

The boot mode settings for this CPU board are shown in Table 7-1 below:

FWE	MD1	LSI State after Reset
		End
1	0	Boot Mode

Table 7-1: Mode pin settings

7.1.2. User Mode

This is the default mode of SH7124. Following table details the mode pin settings for the user mode.

FWE	MD1	LSI State after Reset
		End
0	1	User Mode

Table 7-2: Mode pin settings

Chapter 8. Programming Methods

The board is intended for use with HEW and the supplied E10A debugger only. Please refer to S*H7124 Group Hardware Manual* for details of the programming methods using on-chip serial port SCI1 and without using E10A debugger.

8.1. E10A Header

The E10A provides additional debugging features including hardware breakpoints and hardware trace capability.

Modifications to support E10A Debugger on old RSKSH7124 boards		
J9	Fit	
J11	Fit: connect jumper between pins 2 & 3.	
R51	Remove	
R54	Remove	
R55	Fit 0R Resistor	
R56	Remove	
R57	Fit 0R Resistor	
R58	Remove	
R59	Do not fit.	
R60	Fit 0R Resistor	

Table 8-1: E10A connections

Chapter 9.Headers

9.1.Microcontroller Headers

Table 9-1 to Table 9-4 show the microcontroller pin headers and their corresponding microcontroller connections. The header pins connect directly to the microcontroller pin unless otherwise stated.

	J1									
Pin	Circuit Net Name	Device	Pin	Circuit Net Name	Device					
		Pin			Pin					
1	MO_Wn	1	2	MO_Vn	2					
3	MO_Wp	3	4	UC_VCC	4, 17					
5	MO_Vp	5	6	Ground	6, 19					
7	MO_Un	7	8	NC	-					
9	MO_Up	9	10	TRIGa	10					
11	TMR0	11	12	IO_7	12					

Table 9-1: J1

	J2								
Pin	Circuit Net Name	Device	Pin	Circuit Net Name	Device				
		Pin			Pin				
1	TRIGb/IO_6	13	2	IO_5	14				
3	TMR1/IO_4	15	4	SClaTx/TDO	16				
5	UC_VCC	4, 17	6	SCIaRx/TDI	18				
7	Ground	6, 19	8	SCIaCK/IO_3/TCK	20				
9	10_2	21	10	E8_TTX/TMS	22				
11	E8_TRX/TRST	23	12	10_1	24				

Table 9-2: J2

	J3									
Pin	Circuit Net Name	Device	Pin	Circuit Net Name	Device					
		Pin			Pin					
1	NC	-	2	10_0	26					
3	RESn	27	4	WDTOVF	28					
5	CON_XTAL (via R5 when fitted)	29	6	CON_EXTAL (via R4 when fitted)	30					
7	ASEMD0	31	8	NMI	32					
9	FWE_E8B/ASEBRK	33	10	MD1_E8A	34					
11	Ground	6, 19	12	IRQ3	36					

Table 9-3: J3

	J4								
Pin	Circuit Net Name	Device	Pin	Circuit Net Name	Device				
		Pin			Pin				
1	IRQ1	37	2	MO_UD/TRISTn	38				
3	AVss	39	4	PF7	40				
5	PF6	41	6	AD3	42				
7	AD1	43	8	User_SW3	44				
9	AD_POT	45	10	AD2	46				
11	AD0	47	12	AVcc	48				

Table 9-4: J4

9.2.Application Headers

Table 9-5 and Table 9-6 below show the standard application header connections.

	JA1											
Pin	Generic Hea	der Name	CPU board	Device	Pin	Header Name		CPU board	Device			
			Signal Name	Pin				Signal Name	Pin			
1	Regulated Su	ipply 1	5V		2	Regulated Supp	oly 1	GROUND				
3	Regulated Su	ıpply2	NC	-	4	Regulated Supply 2		GROUND				
5	Analogue Su	oply	AVcc	48	6	Analogue Supp	ly	AVss	39			
7	Analogue Re	ference	NC	-	8	ADTRG		NC	-			
9	ADC0	10	AD0	47	10	ADC1	I1	AD1	43			
11	ADC2	12	AD2	46	12	ADC3	13	AD3	42			
13	DAC0		NC	-	14	DAC1		NC	-			
15	IOPort		IO_0	26	16	IOPort		10_1	24			
17	IOPort		IO_2	21	18	IOPort		10_3	20			
19	IOPort		IO_4	15	20	IOPort		IO_5	14			
21	IOPort		10_6	13	22	IOPort		10_7	12			
23	Open drain	IRQAEC	IRQ3	36	24	I ² C Bus - (3rd pin)		NC	-			
25	I ² C Bus		NC	-	26	I ² C Bus		NC	-			

Table 9-5: JA1 Standard Generic Header

	JA2										
Pin	Generic Header Name		CPU board	Device	Pin	Header Name	CPU board	Device			
			Signal Name	Pin			Signal Name	Pin			
1	Open drain		RESn	27	2	External Clock Input	CON_EXTAL	30*			
3	Open drain		NMI	32	4	Regulated Supply 1	Vss1	6			
5	Open drain output		WDTOVF	28	6	Serial Port	SCIaTX	16			
7	Open drain	WUP	NC	-	8	Serial Port	SCIaRX	18			
9	Open drain		IRQ1	37	10	Serial Port	SCIaCK	20			
11	Up/down		MO_UD	38	12	Serial Port Handshake	NC	-			
13	Motor control		MO_Up	9	14	Motor control	MO_Un	7			
15	Motor control		MO_Vp	5	16	Motor control	MO_Vn	2			
17	Motor control		MO_Wp	3	18	Motor control	MO_Wn	1			
19	Output		TMR0	11	20	Output	TMR1	15			
21	Input		TRIGa	10	22	Input	TRIGb	13			
23	Open drain		NC	-	24	Tristate Control	TRISTn	38			
25			PF6	41	26		PF7	40			

Table 9-6: JA2 Standard Generic Header

Chapter 10.Code Development

10.1.Overview

Note: For all code debugging using Renesas software tools, the CPU board must either be connected to a PC serial port via a serial cable or a PC USB port via an E10A. An E10A is supplied with the RSK product.

Due to the continuous process of improvements undertaken by Renesas the user is recommended to review the information provided on the Renesas website at www.renesas.com to check for the latest updates to the Compiler and Debugger manuals.

10.2.Compiler Restrictions

The compiler supplied with this RSK is fully functional for a period of 60 days from first use. After the first 60 days of use have expired, the compiler will default to a maximum of 256k code and data. To use the compiler with programs greater than this size you will need to purchase the full tools from your distributor.

Warning: The protection software for the compiler will detect changes to the system clock. Changes to the system clock back in time may cause the trial period to expire prematurely.

10.3.Breakpoint Support

This RSK is supplied with E10A emulator which supports breakpoints in ROM. For more details on breakpoints & E10A functions please refer to 'SuperH Family E10A-USB Emulator User's Manual'.

10.4.Memory Map

The memory map shown in this section visually describes the locations of the each memory areas when operating the RSK in the default mode (Mode 3).

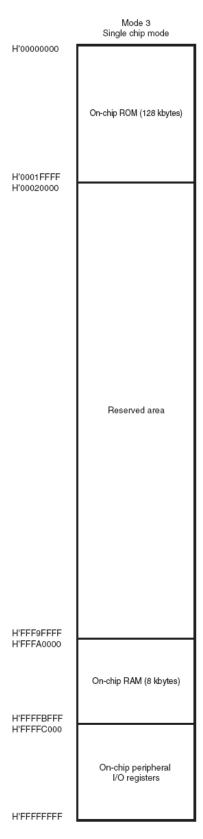


Figure 10-1: Memory Map

Chapter 11.Component Placement

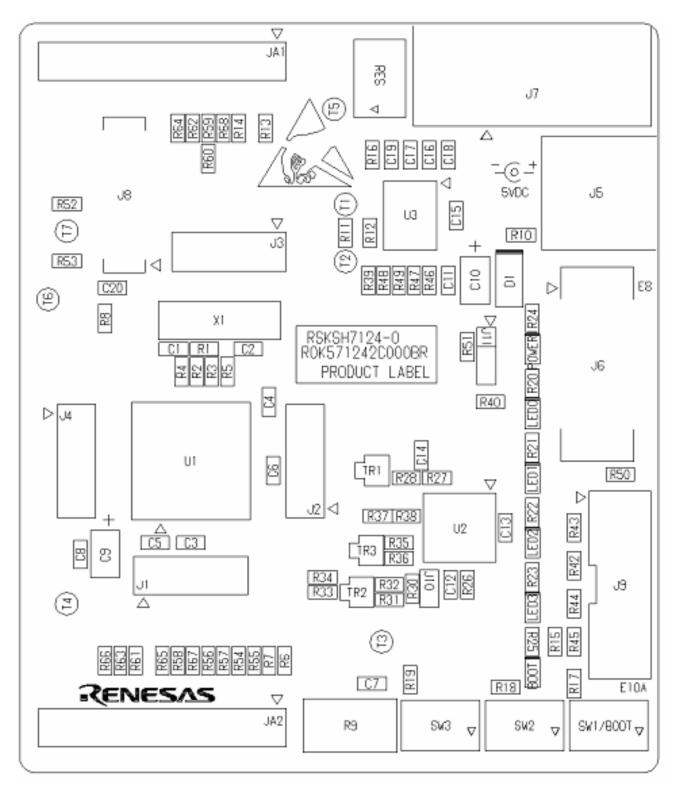


Figure 11-1: Component Placement

Chapter 12. Additional Information

For details on how to use High-performance Embedded Workshop (HEW), refer to the HEW manual available on the CD or installed in the Manual Navigator.

For information about the SH7124 series microcontrollers refer to the SH7125 Group, SH7124 Group *Hardware Manual*

For information about the SH7124 assembly language, refer to the SH Series Programming Manual

For information about the E10A Emulator, please refer to the SH Family E10A-USB Emulator User's Manual.

Online technical support and information is available at: http://www.renesas.com/rsk

Technical Contact Details

America: <u>techsupport.rta@renesas.com</u>
Europe: <u>tools.support.eu@renesas.com</u>

Japan: <u>csc@renesas.com</u>

General information on Renesas Microcontrollers can be found on the Renesas website at: http://www.renesas.com/

Renesas Starter Kit for SH7124

User's Manual

Publication Date Rev.1.00 17.Jan.2008

Published by: Renesas Technology Europe Ltd.

Duke's Meadow, Millboard Road, Bourne End

Buckinghamshire SL8 5FH, United Kingdom

 $\hbox{@2008 Renesas Technology Europe and Renesas Solutions Corp., All Rights Reserved.}\\$

Renesas Starter Kit for SH7124 User's Manual

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Renesas manufacturer:

Other Similar products are found below:

YRX113CAPT01 M30620FCAFP#U3 R0E00008AKCE00 R0K33062PS000BE R0K505220S000BE R0K561664S000BE

R0K570865S000BE R5S72631P200FP R7S721001VCBGAC0 HS0005PUU01H RTK5RX2310P00000ZR R0K502LA8S000BE

R5F565N9ADFP#30 M30291T-EPB-HP YR0K77210S009BE EDK2215R YGRPEACHFULL ICL3221ECVZ-T DF61664W50FPV

DF2212FP24V R0K5ML001SS00BR YR0K77210S011BE YR0K50564MS000BE YR0K505111S000BE YMCRPRX62T

R5F61653RN50FPV 28C3632-AZ YR0K505113S000BE R7S721001VCBG#AC0 R5F562N8BDBG#U0 M306N4FGTFP#UKJ

R5F104AGASP#V0 R5F51115ADFM#30 R7S721000VCFP#AA0 R5F565NEDDFB#30 ISL12057IUZ ISL6208CRZ ISL8204MEVAL1Z

ISL41334EVAL1Z ISL54059EVAL1Z ISL8105AEVAL1Z YQB-R5F11BLE-TB ISL28134SOICEVAL1Z ISL9444EVAL1Z HIP2103-4DEMO2Z ISL55110EVAL2Z ISL6752DBEVAL1Z ISL78229EV1Z R5F5631ECDFC#V0 R5F72167GDFA#V1