H11D1X, H11D2X, H11D3X, H11D4X H11D1, H11D2, H11D3, H11D4

HIGH VOLTAGE OPTICALLY **COUPLED ISOLATOR** PHOTOTRANSISTOR OUTPUT

'X'SPECIFICATIONAPPROVALS

- VDE 0884 in 3 available lead forms:
 - -STD
 - -Gform
 - SMD approved to CECC 00802

DESCRIPTION

The H11D series of optically coupled isolators consist of infrared light emitting diode and NPN silicon photo transistor in a standard 6 pin dual in line plastic package.

FEATURES

- Options:-10mm lead spread - add G after part no. Surface mount - add SM after part no. Tape&reel - add SMT&R after part no.
- $\begin{array}{l} \mbox{High Isolation Voltage } (5.3 \mbox{kV}_{\mbox{\tiny RMS}}, 7.5 \mbox{kV}_{\mbox{\tiny PK}}) \\ \mbox{High BV}_{\mbox{\tiny CER}} \quad (\ 300 \mbox{V} \mbox{H11D1}, \mbox{H11D2}) \end{array}$ (200V - H11D3, H11D4)
- All electrical parameters 100% tested
- Custom electrical selections available

APPLICATIONS

- DC motor controllers
- Industrial systems controllers
- Measuring instruments
- Signal transmission between systems of different potentials and impedances

ABSOLUTEMAXIMUMRATINGS (25°C unless otherwise specified)

Storage Temperature	$_{-55}^{\circ}$ C to + 150 $^{\circ}$ C		
Operating Temperature	$_$ -55°C to + 100°C		
Lead Soldering Temperature			
$(1/16 \operatorname{inch} (1.6 \operatorname{mm}) \operatorname{from case} \operatorname{for} 10 \operatorname{secs}) 260^{\circ} \mathrm{C}$			

INPUTDIODE

Forward Current	60mA
Reverse Voltage	6V
Power Dissipation	100mW

OUTPUTTRANSISTOR

Collector-emitter Voltage RV (R -	-1MO)
Collector-emitter Voltage BV_{CER} (R_{BE}	- 11 V1 22)
H11D1,H11D2 ———————————————————————————————————	- 300V
H11D3,H11D4	_ 200V
Collector-base Voltage BV _{CBO}	
H11D1,H11D2	_ 300V
H11D3,H11D4	- 200V
Emitter-collector Voltage BV ECO	- 6V
Collector Current	_ 100mA
Power Dissipation	_ 150mW

POWERDISSIPATION

Total Power Dissipation 250mW
(derate linearly 2.67mW/°C above 25°C)

ISOCOM COMPONENTS 2004 LTD

Unit 25B, Park View Road West, Park View Industrial Estate, Brenda Road Hartlepool, TS25 1UD England Tel: (01429)863609 Fax: (01429)863581 e-mail sales@isocom.co.uk http://www.isocom.com

14/8/08 DB91077

ELECTRICAL CHARACTERISTICS ($\rm T_{\rm A} = 25^{\circ} C$ Unless otherwise noted)

	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITION
Input	Forward Voltage (V _F)		1.2	1.5	V	$I_F = 10mA$
	Reverse Current (I_R)			10	μΑ	$V_R = 6V$
Output	Collector-emitter Breakdown (BV _{CER}) H11D1, H11D2 H11D3, H11D4 Collector-base Breakdown (BV _{CBO})	300 200			V V	$I_{C} = 1 \text{mA}, R_{BE} = 1 \text{M}\Omega$ (note 2)
	H11D1, H11D2 H11D3, H11D4	300 200			V	$I_{\rm C} = 100 \mu A$
	Emitter-collector Breakdown (BV_{ECO}) Collector-emitter Dark Current (I_{CFR})	6			v	$I_{_E} = 100 \mu A$
	H11D1, H11D2			100 250	nA μA	$V_{CE} = 200V, R_{BE} = 1M\Omega$ $V_{CE} = 200V, R_{BE} = 1M\Omega$, $T_{A} = 100^{\circ}C$
	H11D3, H11D4			100 250	nΑ μΑ	$V_{CE} = 100V, R_{BE} = 1M\Omega$ $V_{CE} = 100V, R_{BE} = 1M\Omega$, $T_{A} = 100^{\circ}C$
Coupled	Current Transfer Ratio (CTR)	20			%	10mA I _F , 10V V _{CE} ,
	Collector-emitter Saturation Voltage $V_{\text{CE(SAT)}}$			0.4	V	$\begin{aligned} \mathbf{R}_{\mathrm{BE}} &= 1 \mathbf{M} \mathbf{\Omega} \\ 10 \mathrm{mA} \ \mathbf{I}_{\mathrm{F}}, \ 0.5 \mathrm{mA} \ \mathbf{I}_{\mathrm{C}}, \\ \mathbf{R}_{\mathrm{BE}} &= 1 \mathbf{M} \mathbf{\Omega} \end{aligned}$
	Input to Output Isolation Voltage $V_{\rm ISO}$	5300 7500			$egin{array}{c} V_{RMS} \ V_{PK} \end{array}$	See note 1 See note 1
	$\begin{array}{lll} \text{Input-output Isolation Resistance } R_{\text{ISO}} \\ \text{Turn-on Time} & \text{ton} \\ \text{Turn-off Time} & \text{toff} \end{array}$	5x10 ¹⁰	5 5		Ω μ s μ s	$V_{IO} = 500V \text{ (note 1)}$ $V_{CC} = 10V, I_{C} = 2mA,$ $R_{L} = 100\Omega, \text{ fig 1}$

Note 1 Measured with input leads shorted together and output leads shorted together.

Note 2 Special Selections are available on request. Please consult the factory.

DB91077m-AAS/A3

Collector Power Dissipation vs. Ambient Temperature

Relative Current Transfer Ratio vs. Forward Current (normalised to $10mA\ I_{_{\rm F}})$

Relative current transfer ratio

Relative current transfer ratio

Forward Current vs. Ambient Temperature

Relative Current Transfer Ratio vs. Ambient Temperature

Forward Voltage vs. Forward Current

Collector-base Current vs. Ambient Temperature

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Isocom manufacturer:

Other Similar products are found below:

SFH615A-2SM ILD2 4N33 MOC3021M H22A1 IS60SM ICPL2631SM ICPLM611 MOCD207 IS60SMT&R MOC3081M TLP620-4SM ICPL2531SM 4N25M ICPL4503SM CNY17-2X IS341W MOC3043M PS2502-2SM IS280-4 ISP844XSM TLP521-2XSM PS2502-4SM PS2505-4SM ICPL2530SM ISQ74X ICPL2601 H11D1 PS2502-2 H11L3SM ISD74X CNY17-2XSM ISQ2X ISP825X ILD74X 4N25XSM ILQ74X H11L1VSM CNY17-1XSM MOC3081X IS281C PS2501-2SM MOC3023M 4N32 MOC3041M MOC3041SM ILQ1XSM H11A1X TIL197 MOC3083