Tension/compression force transducers with thin-film sensor

Accuracy:	0,2 \%
Output signals:	4... 20 mA ; 2-wire, 0... 10 VDC; 3-wire
Optional	ATEX/IECEX 謉 II 2G Ex ib IIC T4/T3
Optional	for SIL3-Applications with 2-channel PC contro

Description

In addition to our force transducer program with bonded foils, a new force transducer with a welded thin film sensor was developed. The usage of standardised sensors, which are welded into the measuring element, makes an automated manufacturing possible. Combined with an accuracy of 0.2%, the new tension / compression force transducers are also of interest for OEM applications due to the attractive price- performance ratio.
Thin film sensors, produced by very modern manufacturing technology, have all advantages of the conventional bonded foil strain gauges, but without having their substantial disadvantages (temperature drifts of the glue and creeping).
Tension / compression force transducers can be applied directly into the force flux. They are used for weight measuring or as an overload protection. In machineries they are used to monitor press-capacities, clamping forces. Mounted indirectly they can be used as torque supports in order to supervise momentums.
Different output signals are available. These force transducers fulfil the regulations of EMC according to directive EN 61326.

ATEX/IECEX (Option)

Only equipment and protective systems with the corresponding certification and markings are to be put into operation in potentially explosive areas. Our force transducers with a thin-film measuring cell and integrated amplifier now have approval according to directive 94/9/EC in equipment group II (non-mining products), category 2G for zones 1 and 2 (gases). Other zones on request.

SIL-3 (Option)

In cooperation with the TÜV Süddeutschland a special security electronics has been developed for theatre and stage applications. It fulfils security standard SIL 3 with a 2-channel PC control in connection.
This international security standard for systems and processes is based on the standards IEC 61508 and 61511. The latter is used for ascertaining risk potentials of (engineering) systems. Depending on the potential existing risk a risk reduction has to be made. If automation components are used for that, they have to fulfil the demands of IEC 61508.
Both standards subdivide systems and risk reducing actions in four security steps: SIL1...SIL4 (Safety Integrity Level) - from small up to very high risks. If persons are allowed to stay under hanging loads, e.g. in theatres, security level 3 (SIL 3) is valid.

UL-Certification (Option)

tecsis force transducers are also available with UL approval.
FM and CSA Approval submitted.

TON

Features

- thin film implants
(instead of conventional bonded
foil strain gauges)
- corrosion free stainless steel
- integrated amplifier
- small temperature drift
- high long term stability
- high shock and vibration resistance
- for dynamic or static measurements
- good repeatability
- easy to install

ATEX/IECEX (Option)

- for Zone 1 and 2
- Ex III 2G Ex ib IIC T4/T3

SIL-3 (Option)

- Security electronic
- SIL-3 approval with 2-channel PC control; accreditation:
TÜV-Süd-Nr. 2005-08-11/tecsis

Measuring ranges

Tension and compression forces
from $1 \mathrm{kN} . .100 \mathrm{kN}$

Applications

- hoists, cranes
- screw down forces in machinery
- process automation
- mechanical engineering and machinery

ATEX/IECEX (Option)

- Mining
- Chemical and petrochemical industries
- Dedusting and filtration units

SIL-3 (Option)

For theatre and stage design:

- Above-stage machinery
- Below-stage machinery
- Point hoists
- Bar hoists

Specific information

- Counter nuts included

Technical data

Model	F2301		$\begin{aligned} & \text { F23C1 SIL-3 } \\ & \text { (Option) } \end{aligned}$
Nominal load $F_{\text {nom }}$	1/2/3/5/10/20/30/50/100 kN ${ }^{2}$	$\begin{aligned} & 1 / 2 / 3 / 5 / 10 / 20 / 30 / 50 / 100 \\ & \mathrm{kN}^{2)} \end{aligned}$	$\begin{aligned} & 1 / 2 / 3 / 5 / 10 / \\ & 20 / 30 \mathrm{kN}^{2)} \end{aligned}$
Limit load	$150 \% F_{\text {nom }}$		
Breaking load	$>300 \% F_{\text {nom }}$		
Combined error	$\leq \pm 0.2 \%$ of F.S.		
Hysteresis	$\leq \pm 0.1$ \% of F.S. C_{n}		
Max. dynamic load	$\pm 50 \% F_{\text {nom }}$ acc. to DIN $50100{ }^{*}$)		
Creep, 30 min. at $F_{\text {nom }}$	$\leq \pm 0.1$ \% of F.S. C_{n}		
Nominal deflection	see table		
Nominal temperature range	$-20 \ldots+80^{\circ} \mathrm{C}$		
Service temperature range	$-40 \ldots+80^{\circ} \mathrm{C}$		
Storage temperature range	$-40 \ldots+85^{\circ} \mathrm{C}$		
Temperature effect - span - zero	$\begin{aligned} & \leq \pm 0.2 \% \text { of F.S. /10K } \\ & \leq \pm 0.2 \% \text { of F.S. } / 10 \mathrm{~K} \end{aligned}$		
Vibration resistance	20g, 100h, 50...150Hz acc. to DIN EN 60068-2-6		
Protection type (acc. to EN 60529/IEC 529)	IP 67		
Noise emission	acc. to EN 61326		
Noise immunity	acc. to EN 61326		
Insulation resistance	$>5 \mathrm{G} \Omega / 50 \mathrm{~V}$		
Electrical protection	Reverse voltage, overvoltage and short circuit protection		
Analogue output - Output signal - (max. span of output signal: C_{n}) - Bridge resistance - Current consumption - Power requirement - Burden - Response time - Electrical connection	4 ... 20 mA ; 2-wire (4 (compression) ... 20 (tension) mA) 0 ... 10 V ; 3-wire (0 (compression) ... 10 (tension) V) $2 \mathrm{mV} / \mathrm{V}$ approx. 6.500Ω Current output $4 \ldots 20 \mathrm{~mA}$: signal current; Voltage output approx. 8 mA $10 \ldots 30 \mathrm{~V}$ DC for current output $14 \ldots 30 \mathrm{~V}$ DC for voltage output \leq (UB-6V) / 0.024 A for current output $>10 \mathrm{k} \Omega$ for voltage output $\leq 1 \mathrm{~ms}$ (within $\left.10 \% \ldots 90 \% F_{\text {nom }}\right)$ Circular connector M 12x1, 4-pin, Option: Cable junction		$\begin{aligned} & 4 \ldots 16 \mathrm{~mA} \text { - 2-wire; } \\ & 0 \ldots 7 \mathrm{~V} \quad \text {-3-wire } \\ & \text { Current output: signal } \\ & \text { current; } \\ & \text { Voltage output approx. } 8 \\ & \mathrm{~mA} \\ & \\ & \leq 5 \mathrm{~ms} \\ & \text { (within } 10 \% \ldots 90 \% F_{\text {nom }} \text {) } \end{aligned}$
Relay power supply U_{R} Power consumption relay P_{R} Signal amplitude			Standard 24 V , max. 1.5 x UR, min. $0.8 \times$ UR approx. 100 mW $4 \pm 0.2 \mathrm{~mA}$ resp. $3 \pm 0.2 \mathrm{~V}$, others upon request
Material of measuring device	stainless steel		
Material counter nut	nickel-plated steel		
Certfication		$\left\langle\chi_{x}{ }^{\text {II } 2 \mathrm{G} \mathrm{Ex} \mathrm{ib} \mathrm{IIC} \mathrm{T4/T3}}\right.$	TÜV: 2005-08-11/tecsis

*) for higher load please order higher load class
of F.S. = full scale value
${ }^{1)}$ The force transducers with ignition protection type "ib" must only be supplied using galvanically-isolated power supplies
Suitable supply isolators are also optionally available: EZE08X030003 (1-channel) und EZE08X03000x (2-channel).
${ }^{2)}$ Higher nominal loads on request

Tension/Compression

DE 941 q

Dimensions

Nominal load kN	Dimensions (mm)																
	A	B	D	E	F	G	H	J	K1	K2	K3	L	M	$\varnothing \mathrm{N}_{-0.1}$	$\begin{gathered} \hline \text { Bowl } \\ \text { R } \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{A}} \\ \mathrm{Nm} \end{gathered}$	Nominal deflection
1/2/3	25.2	22	24	23	4.3	1.5	6	59	43	62	66		M12	9.5		60	<0.5
5																	
10			31									77			80		
20		26	33									101			100		
30	27.5	27.5	40	34	3.8	2	10	61,5	44	63	67	108	$\mathrm{M} 20 \times 1.5$	17	120	300	< 0.1

Nominal load kN	Dimensions (mm)														
	$\varnothing \subset$	D	E	F	G	H	K1	K2	K3	L	M	$\varnothing \mathrm{N}_{-0.1}$	$\begin{gathered} \hline \text { Bowl } \\ R \end{gathered}$	$\begin{aligned} & \hline \mathrm{M}_{\mathrm{A}} \\ & \mathrm{Nm} \end{aligned}$	Nominal deflection
50	35	50	40	5	2	12	43	62	66	130	M24 x2	20	150	500	<0.1
100	54	54	68	10	3	19.5	44	64	68	190	M39 x 3	34	200	2.500	< 0.2

F23C1 SIL-3 (Option)

Version

$1-30 \mathrm{kN}$

Nominal load kN	Dimensions (mm)														
	A	B	D	E	F	G	H	J	K1	K2	L	M	$\varnothing \mathrm{N}_{-0,1}$	$\begin{gathered} \hline \text { Bowl } \\ R \end{gathered}$	$\begin{gathered} \hline \mathrm{M}_{\mathrm{A}} \\ \mathrm{Nm} \end{gathered}$
1/2/3/5	25.2	22	24	23	4.3	1.5	6	89	72	91.5	70	M12	9.5	60	60
10			31								77			80	
20		26	33	34	3.8	2	10				101	M20 X 1.5	17	100	300
30	27.5	27.5	40					91.5	73	92.5	108			120	

Dimensions incl. swivel head

Dimensions incl. swivel ends (mm)		
$\begin{aligned} & \text { F }_{\text {nom }} \\ & (\mathbf{k N}) \end{aligned}$	H	Min. screw in depth T
1/2/3/5	148 ± 3	9.5
10	155 ± 3	
20	219 ± 4	16
30	226 ± 4	
50	276 ± 4	19.5
100	405 ± 7	31

Swivel heads acc. to DIN ISO 12240-4 \varnothing D1 $=12$ up to 25 dim. column K \varnothing D2 $=40$ up to 80 dim. column E

Nominal load kN	Weight in kg	\mathbf{A}	\mathbf{B}	$\varnothing \mathbf{D 1}$	$\varnothing \mathbf{D} 2$	\mathbf{F}	\mathbf{G}	$\mathbf{G L}$	$\varnothing \mathbf{K}$	\mathbf{L}	\mathbf{M}	$\mathbf{S W}$
$\mathbf{1 \ldots 1 0}$	0.115	32	16	12 H 7	15.4	50	M 12	22	22	66	12	19
$\mathbf{2 0} \ldots \mathbf{3 0}$	0.415	50	25	20 H 7	24.3	77	$\mathrm{M} 20 \times 1.5$	33	34	102	18	32
$\mathbf{5 0}$	0.750	60	31	25 H 7	29.6	94	$\mathrm{M} 24 \times 2$	42	42	124	22	36
$\mathbf{1 0 0}$	2	92	28	$40-0,012$	45	142	$\mathrm{M} 39 \times 3$	65	65	188	23	55

Electrical connection

F2301/F23C1 ATEX/IECEX (Option)

Output signal 4..20mA (2-wire)

Circular connector M12x1, 4-pin

Output signal 0...10V (3-wire)
Circular connector M12x1, 4-pin

940E04

Cable outlet

screen

Pin configuration M12x1 (4-pin) /
Open cable outlet of the tecsis standard connection cable (STL 288, black)

Electrical connection	Pin	Cable outlet	$\mathbf{0 . . . 1 0 ~ V D C ~ (3 ~ - ~ w i r e) ~}$	
	1	brown	Pin	Cable outlet
Supply: UB +	3	blue	3	brown
Supply: 0 V	1	brown	4	blue
Signal: S+	3	blue	3	black
Signal: S-	screen	thread M12x1	blue	
(1)	thread M12x1	screen		

F23C1 SIL-3 (Option)

Output signal 4..20mA (2-wire)
Circular connector M12x1, 4-pin

Output signal 0...10V (3-wire)
Circular connector M12x1, 4-pin

Pin configuration M12x1 (4-pin) /
Open cable outlet of the tecsis standard connection cable (STL 288, black)

	4...20 mA (2 - wire)		0...10 VDC (3 - wire)	
	Pin	Cable outlet	Pin	Cable outlet
Supply: (UB+)	1	brown	1	brown
Supply: (0V)	3	blue	3	blue
Supply Relay: (UR)	2	white	2	white
Supply Relay: (0V)	4	black	3	blue
Signal: (+)	1	brown	4	black
Signal: (-)	3	blue	3	blue
(I)	thread M12x1	screen	thread M12x1	screen

Brief description SIL-3

Amplifier-Electronics $4 . . .20 \mathrm{~mA}$ or $0 . . .10 \mathrm{~V}$

for SIL-3 applications with 2-channel PC control
(Certified by TÜV Süddeutschland, Germany)
Certificate-no.: 2005-08-11/tecsis

Force Transducers, which are based on strain gauges, are working with four variable resistors (R1...R4) connected to a Wheatstone Bridge. Caused by deformation of the body the respective opposite resistors are lengthened or compressed in the same way. This results in an unbalanced bridge and a diagonal voltage U_{0}.

This well proven design has been amended by an additional resistor R7 in order to monitor the condition of the amplifier unit and signal path. This resistor is connected as a shunt to resistor R5 by a relay contact (a) as soon as an excitation voltage U_{r} appears at relay A.

The connection of resistor R7 will always result in a defined unbalancing of the zero point (diagonal voltage) of the Wheatstone Bridge.
An external independent control unit activates relay A which changes the output by a certain value. Because of security reasons the control unit has to be a 2 -channel one. When the expected change of the output signal is detected it can be assumed that the whole signal path (Wheatstone Bridge - amplifier - output) works well. If it does not appear it can be concluded that there is a defect in the signal path.

The standard adjustment of force transducers with current output for overload control is e.g.:

With activating the check relay a fixed signal jump of 8 mA will exceed the overload limit in every working condition. The measurement's upper limit of 20 mA however will never be reached. This makes the checking of the signal jump possible.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Board Mount Pressure Sensors category:
Click to view products by Tecsis manufacturer:

Other Similar products are found below :
80527-25.0H2-05 80541-B00000150-01 80541-B00000200-05 80554-00700100-05 80568-00300050-01 81618-B00000040-01 81739-
B00000900-01 81807-B00000020-01 81808-B00000150-14 82903-B00000020-01 93.631.4253.0 93.731.4353.0 93.932.4553.0 136PC150G2
136PC15A1 142PC95AW71 142PC05DW70 MPXV2202DPT1 15PSI-G-4V 1805-01A-L0N-B 2000317-1 26PCBKT 26PCCFA6D26
26PCCFS2G 26PCCVA6D 93.632.7353.0 93.731.3653.0 93.931.4853.0 93.932.4853.0 SCDA120-XSC05DC SP370-23-156-0 185PC30DH
192992-0059 20INCH-G-MV-MINI 26PCAFJ3G 26PCAFS2G54 26PCCEP5G24 26PCJEU5G19 30INCH-D1-MV-MINI ASCX15AN-90
TSCSAAN001PDUCV DCAL401DN DCAL401GN XZ202798SSC XZ203676HSC SP370-25-116-0 81717-00000050-05 81794-
B00001200-01 HSCDLNN100PGAA5 81618-B00000040-05

