

## Code structure





## Main features

- Metal housing or technopolymer housing, from one to two conduit entries
- Protection degree IP67
- 12 contact blocks available
- Versions with M12 connector
- Versions with gold-plated silver contacts
- Versions with stainless steel external metallic parts


## Quality marks:

## 

| IMQ approval: | EG610 (FR-FX-FK series) |
| :--- | :--- |
|  | EG609 (FM-FZ series) |
| UL approval: | E131787 |
| CCC approval: | 2007010305230013 |
|  | (FR-FX-FK series) |
|  | 2007010305229998 |
|  | (FM-FZ series) |
| EAC approval: | RU C-IT.АД35.B.00454 |

## Technical data

## Housing

FR, FX and FK series housing made of glass fibre reinforced technopolymer, self-extinguishing, shock-proof and with double insulation: $\square$
FM and FZ series: metal housing, baked powder coating.
FR, FM series: one threaded conduit entry: M20×1.5 (standard)
FK series: one threaded conduit entry: M16×1.5 (standard)
FX series: two knock-out threaded conduit entries: M20×1.5 (standard)
FZ series: two threaded conduit entries: M20×1.5 (standard)
Protection degree:
IP67 acc. to EN 60529 with cable gland of equal or higher protection degree

## General data

For safety applications up to:
Mechanical interlock, not coded:
Safety parameters:
$\mathrm{B}_{100}$ :
Service life:
Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
Max. actuation speed:
Min. actuation speed:
Tightening torques for installation:
SIL 3 acc. to EN 62061
PL e acc. to EN ISO 13849-1
type 1 acc. to EN ISO 14119

5,000,00 for NC contacts
20 years
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
3600 operating cycles/hour
1 million operating cycles
$180^{\circ}$ /s
$2 \%$
see page 313-324
Cable cross section (flexible copper strands)
Contact blocks 20, 21, 22, 33, 34:
min. $1 \times 0.34 \mathrm{~mm}^{2}(1 \times$ AWG 22) max. $2 \times 1.5 \mathrm{~mm}^{2}(2 \times$ AWG 16)
$\min .1 \times 0.5 \mathrm{~mm}^{2}(1 \times$ AWG 20$)$
max. $2 \times 2.5 \mathrm{~mm}^{2}(2 \times$ AWG 14)

## In compliance with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No. 14.
Approvals:
IEC 60947-5-1, UL 508, CSA 22.2 No.14, GB14048.5-2001.

## Compliance with the requirements of:

Machinery Directive 2006/42/EC and EMC Directive 2014/30/EU.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.
© If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 313 to page 324.

| Electrical data |  |  | Utilization category |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { Thermal current }\left(\\|_{\text {th }}\right) \text { : } \\ & \text { Rated insulation voltage }\left(U_{i}\right) \text { : } \end{aligned}$ | 10 A <br> 500 Vac 600 Vdc <br> 400 Vac 500 Vdc (contact blocks 20, 21, 22, 33, <br> 34) <br> 6 kV | Alternating current: AC15 ( $50 \div 60 \mathrm{~Hz}$ ) |  |  |  |
|  |  |  | $U_{e}(\mathrm{~V})$ | 250 | 400 | 500 |
|  | Rated impulse withstand voltage ( $\mathrm{U}_{\text {imp }}$ ) : |  | $\begin{array}{llll} I_{e}(A) & 6 & 4 & 1 \end{array}$ <br> Direct current: DC13 |  |  |  |
|  |  |  |  |  |  |  |
|  | Conditional short circuit current: | 4 kV (contact blocks 20, 21, 22, 33, 34) 1000 A acc. to EN 60947-5-1 | $\mathrm{I}_{\mathrm{e}}(\mathrm{A})$ | 24 | 125 | 250 |
|  | Protection against short circuits: Pollution degree: | type aM fuse 10 A 500 V 3 |  | 6 | 1.1 | 0.4 |
|  | Thermal current ( $l_{\text {th }}$ ): <br> Rated insulation voltage ( $U_{i}$ ): <br> Protection against short circuits: <br> Pollution degree: | ```4 A 250 Vac 300 Vdc type gG fuse 4 A 500 V 3``` | Alternating current: AC15 ( $50 \div 60 \mathrm{~Hz}$ ) |  |  |  |
|  |  |  | $U_{e}(\mathrm{~V})$ | 24 | 120 | 250 |
|  |  |  | $\mathrm{I}_{\mathrm{e}}(\mathrm{A})$ | 4 | 4 | 4 |
|  |  |  | Direct | nt: D |  |  |
|  |  |  | $U_{\text {e }}(\mathrm{V})$ | 24 | 125 | 250 |
|  |  |  | $\mathrm{I}_{\mathrm{e}}(\mathrm{A})$ | 4 | 1.1 | 0.4 |
|  | Thermal current $\left(l_{\text {th }}\right)$ : <br> Rated insulation voltage ( $\mathrm{U}_{\mathrm{i}}$ ): <br> Protection against short circuits: <br> Pollution degree: | ```2 A 30 Vac 36 Vdc type gG fuse 2 A 500 V 3``` | Alternating current: AC15 $(50 \div 60 \mathrm{~Hz})$ |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  | $\mathrm{I}_{\text {e }}(\mathrm{A})$ | 2 |  |  |
|  |  |  | Direct | nt: D |  |  |
|  |  |  | $U_{\text {e }}(\mathrm{V})$ | 24 |  |  |
|  |  |  | $\mathrm{I}_{\mathrm{e}}(\mathrm{A})$ | 2 |  |  |

## Description

These safety switches are designed to monitor gates or doors that safeguard dangerous parts of machines without inertia. They are very sensitive, open the contacts after few degrees of rotation and immediately send the stop signal. The head, which can be turned in $90^{\circ}$ steps, enables installation in multiple positions. Available with technopolymer or metal housings, with protection degree IP67. The special design allows it to be used even under operating conditions in which dust and dirt could inhibit the operation of normal safety switches with separate actuator.

## Head with variable orientation



For all switches, the head can be adjusted in $90^{\circ}$ steps after removing the four fastening screws. This allows you to use the same switch on both right- and left-facing door fronts.

## Protection degree IP67



These devices are designed to be used in the toughest environmental conditions and they pass the IP67 immersion test acc. to EN 60529. They can therefore be used in all environments where maximum protection degree of the housing is required.

## Application examples



## Features approved by IMQ

Rated insulation voltage ( $U_{i}$ ):
500 Vac
400 Vac (for contact blocks $20,21,22,33,34$ )
Conventional free air thermal current $\left(l_{\text {tr }}\right)$ :
Protection against short circuits:
Rated impulse withstand voltage
$\left(U_{i m p}\right)$ :
Protection degree of the housing
MV terminals (screw terminals)
Pollution degree:
Utilization category:
Operating voltage ( $\mathrm{U}_{\mathrm{e}}$ )
Operating current ( $\left.\mathrm{I}_{\mathrm{e}}\right)^{\mathrm{e}}$ :
Forms of the contact element: $Z b, Y+Y, Y+Y+X, Y+Y+Y, Y+X+X$
Positive opening contacts on contact blocks $5,6,7,9,14,18,20,21,22,33,34,66$. In compliance with standards: EN 60947-1, EN 60947-5-1 + A1:2009, fundamental requirements of the Low Voltage Directive 2014/35/EU.
Please contact our technical department for the list of approved products.

## Extended temperature range

$-40^{\circ} \mathrm{C}$
These devices are also available in a special version suitable for an ambient operating temperature range from $-40^{\circ} \mathrm{C}$ up to $+80^{\circ} \mathrm{C}$
They can therefore be used for applications in cold stores, sterilisers and other equipment with low temperature environments. The special materials used to produce these versions retain their characteristics even under these conditions, thereby expanding the installation possibilities.

## Adjustable switching point



When installing the device, the contact switching point can be adjusted over the entire $360^{\circ}$ range. By fixing the stud screw, it is possible to check the correct setting of the activation angle and quickly and easily adjust it if necessary. Once adjustment is complete, you can render the device tamper-proof against commonly used tools using the supplied lock pin.

Dimensional drawings


| Contact type: | Metal housing | Metal housing |
| :---: | :---: | :---: |
| $\begin{aligned} & \mathbf{R}=\text { snap action } \\ & \hline \mathbf{L}=\text { s slow action } \\ & \hline \mathbf{L O}=\text { slow action } \\ & \text { breake before } \\ & \text { bed }=\text { slow action } \\ & \text { shifted } \end{aligned}$ |  |  |
| 5 R | FM 596-M2 $\quad \rightarrow$ 1NO+1NC | FZ 596-M2 $\quad$ - 1NO+1NC |
| 6 L | FM 696-M2 $\Theta$ 1NO+1NC | FZ 696-M2 $\quad$ 1NO+1NC |
| 7 L0 | FM 796-M2 $\quad$ - 1NO+1NC | FZ 796-M2 $\Theta$ 1NO+1NC |
| $9 \square$ | FM 996-M2 $\quad$ 2NC | FZ 996-M2 $\quad$ 2NC |
| 14 LS | FM 1496-M2 $\Theta$ 2NC | FZ 1496-M2 $\Theta$ 2NC |
| 18 L | FM 1896-M2 $\Theta$ 1NO+1NC | FZ 1896-M2 $\Theta$ 1NO+1NC |
| 20 L | FM 2096-M2 $\Theta$ 1NO+2NC | FZ 2096-M2 $\Theta$ 1NO+2NC |
| 21 L | FM 2196-M2 $\Theta$ 3NC | FZ 2196-M2 $\quad \Theta$ 3NC |
| 22 L | FM 2296-M2 $\Theta$ 2NO+1NC | FZ 2296-M2 $\Theta$ 2NO+1NC |
| 33 L | FM 3396-M2 $\Theta$ 1NO+1NC | FZ 3396-M2 $\Theta$ 1NO+1NC |
| 34 L | FM 3496-M2 $\Theta$ 2NC | FZ 3496-M2 $\Theta$ 2NC |
| 66 L | FM 6696-M2 $\Theta$ 1NC | FZ 6696-M2 $\quad$ 1NC |
| Actuating force | $0.15 \mathrm{Nm}(0.4 \mathrm{Nm} \Theta)$ | $0.15 \mathrm{Nm}(0.4 \mathrm{Nm} \Theta)$ |
| Travel diagrams | page 318-group 9 | page 318-group 9 |

Dimensional drawings for actuators


Adjustment of the switching point


Temporary locking of the actuator (stud screw provided).


Verify the switching point according to EN ISO 13857 and recalibrate if necessary.


Pin the switch (pin is provided).

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Basic / Snap Action Switches category:
Click to view products by Pizzato manufacturer:
Other Similar products are found below :
83228001 01.098.1358.1 602EN1-6B 602EN532 602EN535-RB 602HE5-RB1 604HE162 604HE223-6B 624HE17-RB 6HM89 6PA78-JM 6SE1 6SX1-H58 70500840 MBD5B1 MBH2731 73-316-0012 79211759 79211923 79218589 7AS12 ML-1155 ML-1376 831010C3.0 831060C3.TL 831090C2.EL $83131904 \underline{84212012}$ 8AS239 8HM73-3 903VB1-PG 914CE1-6G PL-100 11SM1077-H4 11SM1077-H58 11SM1-TN107 11SM405 11SM703-T 11SM8423-H2 11SX37-T 11SX48-H58 11SX55-H58 11SM2442-T 11SM76-T 11SM77-H58 11SM77-T 11SM863-T 11SM866 11SX47-H58 A7CN-1M-1-LEFT

