Display Elektronik GmbH

DATA SHEET

LCD MODULE

DEM 128064P FGH-PW

Product Specification

Ver.: 3

DOCUMENT REVISION HISTORY

Version	DATE	DESCRIPTION	CHANGED BY
0	09.11.2012	First issue	MH
1	12.11.2012	Update	MH
2 3	21.11.2012	Update Specification First Page	MH
3	11.12.2012	Update	MH

CONTENTS

1. Functions & Features	1
2. Mechanical Specifications	1
3. Block Diagram	1
4. Dimensional Outline	2
5. Pin Description	3
6. Maximum absolute Limit	3
7. Circuit Schematics	4
8. Electrical Characteristics	5
9. Timing Characteristics	6
10. Backlight Characteristics	7
11. Electro-Optical Characteristics	8
12. Control and Display Instructions	9
13. Precaution for using LCD/LCM	10

1. FUNCTIONS & FEATURES

Display Format : 128 x 64 Dots

LCD Mode : FSTN, Positive, Transflective Backlight : LED, Lightguide, White

Viewing Direction : 6 o'clock

 $\begin{array}{lll} \mbox{Driving Scheme} & : 1/65 \mbox{ Duty, } 1/9 \mbox{ Bias} \\ \mbox{Power Supply Voltage } (\mbox{V}_{DD}) & : 3.3 \mbox{ Volt (typ.)} \\ \mbox{LCD Driving Voltage} & : 9.0 \mbox{ Volt (typ.)} \\ \mbox{Operation Temperature} & : -20 \mbox{ to } +70^{\circ}\mbox{C} \\ \mbox{Storage Temperature} & : -30 \mbox{ to } +80^{\circ}\mbox{C} \\ \end{array}$

2. MECHANICAL SPECIFICATIONS

 Module Size
 : 37.00 x 30.30 x 7.10 mm

 Viewing Area
 : 31.40 x 20.30 mm

 Active Area
 : 27.50 x 15.98 mm

 Dot Pitch
 : 0.215 x 0.250 mm

 Dot Size
 : 0.195 x 0.230 mm

3. BLOCK DIAGRAM

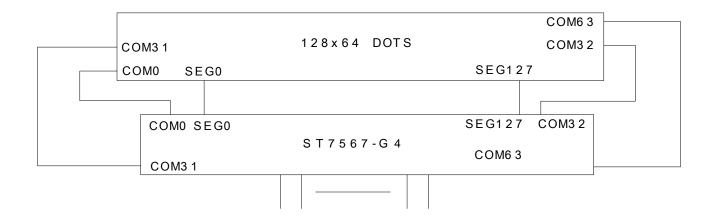
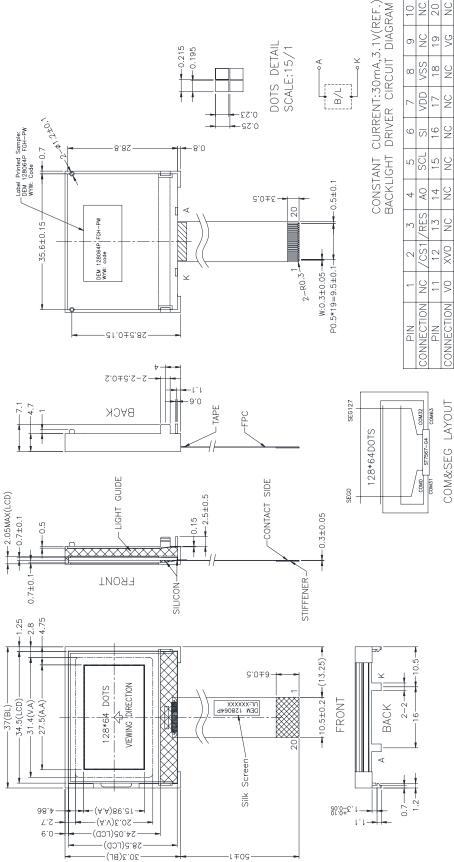
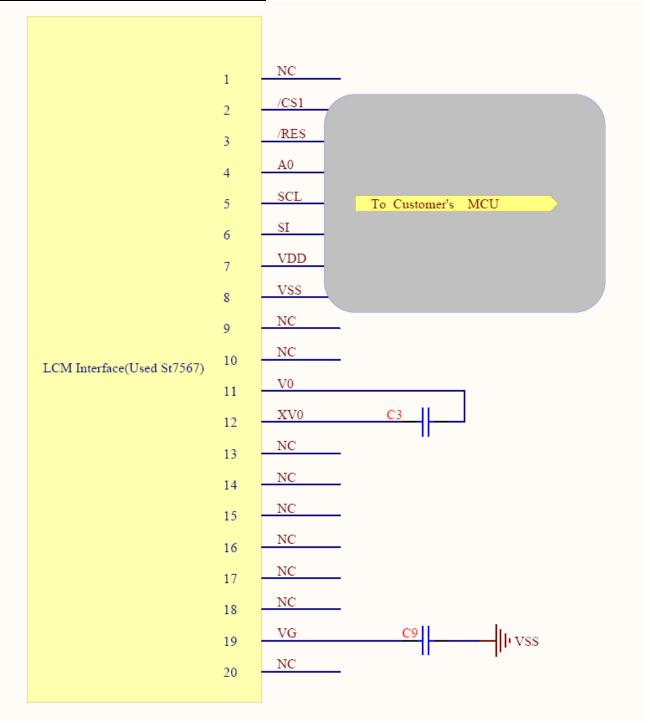



Figure 1 . Block Diagram

4. DIMENSIONAL OUTLINE

Version: 3


5. PIN DESCRIPTION

No.	Symbol	Function
1	NC	No Connection
2	/CS1	Chip select input pin,interface access is enable when /CS1 is"L"
3	/RES	Hardware reset input pin. When /RES is "L", internal initialization is executed and the internal registers will be initialized.
4	A0	Register selection (H: Data register, L:Instruction register)
5	SCL	Serial clock input.
6	SI	Serial data input.
7	VDD	Power supply for Logic(+3.3V)
8	VSS	Power ground (0V)
9~10	NC	No Connection
11	V0	V0 is the LCD driving voltage for common circuits at negative frame
12	XV0	XV0 is the LCD driving voltage for common circuits at positive frame.
13~18	NC	No Connection
19	VG	VG is the LCD driving voltage for segment circuits.
20	NC	No Connection

6. MAXIMUM ABSOLUTE LIMIT

Item	Symbol	MIN	MAX	Unit
Supply Voltage for Logic	$V_{ m DD}$	-0.3	3.6	V
LCD Power supply voltage	V_0 - XV_0	-0.3	16	V
Input Voltage	Vi	-0.3	VDD+0.3	V
Supply Current for Backlight	$I_F(Ta = 25^{\circ}C)$		36	mA
Reverse Voltage for Backlight	$V_R(Ta = 25^{\circ}C)$		0.8	V
Operating Temperature	Тор	-20	70	°C
Storage Temperature	Tst	-30	80	°C

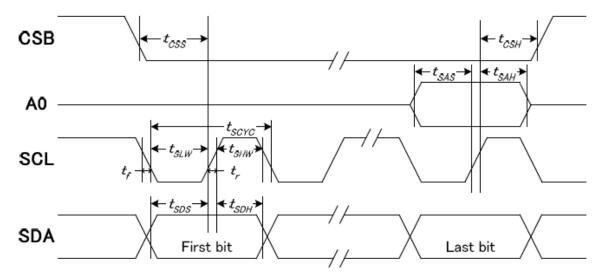
7. CIRCUIT SCHEMATICS

8. ELECTRICAL CHARACTERISTICS

DC Characteristics

16	Cb. al	_	ondition		Rating	Unit	Applicable	
Item	Symbol	ondition	Min.	Тур.	Max.	Unit	Pin	
Operating Voltage (1)	VDD1			1.7	_	3.3	٧	VDD1
Operating Voltage (2)	VDD2			2.4	-	3.3	٧	VDD2
Operating Voltage (3)	VDD3			2.4	1	3.3	>	VDD3
Input High-level Voltage	V _{IHC}			0.7 x VDD1	_	VDD1	٧	MPU
								Interface
Input Low-level Voltage	V _{ILC}			VSS1	_	0.3 x VDD1	V	MPU
, , , , , , , , , , , , , , , , , , ,								Interface
Output High-level Voltage	V _{OHC}	I _{OUT} =1m	I _{OUT} =1mA, VDD1=1.8V		-	VDD1	>	D[7:0]
Output Low-level Voltage	V _{olc}	I _{OUT} =-1m	nA, VDD1=1.8V	VSS1	1	0.2 x VDD1	>	D[7:0]
Input Leakage Current	Iu			-1.0		1.0	μA	MPU
input Leakage Current	"LI			1.0		1.0	μΑ	Interface
Output Leakage Current	ILO			-3.0		3.0		MPU
Output Leakage Current	ILO			3.0		3.0	μΑ	Interface
			Vop=8.5V,		0.6	0.8	ΚΩ	COMx
Liquid Crystal Driver ON	Ron	Ta=25°C	∆V=0.85V		0.0	0.0	KΩ	COIVIX
Resistance	KON	1a-25 C	VG=1.9V,		1.3	1.5	ΚΩ	SEGx
			∆V=0.19V		1.3	1.5		SEGX
Eramo Eroguonev	FR	Duty=1/65, Vop=8.5V		70	75	80	Hz	
Frame Frequency	FK	Ta	a = 25℃	70	75	ou	ПZ	

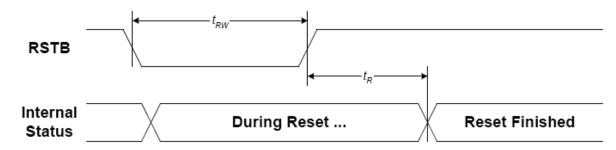
Current consumption: During Display, with internal power system, current consumed by whole IC (bare die).


Test Pattern	Symbol	Condition		Rating	Unit	Note	
rest Fattern	Syllibol	Condition	Min.	Тур. Мах.		Onit	Note
		VDD1=VDD2=VDD3=3.0V,					
Display Pattern: SNOW	ISS	Booster X5		150	300		
(Static)	155	V _{OP} = 8.5 V, Bias=1/9	_	150	300	μA	
		Ta=25°C					
		VDD1=VDD2=VDD3=3.0V,		95	190		
Display OFF	ISS	Booster X5				uA	
Display OFF	155	V _{OP} = 8.5 V, Bias=1/9	_				
		Ta=25°C					
Power Down	ISS	VDD1=VDD2=VDD3=3.0V,		8	16		
Fower Down	133	Ta=25°C		0	10	μΑ	

Note:

• The Current Consumption is DC characteristics

9. TIMING CHARACTERISTICS


System Bus Timing for 4-Line Serial Interface

 $(V_{DD}=3.3V,Ta=25^{\circ}C)$

ltem	Signal	Symbol	Condition	Min.	Max.	Unit
Serial clock period		tSCYC		50	_	
SCLK "H" pulse width	SCLK	tSHW		25	_	
SCLK "L" pulse width		tSLW		25	_]
Address setup time	A0	tSAS		20	_	
Address hold time	AU	tSAH		10	_	ns
Data setup time	SDA	tSDS		20	_	1
Data hold time	SDA	tSDH		10	_	1
CSB-SCLK time	CSB	tCSS		20	_	1
CSB-SCLK time	CSB	tCSH		40	_	

Hardware Reset Timing

 $(V_{DD}=3.3V,Ta=25^{\circ}C)$

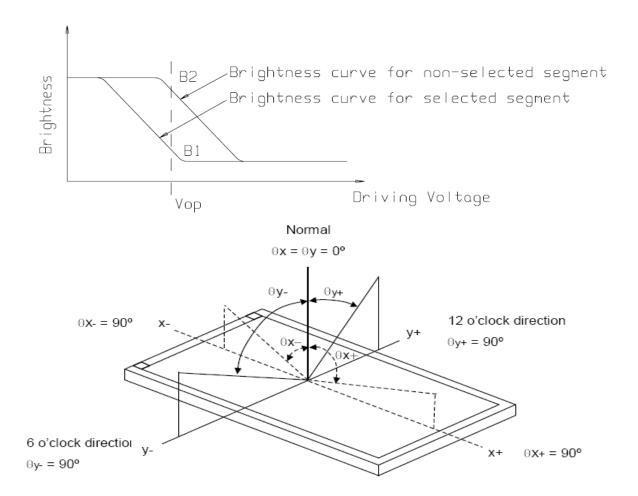
ltem	Symbol	Condition	Min.	Max.	Unit
Reset time	tR		_	1.0	116
Reset "L" pulse width	tRW		1.0	_	us

10. BACKLIGHT CHARACTERISTICS

LCD Module with Edge White LED Backlight

ELECTRICAL RATINGS

 $Ta = 25^{\circ}C$


Item	Symbol	Condition	Min	Тур	Max	Unit	
Forward Voltage	VF	IF=30mA	2.9	3.1	3.3	V	
Reverse Current	Ir	VR=0.8V		15		mA	
Luminous Intensity (without LCD)	LV	IF=30mA	400	500		Cd/m ²	
Luminous Intensity (with LCD)	LV	IF=30mA	60	93		Cd/m ²	
Dominant Wavelength	X	IF=30mA	0.26				
(without LCD)	Y	Y 0.260.2820.30					
Backlight Uniformity	≥ 75%						
Color			Wh	ite			

When the temperature exceed 25°C, the approved current decrease rate for Backlight change as the temperature increase is: $-0.36\text{mA*}/^{\circ}\text{C}(\text{below }25^{\circ}\text{C})$, the current refer to constant, which would not change with temperature).

11. ELECTRO-OPTICAL CHARACTERISTICS

 $(V_{DD}=3.3V, Ta=25^{\circ}C)$

Item	Symbol	Condition	Min	Тур	Max	Unit
On anatina Waltara		Ta = -20°C				
Operating Voltage for LCD	Vop	$Ta = 25^{\circ}C$	9.0	9.2	9.5	V
101 LCD		$Ta = 70^{\circ}C$				
Dagmanga Tima	Tr	$Ta = 25^{\circ}C$		200		ms
Response Time	Tf	$\frac{1a-25}{1}$		220		ms
Contrast	Cr	$Ta = 25^{\circ}C$	2	4		
	θx-		30	35		deg
Viewing Angle	$\theta_{X}+$	$C_{\pi} > 2$	30	35		deg
Range	θу-	$Cr \ge 2$	35	45		deg
	θу+		35	40		deg

12. CONTROL AND DISPLAY INSTRUCTION

INCTRUCTION	INSTRUCTION AS R/W COMMAND BYTE									DESCRIPTION		
INSTRUCTION	A0	(RWR)	D7	D6	D5	D4	D3	D2	D1	D0	DESCRIPTION	
(1) Display ON/OFF	0	0	1	0	1	0	1	1	1	D	D=1, display ON D=0, display OFF	
(2) Set Start Line	0	0	0	1	S5	S4	S3	S2	S1	S0	Set display start line	
(3) Set Page Address	0	0	1	0	1	1	Y3	Y2	Y1	Y0	Set page address	
(4)	0	0	0	0	0	1	X7	X6	X 5	X4	Set column address (MSB)	
Set Column Address	0	0	0	0	0	0	Х3	X2	X1	X0	Set column address (LSB)	
(5) Read Status	0	1	0	MX	D	RST	0	0	0	0	Read IC Status	
(6) Write Data	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write display data to RAM	
(7) Read Data	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read display data from RAM	
(8) SEG Direction	0	0	1	0	1	0	0	0	0	MX	Set scan direction of SEG MX=1, reverse direction MX=0, normal direction	
(9) Inverse Display	0	0	1	0	1	0	0	1	1	IN∨	INV =1, inverse display INV =0, normal display	
(10) All Pixel ON	0	0	1	0	1	0	0	1	0	AP	AP=1, set all pixel ON AP=0, normal display	
(11) Bias Select	0	0	1	0	1	0	0	0	1	BS	Select bias setting 0=1/9; 1=1/7 (at 1/65 duty)	
(12) Read-modify-Write	0	0	1	1	1	0	0	0	0	0	Column address increment: Read:+0 , Write:+1	
(13) END	0	0	1	1	1	0	1	1	1	0	Exit Read-modify-Write mode	
(14) RESET	0	0	1	1	1	0	0	0	1	0	Software reset	
(15) COM Direction	0	0	1	1	0	0	MY	-	-	-	Set output direction of COM MY=1, reverse direction MY=0, normal direction	
(16) Power Control	0	0	0	0	1	0	1	VB	VR	VF	Control built-in power circuit ON/OFF	
(17) Regulation Ratio	0	0	0	0	1	0	0	RR2	RR1	RR0	Select regulation resistor ratio	
(18) Set EV	0	0	1	0	0	0	0	0	0	1	Double command!! Set	
(10) Set EV	0	0	0	0	EV5	EV4	EV3	EV2	EV1	EV0	electronic volume (EV) level	
	0	0	1	1	1	1	1	0	0	0	Double command!!	
(19) Set Booster	0	0	0	0	0	0	0	0	0	BL	Set booster level: BL=0: 4X BL=1: 5X	
(20) Power Save	0 0 Compound Command					Display OFF + All Pixel ON						
(21) NOP	0	0	1	1	1	0	0	0	1	1	No operation	
(22) Test	0	0	1	1	1	1	1	1	1	-	Do NOT use. Reserved for testing.	

Note: Symbol "-" means this bit can be "H" or "L".

13. PRECAUTION FOR USING LCD/LCM

LCD/LCM is assembled and adjusted with a high degree of precision. Do not attempt to make any alteration or modification. The followings should be noted.

General Precautions:

- 1. LCD panel is made of glass. Avoid excessive mechanical shock or applying strong pressure onto the surface of display area.
- 2. The polarizer used on the display surface is easily scratched and damaged. Extreme care should be taken when handling. To clean dust or dirt off the display surface, wipe gently with cotton, or other soft material soaked with isoproply alcohol, ethyl alcohol or trichlorotriflorothane, do not use water, ketone or aromatics and never scrub hard.
- 3. Do not tamper in any way with the tabs on the metal frame.
- 4. Do not make any modification on the PCB without consulting DISPLAY.
- 5. When mounting a LCM, make sure that the PCB is not under any stress such as bending or twisting. Elastomer contacts are very delicate and missing pixels could result from slight dislocation of any of the elements.
- 6. Avoid pressing on the metal bezel, otherwise the elastomer connector could be deformed and lose contact, resulting in missing pixels and also cause rainbow on the display.
- 7. Be careful not to touch or swallow liquid crystal that might leak from a damaged cell. Any liquid crystal adheres to skin or clothes, wash it off immediately with soap and water.

Static Electricity Precautions:

- 1. CMOS-LSI is used for the module circuit; therefore operators should be grounded whenever he/she comes into contact with the module.
- 2. Do not touch any of the conductive parts such as the LSI pads; the copper leads on the PCB and the interface terminals with any parts of the human body.
- 3. Do not touch the connection terminals of the display with bare hand; it will cause disconnection or defective insulation of terminals.
- 4. The modules should be kept in anti-static bags or other containers resistant to static for storage.
- 5. Only properly grounded soldering irons should be used.
- 6. If an electric screwdriver is used, it should be grounded and shielded to prevent sparks.
- 7. The normal static prevention measures should be observed for work clothes and working benches
- 8. Since dry air is inductive to static, a relative humidity of 50-60% is recommended.

Soldering Precautions:

- 1. Soldering should be performed only on the I/O terminals.
- 2. Use soldering irons with proper grounding and no leakage.
- 3. Soldering temperature: 270~300°C
- 4. Soldering time: 2 to 3 second.
- 5. Use eutectic solder with resin flux filling.
- 6. If flux is used, the LCD surface should be protected to avoid spattering flux.
- 7 Flux residue should be removed

Operation Precautions:

- 1. The viewing angle can be adjusted by varying the LCD driving voltage Vo.
- 2. Since applied DC voltage causes electro-chemical reactions, which deteriorate the display, the applied pulse waveform should be a symmetric waveform such that no DC component remains. Be sure to use the specified operating voltage.
- 3. Driving voltage should be kept within specified range; excess voltage will shorten display life.
- 4. Response time increases with decrease in temperature.
- 5. Display color may be affected at temperatures above its operational range.
- 6. Keep the temperature within the specified range usage and storage. Excessive temperature and humidity could cause polarization degradation, polarizer peel-off or generate bubbles.
- 7. For long-term storage over 40°C is required, the relative humidity should be kept below 60%, and avoid direct sunlight.

Limited Warranty

DISPLAY LCDs and modules are not consumer products, but may be incorporated by DISPLAY's customers into consumer products or components thereof, DISPLAY does not warrant that its LCDs and components are fit for any such particular purpose.

- 1. The liability of DISPLAY is limited to repair or replacement on the terms set forth below. DISPLAY will not be responsible for any subsequent or consequential events or injury or damage to any personnel or user including third party personnel and/or user. Unless otherwise agreed in writing between DISPLAY and the customer, DISPLAY will only replace or repair any of its LCD which is found defective electrically or visually when inspected in accordance with DISPLAY general LCD inspection standard. (Copies available on request)
- 2. No warranty can be granted if any of the precautions state in handling liquid crystal display above has been disregarded. Broken glass, scratches on polarizer mechanical damages as well as defects that are caused accelerated environment tests are excluded from warranty.

In returning the LCD/LCM, they must be properly packaged; there should be detailed description of the failures or defect.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LCD Graphic Display Modules & Accessories category:

Click to view products by Display Elektronik manufacturer:

Other Similar products are found below:

NA57W001B HDM64GS12L-Y11S LCM-H12864GSFH-Y MGLS-240128-Z05 GLK19264A-7T-1U-TCI-LV-E DEM 128032A FGH
RG12864F-FHW-M EGLK19264A-7T-WB-VPT-PL HG2G-V5FT22TF-W HG1G-4VT22TF-S HDM64GS24L-2-Y14S LTS-2301AP LTS6760P LTS-6980HR RG12864A-GHC-V RG12864A-GHY-V RG12864A-TIG-V RG12864A-TIY-V RG12864A-YHY-X RG12864BFHW-V RG12864B-GHW-V RG12864C-YHW-V RG12864K-BIW-VBG RG160128A-TIW-V RG240128B-YHY-M RG320240A1-BIW-V
RG320240B-BIW-V RG320240B-FHW-V DEM 097032A SGH-PY DEM 122032A SYH-LY DEM 122032C SBH-PW-N-12 DEM 128064A
SBH-PW-N DEM 128064B SBH-PW-N DEM 128064F FGH-P(RGB) DEM 128064G FGH-PW DEM 128064I FGH-PW DEM 128064J
SBH-PW-N DEM 128064O FGH-PW DEM 128064O SBH-PW-N DEM 128064Q SBH-PW-N DEM 128128D FGH-PW DEM 240064B
FGH-PW DEM 240064B SBH-PW-N DEM 240160A SBH-PW-N DEM 320240B FGH-PW-N DEM 320240C FGH-PW EA W240-7KHLW
RX12864A1-BIW RX12864D3-BIW RX240128A-FGN