feATURES

- High Efficiency: Up to 95\%
- Maximum Current Output: 15mA
- Externally Programmable Frequency Clamp with Internal 50kHz Default Minimizes Audio Noise
- $18 \mu \mathrm{~A} \mathrm{I}_{\mathrm{Q}}$ Current
- 2.9V to 5.5V Input Voltage Range
- Low-Battery Detection
- 0.6V Reference Allows Low Output Voltages
- Shutdown Mode Draws <1uA Supply Current
- 2.8V Undervoltage Lockout
- Unique Low Noise Control Architecture
- Internal Power MOSFETs
- No Schottky Diodes Required
- Internal Soft-Start
- Tiny $2 \mathrm{~mm} \times 2 \mathrm{~mm} 8$-Lead DFN Package

APPLICATIONS

- Hearing Aids
- Wireless Headsets
- Li-Ion Cell Applications
- Button Cell Replacement
$\boldsymbol{\mathcal { T }}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. Protected by U.S. Patents including 7528587.

Ultralow Power 15mA Synchronous Step-Down Switching Regulator DESCRIPTIOn

The LTC ${ }^{\circledR} 3620$ is a high efficiency, synchronous buck regulator, suitable for very low power, very small footprint applications powered by a single Li-Ion battery.

The internal synchronous switches increase efficiency and eliminate the need for external Schottky diodes. Low output voltages are easily supported by the 0.6 V feedback reference voltage. The LTC3620-1 option is internally programmed to provide a 1.1 V output.

The LTC3620 uses a unique variable frequency architecture to minimize power loss and achieve high efficiency. The switching frequency is proportional to the load current, and an internal frequency clamp forces a minimum switching frequency at light loads to minimize noise in the audio range. The user can program the frequency of this clamp by applying an external clock to the FMIN/MODE pin.
The battery status output, LOBATB, indicates when the input voltage drops below 3V. To help prevent damage to the battery, an undervoltage lockout (UVLO) circuit shuts down the part if the input voltage falls below 2.8 V .
The LTC3620 is available in a low profile, $2 \mathrm{~mm} \times 2 \mathrm{~mm}$ 8-lead DFN package.

TYPICAL APPLICATION

High Efficiency Low Power Step-Down Converter

Output Voltage Ripple vs Load Current

Efficiency vs Load Current

ABSOLUTE MAXIMUM RATIOGS

pIn CONFIGURATION

(Note 1)
Input Supply Voltage...................................-0.3V to 6V
RUN Voltage -0.3 V to ($\mathrm{V}_{\text {IN }}+0.3 \mathrm{~V}$)
$\mathrm{V}_{\text {FB }}$ Voltage -0.3 V to $\left(\mathrm{V}_{\text {IN }}+0.3 \mathrm{~V}\right)$
LOBATB Voltage .. -0.3 V to 6 V
FMIN/MODE Voltage -0.3 V to $\left(\mathrm{V}_{\text {IN }}+0.3 \mathrm{~V}\right)$
SW Voltage -0.3 V to $\left(\mathrm{V}_{\text {IN }}+0.3 \mathrm{~V}\right)$
P-channel Switch Source Current (DC).................. 50 mA
N-channel Switch Sink Current (DC)...................... 50 mA
Operating Junction Temperature Range
(Note 2) \qquad $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage Temperature Range.................. $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

8-LEAD ($2 \mathrm{~mm} \times 2 \mathrm{~mm}$) PLASTIC DFN
$\mathrm{T}_{\mathrm{Jmax}}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=88.5^{\circ} \mathrm{C} / \mathrm{W}$
EXPOSED PAD (PIN 9) IS GND, MUST BE SOLDERED TO PCB

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LTC3620EDC\#PBF	LTC3620EDC\#TRPBF	LFJJ	8 -Lead $(2 \mathrm{~mm} \times 2 \mathrm{~mm})$ Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC3620EDC-1\#PBF	LTC3620EDC-1\#TRPBF	LFJK	8 -Lead $(2 \mathrm{~mm} \times 2 \mathrm{~mm})$ Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges.
Consult LTC Marketing for information on non-standard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating junction temperature range, otherwise specifications are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 2). $\mathrm{V}_{I N}=3.6 \mathrm{~V}$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {IN }}$	Input Voltage Range		\bullet	2.9		5.5	V
$\mathrm{V}_{\text {FB }}$	Regulated Feedback Voltage (Note 3)	LTC3620 LTC3620 LTC3620-1 LTC3620-1	-	$\begin{aligned} & 0.594 \\ & 0.588 \\ & 1.089 \\ & 1.078 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.6 \\ & 1.1 \\ & 1.1 \end{aligned}$	$\begin{aligned} & \hline 0.606 \\ & 0.612 \\ & 1.111 \\ & 1.122 \end{aligned}$	V V V V
$\Delta \mathrm{V}_{\text {FB }}$	Reference Voltage Line Regulation	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$ to 5.5 V (Note 3)			0.05	0.15	\%/V
V LOADREG	Output Voltage Load Regulation	(Note 3)				0.5	\%
$\underline{\mathrm{I}_{Q}}$	Quiescent Current, No Switching	$\mathrm{V}_{\text {FB }}=0.65 \mathrm{~V}, \mathrm{FMIN} / \mathrm{MODE}=\mathrm{V}_{\text {IN }}$			18	25	$\mu \mathrm{A}$
$\underline{I S S D}$	Quiescent Current in Shutdown	RUN $=0 \mathrm{~V}$			0.01	1	$\mu \mathrm{A}$
$\underline{\text { IQU }}$	Quiescent Current in UVLO Condition	RUN $=\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$			0.5		$\mu \mathrm{A}$
IPK	Peak Inductor Current				35		mA
$\mathrm{fsw}^{\text {sw }}$	Minimum Switching Frequency (Internal)	$\mathrm{V}_{\text {FB }}=0.65 \mathrm{~V}, \mathrm{FIN} / \mathrm{MODE}=0$	\bullet	40	50		kHz
$\mathrm{V}_{\text {RUN }}$	RUN Input Voltage High			0.8			V
	RUN Input Voltage Low					0.3	V
IRUN	RUN Leakage Current				± 0.01	± 1	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply vere the full operating

junction temperature range, otherwise specifications are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 2). $\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {FMIN }}$	FMIN/MODE Input Voltage High		0.9			V
	FMIN/MODE Input Voltage Low				0.7	V
$\mathrm{f}_{\text {EXT }}$	FMIN/MODE Input Frequency		20		300	kHz
$\mathrm{IFMIIN/MODE}^{\text {a }}$	FMIN/MODE Pin Leakage Current			± 0.01	± 1	$\mu \mathrm{A}$
ISW	Switch Leakage Current	$\mathrm{V}_{\text {RUN }}=0 \mathrm{~V}, \mathrm{~V}_{\text {SW }}=0 \mathrm{~V}$ or $5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$		± 0.01	± 1	$\mu \mathrm{A}$
$I_{\text {FB }}$	$V_{\text {FB }}$ Pin Current	$\begin{aligned} & \text { LTC3620, } V_{F B}=0.6 \mathrm{~V} \\ & \text { LTC3620-1, }, V_{F B}=1.1 \mathrm{~V} \end{aligned}$		$\begin{gathered} 0 \\ 1.2 \end{gathered}$	$\begin{gathered} \pm 30 \\ 2.0 \end{gathered}$	nA $\mu \mathrm{A}$
VUVLO	Undervoltage Lockout (UVLO)	$V_{\text {IN }}$ Decreasing	2.7	2.8	2.9	V
$\mathrm{V}_{\text {LOBATB }}$	LOBATB Threshold Voltage	$V_{\text {IN }}$ Decreasing	2.93	3.0	3.08	V
$\mathrm{R}_{\text {LobatB }}$	LOBATB Pull-Down On-Resistance			15		Ω
$\mathrm{V}_{\text {HLobat }}$	LOBATB Hysteresis Voltage			100		mV
RPFET	$\mathrm{R}_{\mathrm{DS} \text { (ON) }}$ of P-channel FET (Note 4)	$\mathrm{I}_{\text {SW }}=50 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=3.6 \mathrm{~V}$		2.0		Ω
$\mathrm{R}_{\text {NFET }}$	$\mathrm{R}_{\mathrm{DS} \text { (ON) }}$ of N-channel FET (Note 4)	$\mathrm{I}_{\text {SW }}=-50 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=3.6 \mathrm{~V}$		1.0		Ω

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: The LTC3620 is tested under pulsed load conditions such that $T_{J} \approx T_{A}$. LTC3620E is guaranteed to meet specifications from $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ junction temperature. Specifications over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ operating junction temperature range are assured by design, characterization and correlation with statistical process controls. Note that the maximum ambient temperature consistent with these specifications is determined by specific operating conditions in conjunction with board layout, the rated
package thermal impedance and other environmental factors. The junction temperature $\left(\mathrm{T}_{\mathrm{J}}\right.$, in $\left.{ }^{\circ} \mathrm{C}\right)$ is calculated from the ambient temperature (T_{A}, in ${ }^{\circ} \mathrm{C}$) and power dissipation (P_{D}, in Watts) according to the formula:
$T_{J}=T_{A}+\left(P_{D} \bullet \theta_{J A}\right)$, where $\theta_{J A}$ (in ${ }^{\circ} \mathrm{C} / \mathrm{W}$) is the package thermal impedance.
Note 3: The LTC3620 is tested in a proprietary test mode that connects $V_{\text {FB }}$ to the output of the error amplifier.
Note 4: The DFN switch-on resistance is guaranteed by correlation to wafer level measurements.

LTC3620

TYPICAL PERFORMANCE CHARACTERISTICS

LTC3620-1 Feedback Voltage vs Temperature

LOBATB Threshold
vs Temperature

Load Regulation

Quiescent Current vs Temperature

3620 G05

Peak Inductor Current vs Temperature

LTC3620 Feedback Voltage vs Temperature

UVLO Threshold vs Temperature

Switching Waveforms at $250 \mu \mathrm{~A}$ Load, FMIN/MODE = OV

TYPICAL PERFORMANCE CHARACTERISTICS

Switching Waveforms at 1 mA
Load, FMIN/MODE $=200 \mathrm{kHz}$ Clock

Transient Response, $250 \mu \mathrm{~A}$ to 3 mA
Step, FMIN/MODE = OV

Switching Waveforms at 12 mA Load, FMIN/MODE = OV

Switching Waveforms at 12 mA
Load, FMIN/MODE $=200 \mathrm{kHz}$

Transient Response, 1 mA to 10 mA
Step, FMIN/MODE = OV

Switching Waveforms at $250 \mu \mathrm{~A}$ Load, FMIN/MODE = 200kHz Clock

Start-Up Waveforms

PFET $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ vs Temperature

LTC3620

TYPICAL PERFORMANCE CHARACTERISTICS

PIn functions

SW (Pin 1): Switch Node Connection to Inductor. This pin connects to the internal power MOSFET Switches.
GND (Pin 2): Ground Connection for Internal Circuitry and Power Path Return. Tie directly to local ground plane.
FMIN/MODE (Pin 3): Frequency Clamp Select Input. Driving this pin with a 20 kHz to 300 kHz external clock sets the minimum switching frequency. Pulling this pin low sets the minimum switching frequency to the internally set 50kHz. Pulling this pin high defeats the minimum switching frequency and allows the part to switch at arbitrarily low frequencies dependent on the load current.
LOBATB (Pin 4): Low-Battery Status Output. This opendrain output pulls low when $\mathrm{V}_{\text {IN }}$ falls below 3 V .

NC (Pin 5): No Connect.
$\mathbf{V}_{\text {FB }}$ (Pin 6): Regulator Feedback Pin. This pin receives the feedback voltage from the resistive divider across the output. For the LTC3620-1, this pin must be connected directly to $\mathrm{V}_{\text {OUT }}$. $\mathrm{V}_{\text {Out }}$ is internally divided from $\mathrm{V}_{\text {Out }}$ to the reference voltage of 0.6 V as seen in the Block Diagram.
RUN (Pin7): Regulator Enable Pin. Apply a voltage greater than 0.8 V to enable the regulator. Do not float this pin.
$\mathrm{V}_{\text {IN }}$ (Pin 8): Input Supply Pin. Must be locally bypassed.
GND (Exposed Pad Pin 9): Ground. Must be soldered to PCB.

LTC3620

BLOCK DIAGRAM

OPERATION

The LTC3620 is a variable frequency buck switching regulator with a maximum output current of 15 mA . At high loads the LTC3620 will supply constant peak current pulses through the output inductor at a frequency dependent on the load current.

A switching cycle is initiated by a pulse from the error amplifier, EAMP. The top FET is turned on and remains on until the peak current threshold is sensed by ICMP (35mA at full loads). When this occurs, the top FET it is turned off and the bottom FET is turned on. The bottom FET remains on until the inductor current drops to 0 A , as sensed by the reverse-current comparator, RCMP. The time interval before another switching cycle is initiated is adjusted based on the output voltage error, measured by the EAMP to be the difference between V_{FB} and the 0.6 V reference.

As the load current decreases, the EAMP will decrease the switching frequency to match the load, until the minimum switching frequency (internally or externally set) is reached. With the FMIN/MODE pin pulled low, the minimum frequency is internally set to 50kHz. Further decreasing the load will cause the phase frequency detector (PFD) to decrease the peak inductor current in order to maintain the switching frequency at 50 kHz .

The minimum switching frequency can be externally set by clocking the FMIN/MODE pin at the desired minimum switching frequency. The load current below which the
switching frequency will be clamped is dependent on the externally set frequency and the value of the inductor used. A higher externally set minimum frequency will result in a higher load current threshold below which the part will lock to this minimum frequency. The relationship between load current and minimum frequency is described by the following equation:

$$
I_{\operatorname{MAX}(\text { LOCK })}=\frac{\left(\mathrm{V}_{\text {IN }}\right)\left(f_{\text {MIN }}\right)(\mathrm{L})(35 \mathrm{~mA})^{2}}{2 \mathrm{~V}_{\text {OUT }}\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right)}
$$

The LTC3620 will switch at this externally set frequency at load currents below this threshold; though in general, neither this minimum nor this synchronization will be maintained during load transients.

At very light loads, the minimum PFET on time will be reached and the peak inductor current can no longer be reduced. In this situation, the LTC3620 will resume decreasing the regulator switching frequency to prevent the output voltage from climbing uncontrollably.

Forthose applications which are not sensitive to the spectral content of the output ripple, the minimum frequency clamp can be defeated by pulling the FMIN/MODE pin high. In this mode the inductor current peaks will be held at 35 mA and the switching frequency will decrease without limit.

Figure 1. Switching Frequency vs Load Current, FMIN/MODE

APPLICATIONS InFORMATION

Choosing an Inductor

There are a number of different values, sizes and brands of inductors that will work well with this part. Table 1 has a number of recommended inductors, thoughthere are many other manufacturers and devices that may also be suitable. Consult each manufacturer for more detailed information and for their entire selection of related parts.

Table 1: Representative Surface Mount Inductors

VENDOR	PART NUMBER	VALUE $(\mu \mathrm{H})$	$\mathbf{D C R}(\boldsymbol{\Omega})$	MAX DC CURRENT $(\mathbf{m A})$	$\mathbf{W} \times \mathbf{L} \times \mathbf{H}$ $\left(\mathbf{m m}^{3}\right)$
Taiyo Yuden	CBMF1608T	$22 \pm 10 \%$	1.3 Max	70	$0.8 \times 1.6 \times 0.8$
Murata	LQH2MC_02	$18 \pm 20 \%$	$1.8 \pm 30 \%$	190	$1.6 \times 2 \times 0.9$
		$22 \pm 20 \%$	$2.1 \pm 30 \%$	185	
Würth Electronics	744028220	$22 \pm 30 \%$	1.48 Max	270	$2.8 \times 2.8 \times 1.1$
Coilcraft	LPS3010	$18 \pm 20 \%$	1.0 Max	380	$2.95 \times 2.95 \times 0.9$
		$22 \pm 20 \%$	1.2 Max	320	

There is a trade-off between physical size and efficiency; The inductors in Table 1 are shown because of their small footprints, choose larger sized inductors with less core loss and lower DCR to maximize efficiency.

The ideal inductor value will vary depending on which characteristics are most critical to the designer. Use the equations and recommendations in the next sections to help you find the correct inductance value for your design.

Avoiding Audio Range Switching

In order to best avoid switching in the audio range at the lowest possible load current, the minimum frequency should be set as low as is acceptable, and the inductor value should be minimized. For a 1.1V output the smallest recommended inductor value is $15 \mu \mathrm{H}$.

Adjusting for $\mathrm{V}_{\text {OUT }}$

The inductor current peak and zero crossing are dependent on the $\mathrm{dl} / \mathrm{dt}$. The equations for the rising and falling slopes are as follows:

Rising dI/dt $=\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) / \mathrm{L}$
Falling dI/dt $=\mathrm{V}_{\text {OUT }} / \mathrm{L}$

The part is optimized to get 35 mA peaks for $\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$ and $\mathrm{V}_{\text {OUT }}=1.1 \mathrm{~V}$ with an $18 \mu \mathrm{H}$ inductor. If the falling slope is too steep the NFET will continue to conduct shortly after the inductor current reaches zero, causing a small reverse current. This means the net power delivered with every pulse will decrease. To mitigate this problem the inductor can be resized. Table 2 shows recommended inductors and output capacitors for commonly used output voltages.

Table 2. Recommended Inductor and Output Capacitor Sizes for Different $V_{\text {OUT }}$

$\mathbf{V}_{\text {OUT }}(\mathbf{V})$	$\mathbf{L}(\boldsymbol{\mu H})$	$\mathbf{C}_{\text {OUT }}(\boldsymbol{\mu F})$
0.9	15	2.2
1.1	22	1
1.1 (LTC3620-1)	22	2.2
1.8	33	2.2
2.5	47	4.7

Because the rising dl/dt decreases for increased $V_{\text {OUT }}$ and increased L, the inductor current peaks will decrease, causing the maximum load current to decrease as well. Figure 2 shows typical maximum load current versus output voltage.

Figure 2. Maximum Output Current vs $\mathrm{V}_{\text {OUT }}, \mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$

Output Voltage Ripple

The quantity of charge transferred from $\mathrm{V}_{\text {IN }}$ to $\mathrm{V}_{\text {OUT }}$ per switching cycle is directly proportional to the inductor value. Consequently, the output voltage ripple is directly proportional to the inductor value, and the switching frequency for a given load is inversely proportional to the inductor value. For a given load current, higher switching frequency will typically lower the efficiency because of the

APPLICATIONS INFORMATION

increase in switching losses internal to the part. This can be partially offset by using inductors with lower loss.
The peak-to-peak output voltage ripple can be approximated by:

$$
\Delta V=\frac{\left(\mathrm{I}_{\text {PK }}^{2}\right)(\mathrm{L})\left(\mathrm{V}_{\text {IN }}\right)}{2\left(\mathrm{C}_{\text {OUT }}\right)\left(\mathrm{V}_{\text {OUT }}\right)\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right)}
$$

The output ripple is a strong function of the peak inductor current, Ipk. When the LTC3620 is locked to the minimum switching frequency, l_{PK} is decreased to maintain regulation. Consequently, $\Delta V_{\text {OUT }}$ is reduced in and below the lock range.

Efficiency

The efficiency of a switching regulator is equal to the output power divided by the input power times 100%. It is often useful to analyze individual Iosses to determine what is limiting the efficiency and which change would produce the most improvement. Efficiency can be expressed as:

$$
\text { Efficiency }=100 \%-(L 1+L 2+L 3+\ldots)
$$

where L1, L2, etc. are the individual losses as a percentage of input power.
Although all dissipative elements in the circuit produce losses, two main sources usually account for most of the losses in the LTC3620's circuits: $V_{\text {IN }}$ quiescent current and $I^{2} R$ losses. $V_{\text {IN }}$ quiescent current loss dominates the efficiency loss at low load currents, whereas the $I^{2} R$ loss dominates the efficiency loss at medium to high load currents. In a typical efficiency plot, the efficiency curve at very low load currents can be misleading since the actual power lost is of little consequence, as illustrated on the front page of this data sheet.
The quiescent current is due to two components: the DC bias current, I_{Q}, as given in the Electrical Characteristics, and the internal main switch and synchronous switch gate charge currents. The gate charge current results from switching the gate capacitance of the internal power MOSFET switches. Each time the gate is switched from high to low to high again, a packet of charge, dQ, moves
from $V_{\text {IN }}$ to ground. The resulting $\mathrm{dQ} / \mathrm{dt}$ is the current out of $\mathrm{V}_{\text {IN }}$ that is typically larger than the DC bias current and proportional to frequency. Boththe DC bias and gate charge losses are proportional to $\mathrm{V}_{\text {IN }}$ and thus their effects will be more pronounced at higher supply voltages.
The $R_{D S(O N)}$ for both the top and bottom MOSFETs can be obtained from the Typical Performance Characteristics curves. The $I^{2} \mathrm{R}$ losses per pulse will be proportional to the peak current squared times the sum of the switch resistance and the inductor resistance:

$$
I^{2} R \frac{\text { Loss }}{\text { Pulse }}=\frac{\mathrm{I}_{\mathrm{PK}}^{2}}{3} \mathrm{R}_{\mathrm{EFF}}
$$

where $R_{\text {EFF }}=R_{L}+R_{\text {PFET }} D+R_{\text {NFET }}(1-D)$, and D is the ratio of the top switch on-time to the total time of the pulse. Additional losses incurred from the inductor DC resistance and core loss may be significant in smaller inductors.

Capacitor Selection

Higher value, lower cost, ceramic capacitors are now widely available in smaller case sizes. Their high ripple current, high voltage rating and low ESR make them ideal for switching regulator applications. Because the LTC3620's control loop does not depend on the output capacitor's ESR for stable operation, ceramic capacitors can be used freely to achieve very low output ripple and small circuit size.

When choosing the input and output ceramic capacitors, choose the X5R or X7R dielectric formulations. These dielectrics have the best temperature and voltage characteristics of all the ceramics for a given value and size.
The output voltage ripple is inversely proportional to the output capacitor. The larger the capacitor, the smaller the ripple, and vice versa. However, the transient response time is directly proportional to $\mathrm{C}_{\text {OUT }}$, so a larger $\mathrm{C}_{\text {OUT }}$ means slower response time.

To maintain stability and an acceptable output voltage ripple, values for $\mathrm{C}_{\text {OUT }}$ should range from $1 \mu \mathrm{~F}$ to $5 \mu \mathrm{~F}$.

APPLICATIONS INFORMATION

Setting Output Voltage

The output voltage is set by tying V_{FB} to a resistive divider using the following formula (refer to Figure 3):

$$
\mathrm{V}_{\text {OUT }}=\frac{0.6 \mathrm{~V}(\mathrm{R} 1+\mathrm{R} 2)}{\mathrm{R} 2}
$$

R1 and R2 should be large to minimize standing load current and improve efficiency.

The fixed output version, the LTC3620-1, includes an internal resistive divider, eliminating the need for external resistors. The resistor divider is chosen such that the $V_{F B}$ input current is approximately $1 \mu \mathrm{~A}$. For this version, the $V_{\text {FB }}$ pin should be connected directly to $V_{\text {OUT }}$.

Maximum Load Current and Maximum Frequency

The maximum current that the LTC3620 can provide is calculated to be just slightly less than half the maximum peak current.
The inductor value will determine how much energy is delivered to the output for each switching cycle, and thus the duration of each pulse and the maximum frequency. Larger inductors will have slower ramp rates, Ionger pulses, and thus lower maximum frequencies. Conversely, smaller inductors will result in higher maximum frequencies.
When using a frequency clamp, large abrupt increasing load steps from levels below the locking range to levels near the maximum output may result in a large drop in the output voltage. This is due to the low bandwidth of
the frequency clamp loop in returning the peak inductor current to its maximum.

Thermal Considerations

The LTC3620 requires the package backplane metal to be soldered to the PC board. This gives the DFN package exceptional thermal properties, making it difficult in normal operation to exceed the maximum junction temperature of the part. In most applications the LTC3620 does not dissipate much heat due to its high efficiency and low current. In applications where the LTC3620 is running at high ambienttemperatures and high load currents, the heat dissipated may exceed the maximum junction temperature of the part if it is not well thermally grounded.

Design Example

This example designs a 1.1V output using a Li-Ion battery input with voltages between 2.8 V to 4.2 V , and an average of 3.6 V . The internally provided 50 kHz clock will be used for the minimum switching frequency, so the FMIN/MODE pin will be pulled low. For a 1.1V output, an $18 \mu \mathrm{H}$ inductor should be used (refer to Table 2).
Cout can be chosen from Table 2 or can be based on a desired maximum output voltage ripple, $\Delta \mathrm{V}_{\text {OUT }}$. For this case let's use a maximum $\Delta \mathrm{V}_{\text {OUT }}$ equal to 1% of $\mathrm{V}_{\text {OUT }}$, or 11 mV .

$$
\mathrm{C}_{\text {OUT }}=\frac{\left(35 \mathrm{~mA}^{2}\right)(22 \mu \mathrm{H})(3.6 \mathrm{~V})}{2 \Delta \mathrm{~V}_{\text {OUT }}(1.1 \mathrm{~V})(3.6 \mathrm{~V}-1.1 \mathrm{~V})}=1.6 \mu \mathrm{~F} \approx 1.5 \mu \mathrm{~F}
$$

Figure 3. Design Example Schematic

APPLICATIONS INFORMATION

A larger capacitor could be used to reduce this number. Keep in mind that while a larger output capacitor will decrease voltage ripple, it will also increase the transient settling time. The optimal range for $\mathrm{C}_{\text {OUt }}$ should be between $1 \mu \mathrm{~F}$ and $5 \mu \mathrm{~F}$.
The best way to select the feedback resistors is to select a target combined resistance, and try different standard 1% resistor sizes to see which combination will give the least error. For this example a target combined resistance of around 1 M will be used. By checking R1 values between 422k and 475k, and calculating R2 using the formula:

$$
\mathrm{R} 2=\frac{(0.6 \mathrm{~V}) \mathrm{R} 1}{\mathrm{~V}_{\text {OUT }}-0.6 \mathrm{~V}}
$$

it can be found that a value of $R 2=523 \mathrm{k}$ and $\mathrm{R} 1=432 \mathrm{k}$ minimizes the error in this range.
The error can be checked by solving for $V_{\text {OUT }}$ and finding the percent error from the desired 1.1 V . Using these resistor values will result in $\mathrm{V}_{\text {OUT }}=1.096 \mathrm{~V}$, and an error of around 0.4%. Using different target resistor sums is acceptable, but a smaller sum will decrease efficiency at lower loads, and a larger sum will increase noise sensitivity at the V_{FB} pin.

LTC3620 Layout Diagram

Board Layout Checklist

When laying out the printed circuit board, the following checklist should be used to ensure proper operation of the LTC3620:

1. The power traces consisting of GND, SW and $\mathrm{V}_{\text {IN }}$ should be kept short, direct and wide.
2. The V_{FB} pin should connect directly to the respective feedback resistors, which should also have short, direct paths to $\mathrm{V}_{\text {Out }}$ and GND respectively.
3. Keep $\mathrm{C}_{\text {OUt }}$ and $\mathrm{C}_{\text {IN }}$ as close to the LTC3620 as possible.
4. All parts connecting to ground should have their ground terminals in close proximity to the LTC3620 GND connection.
5. Keep the SW node and external clock, if used, away from the sensitive V_{FB} node. Also, minimize the length and area of all traces connected to the SW pin, and always use a ground plane under the switching regulator to minimize interplane coupling.

LTC3620-1 Layout Diagram

TYPICAL APPLICATIONS

High Efficiency Low Power Step-Down Converter, FMIN/MODE $=0$

3620 TA02C

TYPICAL APPLICATIONS

High Efficiency Low Power Step-Down Converter, Externally Programmed $\mathrm{f}_{\text {min }}$

3620 tA03D

Efficiency vs $V_{\text {IN }}$

Spectral Content, FMIN/MODE = 20kHz Clock

Spectral Content, FMIN/MODE = 100kHz Clock

Spectral Content, FMIN/MODE $=200 \mathrm{kHz}$ Clock

DC Package

8-Lead Plastic DFN ($2 \mathrm{~mm} \times 2 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1719 Rev A)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS

NOTE:

1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE

MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15 mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE

REVISION HISTORY

REV	DATE	DESCRIPTION	PAGE NUMBER
A	$8 / 10$	Added (Note 2) to Electrical Characteristics header	2,3
		VLoADREG value of 0.5\% moved from TVP to MAX	2
		Note 2 updated, Note 4 deleted and note numbers corrected	3
		VSW 	Value updated on graph G10
	Pin 9 text updated in Pin Functions section	5	

TYPICAL APPLICATIONS

High Efficiency Low Power Step-Down Converter, LTC3620-1 Internally Programmed, 1.1V OUT

Efficiency vs V_{IN}

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
$\begin{aligned} & \text { LTC3631/LTC3631-3.3/ } \\ & \text { LTC3631-5 } \end{aligned}$	$45 \mathrm{~V}, 100 \mathrm{~mA}$ (Iout), Ultralow Quiescent Current Synchronous Step-Down DC/DC Converter	$\begin{aligned} & \left.\mathrm{V}_{\text {IN: }}: 4.5 \mathrm{~V} \text { to } 45 \mathrm{~V}\left(60 \mathrm{~V}_{\text {MAX }}\right), \mathrm{V}_{\text {OUT(MIN }}\right)=0.8 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{Q}}=12 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}, 3 \mathrm{~mm} \times 3 \mathrm{~mm} \text { DFN Package, MSOP-8E } \\ & \hline \end{aligned}$
LTC3632	50V, 20 mA (Iout), Ultralow Quiescent Current Synchronous Step-Down DC/DC Converter	$\begin{aligned} & \left.\mathrm{V}_{\text {IN: }}: 4.5 \mathrm{~V} \text { to } 50 \mathrm{~V}\left(60 \mathrm{~V}_{\text {MAX }}\right), \mathrm{V}_{\mathrm{OUT}(\mathrm{MIN})}\right)=0.8 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{Q}}=12 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}, 3 \mathrm{~mm} \times 3 \mathrm{~mm} \text { DFN Package, MSOP- } 8 \mathrm{E} \end{aligned}$
LTC3642/LTC3642-3.3/ LTC3642-5	45V, 50mA (Iout), Ultralow Quiescent Current Synchronous Step-Down DC/DC Converter	$\begin{aligned} & \mathrm{V}_{\text {IN: }}: 4.5 \mathrm{~V} \text { to } 45 \mathrm{~V}\left(60 \mathrm{~V}_{\text {MAX }}\right), \mathrm{V}_{\text {OUT(MIN }}=0.8 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{Q}}=12 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}, 3 \mathrm{~mm} \times 3 \mathrm{~mm} \text { DFN Package, MSOP- } 8 \mathrm{E} \end{aligned}$
LTC3405A/LTC3405AB	300 mA I Iout, 1.5 MHz , Synchronous Step-Down DC/DC Converter	$95 \% \text { Efficiency, } \mathrm{V}_{\text {IN: }} \text { : } 2.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN) }}=0.8 \mathrm{~V} \text {, }$ $\mathrm{I}_{\mathrm{Q}}=20 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A} \text {, ThinSOT Package }$
LTC3406A/LTC3406AB	$600 \mathrm{~mA} \mathrm{I}_{\text {Out }}$, 1.5MHz, Synchronous Step-Down DC/DC Converter	$\begin{aligned} & 96 \% \text { Efficiency, } \mathrm{V}_{\text {IN: }}: 2.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \text {, } \mathrm{V}_{\text {OUT(MIN })}=0.6 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{Q}}=20 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A} \text {, ThinSOT Package } \end{aligned}$
LTC3407A/LTC3407A-2	Dual $600 \mathrm{~mA} / 800 \mathrm{~mA} \mathrm{I}_{\text {Out }}, 1.5 \mathrm{MHz} / 2.25 \mathrm{MHz}$, Synchronous Step-Down DC/DC Converter	95% Efficiency, $\mathrm{V}_{\text {IN: }}$: 2.5 V to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN) }}=0.6 \mathrm{~V}$, $\mathrm{I}_{\mathrm{Q}}=40 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}, \mathrm{MS} 10 \mathrm{E}$, DFN Packages
LTC3409	$600 \mathrm{~mA} \mathrm{I}_{\text {OUt, }} 2.25 \mathrm{MHz}$, Synchronous Step-Down DC/DC Converter	96% Efficiency, $\mathrm{V}_{\text {IN: }}$: 1.6 V to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN) }}=0.6 \mathrm{~V}$, $\mathrm{I}_{\mathrm{Q}}=65 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}$, DFN Package
LTC3410/LTC3410B	300 mA Iout, 2.25MHz, Synchronous Step-Down DC/DC Converter	95% Efficiency, $\mathrm{V}_{\text {IN: }}$: 2.5 V to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN) }}=0.8 \mathrm{~V}$, $\mathrm{I}_{\mathrm{Q}}=26 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}, \mathrm{SC70}$ Package
LTC3411A	1.25A Iout, 4MHz, Synchronous Step-Down DC/DC Converter	95% Efficiency, $\mathrm{V}_{\text {IN: }}$: 2.5 V to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN) }}=0.8 \mathrm{~V}$, $\mathrm{I}_{\mathrm{Q}}=60 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}, \mathrm{MS} 10$, DFN Packages
LTC3548	Dual $400 \mathrm{~mA} / 800 \mathrm{~mA}$ Iout, 2.25 MHz , Synchronous Step-Down DC/DC Converter	$\begin{aligned} & 95 \% \text { Efficiency, } \mathrm{V}_{\text {IN: }}: 2.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \text {, } \mathrm{V}_{\text {oUT(MIN) }}=0.6 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{Q}}=40 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}, \mathrm{MS} 10 \text {, DFN Packages } \end{aligned}$
LTC3561A	1 A Iout, 4MHz, Synchronous Step-Down DC/DC Converter	95% Efficiency, $\mathrm{V}_{\text {IN: }}$: 2.5 V to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN) }}=0.8 \mathrm{~V}$, $\mathrm{I}_{\mathrm{Q}}=240 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}, 3 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN Package

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Voltage Regulators category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
TLF30682QVS01XUMA1 LMR33620CRNXR TPSM84209RKHR FAN53526UC106X FAN53526UC128X FAN53611AUC123X MP1587EN-LF AP3602AKTR-G1 FAN48610BUC33X FAN48617UC50X FAN53526UC89X MIC45116-1YMP-T1 MP2225GJ-P NCV891234MW50R2G A6986F5VTR AST1S31PUR SIC473ED-T1-GE3 16017 A6986FTR NCP81103MNTXG NCP81203PMNTXG MAX17242ETPA+ MAX16935RATEB/V+ MP2313GJ-Z NCP81208MNTXG MP8759GD-Z FAN53526UC84X PCA9412AUKZ MP2314SGJ-Z AS1340A-BTDM-10 MP3421GG-P NCP81109GMNTXG NCP3235MNTXG MP6003DN-LF-Z MAX16935BAUES/V+ LT8315IFE\#PBF SCY1751FCCT1G NCP81109JMNTXG MAX16956AUBA/V+ AP3409ADNTR-G1 SIC474ED-T1-GE3 A6986F3V3TR MPQ2454GH MPQ2454GH-AEC1 MP21148GQD-P AS3701B-BWLM-68 SC21150ACSTRT MPQ2143DJ-P MP9942AGJ-P MP8869GLP

