
Surface Mount – 400V - 800V > MAC9DG, MAC9MG, MAC9NG

MAC9DG, MAC9MG, MAC9NG

Pin Out

Description

Designed primarily for full-wave ac control applications, such as motor controls, heating controls and power supplies; or wherever half-wave silicon gate-controlled, solid-state devices are needed.

Features

- Blocking Voltage to 800 Volts
- On-State Current Rating of 8.0 Amperes RMS at 100°C
- Uniform Gate Trigger Currents in Three Quadrants
- High Immunity to dv/dt 500 V/µs minimum at 125°C
- Minimizes Snubber Networks for Protection
- Industry Standard TO-220 Package
- High Commutating di/dt 6.5 A/ms minimum at 125°C
- These Devices are Pb-Free and are RoHS Compliant

Functional Diagram

Additional Information

Surface Mount - 400V - 800V > MAC9DG, MAC9MG, MAC9NG

Maximum Ratings $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

Rating	Symbol	Value	Unit
Peak Repetitive Off-State Voltage (Note 1)			
(Gate Open, Sine Wave 50 to 60 Hz, T_J = 25° to 100°C) MAC9SD MAC9N	V _{DRM} , V _{RRM}	400 600 800	V
On-State RMS Current (Full Cycle Sine Wave, 60 Hz, $T_{\rm C}$ = 100°C)	I _{T (RMS)}	8.0	А
Peak Non-Repetitive Surge Current (One Full Cycle Sine Wave, 60 Hz, T _J = 125°C)	I _{TSM}	80	А
Circuit Fusing Consideration (t = 8.3 ms)	l²t	26	A ² sec
Peak Gate Power (Pulse Width \leq 1.0 μ s, T_{t} = 80°C)	P _{GM}	16	W
Average Gate Power (t = 8.3 ms, $T_c = 80$ °C)	P _{G (AV)}	0.35	W
Operating Junction Temperature Range	T _J	-40 to +125	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Thermal Characteristics

Rating		Symbol	Value	Unit
Thermal Resistance,	Junction-to-Case (AC) Junction-to-Ambient	R _{8JC}	2.2 62.5	°C/W
Maximum Lead Temperature for Solderin 10 seconds	ng Purposes, 1/8" from case for	T_{L}	260	°C

^{1.} V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

Thyristors

Electrical Characteristics - **OFF** $(T_1 = 25^{\circ}\text{C unless otherwise noted})$; Electricals apply in both directions)

Characteristic		Symbol	Min	Тур	Max	Unit
Peak Repetitive Blocking Current	$T_{_{\rm J}} = 25^{\circ}\text{C}$	l _{DRM} ,	-	-	0.01	A
$(V_D = V_{DRM} = V_{RRM}; Gate Open)$	T _J = 125°C	I _{RRM}	-	-	2.0	mA

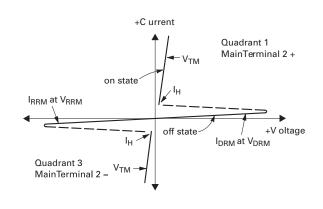
Electrical Characteristics - **ON** $(T_J = 25^{\circ}\text{C unless otherwise noted; Electricals apply in both directions)$

Characteristic		Symbol	Min	Тур	Max	Unit
Peak On-State Voltage (Note 2) (I _{TM} = ±11 A)	Peak On-State Voltage (Note 2) (I _{TM} = ±11 A)		-	1.2	1.6	V
	MT2(+), G(+)		10	16	50	
Gate Trigger Current (Continuous dc)	MT2(+), G(-)	I _{GT}	10	18	50	mA
$(V_{D} = 12 \text{ V}, R_{L} = 100 \Omega)$	MT2(-), G(-)		10	22	5.0	
Holding Current ($V_D = 12 \text{ V}$, Gate Open, Initiating Current = $\pm 150 \text{ mA}$))	I _H	-	30	50	mA
	MT2(+), G(+)		-	20	50	
Latching Current $(V_D = 24 \text{ V}, I_G = 50 \text{ mA})$	MT2(+), G(-)	I _L	_	30	80	mA
	MT2(-), G(-)		-	20	50	
	MT2(+), G(+)		0.5	0.69	1.5	
Gate Trigger Voltage $(V_D = 12 \text{ V}, R_I = 100 \Omega)$	MT2(+), G(-)	V _{GT}	0.5	0.77	1.5	V
	MT2(-), G(-)		0.5	0.72	1.5	
	MT2(+), G(+)		0.2	_	_	
Gate Non-Trigger Voltage $(V_D = 12 \text{ V}, R_L = 100 \Omega, T_J = 125^{\circ}\text{C})$	MT2(+), G(-)	V _{GD}	0.2	-	-	V
	MT2(-), G(-)		0.2	-	-	

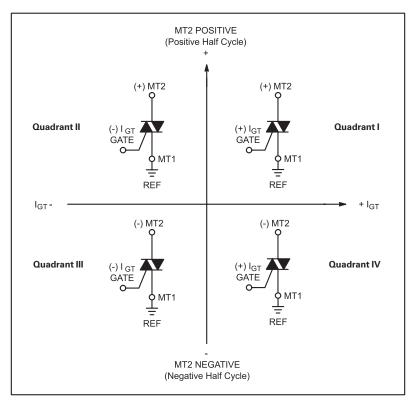
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Indicates Pulse Test: Pulse Width \leq 2.0 ms, Duty Cycle \leq 2% .

Dynamic Characteristics


Characteristic	Symbol	Min	Тур	Max	Unit
Rate of Change of Commutating Current See Figure 10. ($V_D = 400 \text{ V}$, $I_{TM} = 4.4 \text{ A}$, Commutating dv/dt = 18 V/µs, Gate Open, $T_J = 125 ^{\circ}\text{C}$, f = 250 Hz, No Snubber) $C_L = 10 \text{ µF } L_L = 40 \text{ mH}$	dV/dt	6.5	_	_	A/ms
Critical Rate of Rise of Off-State Voltage (V_D = Rated $V_{DRM'}$ Exponential Waveform, R_{GK} = 510 Ω , T_J = 125°C)	dV/dt	500	_	-	V/µs

$Surface\ Mount-400V-800V\ >\ MAC9DG,\ MAC9MG,\ MAC9NG$


Voltage Current Characteristic of SCR

Symbol	Parameter
V_{DRM}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V _{TM}	Maximum On State Voltage
I _H	Holding Current

Thyristors

Quadrant Definitions for a Triac

All polarities are referenced to MT1.

With in-phase signals (using standard AC lines) quadrants I and III are used.

Figure 1. RMS Current Derating

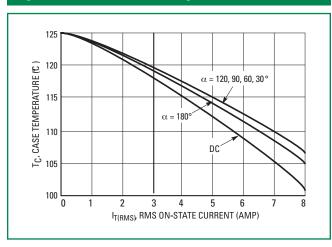
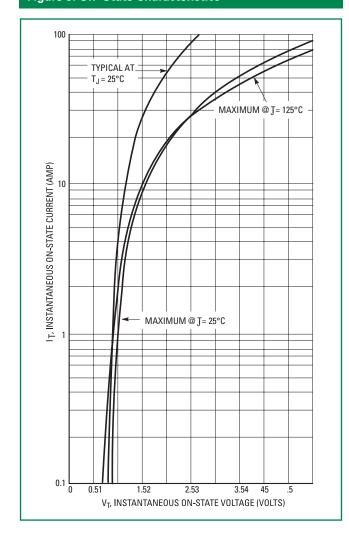
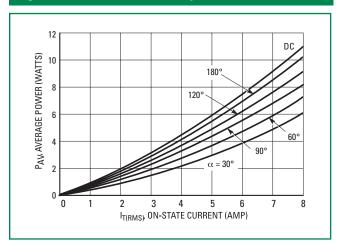
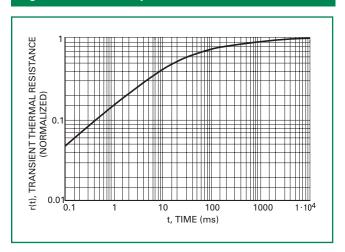


Figure 3. On-State Characteristics

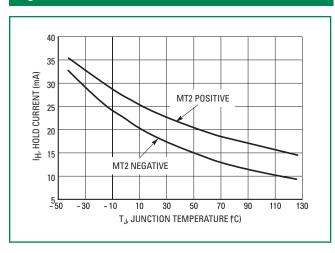

Figure 2. On-State Power Dissipation

Figure 4. Thermal Response

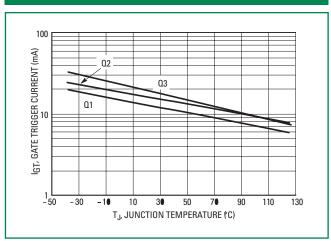


Figure 5. Hold Current Variation

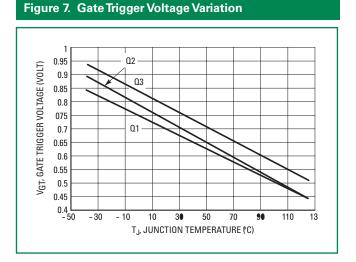


Figure 8. Critical Rate of Rise of Off-State Voltage (Exponential)

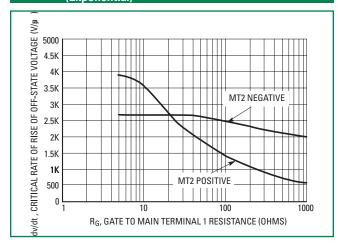


Figure 9. Critical Rate of Rise of Commutating Voltage

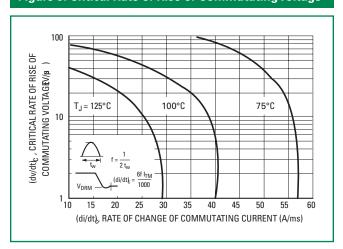
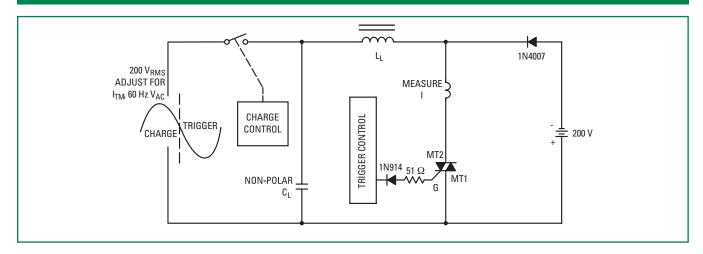
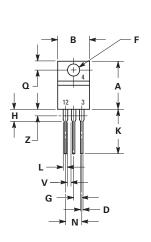
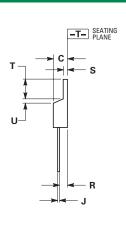
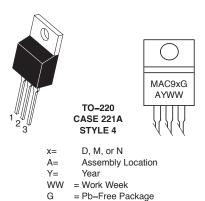





Figure 10. Simplified Test Circuit to Measure the Critical Rate of Rise of Commutating Current (di/dt)

Dimensions



S.:	Inches		Millim	neters	
Dim	Min	Max	Min	Max	
А	0.570	0.620	14.48	15.75	
В	0.380	0.405	9.66	10.28	
С	0.160	0.190	4.07	4.82	
D	0.025	0.035	0.64	0.88	
F	0.142	0.147	3.61	3.73	
G	0.095	0.105	2.42	2.66	
Н	0.110	0.155	2.80	3.93	
J	0.014	0.022	0.36	0.55	
K	0.500	0.562	12.70	14.27	
L	0.045	0.060	1.15	1.52	
N	0.190	0.210	4.83	5.33	
Q	0.100	0.120	2.54	3.04	
R	0.080	0.110	2.04	2.79	
S	0.045	0.055	1.15	1.39	
Т	0.235	0.255	5.97	6.47	
U	0.000	0.050	0.00	1.27	
V	0.045		1.15		
Z		0.080		2.04	

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

Part Marking System

Pin Assignment	
1	Main Terminal 1
2	Main Terminal 2
3	Gate
4	Main Terminal 2

Ordering Information

Device	Package	Shipping
MAC9DG		
MAC9MG	TO-220 (Pb-Free)	50 Units / Rail
MAC9NG		

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littlefuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at: www.littlefuse.com/disclaimer-electronics

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Triacs category:

Click to view products by Littelfuse manufacturer:

Other Similar products are found below:

ACST435-8B LIC01-215B-TR T2035H-6G BT137-600-0Q Z0410NF 1AA2 098128C 620675E T1610-600G-TR Z0409MF0AA2

Z0109NA 2AL2 ACS108-8SA-AP ACS108-8SN-TR ACST1635T-8FP BCR16PM-12LG#B00 BCR20RM-30LA#B00 T1205-600G-TR

CMA60MT1600NHR NTE5611 NTE5612 NTE5613 NTE5621 NTE5623 NTE5629 NTE5638-08 NTE5688 NTE5689 NTE5690 T1235T
8I BTA312-600CT.127 T1210T-8G-TR T1210T-8G BT136S-600E,118 RS40Z06-BW BT137B-800G,118 Z0109NN0,135 BTA212
600D,127 BTA24-600CW BTA16 BTA20 BT137 BTA04-600CW BTA04-800CW BTA20-800CW CT320Q-600C CT320Q-800C

MAC4DLM-1G BT137-600E,127 BT137X-600D BT148W-600R,115 BT258-500R,127