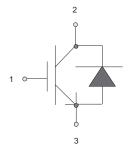


GA35XCP12-247

IGBT/SiC Diode Co-pack

V _{CES}	=	1200 V
I _{CM}	=	35 A
V _{CE(SAT)}	=	3.0 V


Features

- Optimal Punch Through (OPT) technology
- SiC freewheeling diode
- · Positive temperature coefficient for easy paralleling
- Extremely fast switching speeds
- Temperature independent switching behavior of SiC rectifier
- · Best RBSOA/SCSOA capability in the industry
- High junction temperature
- · Industry standard packaging

Package

RoHS Compliant

TO - 247AB

Advantages

- Industry's highest switching speeds
- High temperature operation
- Improved circuit efficiency
- Low switching losses

Applications

- Solar Inverters
- Aerospace Actuators
- Server Power Supplies
- Resonant Inverters > 100 kHz
- Inductive Heating
- Electronic Welders

Maximum Ratings, at T_i = 150 °C, unless otherwise specified

Parameter	Symbol	Conditions		Values		Unit
IGBT						
Collector-Emitter Voltage	V _{CES}			1200		V
DC-Collector Current	I _{CM}	T _c ≤ 105 °C		35		Α
Gate Emitter Peak Voltage	V _{GES}			± 20		V
Operating Temperature	T _{vi}		-	40 to +15	50	°C
Storage Temperature	T _{stg}		-	40 to +15	50	°C
Free-wheeling diode						
DC-Forward Current	I _F	T _c ≤ 105 °C	35			Α
Non Repetitive Peak Forward Current	I _{FM}	$T_c = 25 {}^{\circ}\text{C}, t_p = 10 \mu\text{s}$	tbd			Α
Surge Non Repetitive Forward Current	I _{F,SM}	t_p = 10 ms, half sine, T_c = 25 °C		tbd		Α
Thermal Characteristics						
Th. Resistance Junction to Case	R_{thJC}	IGBT	0.34		K/W	
Th. Resistance Junction to Case	R_{thJC}	SiC diode		0.31		K/W
Mechanical Properties			Values			
inechanical Froperties			min.	typ.	max.	
Mounting Torque	M _d		1.5		2	Nm

Flactrical	Characteristics

Parameter	Symbol	Conditions	Values			Unit
	Symbol	Conditions	min.	typ.	max.	Unit
IGBT						
Gate Threshold Voltage	V _{GE(th)}	$V_{GE} = V_{CE}, I_{C} = 0.6 \text{ mA}, T_{i} = 25 {}^{\circ}\text{C}$	5.5	6	6.5	V
Callacter Emitter Leakers Current	I _{CES,25}	$V_{GE} = 0 \text{ V}, V_{CE} = V_{CES}, T_{j} = 25 ^{\circ}\text{C}$		0.02	0.2	mA
Collector-Emitter Leakage Current	I _{CES,150}	$V_{GE} = 0 \text{ V}, V_{CE} = V_{CES}, T_{i} = 150 ^{\circ}\text{C}$		0.3		mA
Gate-Leakage Current	I _{GES}	$V_{CE} = 0 \text{ V}, V_{GE} = 20 \text{ V}, T_{j} = 25 ^{\circ}\text{C}$			500	nA
Collector-Emitter Threshold Voltage	V _{CE(TO)}	T _j = 25°C		1.1		V
Collector Emitter Clane Begintance	K _{CF.25}	V _{GE} = 15 V, T _i = 25 °C		50		mΩ
Collector-Emitter Slope Resistance	R _{CE,150}	V _{GE} = 15 V, T _i = 150 °C		87.5		mΩ
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	I _C = 35 A, V _{GE} = 15 V, T _i = 25 °C(150 °C)		3.0(3.9)		V
Input Capacitance	Cina	·		tbd		nF
Output Capacitance	C _{oes}	V _{GF} = 0 V, V _{CF} = 25 V, f = 1 MHz		tbd		nF
Reverse Transfer Capacitance	C _{res}			tbd		nF
Gate Charge	Q _G	$V_{CC} = 800 \text{ V}, I_{C} = 35 \text{ A}, V_{GE} = 15 \text{ V}$		50		nC
Reverse Bias Safe Operating Area	RBSOA	T_j =125 °C, R_g =56 Ω , V_{CC} =1200 V, V_{GE} =15 V		45		Α
Short Circuit Current	l _{sc}	$T_{i} = 125 {}^{\circ}\text{C}, R_{a} = 56\Omega,$		60		Α
Short Circuit Duration	t _{sc}	$V_{CC} = 900 \text{ V}, V_{GE} = \pm 15 \text{ V}$			10	μs
Rise Time	t _r			85		ns
Fall Time	t _f	$V_{cc} = 800 \text{ V}, I_{c} = 35 \text{ A},$		205		ns
Turn On Delay Time	t _{d(on)}	$R_{gon} = R_{goff} = 22 \Omega$		40		ns
Turn Off Delay Time	t _{d(off)}	V _{GE(0n)} = 15 V, V _{GE(0ff)} = -8 V, T _j = 125 °C		232		ns
Turn-On Energy Loss Per Pulse	E _{on}			2.66		mJ
Turn-Off Energy Loss Per Pulse	E _{off}			4.35		mJ
Free-wheeling diode						
Forward Voltage	V _F	$I_F = 35 \text{ A}, V_{GE} = 0 \text{ V}, T_j = 25 ^{\circ}\text{C} (150 ^{\circ}\text{C})$		2.6(3.5)		V
Threshold Voltage at Diode	V _{D(TO)}	T _i = 25 °C		0.8		V
Peak Reverse Recovery Current	Im	,		3.01		Α
Reverse Recovery Time	t _{rr}	$I_F = 35 \text{ A}, V_{GE} = 0 \text{ V}, V_R = 650 \text{ V}$ - $dI_F/dt = 300 \text{ A/µs}, T_j = 125 \text{ °C}$		36		ns
Diode peak rate of fall of reverse recovery current during tb	dl _" /dt			190		A/µs

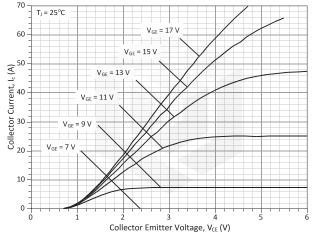


Figure 1: Typical Output Characteristics at 25 °C

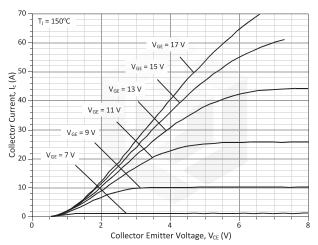


Figure 2: Typical Output Characteristics at 150 °C

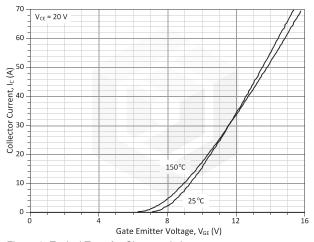


Figure 3: Typical Transfer Characteristics

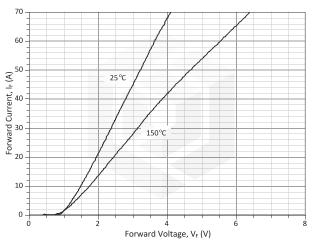


Figure 5: Typical FWD Forward Characteristics

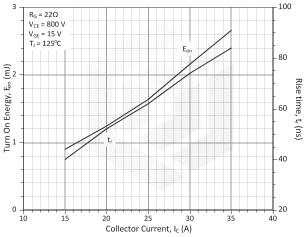


Figure 7: Typical Turn On Energy Losses and Switching Times

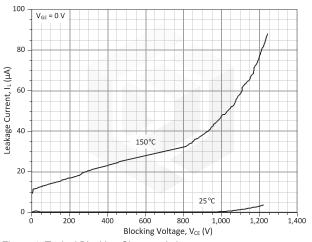


Figure 4: Typical Blocking Characteristics

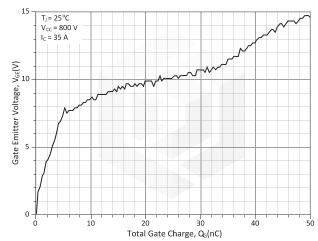


Figure 6: Typical Turn On Gate Charge

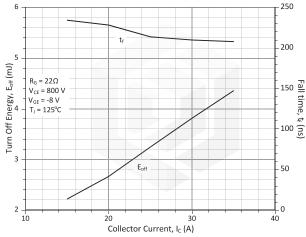


Figure 8: Typical Turn Off Energy Losses and Switching Times

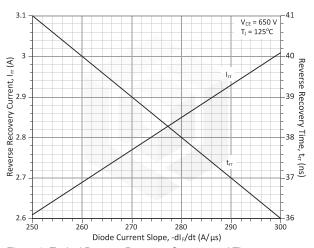
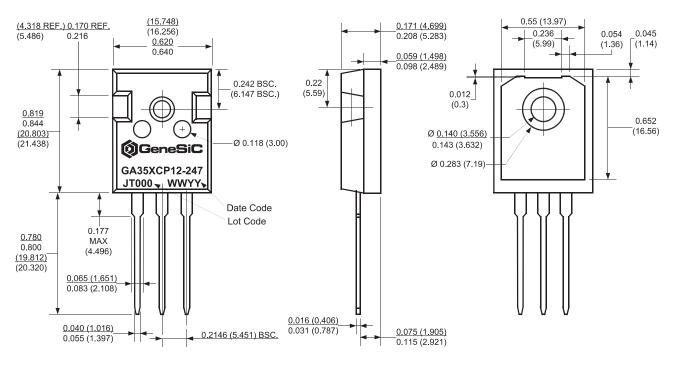



Figure 9: Typical Reverse Recovery Currents and Times

Package Dimensions:


TO-247AB

PACKAGE OUTLINE

NOTE

- 1. CONTROLLED DIMENSION IS INCH. DIMENSION IN BRACKET IS MILLIMETER.
- 2. DIMENSIONS DO NOT INCLUDE END FLASH, MOLD FLASH, MATERIAL PROTRUSIONS

Revision History				
Date	Revision	Comments	Supersedes	
2011/01/06	1	First generation release		

Published by GeneSiC Semiconductor, Inc. 43670 Trade Center Place Suite 155 Dulles, VA 20166

GeneSiC Semiconductor, Inc. reserves right to make changes to the product specifications and data in this document without notice.

GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document.

Unless otherwise expressly indicated, GeneSiC products are not designed, tested or authorized for use in life-saving, medical, aircraft navigation, communication, air traffic control and weapons systems, nor in applications where their failure may result in death, personal injury and/or property damage.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for GeneSiC Semiconductor manufacturer:

Other Similar products are found below:

KBU8A MBR3580 FR40G02 S380YR S40Q 1N3671A MBR300100CTR MBRH20045R MUR7020R GA100SBJT12-FR4 S320QR

MBRT40030 2N7638-GA GB01SLT12-220 MBR300100CT MUR30020CT 1N4596 MBRT40030R FST16060 GBPC2510W

MBR200100CTS S300J MBRT40035 MBR400100CT S320KR FR20K05 MBR40040CT S320MR 150KR20A 1N4593R MBRT300100R

MUR2X100A12 FR40J05 GA01PNS150-220 1N3295AR 1N4588R S150Q GAP3SLT33-220FP MBRH200150R GA50JT12-247 1N1184A

S85JR GA01PNS150-201 MBR40080CT SD51 1N1190AR 1N2135A GA01SHT18 GB50SLT12-247 S300D