

EXTENSION MODULE DIGITALI/O
MR-DIO-1 with MODBUS RTU

Do oot dispose of his device in the trash along with other wate:Accordir

- to the Law on Waste, electro coming from households free of charge and can give any amount to up to that end point of collection, as well as to store the
occasion of the purchase of new equipment in accordance with the principle of old-for-new, regardasess of brand). Electro thrown in the trash or abandoned
in nature, pose a threat to in nature, pose a threat to the environment and human health.

Purpose

Module MR-DIO-1 serves as an external expansion device digital inputs or outputs programmable logic controllers PLC or other devices in which data exchange is via RS485 port in accordance to the MODBUS RTU protocol.

Functioning

Module MR-DIO-1 has six universal contacts. Each of the contacts depending on how the connection can be a digital input or output. Digital input, treated as a "dry contact", is realized by closing the circuit the input to the "minus" power supply module. Digital output, described as "open collector", is realized by closing th circuit the output to the "plus" of power supply module
The module has a recording of output function in non-volatile local memory. After each power-output module will revert to a saved state.
Reading status of contacts, setting their status and communication parameters is realized through the RS-485 port using MODBUS RTU communication protocol.

- 1 -

Registers

Communication parameters				
adress	description	code	type	atr.
0	read actual base sdress	03	int	read
0	save a new base adress: $1 \div 238$	06, 16	int	write

Module can accept network addresses in the range $1 \div 247$ The network address of the module is set in a complex way: using the MODBUS protocol to set the base address, the number in the range 1 to 238, and a multi-position switch to set address residual, ie the number from 0 to 9 th The sum of these two values determines the network address (eg, $1+6=7,70+3=73,238+9=247$).

1	read a speed of transmission	03	int	read
1	save a new speed of transmission	06,16	int	write

The speed value [bits/sec] is given in the form of an integer divided by 100 , fo example, $9600 \mathrm{bit} / \mathrm{sec}$ write in figures $96 ; 115200 \mathrm{bit} / \mathrm{sec}$ write in figures 1152.

2	read of actual parity value	03	int	read
2	save a new parity value	06,16	int	write
Parity adopt appropriate meanings: NONE - 0 ; EVEN - 1, ODD -2				
3	read of actual number of stop bits	03	int	read
3	save the number of stop bits	06,16	int	write

Switching on of the power supply is indicated by lighting the green LED U Laws correct data exchange between the module and the second device is indicated by a yellow LED lighting Tx.
Parameters of MODBUS RTU protocol

Communication parameters	
Protocol	MODBUSRTU
Work mode	SLAVE
Port settings (factory settings)	$\begin{aligned} & \hline \text { Bit numbers on s: } 1200 / 2400 / 4800 / 9600 / \\ & 19200 / 3840 / 57600 / 115200 \\ & \text { Data bits: } 8 \\ & \text { Parity: NONE/EVEN/ODD } \\ & \text { Start bits: } 1 \\ & \text { Stop bits: } 1 \text { / } \underline{2} \\ & \hline \end{aligned}$
Range of network addresses (factory settings)	1 247 (70)
Range of base addresses	$1 \div 238$
Range of residual addresses (switch code)	0 $\div 9$
Command codes	1: Read state of all outputs (0×01-Read Coils) 2: Read state of all inputs (0×02 - Read Discrete Inputs) 3: Read value of outputs registry (0×03 - Read holding Register) 5: The setting of a single output (0×05-Write Single Coil) 6: The setting of a single output (0×06 - Write Single Register) 15 : The setting of multiple outputs ($0 \times 0 \mathrm{~F}$ - Write Multiple Coil) 16: The setting of multiple outputs (0×10 - Write Multiple Registers) 17: Read ID (0x11-ReportSlave ID)
The maximum frequency of queries	15 Hz

1/O paramaters

adress	description	code	type	atr.
$4000 \div 4005$	read state of outputs $1 \div 6$	02	bool	read
$4006 \div 4007$	free (allways value 0)	02	bool	read
$2000 \div 2005$	read state of outputs1 $\div 6$	01	bool	read
$2000 \div 2005$	save state of outputs1 $\div 6$	05,15	bool	write
State inputs and outputs assume the values of single bits of 0 or 1, with a value of 0 means the state "open" contact, and the value of a state of "closed contact. 2006	free	01	bool	read
2006	free	05,15	bool	write

It is used to maintain the continuity of the group reading registers from 2000 to 2007. Can be used to store the one bit.

2007	write command exit status to the local	05,15	bool	write
2007	read (allways value 0)	01	bool	read

Writing of value 1 to the registry saves the state of the outputs. After the writing in local memory registry value is automatically set to 0 .
In response to the command "odzczyt ID" (code 17), we obtain a packet o information about the module: in the "Slave ID" code OxEC; in the "Run Statu information about code OxFF; in the "Additional Data" text "DIO-1Mv1.0"

Setting the Network Address

Module MR-DIO- 1 can accept network addresses in the range $1 \div 247$. The network address of the module is set in a complex way: using the MODBUS protocol to set the base address, the number in the range 1 to 238 , and a multi-position switch to set determines the network address (eg, $1+6=7,70+3=73,238+9=247$). Multi position code switch is located under the front elevation. Cladding removed using lat-head screwdiver 3mmelevaiong ind enclosure. 3 mm flat screwdriver to switch the rotary switch to the desired number as a sub-address (range 0 to 9). Set a new module address is the sum of the value and partial base address, after setting the front elevation set up with specia attention to the proper fitting of LEDS in the holes.

Assembly
General assumptions:
*Recommend the use of filters and surge suppression (eg, OP-230 F\&F).
Recommended use of shielded twisted pair signal cables for connecting the module to another device.
Communication lines must be completed by termination module LT-04 (F\&F).
When using shielded cables grounded screens performed only on one side and as close to the device.

* Do not lay signal cables in parallel in close proximity to the line of high and medium voltage.

Wiring diagram, depending on the selected function of contact DI/DO Digital inputs (DI): D1, D2, D4, D5.
Digital outputs (DO): D3, D6

* Do not install the module in close proximity to high power electrical loads, electromagnetic measurement devices, devices with phase power regulation, and other devices that may introduce noise.

Installation

1. Set the address and communication parameters of module
2. Take OFF the power
3. Put on the module on the rail
4. Power connect to joints10-12 accordance to marks.
5. Signal outputs 1-3 (port RS-485) connect with outputs of device type MASTER.
6. Circuits contact close to the points of power module in accordance to their purpose: Dx - "minus" for the work of the contact as an input (DI), Dx - "plus" for a job as a contact output (DO).

Reset communication settings
Under cover is available code switch.

1. Take OFF the power.
2. Remove front panel
3. Set " 9 " on the switch
4. Take ON the power and within 3 sec switch to "0".

-6-

Inputs/outputs description

D1 \qquad 7 -D
D4
D2 \qquad
\qquad D5

$$
0
$$

 D6

1-3 serial port RS-485
$4 \div 9$ contacts DI/DO
$\begin{aligned} 2 & \text { galvanic connection to } p .10 \\ 10-12 & \text { module supply }\end{aligned}$
module supply

RS-485 port is not galvanically isolated from power supply module.

TECHNICAL DATA

power supply	$9 \div 30 \mathrm{~V} \mathrm{DC}$
max current load	25 mA
contact number DI/DO	6
voltage contact	$<50 \mathrm{~V}$
work current contact: constant / pulse(20\%)	$100 \mathrm{~mA} / 200 \mathrm{~mA}$
port	RS-485
communication protocol	MODBUS RTU
working temerature (without condensation)	$-40^{\circ} \mathrm{C} \div 50^{\circ} \mathrm{C}$
storage temperature	$-40^{\circ} \mathrm{C} \div 70^{\circ} \mathrm{C}$
relative humidity	85% dla $30^{\circ} \mathrm{C}$
fixing	$1.5 \mathrm{~mm}^{2}$ screw terminals
torque	0.4 Nm
dimensions	1 modut (18mm)
protection	IP20

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Controllers category:
Click to view products by F\&F manufacturer:
Other Similar products are found below :
CS1WCN223 CS1WCN713 CS1WKS001E 61F-11NH 61FGPN8DAC120 61F-GP-NT AC110 61F-GPN-V50-AC110 70177-1011 F03-03 HAS B F03-03 HAS C F03-31 815132018151353581550401 FT1A-C12RA-W 88981106 H2CAC24A R88A-CAGA005S R88A-CRGB003CR-E R88ARR080100S R88A-TK01K DCN1-1 DTB4896VRE DTB9696CVE DTB9696LVE MR-50LF+ E53-AZ01 E53E8C E5CWLQ1TCAC100240 B300LKL21 NE1ASCPU02EIPVER11 NE1SCPU01 NE1SDRM21U NSCXDC1V3 NSH5-232CW-3M NT20SST122BV1 NV3Q-SW41 NV4W-ATT01 NV-CN001 OAS-160-N K31S6 K33-L1B K3TX-AD31A L595020 SRS2-1 G32X-V2K $\underline{26546803} \underline{26546805} \underline{26546831}$ CJ1W-OD204

