

NTE5470 thru 5476 Silicon Controlled Rectifier (SCR) 5 Amp, TO64

Description:

The NTE5470 through NTE5476 are multi-purpose PNPN silicon controlled rectifiers in a TO64 type stud mount package suitable for industrial and consumer applications.

Features:

Uniform Low-Level Noise-Immune Gate Triggering

negative potential applied to the anode.

- Low Forward "ON" Voltage
- High Surge-Current Capability

Absolute Maximum Ratings: (Apply over operating temperature range unless otherwise specified) Peak Repetitive Forward and Reverse Blocking Voltage (Note 1), VDBM, VBBM
NTE5470
NTE5471 100V
NTE5472
NTE5473
NTE5474
NTE5475
NTE5476 600V
Forward Current RMS, I _T RMS 8A
Peak Forward Surge Current (One Cycle, 60Hz, $T_J = -40^{\circ}$ to $+100^{\circ}$ C), I_{TSM}
Circuit Fusing ($T_J = -40^{\circ} \text{ to } +100^{\circ}\text{C}, \ t \le 8.3\text{ms}$), $I^2 \text{t}$
Peak Gate Power, P _{GM} 5W
Average Gate Power, P _{G(AV)}
Peak Gate Current, I _{GM}
Peak Gate Voltage (Note 2), V _{GM}
Operating Temperature Range, T _J
Storage Temperature Range, T _{stq} 40° to +150°C
Thermal Resistance, Junction-to-Case, R _{thJC}
Stud Torque
·
Note 1. Ratings apply for zero or negative gate voltage. Devices should not be tested for blocking

capability in a manner such that the voltage applied exceeds the rated blocking voltage.

Note 2. Devices should not be operated with a positive bias applied to the gate concurrently with a

<u>Electrical Characteristics:</u> $(T_C = +25^{\circ}C \text{ unles otherwise specified})$

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
Peak Forward or Reverse Blocking Current	I _{DRM} , I _{RRM}	Rated V _{DRM} or V _{RRM} , Gate Open	$T_J = +25^{\circ}C$	_	_	10	μΑ
			$T_{J} = +100^{\circ}C$	_	_	2	mA
Gate Trigger Current, Continuous DC	I _{GT}	$V_D = 7V$, $R_L = 100\Omega$, Note 3		_	10	30	mA
			$T_C = -40^{\circ}C$	-	_	60	mA
Gate Trigger Voltage, Continuous DC	V _{GT}	$V_D = 7V, R_L = 100\Omega$		-	0.75	1.5	V
			$T_C = -40^{\circ}C$	_	_	2.5	V
			$T_{J} = +100^{\circ}C$	0.2	_	-	V
Forward "ON" Voltage	v _{TM}	_{TM} = 15.7A, Note 4		_	1.4	2.0	V
Holding Current	I _H	V _D = 7V, Gate Open		_	10	30	mA
			$T_C = -40^{\circ}C$	_	_	60	mA
Turn-On Time (t _d + t _r)	t _{on}	$I_G = 20$ mA, $I_F = 5$ A, V_D	= Rated V _{DRM}	_	1	-	μs
Turn-Off Time	t _{off}	I_F = 5A, I_R = 5A, V_D = Rated V_{DRM} , dv/dt = 30V/ μ s		_	15	_	μs
			$T_{J} = +100^{\circ}C$	-	25	-	μs
Forward Voltage Application Rate (Exponential)	dv/dt	Gate Open, $T_J = +100$ °C, $V_D = Rated V_{DRM}$		-	50	_	V/μs

Note 3. For optimum operation, i.e. faster turn–on, lower switching losses, best di/dt capability, recommended I_{GT} = 200mA minimum.

Note 4. Pulsed, 1ms Max, Duty Cycle \leq 1%.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for SCRs category:

Click to view products by NTE manufacturer:

Other Similar products are found below:

NTE5428 NTE5448 NTE5457 NTE5511 T1500N16TOF VT T720N18TOF T880N14TOF T880N16TOF TN1205H-6G TN1215-800B-TR
TS110-7UF TT104N12KOF-A TT104N12KOF-K TT162N16KOF-A TT162N16KOF-K TT330N16AOF VS-111RKI120PBF VS-16RIA100
VS-22RIA20 VS-2N5206 VS-2N685 VS-40TPS08A-M3 VS-50RIA10 057219R T1190N16TOF VT T1220N22TOF VT T201N70TOH
T830N14TOF T830N18TOF TD92N16KOF-A TT250N12KOF-K VS-ST180S12P0V VS-25RIA40 VS-16RIA120 VS-30TPS08PBF
TN1215-800G-TR NTE5427 NTE5442 X0405NF 1AA2 VS-ST300S20P0PBF T2160N28TOF VT TT251N16KOF-K VS-22RIA100 VS16RIA40 CR02AM-8#F00 VS-ST110S12P0VPBF TD250N16KOF-A GA301A VS-ST110S16P0 VS-10RIA10