$\begin{array}{c} \textbf{NTE5620} \\ \textbf{TRIAC} \\ \textbf{800V}_{\text{RM}}, \, \textbf{8A}, \, \textbf{TO220} \, \, \textbf{Full Pack} \end{array}$ The NTE5620 TRIAC is designed primarily for full-wave AC control applications, such as light dimmers, heater controls, motor controls, and power supplies; or wherever full wave silicon gate controlled solid state devices are needed. TRIAC type thyristors switch from a blocking to a conducting state for either polarity of applied voltage with positive or negative gate triggering. #### Features: - Blocking Voltage 800 Volts - All Diffused and Glass Passivated Junctions for Greater Parameter Uniformity and Stability - Small, Rugged, TO220 Full Pack for Low Thermal Resistance, High Heat Dissipation, and Durability - Gate Triggering Guaranteed in Four Modes #### **Absolute Maximum Ratings:** | Peak Repetitive Off–State Voltage, V_{DRM} (T_J = -40° to $+125^\circ$ C, 1/2 Sine Wave 50 to $60H_Z$, Gate Open, Note 1) 800V | |---| | On–State Current RMS, $I_{T(RMS)}$ ($T_C = +80^{\circ}C$, Full Cycle Sine Wave 50 to $60H_Z$, Note 2) | | Peak Non–Repetitive Surge Current, I_{TSM} (One Full Cycle, 60Hz, T_C = +125°C, Preceded and followed by rated current) 100A | | Peak Gate Power (T _C = +80°C, Pulse Width = 2μs), P _{GM} | | Average Gate Power ($T_C = +80^{\circ}C$, $t = 8.3$ ms), $P_{G(AV)}$ | | Peak Gate Current (Pulse Width = 2μs), I _{GM} | | RMS Isolation Voltage (T _A = +25°C, Relative Humidity ≤[20%), V _(ISO) | | Operating Junction Temperature Range, T _J | | Storage Temperature Range, T _{stg} 40° to +150°C | | Thermal Resistance, Junction-to-Case, R _{thJC} | | Typical Thermal Resistance, Case-to-Sink, R _{thCS} | | Thermal Resistance, Junction-to-Ambient, R _{thJA} | - Note 1. Ratings apply for open gate conditions. Thyristor devices shall not be tested with a constant current source for blocking capability such that the voltage applied exceeds the rated blocking voltage. - Note 2. The case temperature reference point for all T_C measurements is a point on the center lead of the package as close as possible to the plastic body. ## $\underline{\textbf{Electrical Characteristics:}} \text{ (T}_{C} = +25^{\circ}\text{C unless otherwise specified)}$ | Characteristics | Symbol | Min | Тур | Max | Unit | |--|------------------|--------------------------------|--------------------------|--------------------------|------| | Peak Blocking Current (Either Direction) (Rated V_{DRM} , $T_J = +125$ °C, Gate Open) | I _{DRM} | _ | - | 2 | mA | | Peak On-State Voltage (Either Direction) (I _{TM} = 11.3A Peak; Pulse Width = 1 to 2ms, Duty Cycle < 2%) | V _{TM} | _ | 1.7 | 2.0 | V | | Peak Gate Trigger Current (Main Terminal Voltage = 12Vdc, R _L = 100 Ohms) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-) MT2(-), G(+) | I _{GT} | 1 1 1 | | 50
50
50
75 | mA | | Peak Gate Trigger Voltage $ \begin{array}{l} \text{(Main Terminal Voltage} \\ \text{(Main Terminal Voltage} = 12 \text{Vdc}, \ R_L = 100 \ \text{Ohms}) \\ \text{MT2(+)}, \ G(+) \\ \text{MT2(+)}, \ G(-) \\ \text{MT2(-)}, \ G(-) \\ \text{MT2(-)}, \ G(+) \\ \text{(Main Terminal Voltage} = \text{Rated V}_{DRM}, \ R_L = 10 \text{k}\Omega, \\ \text{T}_J = +125 ^{\circ}\text{C}) \\ \text{MT2(+)}, \ G(+); \ \text{MT2(+)}, \ G(-); \ \text{MT2(-)}, \ G(-) \\ \text{MT2(-)}, \ G(+) \end{array} $ | V _{GT} | -
-
-
-
0.2
0.2 | 0.9
0.9
1.1
1.4 | 2.0
2.0
2.0
2.5 | V | | Holding Current (Either Direction)
(Main Terminal Voltage = 24Vdc, Gate Open
I _T = 200mA) | I _H | - | _ | 50 | mA | | Critical Rate of Rise of Off–State Voltage (Rated V _{DRM} , Exponential Waveform, T _J = +125°C, Gate Open) | dv/dt | _ | 100 | - | V/µs | | Critical Rate of Rise of Commutation Voltage (Rated V_{DRM} , $I_{T(RMS)}$ = 6A, Commutating di/dt = 4.3A/ms, Gate Unenergized, T_{C} = +80°C) | dv/dt(c) | П | 5 | _ | V/µs | ### **X-ON Electronics** Largest Supplier of Electrical and Electronic Components Click to view similar products for Triacs category: Click to view products by NTE manufacturer: Other Similar products are found below: ACST435-8B LIC01-215B-TR T2035H-6G BT137-600-0Q Z0410NF 1AA2 098128C 620675E T1610-600G-TR Z0409MF0AA2 Z0109NA 2AL2 ACS108-8SA-AP ACS108-8SN-TR ACST1635T-8FP BCR16PM-12LG#B00 BCR20RM-30LA#B00 T1205-600G-TR CMA60MT1600NHR NTE5611 NTE5612 NTE5613 NTE5621 NTE5623 NTE5629 NTE5638-08 NTE5688 NTE5689 NTE5690 T1235T-8I BTA312-600CT.127 T1210T-8G-TR T1210T-8G BT136S-600E,118 BT137B-800G,118 Z0109NN0,135 MAC4DLM-1G BT137-600E,127 BT137X-600D BT148W-600R,115 BT258-500R,127 BTA08-800BW3G BTA140-800,127 BTA30-600CW3G BTB08-800BW3G BTB16-600CW3G BTB16-600CW3G Z0405M-0AA2 Z0410MF0AA2 Z0109MN,135 T825T-6I