

ProLight PB2D-3JLA-xx 3W UV Power LED Technical Datasheet Version: 1.2

ProLight Opto ® PB2D Series

Features

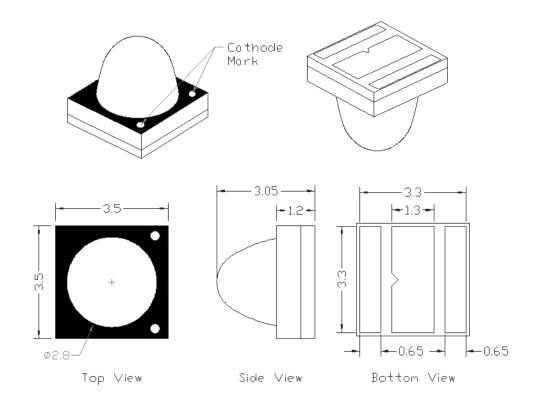
- ·100% foot print compatible with Cree XP-C / XP-E / XP-G
- ·Best thermal material solution of the world
- ·Best Moisture Sensitivity: JEDEC Level 1
- ·RoHS compliant
- ·Quartz Glass Lens
- ·View angle 35°

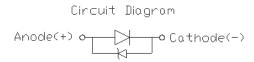
Main Applications

- ·UV gluing, UV curing, UV marking
- ·UV drying of printing inks and lacquers
- ·Currency inspection
- ·Forensic analysis urine, protein stains
- ·Leak detection using fluorescent dyes
- ·Detects fluorescing minerals and gems
- **Indoor Lighting**
- **Outdoor Lighting**

Introduction

- ·ProLight Phenix 3535-viewing angle 35° Quartz Package, is one of the smallest high power LED footprint available by ProLight Opto, has offered extended solid-state lighting design possibilities. ProLight Phenix 3535-viewing angle 35° is designed with ProLight own Patents and using copper leadframe, the best thermal material of the world.
- •Phenix 3535-viewing angle 35° qualifies as the JEDEC Level 1 MSL sensitivity level and suitable for SMD process, Pb_free reflow soldering capability, and full compliance with EU Reduction of Hazardous Substances (RoHS) legislation.


No. 89, Xiyuan Rd., Zhongli City, Taoyuan County 320,


Taiwan (R.O.C.)

Tel: +886-3-461-8618 Fax: +886-3-461-8677 www.prolightopto.com 2018/06 DS-1006

Emitter Mechanical Dimensions

Notes:

- 1. The cathode side of the device is denoted by the chamfer on the part body.
- 2. Electrical insulation between the case and the board is required. Do not electrically connect either the anode or cathode to the slug.
- 3. Drawing not to scale.
- 4. All dimensions are in millimeters.
- 5. Unless otherwise indicated, tolerances are \pm 0.10mm.
- 6. Please do not solder the emitter by manual hand soldering, otherwise it will damage the emitter.
- 7. Please do not use a force of over 0.3kgf impact or pressure on the lens of the LED, otherwise it will cause a catastrophic failure.

^{*}The appearance and specifications of the product may be modified for improvement without notice.

Flux Characteristics, T_j = 25°C

B 11 4			Radiometric Power (mW)			
Radiation Pattern	Color	Part Number Emitter	@700	0mA	Refer @500mA	
			Minimum	Typical	Typical	
	UV-S	PB2D-3JLA-GS	685	930	670	
Lambertian	UV-M	PB2D-3JLA-M	685	950	685	
	UV	PB2D-3JLA	755	1000	720	

- ProLight maintains a tolerance of ± 10% on flux and power measurements.
- Please do not drive at rated current more than 1 second without proper heat sink.

Electrical Characteristics, T_j = 25°C

		Forwa	rd Voltage V _F	(V)	Thermal Resistance
Color	Min.	@700mA Typ.	Max.	Refer @500mA Typ.	Junction to Slug (°C/ W)
UV-S	3.4	3.9	4.4	3.6	8
UV-M	3.2	3.5	4.0	3.4	8
UV	3.2	3.5	4.0	3.4	8

ProLight maintains a tolerance of ± 0.1V for Voltage measurements.

Optical Characteristics at 700mA, T_J = 25°C

Radiation	Pe Color		Peak Wavelength λρ			Viewing Angle (degrees)
Pattern	Color	Min.	Тур.	Max.	$\theta_{0.90V}$	2 θ _{1/2}
	UV-S	365 nm	367.5 nm	370 nm	60	35
Lambertian	UV-M	380 nm	385 nm	390 nm	60	35
	UV	390 nm	395 nm	400 nm	60	35

ProLight maintains a tolerance of ± 3nm for dominant wavelength measurements.

Allowable Reflow Cycles

Absolute Maximum Ratings

Parameter	UV-S/UV-M/UV

DC Forward Current (mA) 1000

Peak Pulsed Forward Current (mA) 1100 (less than 1/10 duty cycle@1KHz)

ESD Sensitivity ±4000V

(HBM per MIL-STD-883E Method 3015.7)
LED Junction Temperature 90°C

Operating Board Temperature -40°C - 85°C

at Maximum DC Forward Current

Storage Temperature

-40°C - 100°C

Soldering Temperature JEDEC 020c 260°C

Reverse Voltage Not designed to be driven in reverse bias

Radiometric Power Bin Structure at 700mA

Color	Bin Code	Minimum Radiometric Power (mW)	Maximum Radiometric Power (mW)	Available Color Bins
	T1	685	755	All
	T2	755	830	[1]
UV-S	U1	830	910	[1]
	U2	910	1000	[1]
	V1	1000	1100	[1]
	T1	685	755	All
	T2	755	830	[1]
UV-M	U1	830	910	[1]
	U2	910	1000	[1]
	V1	1000	1100	[1]
	T2	755	830	All
	U1	830	910	[1]
UV	U2	910	1000	[1]
	V1	1000	1100	[1]
	V2	1100	1210	[1]

- ProLight maintains a tolerance of ± 10% on flux and power measurements.
- The flux bin of the product may be modified for improvement without notice.
- [1] The rest of color bins are not 100% ready for order currently. Please ask for quote and order possibility.

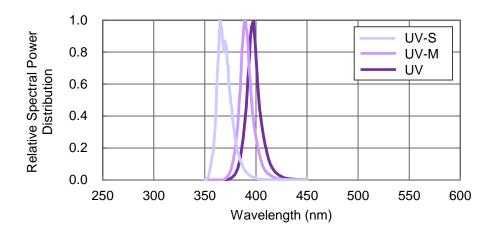
Peak Wavelength Bin Structure

Color	Bin Code	Minimum Peak Wavelength (nm)	Maximum Peak Wavelength (nm)
UV-S	2	365	370
UV-M	B	380	385
	A	385	390
UV	1	390	395
	2	395	400

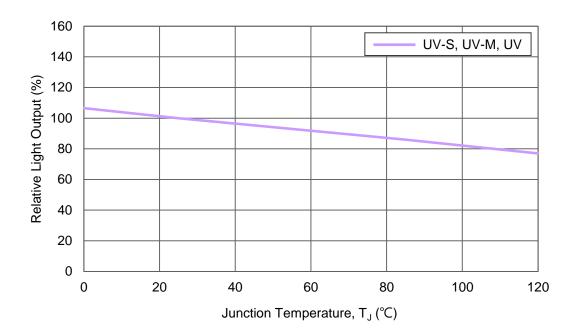
[•] ProLight maintains a tolerance of ± 3nm for peak wavelength measurements.

Forward Voltage Bin Structure

Color	Bin Code	Minimum Voltage (V)	Maximum Voltage (V)
	E	3.4	3.6
	F	3.6	3.8
UV-S	G	3.8	4.0
	Н	4.0	4.2
	J	4.2	4.4
	D	3.2	3.4
1.157.84	E	3.4	3.6
UV-M	F	3.6	3.8
	G	3.8	4.0
	D	3.2	3.4
1.157	E	3.4	3.6
UV	F	3.6	3.8
	G	3.8	4.0


[•] ProLight maintains a tolerance of ± 0.1V for Voltage measurements.

Note: Although several bins are outlined, product availability in a particular bin varies by production run and by product performance. Not all bins are available in all colors.


Color Spectrum, T_J = 25°C

1. UV-S, UV-M, UV

Light Output Characteristics

Relative Light Output vs. Junction Temperature at 700mA

Forward Current Characteristics, T_j = 25°C

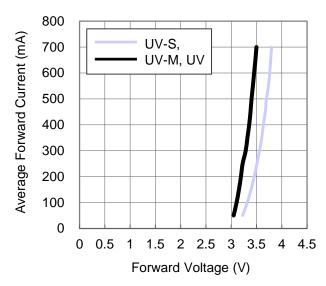


Fig 1. Forward Current vs. Forward Voltage for UV-S, UV-M, UV.

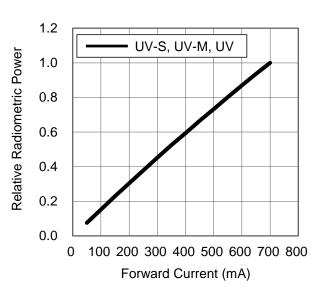
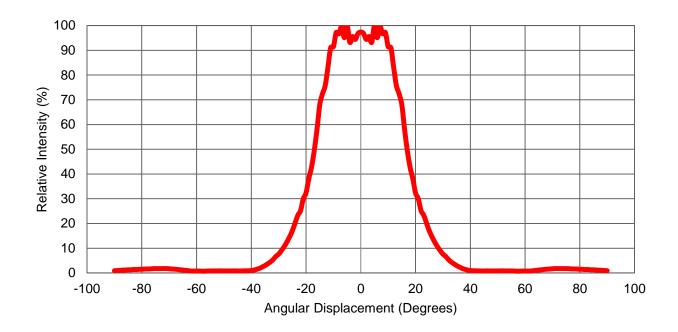


Fig 2. Relative Radiometric Power vs. Forward Current for UV-S, UV-M, UV at T_J =25 maintained.

Solder Temperature (Slug) vs. Maximum Forward Current


1. UV-S $(T_{JMAX} = 90^{\circ}C)$

Typical Representative Spatial Radiation Pattern

Radiation Pattern

Moisture Sensitivity Level - JEDEC Level 1

				Soak Req	uirements	
Level	Floo	r Life	Stan	dard	Accelerated	Environment
	Time	Conditions	Time (hours)	Conditions	Time (hours)	Conditions
1	Unlimited	≤30°C / 85% RH	168 +5/-0	85°C / 85% RH	NA	NA

- The standard soak time includes a default value of 24 hours for semiconductor manufature's exposure time (MET) between bake and bag and includes the maximum time allowed out of the bag at the distributor's facility.
- Table below presents the moisture sensitivity level definitions per IPC/JEDEC's J-STD-020C.

			Soak Requirements			
Level Floor Life		Standard		Accelerated Environment		
	Time	Conditions	Time (hours)	Conditions	Time (hours)	Conditions
1	Unlimited	≤30°C / 85% RH	168 +5/-0	85°C / 85% RH	NA	NA
2	1 year	≤30°C / 60% RH	168 +5/-0	85°C / 60% RH	NA	NA
2a	4 weeks	≤30°C / 60% RH	696 +5/-0	30°C / 60% RH	120 +1/-0	60°C / 60% RH
3	168 hours	≤30°C / 60% RH	192 +5/-0	30°C / 60% RH	40 +1/-0	60°C / 60% RH
4	72 hours	≤30°C / 60% RH	96 +2/-0	30°C / 60% RH	20 +0.5/-0	60°C / 60% RH
5	48 hours	≤30°C / 60% RH	72 +2/-0	30°C / 60% RH	15 +0.5/-0	60°C / 60% RH
5a	24 hours	≤30°C / 60% RH	48 +2/-0	30°C / 60% RH	10 +0.5/-0	60°C / 60% RH
6	Time on Label (TOL)	≤30°C / 60% RH	Time on Label (TOL)	30°C / 60% RH	NA	NA

Qualification Reliability Testing

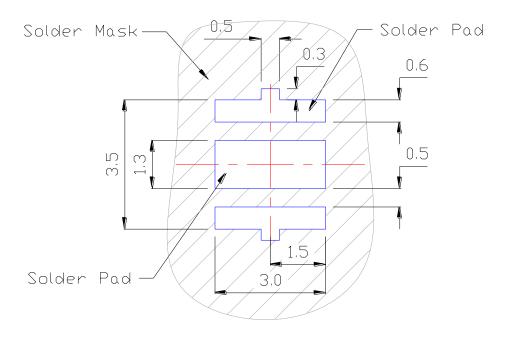
Stress Test	Stress Conditions	Stress Duration	Failure Criteria
Room Temperature Operating Life (RTOL)	25°C, I _F = max DC (Note 1)	1000 hours	Note 2
High Temperature Storage Life (HTSL)	100°C, non-operating	1000 hours	Note 2
Low Temperature Storage Life (LTSL)	-40°C, non-operating	1000 hours	Note 2
Non-operating Temperature Cycle (TMCL)	-40°C to 100°C, 30 min. dwell, <5 min. transfer	200 cycles	Note 2
Mechanical Shock	1500 G, 0.5 msec. pulse, 5 shocks each 6 axis		Note 3
Natural Drop	On concrete from 1.2 m, 3X		Note 3
Variable Vibration Frequency	10-2000-10 Hz, log or linear sweep rate, 20 G about 1 min., 1.5 mm, 3X/axis		Note 3
Solder Heat Resistance (SHR)	260°C ± 5°C, 10 sec.		Note 3
Solderability	Steam age for 16 hrs., then solder dip at 260°C for 5 sec.		Solder coverage on lead

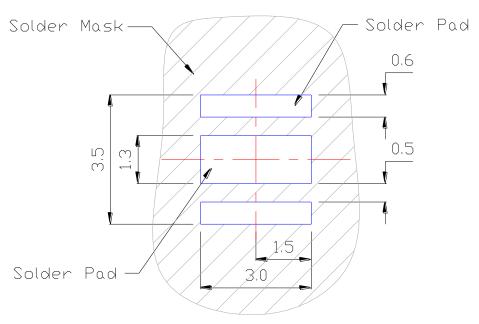
Notes:

- 1. Depending on the maximum derating curve.
- 2. Criteria for judging failure

Item	Test Condition	Criteria for Judgement		
item	Test Condition	Min.	Max.	
Forward Voltage (V _F)	I _F = max DC		Initial Level x 1.1	
Luminous Flux or Radiometric Power (Φ_V)	I _F = max DC	Initial Level x 0.7		

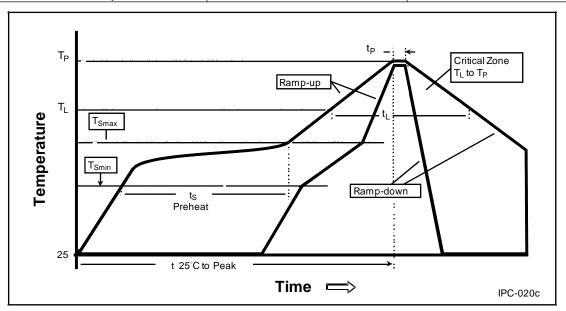
^{*} The test is performed after the LED is cooled down to the room temperature.


3. A failure is an LED that is open or shorted.


Recommended Solder Pad Design

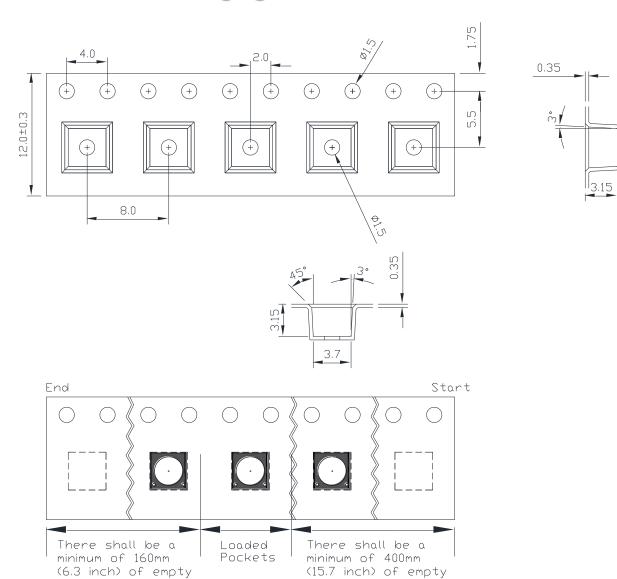
Standard Emitter

TYPE B.



- All dimensions are in millimeters.
- Electrical isolation is required between Slug and Solder Pad.

Reflow Soldering Condition


Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Average Ramp-Up Rate	3°C / second max.	3°C / second max.
$(T_{Smax} \text{ to } T_{P})$	5 C / Second max.	5 C/ Second max.
Preheat		
– Temperature Min (T _{Smin})	100°C	150°C
– Temperature Max (T _{Smax})	150°C	200°C
– Time (t _{Smin} to t _{Smax})	60-120 seconds	60-180 seconds
Time maintained above:		
– Temperature (T _L)	183°C	217°C
– Time (t _L)	60-150 seconds	60-150 seconds
Peak/Classification Temperature (T _p)	240°C	260°C
Time Within 5°C of Actual Peak	10-30 seconds	20-40 seconds
Temperature (t _P)	10-50 Seconds	20-40 Seconds
Ramp-Down Rate	6°C/second max.	6°C/second max.
Time 25°C to Peak Temperature	6 minutes max.	8 minutes max.

- We recommend using the M705-S101-S4 solder paste from SMIC (Senju Metal Industry Co., Ltd.) for lead-free soldering.
- Do not use solder pastes with post reflow flux residue>47%. (58Bi-42Sn eutectic alloy, etc) This kind of solder pastes may cause a reliability problem to LED.
- All temperatures refer to topside of the package, measured on the package body surface.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a
 double-head soldering iron should be used. It should be confirmed beforehand whether the
 characteristics of the LEDs will or will not be damaged by repairing.
- Reflow soldering should not be done more than three times.
- When soldering, do not put stress on the LEDs during heating.
- After soldering, do not warp the circuit board.

Emitter Reel Packaging

component pockets

sealed with cover

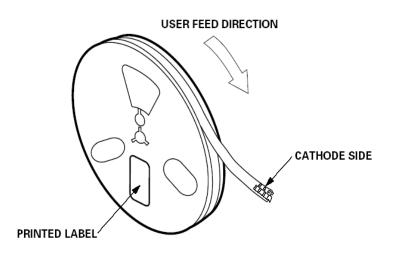
tape.

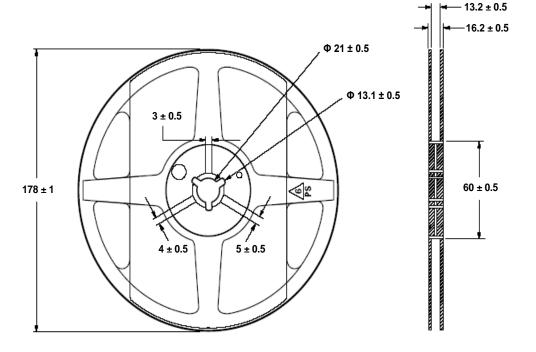
Notes:

1. Drawing not to scale.

tape.

2. All dimensions are in millimeters.


component pockets


sealed with cover

3. Unless otherwise indicated, tolerances are \pm 0.10mm.

Emitter Reel Packaging

Notes:

- 1. Empty component pockets sealed with top cover tape.
- 2. 250, 500 pieces per reel.
- 3. Drawing not to scale.
- 4. All dimensions are in millimeters.

Precaution for Use

Storage

Please do not open the moisture barrier bag (MBB) more than one week. This may cause the leads of LED discoloration. We recommend storing ProLight's LEDs in a dry box after opening the MBB. The recommended storage conditions are temperature 5 to 30 °C and humidity less than 40% RH. It is also recommended to return the LEDs to the MBB and to reseal the MBB.

- The slug is is not electrically neutral. Therefore, we recommend to isolate the heat sink.
- We recommend using the M705-S101-S4 solder paste from SMIC (Senju Metal Industry Co., Ltd.) for lead-free soldering.
- Do not use solder pastes with post reflow flux residue>47%. (58Bi-42Sn eutectic alloy, etc) This kind of solder pastes may cause a reliability problem to LED.
- Any mechanical force or any excess vibration shall not be accepted to apply during cooling process to normal temperature after soldering.
- Please avoid rapid cooling after soldering.
- Components should not be mounted on warped direction of PCB.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a heat plate should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.
- This device should not be used in any type of fluid such as water, oil, organic solvent and etc. When cleaning is required, isopropyl alcohol should be used.
- When the LEDs are illuminating, operating current should be decide after considering the package maximum temperature.
- The appearance, specifications and flux bin of the product may be modified for improvement without notice. Please refer to the below website for the latest datasheets. http://www.prolightopto.com/

Use Handling of Quartz Lens LEDs

Notes for handling of quartz lens LEDs

- Please do not use a force of over 3.0kgf impact or pressure on the quartz lens, otherwise it will cause a catastrophic failure.
- The LEDs should only be picked up by making contact with the sides of the LED body.
- Avoid touching the quartz lens especially by sharp tools such as Tweezers.
- Avoid leaving fingerprints on the quartz lens.
- Please store the LEDs away from dusty areas or seal the product against dust.
- When populating boards in SMT production, there are basically no restrictions regarding the form of the pick and place nozzle, except that mechanical pressure on the quartz lens must be prevented.
- Please do not mold over the quartz lens with another resin. (epoxy, urethane, etc)

15

No. 89, Xiyuan Rd., Zhongli City, Taoyuan County 320, Taiwan (R.O.C.)

Tel: +886-3-461-8618 Fax: +886-3-461-8677 www.prolightopto.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Standard LEDs - Through Hole category:

Click to view products by Prolight manufacturer:

Other Similar products are found below:

LTL-10254W LTL-1214A LTL-1BEDJ LTL-2231AT LTL2V3EU3KS LTL-3251A LTL-4262N LTL-433P LTL-5234 LTL87HTBK
LTW-87HD4B HLMP-AG64-X10ZZ HLMP-EG1A-Z10DV HLMP-EL3B-WXKDD HLMP-HB74-UVBDD HLMP-HG65-VY0DD HLMPHM74-34CDD HLMP-HM75-34CDD 1L0532V23G0TD001 NSPW500CS C4SMA-BGF-CQ34Q3C2 L53GC13 L53SRC 264-7SURTS530A3 L-934MD/2ID L-934MD/2YD L-C150JRCT S4SMS-BJF-CQ42QGF2 S4SMS-GJF-CW12QMF2 LD CQDP-1U3U-W5-1-K
LNX998CKBDA LO566UHR3-70G-A3 SLA560WBD2PT3 LP379PPG1C0G0300001 SLR-322MCT32 SLR-342MC3F SLR343BC7TT32
SLR343BCTT32 SLX-LX3044GD SLX-LX3044HC SLX-LX3044ID SLX-LX3044YD 1.90690.3330000 SSL-LX20483ID SSL-LX3034YD
SSL-LX5093LGT-11 SSL-LX5093PGC SSL-LX5093SRC39240 SSL-LX5093SYT SSL-LX509E3SIT