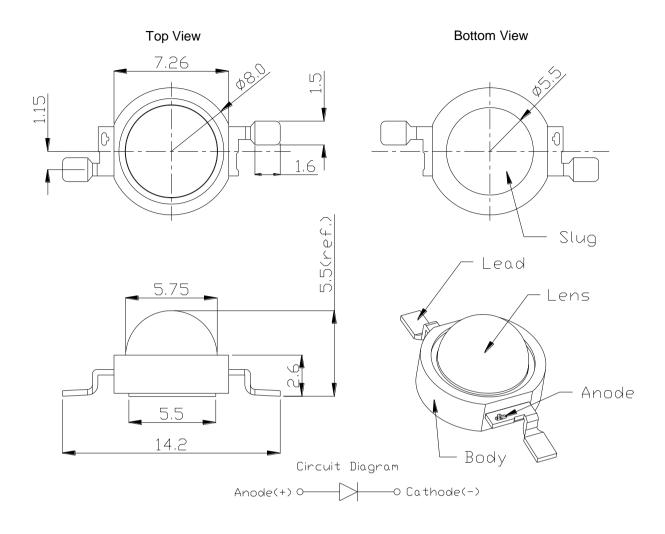


ProLight PM2E-2LJx-SD 2W Infrared 850 Power LED Technical Datasheet Version: 1.3

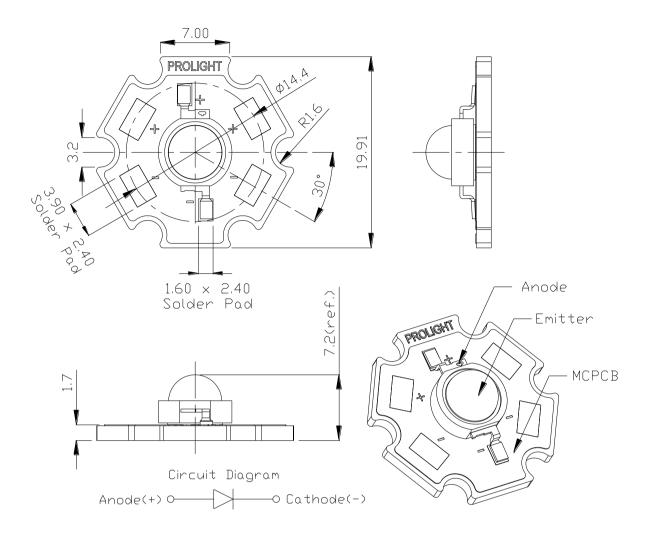

Features

- Industry best moisture sensitivity level JEDEC Level 1
- Instant light (less than 100ns)
- Lead free reflow soldering
- RoHS compliant
- Cool beam, safe to the touch

Typical Applications

- CCTV
- Wireless communication
- Indoor Lighting
- Outdoor Lighting

Emitter Mechanical Dimensions



Notes:

- 1. The Anode side of the device is denoted by a hole in the lead frame.
- 2. Electrical insulation between the case and the board is required. Do not electrically connect either the anode or cathode to the slug.
- 3. Drawing not to scale.
- 4. All dimensions are in millimeters.
- 5. Unless otherwise indicated, tolerances are \pm 0.20mm.
- 6. Please do not bend the leads of the LED, otherwise it will damage the LED.
- 7. Please do not use a force of over 3kgf impact or pressure on the lens of the LED, otherwise it will cause a catastrophic failure.

*The appearance and specifications of the product may be modified for improvement without notice.

Star Mechanical Dimensions

Notes:

- 1. Slots in aluminum-core PCB for M3 or #4 mounting screw.
- 2. Electrical interconnection pads labeled on the aluminum-core PCB with "+" and "-" to denote positive and negative, respectively. All positive pads are interconnected, as are all negative pads, allowing for flexibility in array interconnection.
- 3. Drawing not to scale.
- 4. All dimensions are in millimeters.
- 5. Unless otherwise indicated, tolerances are \pm 0.20mm.
- 6. Please do not use a force of over 3kgf impact or pressure on the lens of the LED, otherwise it will cause a catastrophic failure.

*The appearance and specifications of the product may be modified for improvement without notice.

Radiation Color		Part N	umber	Radiometric Power (mW)	
Pattern	Color	Emitter	Star	Minimum	Typical
Lambertian	Infrared 850	PM2E-2LJE-SD	PM2E-2LJS-SD	515	730

Flux Characteristics at 1000mA, $T_J = 25^{\circ}C$

 \bullet ProLight maintains a tolerance of \pm 10% on flux and power measurements.

• Please do not drive at rated current more than 1 second without proper heat sink.

Electrical Characteristics at 1000mA, $T_J = 25^{\circ}C$

Color	Fo	orward Voltage V _F (Thermal Resistance	
Color	Min.	Тур.	Max.	Junction to Slug (°C/ W)
Infrared 850	1.5	1.9	2.3	8

• ProLight maintains a tolerance of ± 0.1V for Voltage measurements.

Optical Characteristics at 1000mA, T_J = 25°C

				Total included Angle	Viewing Angle
Color	Peak Wavelength λ _P Min. Typ. Max.		(degrees) θ _{0.90V}	(degrees) 2 θ _{1/2}	
Infrared 850	840 nm	855 nm	870 nm	180	130

• ProLight maintains a tolerance of ± 1nm for dominant wavelength measurements.

Absolute Maximum Ratings

Parameter	Infrared 850
DC Forward Current (mA)	1000
Peak Pulsed Forward Current (mA)	1500 (less than 1/10 duty cycle@1KHz)
Average Forward Current (mA)	1000
ESD Sensitivity (HBM per MIL-STD-883E Method 3015.7)	±4000V (Class III)
LED Junction Temperature ($^\circ\!C$)	120°C
Operating Board Temperature at Maximum DC Forward Current	-40°C - 90°C
Storage Temperature	-40°C - 120°C
Soldering Temperature	JEDEC 020c 260°C
Allowable Reflow Cycles	3
Reverse Voltage	Not designed to be driven in reverse bias

Radiometric Power Bin Structure

Color	Bin Code	Minimum Radiometric Power (mW)	Maximum Radiometric Power (mW)	Available Color Bins
	R	515	635	[1]
Infrared 850	S	635	755	All
	Т	755	875	【1】

• ProLight maintains a tolerance of ± 10% on flux and power measurements.

• The flux bin of the product may be modified for improvement without notice.

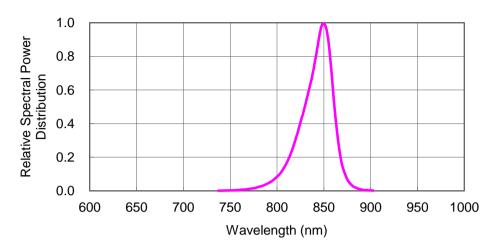
• ^[1] The rest of color bins are not 100% ready for order currently. Please ask for quote and order possibility.

Peak Wavelength Bin Structure

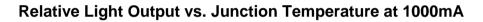
Color	Bin Code	Minimum Peak Wavelength (nm)	Maximum Peak Wavelength (nm)
Infrared 850	1	840	870

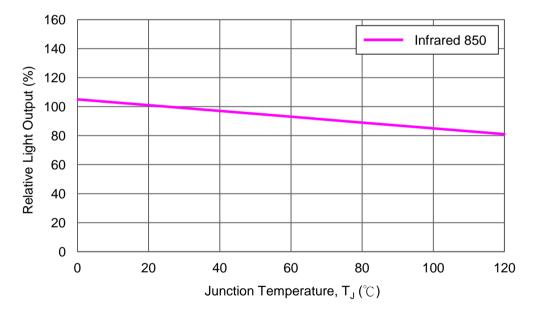
• ProLight maintains a tolerance of ± 1nm for peak wavelength measurements.

Forward Voltage Bin Structure

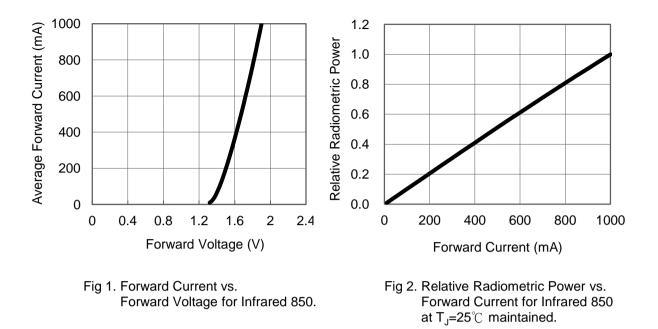

Color	Bin Code	Minimum Voltage (V)	Maximum Voltage (V)
	Е	1.5	1.6
	F	1.6	1.7
	G	1.7	1.8
Infrared 850	Н	1.8	1.9
initialed 650	J	1.9	2.0
	К	2.0	2.1
	L	2.1	2.2
	М	2.2	2.3

• ProLight maintains a tolerance of ± 0.1V for Voltage measurements.

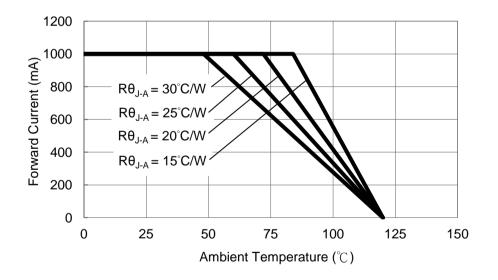

Note: Although several bins are outlined, product availability in a particular bin varies by production run and by product performance. Not all bins are available in all colors.


Color Spectrum, $T_J = 25^{\circ}C$

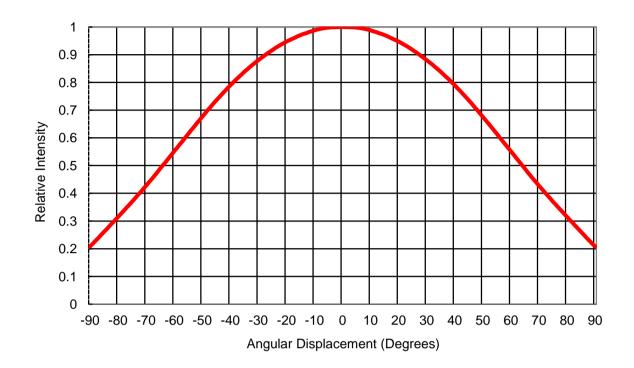
1. Infrared 850



Light Output Characteristics



Forward Current Characteristics, $T_J = 25^{\circ}C$


Ambient Temperature vs. Maximum Forward Current

1. Infrared 850 (T_{JMAX} = 120°C)

Typical Representative Spatial Radiation Pattern

Lambertian Radiation Pattern

Moisture Sensitivity Level - JEDEC Level 1

				Soak Req	uirements	
Level	Floo	r Life	Stan	dard	Accelerated	Environment
	Time	Conditions	Time (hours)	Conditions	Time (hours)	Conditions
1	Unlimited	≤30°C / 85% RH	168 +5/-0	85°C / 85% RH	NA	NA

• The standard soak time includes a default value of 24 hours for semiconductor manufature's exposure time (MET) between bake and bag and includes the maximum time allowed out of the bag at the distributor's facility.

• Table below presents the moisture sensitivity level definitions per IPC/JEDEC's J-STD-020C.

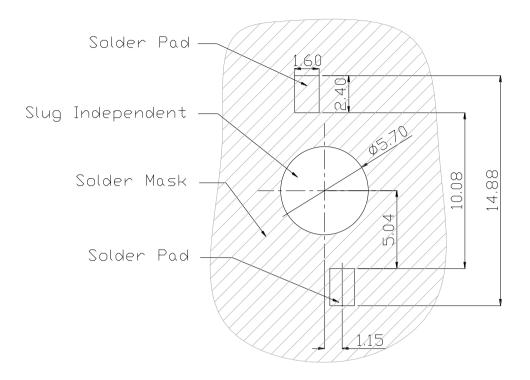
				Soak Req	uirements		
Level	Floor Life		Standard		Accelerated	Accelerated Environment	
	Time	Conditions	Time (hours)	Conditions	Time (hours)	Conditions	
1	Unlimited	≤30°C /	168 +5/-0	85°C /	NA	NA	
I	Onminited	85% RH	100 +5/-0	85% RH		ΝA	
2	1 year	≤30°C /	168 +5/-0	85°C /	NA	NA	
2	i yeai	60% RH	100 +5/-0	60% RH	NA		
2a	4 weeks	≤30°C /	696 +5/-0	30°C /	120 +1/-0	60°C /	
Za	4 WEEKS	60% RH	090 +5/-0	60% RH	120 +1/-0	60% RH	
3	168 hours	≤30°C /	192 +5/-0	30°C /	40 +1/-0	60°C /	
5	100 110013	60% RH	192 +3/-0	60% RH	40 +1/-0	60% RH	
4	72 hours	≤30°C /	96 +2/-0	30°C /	20 +0.5/-0	60°C /	
4	72 110013	60% RH	90 +2/-0	60% RH	20 +0.5/-0	60% RH	
5	48 hours	≤30°C /	72 +2/-0	30°C /	15 +0.5/-0	60°C /	
5	40 110013	60% RH	72 +2/-0	60% RH	13 +0.5/-0	60% RH	
5a	24 hours	≤30°C /	48 +2/-0	30°C /	10 +0.5/-0	60°C /	
Ja	24 110015	60% RH	40 +2/-0	60% RH	10 +0.5/-0	60% RH	
6	Time on Label	≤30°C /	Time on Label	30°C /	NA	NA	
0	(TOL)	60% RH	(TOL)	60% RH	INA I	NА	

Qualification Reliability Testing

Stress Test	Stress Conditions	Stress Duration	Failure Criteria
Room Temperature	25°C, I _F = max DC (Note 1)	1000 hours	Note 2
Operating Life (RTOL)		1000 110013	1000 2
Wet High Temperature	85°C/60%RH, I _F = max DC (Note 1)	1000 hours	Note 2
Operating Life (WHTOL)			1010 2
Wet High Temperature	85°C/85%RH, non-operating	1000 hours	Note 2
Storage Life (WHTSL)			1010 2
High Temperature	110°C, non-operating	1000 hours	Note 2
Storage Life (HTSL)			11010 2
Low Temperature	-40°C, non-operating	1000 hours	Note 2
Storage Life (LTSL)			11010 2
Non-operating	-40°C to 120°C, 30 min. dwell,	200 cycles	Note 2
Temperature Cycle (TMCL)	<5 min. transfer	200 090100	11010 2
Non-operating	-40°C to 120°C, 20 min. dwell,	200 cycles	Note 2
Thermal Shock (TMSK)	<20 sec. transfer	200 090100	1010 2
Mechanical Shock	1500 G, 0.5 msec. pulse,		Note 3
	5 shocks each 6 axis		11010 0
Natural Drop	On concrete from 1.2 m, 3X		Note 3
Variable Vibration			
	10-2000-10 Hz, log or linear sweep rate,		Note 3
Frequency Solder Heat Resistance	20 G about 1 min., 1.5 mm, 3X/axis		
(SHR)	260°C ± 5°C, 10 sec.		Note 3
Solderability	Steam age for 16 hrs., then solder dip		Solder coverage
Coldorability	at 260°C for 5 sec.		on lead

Notes:

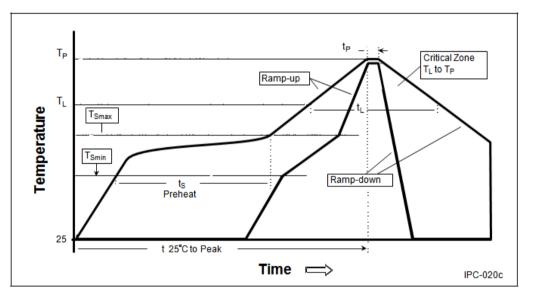
1. Depending on the maximum derating curve.


2. Criteria for judging failure

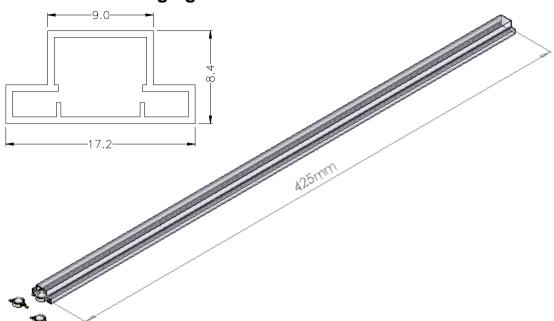
ltem	Test Condition	Criteria for Judgement		
nem		Min.	Max.	
Forward Voltage (V _F)	I _F = max DC	-	Initial Level x 1.1	
Luminous Flux or Radiometric Power (Φ_V)	I _F = max DC	Initial Level x 0.7	-	

* The test is performed after the LED is cooled down to the room temperature.

3. A failure is an LED that is open or shorted.


Recommended Solder Pad Design

- All dimensions are in millimeters.
- Electrical isolation is required between Slug and Solder Pad.


Reflow Soldering Condition

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Average Ramp-Up Rate (T _{Smax} to T _P)	3°C / second max.	3°C / second max.
Preheat		
– Temperature Min (T _{Smin})	100°C	150°C
– Temperature Max (T _{Smax})	150°C	200°C
– Time (t_{Smin} to t_{Smax})	60-120 seconds	60-180 seconds
Time maintained above:		
– Temperature (T _L)	183°C	217°C
– Time (t _L)	60-150 seconds	60-150 seconds
Peak/Classification Temperature (T_P)	240°C	260°C
Time Within 5°C of Actual Peak Temperature (t _P)	10-30 seconds	20-40 seconds
Ramp-Down Rate	6°C/second max.	6°C/second max.
Time 25°C to Peak Temperature	6 minutes max.	8 minutes max.



- We recommend using the M705-S101-S4 solder paste from SMIC (Senju Metal Industry Co., Ltd.) for lead-free soldering.
- All temperatures refer to topside of the package, measured on the package body surface.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a
 double-head soldering iron should be used. It should be confirmed beforehand whether the
 characteristics of the LEDs will or will not be damaged by repairing.
- Reflow soldering should not be done more than three times.
- When soldering, do not put stress on the LEDs during heating.
- After soldering, do not warp the circuit board.

Emitter Tube Packaging

Star Tube Packaging

Notes:

- 1. Emitter 50 pieces per tube and Star 20 pieces per tube.
- 2. Drawing not to scale.
- 3. All dimensions are in millimeters.
- 4. All dimendions without tolerances are for reference only.
- **Please do not open the moisture barrier bag (MBB) more than one week. This may cause the leads of LED discoloration. We recommend storing ProLight's LEDs in a dry box after opening the MBB. The recommended storage conditions are temperature 5 to 30°C and humidity less than 40% RH.

Precaution for Use

Storage

Please do not open the moisture barrier bag (MBB) more than one week. This may cause the leads of LED discoloration. We recommend storing ProLight's LEDs in a dry box after opening the MBB. The recommended storage conditions are temperature 5 to 30°C and humidity less than 40% RH. It is also recommended to return the LEDs to the MBB and to reseal the MBB.

- The slug is is not electrically neutral. Therefore, we recommend to isolate the heat sink.
- The LEDs are sensitive to electrostatic discharge. Appropriate ESD protection measures must be taken when working with the LEDs. Non-compliance with ESD protection measures may lead to damage or destruction of the LEDs.
- We recommend using the M705-S101-S4 solder paste from SMIC (Senju Metal Industry Co., Ltd.) for lead-free soldering.
- Any mechanical force or any excess vibration shall not be accepted to apply during cooling process to normal temperature after soldering.
- Please avoid rapid cooling after soldering.
- Components should not be mounted on warped direction of PCB.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a heat plate should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.
- This device should not be used in any type of fluid such as water, oil, organic solvent and etc. When cleaning is required, isopropyl alcohol should be used.
- When the LEDs are illuminating, operating current should be decide after considering the package maximum temperature.
- The appearance, specifications and flux bin of the product may be modified for improvement without notice. Please refer to the below website for the latest datasheets. http://www.prolightopto.com/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Infrared Emitters - High Power category:

Click to view products by Prolight manufacturer:

Other Similar products are found below :

VSMY385010-GS08 IR19-315C/TR8 SFH 4030 HSM8-V380 HSM9-V380 SFH 5750 PK2S-2KJE-A PK2S-2LJE-A PK2S-3KJE-A PK2S-3KKE-A PK2S-3LJE-A PK2S-4KJE-A AREQ-90C0-00000 AREQ-80C0-00000 QEE123 LTE-302 HSDL-4400#011 C3535SIR2C-2B L-53F3BT L-76761CSEC-H VTE1291W-2H LL-304IRC4B-2AD LL-503HIRT2E-1CC LL-503IRC2E-2AC LL-503IRC2V-2AD LL-503IRT2E-2AC LL-503IRT2E-2AE LL-503SIRC2E-1BD LL-503SIRC2H-1BE LL-S170IRC-2A SFH 4259 SFH 4542-Z SFH 4543-Z SFH 4656-Z OS5RKAZ5D1P OSB56LZ5D1P OSB56LZE31D OSG58AZ5D1P OSI3CA5111A OSI3NAS1C1A OSI5LA56A1A OSI5XNE3E1E OSIXCA5121A OSIXCA56A1A OSIXCAS1C1A OSM54LZ5D1P OSM5D3Z2C1P OSMR43Z2C1P OSO5PAZ161D OSOR7161D