

TÜV MANAGEMENT SERVICE

An ISO/TS16949 and ISO 9001 Certified Company

PNP SILICON PLANAR EPITAXIAL TRANSISTORS

PN2907 PN2907A

TO-92 Plastic Package

Complementary Silicon Transistors for Switching and Linear Applications.

ABSOLUTE MAXIMUM RATINGS(Ta=25 ° C unless specified otherwise)

DESCRIPTION	SYMBOL	PN2907	PN2907A	UNITS	
Collector Emitter Voltage	V_{CEO}	40	60	V	
Collector Base Voltage	V_{CBO}	60	60	V	
Emitter Base Voltage	V_{EBO}	5	5	V	
Collector Current Continuous	I_{C}	600	0	mA	
Power Dissipation@ Ta=25 ° C	P_{D}	625	5	mW	
Derate Above 25 ° C		5.0)	mW/ ° C	
Power Dissipation@ Tc=25 ° C	P_D	1.5		W	
Derate Above 25 ° C		12	2	mW/°C	
Operating And Storage Junction	T_{j},T_{stg}	-55 to +150		° C	
Temperature Range					
THERMAL RESISTANCE					
Junction to ambient	$R_{th(j-a)}$	200	0	° C/W	
Junction to case	$R_{th(j-c)}$	83.	3	° C/W	

ELECTRICAL CHARACTERISTICS (Ta=25 ° C Unless Specified Otherwise)

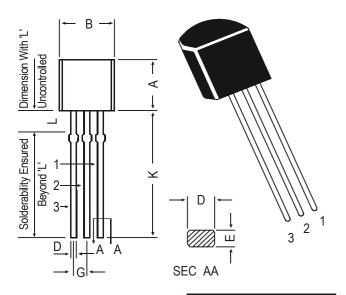
DESCRIPTION	SYMBOL	TEST CONDITION	PN2907	PN2907A	UNITS
Collector Emitter Voltage	BV_CEO	$I_C=10mA, I_B=0$	>40	>60	V
Collector Base Voltage	BV_CBO	I_{C} =10 μ A, I_{E} =0	>60	>60	V
Emitter Base Voltage	BV_{EBO}	I_E =10 μ A, I_C =0	>5	>5	V
Collector Cut off Current	I_{CBO}	V_{CB} =50V, I_{E} = 0	<20	<10	nA
		Ta= 150 ° C			
		V_{CB} =50V, I_E = 0	<20	<10	μΑ
	I_{CEX}	V_{CE} =30V, V_{EB} =0.5V	<50	<50	nA
	$I_{\sf CEO}$	$V_{CE} = 10V, I_{B} = 0$	<10	<10	nA
Emitter Cut off Current	I_{EBO}	V_{EB} =3 V , I_{C} = 0	<10	<10	nA
Base Cut off Current	I_{BEX}	V_{CE} =30V, V_{EB} =0.5V	<50	<50	nA
DC Current Gain	h_{FE}	V_{CE} =10 V , I_{C} =0.1 mA	>35	>75	
		V_{CE} =10 V , I_{C} =1 mA	>50	>100	
		V_{CE} =10 V , I_{C} =10 mA	>75	>100	
		$V_{CE} = 10V^*, I_{C} = 150mA$	100-300	100-300	
		V_{CE} =10V*, I_{C} =500mA	>30	>50	

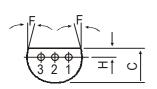
PNP SILICON PLANAR EPITAXIAL TRANSISTORS

PN2907 PN2907A

TO-92 Plastic Package

ELECTRICAL CHARACTERISTICS (Ta=25 ° C Unless Specified Otherwise)

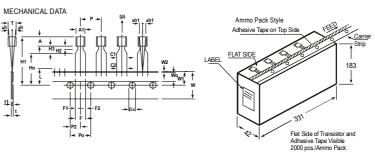

SYMBOL	TEST CONDITION	PN2907	PN2907A	UNITS
$V_{CE(sat)}^*$	I_C =150mA, I_B =15mA	<0.4	<0.4	V
	I_C =500mA, I_B = 50mA	<1.6	<1.6	V
$V_{BE(sat)}^{\star}$	I_C =150mA, I_B =15mA	<1.3	<1.3	V
	I_C =500mA, I_B = 50mA	<2.6	<2.6	V
f_T	I_C =50mA, V_{CE} =20V	>200	>200	MHz
	f=100MHz			
C_ob	I _E =0,V _{CB} =10V,f=1MHz	<8	<8	₽F
C_{ib}	Ic=0,V _{EB} =2V,f=1MHz	<30	<30	₽F
t_d		<10	<10	ns
t_r	I_C =150mA, I_{B1} = 15mA	<40	<40	ns
t_{on}	V _{CC} =30V	<50	<50	ns
t_s		<80	<80	ns
t_f	$I_C = 150 \text{mA}, I_{B1} = 15 \text{mA}$	<30	<30	ns
t_f	I _{B2} =15mA, V _{CC} =6V	<110	<110	ns
	$egin{aligned} {\sf V_{BE(sat)}}^* \ & {\sf f_T} \ & {\sf C_{ob}} \ & {\sf C_{ib}} \ & {\sf t_r} \ & {\sf t_{on}} \ & {\sf t_f} \ & {\sf t_f$	$I_{C} = 500 \text{mA}, I_{B} = 50 \text{mA}$ $V_{BE(sat)}^{*} I_{C} = 150 \text{mA}, I_{B} = 15 \text{mA}$ $I_{C} = 500 \text{mA}, I_{B} = 50 \text{mA}$ $f_{T} I_{C} = 50 \text{mA}, V_{CE} = 20 \text{V}$ $f = 100 \text{MHz}$ $C_{ob} I_{E} = 0, V_{CB} = 10 \text{V}, f = 1 \text{MHz}$ $C_{ib} I_{C} = 0, V_{EB} = 2 \text{V}, f = 1 \text{MHz}$ $t_{d} t_{r} I_{C} = 150 \text{mA}, I_{B1} = 15 \text{mA}$ $t_{on} V_{CC} = 30 \text{V}$ $t_{s} t_{f} I_{C} = 150 \text{mA}, I_{B1} = 15 \text{mA}$	$I_{C} = 500 \text{mA}, I_{B} = 50 \text{mA} \qquad <1.6$ $V_{BE(sat)}^{*} I_{C} = 150 \text{mA}, I_{B} = 15 \text{mA} \qquad <1.3$ $I_{C} = 500 \text{mA}, I_{B} = 50 \text{mA} \qquad <2.6$ $f_{T} I_{C} = 50 \text{mA}, V_{CE} = 20 V \qquad >200$ $f = 100 \text{MHz} \qquad <8$ $C_{ob} I_{E} = 0, V_{CB} = 10 V, f = 1 \text{MHz} \qquad <8$ $C_{ib} I_{C} = 0, V_{EB} = 2 V, f = 1 \text{MHz} \qquad <30$ $t_{d} \qquad <10$ $t_{r} I_{C} = 150 \text{mA}, I_{B1} = 15 \text{mA} \qquad <40$ $t_{on} V_{CC} = 30 V \qquad <50$ $t_{s} \qquad <80$ $t_{f} I_{C} = 150 \text{mA}, I_{B1} = 15 \text{mA} \qquad <30$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$


*Pulse Condition: = Width ≤ 300us, Duty Cycle ≤ 1%.

TO-92 Plastic Package

TO-92 Plastic Package

TO-92 Transistors on Tape and Ammo Pack



PIN CONFIGURATION 1. COLLECTOR

- 2. BASE
- 3. EMITTER

DIM	MIN.	MAX.					
Α	4.32	5.33					
В	4.45	5.20					
С	3.18	4.19					
D	0.41	0.55					
Е	0.35	0.50					
F	5 DEG						
G	1.14	1.40					
Н	1.14	1.53					
K	12.70	_					
L	1.982	2.082					
All diminsions in mm							

All diminsions in mm.

ITEM	SPECIFICATION		ON			
ITEM	SYMBOL	MIN.	NOM.	MAX.	TOL.	REMARKS
BODY WIDTH	A1	4.0		4.8		
BODY HEIGHT	A	4.8		5.2		
BODY THICKNESS	Т	3.9		4.2		
PITCH OF COMPONENT	Р		12.7		%%P1	
FEED HOLE PITCH	Po		12.7		%%P0.3	CUMULATIVE PITCH ERROR 1.0 mm/20 PITCH
FEED HOLE CENTRE TO						
COMPONENT CENTRE	P2		6.35		%%P0.4	TO BE MEASURED AT BOTTOM OF CLINCH
DISTANCE BETWEEN OUTER					+0.6	
LEADS	F		5.08		-0.2	
COMPONENT ALIGNMENT SIDE VIEW	∆h		0	1.0		AT TOP OF BODY
COMPONENT ALIGNMENT FRONT VIEW	∆h1		0	1.3		AT TOP OF BODY
TAPE WIDTH	W		18		%%P0.5	
HOLD-DOWN TAPE WIDTH	Wo		6		%%P0.2	
HOLE POSITION	W1		9		+0.7 -0.5	
HOLD-DOWN TAPE POSITION	W2		0.5		%%P0.2	
LEAD WIRE CLINCH HEIGHT	Но		16		%%P0.5	
COMPONENT HEIGHT	H1			23.25		
LENGTH OF SNIPPED LEADS	L			11.0		
FEED HOLE DIAMETER	Do		4		%%P0.2	
TOTAL TAPE THICKNESS	t			1.2		t1 0.3 - 0.6
LEAD - TO - LEAD DISTANCE	F1, F2		2.54		+0.4, -0.1	
STAND OFF	H2	0.45		1.45		
CLINCH HEIGHT	H3			3.0		
LEAD PARALLELISM	C1 - C2			0.22		
PULL - OUT FORCE	(P)	6N				

- NOTES

 1. MAXIMUM ALIGNMENT DEVIATION BETWEEN LEADS NOT TO BE GREATER THAN 0.2 mm.

 2. MAXIMUM NON-CUMULATIVE VARIATION BETWEEN TAPE FEED HOLES SHALL NOT EXCEED 1 mm IN 20 PITCHES.

 3. HOLDDOWN TAPE NOT TO EXCEED BEYOND THE EDGES) OF CARRIER TAPE AND THERE SHALL BE NO EXPOSURE OF ADHESIVE.

 4. NO MORE THAN 3 CONSECUTIVE MISSING COMPONENTS IS PERMITTED.

 5. A TAPE TRAILER, HAVING AT LEAST THREE FEED HOLES IS REQUIRED AFTER THE LAST COMPONENT.

 6. SPLICES SHALL NOT INTERFERE WITH THE SPROCKET FEED HOLES.

Packing Detail

PACKAGE	STANDARD PACK		INNER CARTON BOX		OUTER CARTON BOX		
	Details	Net Weight/Qty	Size	Qty	Size	Qty	Gr Wt
TO-92 Bulk	1K/polybag	200 gm/1K pcs	3" x 7.5" x 7.5"	5K	17" x 15" x 13.5"	80K	23 kgs
TO-92 T&A	2K/ammo box	645 gm/2K pcs	12.5" x 8" x 1.8"	2K	17" x 15" x 13.5"	32K	12.5 kgs

Notes PN2907
PN2907A

TO-92 Plastic Package

Disclaimer

The product information and the selection guides facilitate selection of the CDIL's Discrete Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) meet functionality parameters for your application. The information furnished in the Data Sheet and on the CDIL Web Site/CD is believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever, arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individual Discrete Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and CDIL will not be responsible for any damages resulting from such sale(s).

CDIL strives for continuous improvement and reserves the right to change the specifications of its products without prior notice.

CDIL is a registered Trademark of

Continental Device India Limited

C-120 Naraina Industrial Area, New Delhi 110 028, India.

Telephone + 91-11-2579 6150, 5141 1112 Fax + 91-11-2579 5290, 5141 1119

email@cdil.com www.cdilsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by CDIL manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H MJ15024/WS MJ15025/WS BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2302 NTE2330 NTE2353 NTE316 IMX9T110 NTE63 NTE65 C4460 SBC846BLT3G 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMC5AT148 2N2369ADCSM 2SB1202S-TL-E 2SC2412KT146S 2SC4618TLN 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E BC557B TTC012(Q) BULD128DT4 JANTX2N3810 Jantx2N5416 US6T6TR KSF350 068071B