1.0 dB LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR, 0.1 - 40 GHz ## **Typical Applications** The HMC939 is ideal for: - Fiber Optics & Broadband Telecom - Microwave Radio & VSAT - Military Radios, Radar & ECM - Space Applications #### **Features** 1.0 dB LSB Steps to 31 dB Single Positive Control Line Per Bit ±1.0 dB Typical Bit Error High Input IP3: +43 dBm Die Size: 2.29 x 0.95 x 0.1 mm # **Functional Diagram** ## **General Description** The HMC939 die is a broadband 5-bit GaAs IC digital attenuator MMIC chip. Covering 0.1 to 40 GHz, the insertion loss is less than 5 dB typical. The attenuator bit values are 1.0 (LSB), 2, 4, 8, 16 for a total attenuation of 31 dB. Attenuation accuracy is excellent at less than ± 1.0 dB typical step error with an IIP3 of ± 43 dBm. Five control voltage inputs, toggled between $\pm 5V$ and $\pm 5V$ are used to select each attenuation state. ## Electrical Specifications, $T_A = +25^{\circ}$ C, With Vdd = +5V, Vss = -5V & VCTL = 0/ +5V | Parameter | Frequency (GHz) | Min. | Тур. | Max. | Units | |--|---------------------------------|--|------------|------------|------------| | Insertion Loss | 0.1 - 18 GHz
18 - 40 GHz | | 3.5
6.0 | 5.0
7.5 | dB
dB | | Attenuation Range | 0.1 - 40 GHz | | 31 | | dB | | Return Loss (RF1 & RF2, All Atten. States) | 0.1 - 40 GHz | | 12 | | dB | | Attenuation Accuracy: (Referenced to Insertion Loss) 1.0 - 15 dB States 16 - 31 dB States | 0.1 - 40 GHz
0.1 - 40 GHz | ± 0.5 + 5% of Atten. Setting Max
± 0.6 + 6% of Atten. Setting Max | | dB
dB | | | Input Power for 0.1 dB Compression | 0.1 - 0.5 GHz
0.5 - 40.0 GHz | | 20
25 | | dBm
dBm | | Input Third Order Intercept Point
(Two-Tone Input Power= 0 dBm Each Tone) | 0.1 - 0.5 GHz
0.5 - 40.0 GHz | | 40
43 | | dBm
dBm | | Switching Characteristics tRISE, tFALL (10/90% RF) tON/tOFF (50% CTL to 10/90% RF) | 0.1 - 40 GHz | | 60
90 | | ns
ns | | Idd | 0.1 - 40 GHz | 3 | 5 | 7 | mA | | Iss | 0.1 - 40 GHz | -4 | -6 | -8 | mA | ## Insertion Loss vs. Temperature # 1.0 dB LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR, 0.1 - 40 GHz #### Normalized Attenuation (Only Major States are Shown) # **Input Return Loss** (Only Major States are Shown) ## **Output Return Loss** (Only Major States are Shown) ## Bit Error vs. Attenuation State ## Bit Error vs. Frequency (Only Major States are Shown) ## Relative Phase vs. Frequency (Only Major States are Shown) # 1.0 dB LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR, 0.1 - 40 GHz ## Step Attenuation vs. Attenuation State ## Input IP3 Over Major Attenuation States ## Input IP3 vs. Temperature (Minimum Attenuation State) ## Input Power for 0.1 dB Compression # 1.0 dB LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR, 0.1 - 40 GHz ## **Bias Voltages & Currents** | Vdd | +5V @ 5 mA | | |-----|------------|--| | Vss | -5V @ 6 mA | | ## **Control Voltage** | State | Bias Condition | |-------|------------------| | Low | 0 to 0.8V @ 1 μA | | High | 2 to 5V @ 1 μA | # **Absolute Maximum Ratings** | RF Input Power (0.5 to 40 GHz) | +25 dBm | |--|-----------------| | Control Voltage (P0 to P4) | Vdd + 0.5V | | Vdd | +7 Vdc | | Vss | -7 Vdc | | Channel Temperature | 150 °C | | Thermal Resistance (channel to die bottom) | 144 °C/W | | Storage Temperature | -65 to + 150 °C | | Operating Temperature | -55 to +85 °C | #### **Truth Table** | | Control Voltage Input | | | | Attenuation | | |-------------|-----------------------|------------|------------|------------|--------------------|--| | P4
16 dB | P3
8 dB | P2
4 dB | P1
2 dB | P0
1 dB | State
RF1 - RF2 | | | High | High | High | High | High | Reference I.L. | | | High | High | High | High | Low | 1 dB | | | High | High | High | Low | High | 2 dB | | | High | High | Low | High | High | 4 dB | | | High | Low | High | High | High | 8 dB | | | Low | High | High | High | High | 16 dB | | | Low | Low | Low | Low | Low | 31 dB | | Any Combination of the above states will provide an attenuation approximately equal to the sum of the bits selected. **ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS** # **Outline Drawing** # Die Packaging Information [1] | Standard | | Alternate | | |----------|--------------------|-----------|--| | | WP-9 (Waffle Pack) | [2] | | - [1] Refer to the "Packaging Information" section for die packaging dimensions. - [2] For alternate packaging information contact Hittite Microwave Corporation. - 1. ALL DIMENSIONS ARE IN INCHES (MILLIMETERS). - 2. TYPICAL BOND PAD IS .003" SQUARE. - 3. TYPICAL BOND PAD SPACING IS .006" - CENTER TO CENTER EXCEPT AS NOTED. - 4. BACKSIDE METALIZATION: GOLD - 5. BACKSIDE METAL IS GROUND - 6. BOND PAD METALIZATION: GOLD # 1.0 dB LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR, 0.1 - 40 GHz ## **Pad Descriptions** | Pad Number | Function | Description | Interface Schematic | |------------|----------|---|--| | | GND | Die bottom must be connected to RF ground. | GND
= | | 1, 9 | RF1, RF2 | This pad is DC coupled and matched to 50 Ohm. Blocking capacitors are required if RF line potential is not equal to 0V. | | | 2 | Vss | Negative Bias -5V | Vss 3pF == | | 3 - 7 | P0 - P4 | See truth table and control voltage table. | P0-P4 - 500 F0-P4 F0 | | 8 | Vdd | Positive Bias +5V | Vdd
○ | # **Assembly Diagram** # 1.0 dB LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR, 0.1 - 40 GHz ## Mounting & Bonding Techniques for Millimeterwave GaAs MMICs v01.0511 The die should be attached directly to the ground plane eutectically or with conductive epoxy (see HMC general Handling, Mounting, Bonding Note). 50 Ohm Microstrip transmission lines on 0.127mm (5 mil) thick alumina thin film substrates are recommended for bringing RF to and from the chip (Figure 1). If 0.254mm (10 mil) thick alumina thin film substrates must be used, the die should be raised 0.150mm (6 mils) so that the surface of the die is coplanar with the surface of the substrate. One way to accomplish this is to attach the 0.102mm (4 mil) thick die to a 0.150mm (6 mil) thick molybdenum heat spreader (moly-tab) which is then attached to the ground plane (Figure 2). Microstrip substrates should brought as close to the die as possible in order to minimize bond wire length. Typical die-to-substrate spacing is 0.076mm to 0.152 mm (3 to 6 mils). ## **Handling Precautions** Follow these precautions to avoid permanent damage. **Storage:** All bare die are placed in either Waffle or Gel based ESD protective containers, and then sealed in an ESD protective bag for shipment. Once the sealed ESD protective bag has been opened, all die should be stored in a dry nitrogen environment. **Cleanliness:** Handle the chips in a clean environment. DO NOT attempt to clean the chip using liquid cleaning systems. **Static Sensitivity:** Follow ESD precautions to protect against ESD strikes. **Transients:** Suppress instrument and bias supply transients while bias is applied. Use shielded signal and bias cables to minimize inductive pickup. General Handling: Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers. The surface of the chip has fragile air bridges and should not be touched with vacuum collet, tweezers, or fingers. #### Mounting The chip is back-metallized and can be die mounted with AuSn eutectic preforms or with electrically conductive epoxy. The mounting surface should be clean and flat. Eutectic Die Attach: A 80/20 gold tin preform is recommended with a work surface temperature of 255 °C and a tool temperature of 265 °C. When hot 90/10 nitrogen/hydrogen gas is applied, tool tip temperature should be 290 °C. DO NOT expose the chip to a temperature greater than 320 °C for more than 20 seconds. No more than 3 seconds of scrubbing should be required for attachment. Epoxy Die Attach: Apply a minimum amount of epoxy to the mounting surface so that a thin epoxy fillet is observed around the perimeter of the chip once it is placed into position. Cure epoxy per the manufacturer's schedule. #### Wire Bonding Ball or wedge bond with 0.025mm (1 mil) diameter pure gold wire. Thermosonic wirebonding with a nominal stage temperature of 150 °C and a ball bonding force of 40 to 50 grams or wedge bonding force of 18 to 22 grams is recommended. Use the minimum level of ultrasonic energy to achieve reliable wirebonds. Wirebonds should be started on the chip and terminated on the package or substrate. All bonds should be as short as possible <0.31mm (12 mils). # **X-ON Electronics** Largest Supplier of Electrical and Electronic Components Click to view similar products for Attenuators category: Click to view products by Analog Devices manufacturer: Other Similar products are found below: MAATCC0010 HMC305SLP4ETR MAAD-009195-000100 MAADSS0012TR TGL4201-02 ATN3590-15 20-50TPC D10AA5Z4 HMC346LP3TR 18AH-01 18AH-03 18AH-08 ATN3590-09 20-50RP MASW-008322-000000 MAAVSS0004 PCAF-10 EXB 24AT9AR5X ATN3580-06 HMC539ALP3ETR HMC291SETR HMC941A-SX HMC1119LP4METR F1977NBGI8 HMC802ALP3ETR HMC-VVD106-SX WA04P006XCTL SKY12408-321LF TGL2226 WA04P005XBTL EXB-14AT3AR3X HMC-VVD104-SX SKY12236 11 MAATSS0018TR-3000 HMC656-SX WA04P001XBTL MAAV-007941-TR3000 WA04P004XBTL HMC425ALP3ETR WA04P002XBTL MAT10010 MAT10040 EXB-24N182JX EXB-24N181JX EXB-24N183JX 20-50TPR HMC941A PAT0816-C-0DB-T5 PAT0816-C-8DB-T5 PAT0816-C-3DB-T5