feATURES

- 25MHz Gain Bandwidth
- 600V/us Slew Rate
- 2.5mA Maximum Supply Current per Amplifier
- Unity-Gain Stable
- C-Load ${ }^{\text {TM }}$ Op Amp Drives All Capacitive Loads
- $8 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Input Noise Voltage
- 600 HV Maximum Input Offset Voltage
- 500nA Maximum Input Bias Current
- 120nA Maximum Input Offset Current
- 20V/mV Minimum DC Gain, $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$
- 115ns Settling Time to 0.1\%, 10V Step
- 220 ns Settling Time to 0.01%, 10 V Step
- $\pm 12.5 \mathrm{~V}$ Minimum Output Swing into 500Ω
- $\pm 3 \mathrm{~V}$ Minimum Output Swing into 150Ω
- Specified at $\pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}$, and $\pm 15 \mathrm{~V}$
- LT1358 is Available in 8-Pin PDIP and S0 Packages
- LT1359 is Available in 14-Pin PDIP, 14-Pin and 16-Pin SO Packages

APPLICATIONS

- Wideband Amplifiers
- Buffers
- Active Filters
- Data Acquisition Systems
- Photodiode Amplifiers

DESCRIPTIOn

The LT1358/LT1359 are dual and quad low power high speed operational amplifiers with outstanding AC and DC performance. The amplifiers feature much lower supply current and higher slew rate than devices with comparable bandwidth. The circuit topology is a voltage feedback amplifier with matched high impedance inputs and the slewing performance of a current feedback amplifier. The high slew rate and single stage design provide excellent settling characteristics which make the circuit an ideal choice for data acquisition systems. Each output drives a 500Ω load to $\pm 12.5 \mathrm{~V}$ with $\pm 15 \mathrm{~V}$ supplies and a 150Ω load to $\pm 3 \mathrm{~V}$ on $\pm 5 \mathrm{~V}$ supplies. The amplifiers are stable with any capacitive load making them useful in buffer applications.
The LT1358/LT1359 are members of a family of fast, high performance amplifiers using this unique topology and employing Linear Technology Corporation's advanced bipolar complementary processing. For a single amplifier version of the LT1358/LT1359 see the LT1357 data sheet. For higher bandwidth devices with higher supply currents see the LT1360 through LT1365 data sheets. For lower supply current amplifiers see the LT1354 and LT1355/ LT1356 data sheets. Singles, duals, and quads of each amplifier are available. property of their respective owners.

TYPICAL APPLICATION

$A_{V}=-1$ Large-Signal Response

LT1358/LT1359

ABSOLUTE MAXIMUM RATINGS
 (Note 1)

Total Supply Voltage (${ }^{+}$to V^{-}) 36V
Differential Input Voltage
(Transient Only) (Note 2) $\pm 10 \mathrm{~V}$
Input Voltage ... $\pm V_{S}$
Output Short-Circuit Duration (Note 3) Indefinite
Operating Temperature Range (Note 7) $\ldots-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Specified Temperature Range (Note 8) $\ldots . .40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Maximum Junction Temperature (See Below)

Plastic Package $150^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

*The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTGRISTICS $T_{A}=25^{\circ}, v_{c m}=0 v$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	V SUPPLY	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 2.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.2 \\ & 0.2 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.6 \\ & 0.8 \end{aligned}$	mV mV mV
10 S	Input Offset Current		$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		40	120	nA
I_{B}	Input Bias Current		$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		120	500	nA
e_{n}	Input Noise Voltage	$\mathrm{f}=10 \mathrm{kHz}$	$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		8		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input Noise Current	$\mathrm{f}=10 \mathrm{kHz}$	$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		0.8		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\underline{\mathrm{R}_{\text {IN }}}$	Input Resistance	$\mathrm{V}_{\text {CM }}= \pm 12 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	35	80		$\mathrm{M} \Omega$
	Input Resistance	Differential	$\pm 15 \mathrm{~V}$		6		$\mathrm{M} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance		$\pm 15 \mathrm{~V}$		3		pF
	Input Voltage Range ${ }^{+}$		$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 2.5 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{array}{\|r} \hline 12.0 \\ 2.5 \\ 0.5 \\ \hline \end{array}$	$\begin{array}{r} 13.4 \\ 3.5 \\ 1.1 \\ \hline \end{array}$		V
	Input Voltage Range ${ }^{-}$		$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 2.5 \mathrm{~V} \end{aligned}$		$\begin{array}{r} -13.2 \\ -3.3 \\ -0.9 \end{array}$	$\begin{array}{r} \hline-12.0 \\ -2.5 \\ -0.5 \end{array}$	V
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{C M}= \pm 12 \mathrm{~V} \\ & V_{C M}= \pm 2.5 \mathrm{~V} \\ & V_{C M}= \pm 0.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 2.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 83 \\ & 78 \\ & 68 \\ & \hline \end{aligned}$	$\begin{aligned} & 97 \\ & 84 \\ & 75 \\ & \hline \end{aligned}$		dB dB dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		92	106		dB
AVOL	Large-Signal Voltage Gain	$V_{\text {OUT }}= \pm 12 \mathrm{~V}, R_{\mathrm{L}}=1 \mathrm{k}$ $V_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega$ $\mathrm{V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$ $V_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega$ $V_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ $V_{\text {OUT }}= \pm 1 V, R_{L}=500 \Omega$	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 2.5 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 20 \\ 7 \\ 20 \\ 7 \\ 1.5 \\ 7 \end{array}$	$\begin{gathered} 65 \\ 25 \\ 45 \\ 25 \\ 6 \\ 30 \end{gathered}$		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
V $\overline{\text { OUT }}$	Output Swing	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k}, \mathrm{~V}_{I N}= \pm 40 \mathrm{mV} \\ & R_{\mathrm{L}}=500 \Omega, V_{I N}= \pm 40 \mathrm{mV} \\ & R_{\mathrm{L}}=500 \Omega, V_{I N}= \pm 40 \mathrm{mV} \\ & R_{\mathrm{L}}=150 \Omega, V_{I N}= \pm 40 \mathrm{mV} \\ & R_{L}=500 \Omega, V_{I N}= \pm 40 \mathrm{mV} \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 2.5 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{array}{\|r} \hline 13.3 \\ 12.5 \\ 3.5 \\ 3.0 \\ 1.3 \\ \hline \end{array}$	$\begin{array}{r} 13.8 \\ 13.0 \\ 4.0 \\ 3.3 \\ 1.7 \\ \hline \end{array}$		$\pm V$ $\pm V$ $\pm V$ $\pm V$ $\pm V$
IOUT	Output Current	$\begin{aligned} & V_{\text {OUT }}= \pm 12.5 \mathrm{~V} \\ & V_{\text {OUT }}= \pm 3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \end{aligned}$		mA mA
ISC	Short-Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}= \pm 3 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	30	42		mA
SR	Slew Rate	$A_{V}=-2,($ Note 4)	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 300 \\ & 150 \end{aligned}$	$\begin{aligned} & 600 \\ & 220 \end{aligned}$		V/ $\mu \mathrm{s}$ V/us
	Full Power Bandwidth	10V Peak, (Note 5) 3V Peak, (Note 5)	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{array}{r} 9.6 \\ 11.7 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \\ & \hline \end{aligned}$
GBW	Gain Bandwidth	$\mathrm{f}=200 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 2.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 18 \\ & 15 \end{aligned}$	$\begin{aligned} & 25 \\ & 22 \\ & 20 \end{aligned}$		MHz MHz MHz
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Rise Time, Fall Time	$A_{V}=1,10 \%-90 \%, 0.1 \mathrm{~V}$	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 8 \\ & 9 \end{aligned}$		ns ns
	Overshoot	$A_{V}=1,0.1 \mathrm{~V}$	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 27 \\ & 27 \end{aligned}$		\%
	Propagation Delay	$50 \% \mathrm{~V}_{\text {IN }}$ to $50 \% \mathrm{~V}_{\text {OUT }}, 0.1 \mathrm{~V}$	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \end{aligned}$		$\begin{gathered} \hline 9 \\ 11 \end{gathered}$		ns
t_{s}	Settling Time	$\begin{aligned} & 10 \mathrm{~V} \text { Step, } 0.1 \%, A_{V}=-1 \\ & 10 \mathrm{~V} \text { Step, } 0.01 \%, A_{V}=-1 \\ & 5 \mathrm{~V} \text { Step, } 0.1 \%, A_{V}=-1 \\ & 5 \mathrm{~V} \text { Step, } 0.01 \%, A_{V}=-1 \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 115 \\ & 220 \\ & 110 \\ & 380 \end{aligned}$		ns ns ns ns

3

ELECIRACL CHARACERISTCS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=\mathrm{OV}$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	$V_{\text {SUPPLY }}$	MIN	TYP
	Differential Gain	$f=3.58 \mathrm{MHz}, A_{V}=2, R_{L}=1 \mathrm{k}$	$\pm 15 \mathrm{~V}$	0.1	UNITS
			$\pm 5 \mathrm{~V}$	0.1	$\%$
		$\mathrm{f}=3.58 \mathrm{MHz}, A_{V}=2, R_{L}=1 \mathrm{k}$	$\pm 15 \mathrm{~V}$	0.50	Deg
	Differential Phase	$\pm 5 \mathrm{~V}$	0.35	Deg	
R_{0}	Output Resistance	$A_{V}=1, \mathrm{f}=100 \mathrm{kHz}$	$\pm 15 \mathrm{~V}$	0.3	Ω
	Channel Separation	$V_{\text {OUT }}= \pm 10 \mathrm{~V}, R_{L}=500 \Omega$	$\pm 15 \mathrm{~V}$	100	113
I_{S}	Supply Current	Each Amplifier	$\pm 15 \mathrm{~V}$	2.0	2.5
		Each Amplifier	$\pm 5 \mathrm{~V}$	1.9	2.4

ELECTRICRL CHARACTERISTICS The o denotes the specifications which apply over the temperature range
 $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ unless otherwise noted.

SYMBEL	PARAMETER	CONDITIONS	V SUPPLY		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 2.5 \mathrm{~V} \end{aligned}$	\bullet			$\begin{aligned} & 0.8 \\ & 0.8 \\ & 1.0 \end{aligned}$	mV mV mV
	Input $\mathrm{V}_{\text {OS }}$ Drift	(Note 6)	$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet		5	8	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Ios	Input Offset Current		$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet			180	nA
I_{B}	Input Bias Current		$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet			750	nA
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{C M}= \pm 12 \mathrm{~V} \\ & V_{C M}= \pm 2.5 \mathrm{~V} \\ & V_{C M}= \pm 0.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 2.5 \mathrm{~V} \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{aligned} & 81 \\ & 77 \\ & 67 \\ & \hline \end{aligned}$			dB dB dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		\bullet	90			dB
Avol	Large-Signal Voltage Gain	$\begin{aligned} & V_{\text {OUT }}= \pm 12 \mathrm{~V}, R_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, R_{\mathrm{L}}=1 \mathrm{k} \\ & V_{\text {OUT }}= \pm 2.5 \mathrm{~V}, R_{\mathrm{L}}=500 \Omega \\ & V_{\text {OUT }}= \pm 2.5 \mathrm{~V}, R_{\mathrm{L}}=150 \Omega \\ & \mathrm{~V}_{\text {OUT }}= \pm 1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 2.5 \mathrm{~V} \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{array}{\|c} \hline 15 \\ 5 \\ 15 \\ 5 \\ 1 \\ 1 \\ 5 \end{array}$			V / mV V/mV V / mV V / mV V/mV V/mV
$V_{\text {OUT }}$	Output Swing	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k}, \mathrm{~V}_{\text {IN }}= \pm 40 \mathrm{mV} \\ & R_{\mathrm{L}}=500 \Omega, \mathrm{~V}_{I N}= \pm 40 \mathrm{mV} \\ & R_{\mathrm{L}}=500 \Omega, \mathrm{~V}_{\text {IN }}= \pm 40 \mathrm{mV} \\ & R_{\mathrm{L}}=150 \Omega, \mathrm{~V}_{\text {IN }}= \pm 40 \mathrm{mV} \\ & R_{\mathrm{L}}=500 \Omega, \mathrm{~V}_{\text {IN }}= \pm 40 \mathrm{mV} \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 2.5 \mathrm{~V} \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{array}{r} \hline 13.2 \\ 12.2 \\ 3.4 \\ 2.8 \\ 1.2 \end{array}$			$\pm V$ $\pm V$ $\pm V$ $\pm V$ $\pm V$
IOUT	Output Current	$\begin{aligned} & \mathrm{V}_{\text {OUT }}= \pm 12.2 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 24.4 \\ & 18.7 \end{aligned}$			mA
ISC	Short-Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}= \pm 3 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	\bullet	25			mA
SR	Slew Rate	$A_{V}=-2$, (Note 4)	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 225 \\ & 125 \end{aligned}$			V/ $\mu \mathrm{S}$ V/us
GBW	Gain Bandwidth	$\mathrm{f}=200 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & \hline 15 \\ & 12 \end{aligned}$			$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
	Channel Separation	$V_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	$\pm 15 \mathrm{~V}$	\bullet	98			dB
I_{S}	Supply Current	Each Amplifier Each Amplifier	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \end{aligned}$	\bullet			$\begin{aligned} & 2.9 \\ & 2.8 \end{aligned}$	mA mA

ELECTRICAL CHARACTERISTICS The • denotes the speciifications which apply over the temperature range $40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ unless otherwise noted. (Note 8)

SYMBOL	PARAMETER	CONDITIONS	$V_{\text {SUPPLY }}$		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 2.5 \mathrm{~V} \end{aligned}$	$\stackrel{\bullet}{\bullet} \stackrel{+}{\bullet}$			$\begin{aligned} & 1.3 \\ & 1.3 \\ & 1.5 \end{aligned}$	mV mV mV
	Input $\mathrm{V}_{\text {OS }}$ Drift	(Note 6)	$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet		5	8	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current		$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet			300	nA
I_{B}	Input Bias Current		$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet			900	nA
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{C M}= \pm 12 \mathrm{~V} \\ & V_{\mathrm{CM}}= \pm 2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}= \pm 0.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 2.5 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 80 \\ & 76 \\ & 66 \end{aligned}$			dB $d B$ $d B$
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		\bullet	90			dB
AVOL	Large-Signal Voltage Gain	$V_{\text {OUT }}= \pm 12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$ $V_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega$ $V_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$ $V_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega$ $V_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ $V_{\text {OUT }}= \pm 1 V, R_{L}=500 \Omega$	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 2.5 \mathrm{~V} \end{aligned}$	$\stackrel{\bullet}{\bullet}$	10.0 2.5 10.0 2.5 0.6 2.5			V / mV V / mV V/mV V / mV V / mV V / mV
$\overline{V_{\text {OUT }}}$	Output Swing	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{~V}_{\text {IN }}= \pm 40 \mathrm{mV} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{~V}_{I N}= \pm 40 \mathrm{mV} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{~V}_{\text {IN }}= \pm 40 \mathrm{mV} \\ & \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{~V}_{\text {IN }}= \pm 40 \mathrm{mV} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{~V}_{\text {IN }}= \pm 40 \mathrm{mV} \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \pm 2.5 \mathrm{~V} \\ & \hline \end{aligned}$	$\stackrel{\bullet}{\bullet}$	13.0 12.0 3.4 2.6 1.2			$\pm V$ $\pm V$ $\pm V$ $\pm V$ $\pm V$
IOUT	Output Current	$\begin{aligned} & \mathrm{V}_{\text {OUT }}= \pm 12 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.6 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 24.0 \\ & 17.3 \end{aligned}$			mA mA
ISC	Short-Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}= \pm 3 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	\bullet	24			mA
SR	Slew Rate	$A_{V}=-2$, (Note 4)	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 180 \\ & 100 \end{aligned}$			$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~V} / \mu \mathrm{s} \end{aligned}$
GBW	Gain Bandwidth	$\mathrm{f}=200 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & \hline 14 \\ & 11 \end{aligned}$			$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
	Channel Separation	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	$\pm 15 \mathrm{~V}$	\bullet	98			dB
Is	Supply Current	Each Amplifier Each Amplifier	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \end{aligned}$	\bullet			$\begin{aligned} & 3.0 \\ & 2.9 \end{aligned}$	mA mA

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: Differential inputs of $\pm 10 \mathrm{~V}$ are appropriate for transient operation only, such as during slewing. Large, sustained differential inputs will cause excessive power dissipation and may damage the part. See Input Considerations in the Applications Information section of this data sheet for more details.
Note 3: A heat sink may be required to keep the junction temperature below absolute maximum when the output is shorted indefinitely.
Note 4: Slew rate is measured between $\pm 10 \mathrm{~V}$ on the output with $\pm 6 \mathrm{~V}$ input for $\pm 15 \mathrm{~V}$ supplies and $\pm 1 \mathrm{~V}$ on the output with $\pm 1.75 \mathrm{~V}$ input for $\pm 5 \mathrm{~V}$ supplies.

Note 5: Full power bandwidth is calculated from the slew rate measurement: $\mathrm{FPBW}=(\mathrm{SR}) / 2 \pi \mathrm{~V}_{\mathrm{p}}$.
Note 6: This parameter is not 100% tested.
Note 7. The LT1358C/LT1359C and LT1358I/LT1359I are guaranteed functional over the operating temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
Note 8: The LT1358C/LT1359C are guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The LT1358C/LT1359C are designed, characterized and expected to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, but are not tested or QA sampled at these temperatures. The LT13581/LT1359I are guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

LT1358/LT1359

TYPICAL PGRFORMANCE CHARACTERISTICS

Input Bias Current vs Temperature

135859 G04

Input Common Mode Range vs Supply Voltage

Input Noise Spectral Density

135859 G05
Output Voltage Swing vs Supply Voltage

Input Bias Current vs Input Common Mode Voltage

Open-Loop Gain vs Resistive Load

135859 G06

Output Voltage Swing vs Load Current

TYPICAL PGRFORMANCE CHARACTGRISTICS

Output Short-Circuit Current vs Temperature

135859 G10

Gain Bandwidth and Phase
Margin vs Temperature

Settling Time vs Output Step (Noninverting)

135859 G11
Frequency Response vs Capacitive Load

135859 G19

> Frequency Response vs Supply Voltage $\left(A_{V}=1\right)$

Settling Time vs Output Step (Inverting)

135859 G12

Gain Bandwidth and Phase Margin vs Supply Voltage

135859 G15
Frequency Response vs
Supply Voltage $\left(A_{V}=-1\right)$

135859 G18

LT1358/LT1359

TYPICAL PGRFORMANCE CHARACTERISTICS

135859 G14

135859 G23

Undistorted Output Swing vs Frequency ($\pm 15 \mathrm{~V}$)

Common Mode Rejection Ratio vs Frequency

135859 G21

Slew Rate vs Input Level

135859 G24
Undistorted Output Swing vs Frequency ($\pm 5 \mathrm{~V}$)

TYPICAL PGRFORMANCE CHARACTGRISTICS

Small-Signal Transient
($A_{V}=1$)

Large-Signal Transient
($A_{V}=1$)

Crosstalk vs Frequency

135859 G29

Small-Signal Transient
($A_{V}=-1$)

Large-Signal Transient
($A_{V}=-1$)

Capacitive Load Handling

Small-Signal Transient
($A_{V}=-1, C_{L}=1000 \mathrm{pF}$)

Large-Signal Transient
($A_{V}=1, C_{L}=10,000 \mathrm{pF}$)

APPLICATIONS INFORMATION

Layout and Passive Components

The LT1358/LT1359 amplifiers are easy to use and tolerant of less than ideal layouts. For maximum performance (for example, fast 0.01% settling) use a ground plane, short lead lengths, and RF-quality bypass capacitors $(0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F})$. For high drive current applications use Iow ESR bypass capacitors ($1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ tantalum).

The parallel combination of the feedback resistor and gain setting resistor on the inverting input combine with the input capacitance to form a pole which can cause peaking or oscillations. If feedback resistors greater than 5 k are used, a parallel capacitor of value

$$
C_{F}>R_{G} \times C_{I N} / R_{F}
$$

should be used to cancel the input pole and optimize dynamic performance. For unity-gain applications where a large feedback resistor is used, C_{F} should be greater than or equal to $\mathrm{C}_{\text {IN }}$.

Capacitive Loading

The LT1358/LT1359 are stable with any capacitive load. As the capacitive load increases, both the bandwidth and phase margin decrease so there will be peaking in the frequency domain and in the transient response. Coaxial cable can be driven directly, but for best pulse fidelity a resistor of value equal to the characteristic impedance of the cable (i.e., 75Ω) should be placed in series with the output. The other end of the cable should be terminated with the same value resistor to ground.

Input Considerations

Each of the LT1358/LT1359 inputs is the base of an NPN and a PNP transistor whose base currents are of opposite polarity and provide first-order bias current cancellation. Because of variation in the matching of NPN and PNP beta, the polarity of the input bias current can be positive or negative. The offset current does not depend on NPN/PNP beta matching and is well controlled. The use of balanced source resistance at each input is recommended for applications where DC accuracy must be maximized.
The inputs can withstand transient differential input voltages up to 10 V without damage and need no clamping or source resistance for protection. Differential inputs, however, generate large supply currents (tens of mA) as required for high slew rates. If the device is used with sustained differential inputs, the average supply current will increase, excessive power dissipation will result and the part may be damaged. The part should not be used as a comparator, peak detector or other open-Ioop application with large, sustained differential inputs. Under normal, closed-loop operation, an increase of power dissipation is only noticeable in applications with large slewing outputs and is proportional to the magnitude of the differential input voltage and the percent of the time that the inputs are apart. Measure the average supply current for the application in order to calculate the power dissipation.

APPLICATIONS INFORMATION

Circuit Operation

The LT1358/LT1359 circuit topology is a true voltage feedback amplifier that has the slewing behavior of a current feedback amplifier. The operation of the circuit can be understood by referring to the simplified schematic. The inputs are buffered by complementary NPN and PNP emitter followers which drive a 500Ω resistor. The input voltage appears across the resistor generating currents which are mirrored into the high impedance node. Complementary followers form an output stage which buffers the gain node from the load. The bandwidth is set by the input resistor and the capacitance on the high impedance node. The slew rate is determined by the current available to charge the gain node capacitance. This current is the differential input voltage divided by R1, so the slew rate is proportional to the input. Highest slew rates are therefore seen in the lowest gain configurations. For example, a 10V output step in a gain of 10 has only a 1 V input step, whereas the same output step in unity gain has a 10 times greater input step. The curve of Slew Rate vs Input Level illustrates this relationship. The LT1358/LT1359 are tested for slew rate in a gain of -2 so higher slew rates can be expected in gains of 1 and -1 , and lower slew rates in higher gain configurations.
The RC network across the output stage is bootstrapped when the amplifier is driving a light or moderate Ioad and has no effect under normal operation. When driving a capacitive load (or a low value resistive load) the network is incompletely bootstrapped and adds to the compensation at the high impedance node. The added capacitance slows down the amplifier which improves the phase margin by moving the unity-gain frequency away from the pole formed by the output impedance and the capacitive load. The zero created by the RC combination adds phase to ensure that even for very large load capacitances, the total phase lag can never exceed 180 degrees (zero phase margin) and the amplifier remains stable.

Power Dissipation

The LT1358/LT1359 combine high speed and large output drive in small packages. Because of the wide supply voltage range, it is possible to exceed the maximum junction temperature under certain conditions. Maximum junction temperature $\left(T_{J}\right)$ is calculated from the ambient temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$ and power dissipation $\left(\mathrm{P}_{\mathrm{D}}\right)$ as follows:

$$
\begin{array}{ll}
\text { LT1358N8: } & T_{J}=T_{A}+\left(P_{D} \times 130^{\circ} \mathrm{C} / \mathrm{W}\right) \\
\text { LT1358S8: } & \mathrm{T}_{J}=T_{A}+\left(P_{D} \times 190^{\circ} \mathrm{C} / \mathrm{W}\right) \\
\text { LT1359N: } & T_{J}=T_{A}+\left(P_{D} \times 110^{\circ} \mathrm{C} / \mathrm{W}\right) \\
\text { LT1359S: } & T_{J}=T_{A}+\left(P_{D} \times 150^{\circ} \mathrm{C} / \mathrm{W}\right) \\
\text { LT1359S14: } & T_{J}=T_{A}+\left(P_{D} \times 160^{\circ} \mathrm{C} / \mathrm{W}\right)
\end{array}
$$

Worst case power dissipation occurs at the maximum supply current and when the output voltage is at $1 / 2$ of either supply voltage (or the maximum swing if less than $1 / 2$ supply voltage). For each amplifier $\mathrm{P}_{\text {DMAX }}$ is:

$$
P_{\text {DMAX }}=\left(V^{+}-V^{-}\right)\left(I_{\text {SMAX }}\right)+\left(V^{+} / 2\right)^{2} / R_{L}
$$

Example: LT 1358 in S 8 at $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega$

$$
\begin{aligned}
& P_{\text {DMAX }}=(30 \mathrm{~V})(2.9 \mathrm{~mA})+(7.5 \mathrm{~V})^{2} / 500 \Omega=200 \mathrm{~mW} \\
& T_{\text {JMAX }}=70^{\circ} \mathrm{C}+(2 \times 200 \mathrm{~mW})\left(190^{\circ} \mathrm{C} / \mathrm{W}\right)=146^{\circ} \mathrm{C}
\end{aligned}
$$

LT1358/LT1359
sImpuIfied schematic

N Package
14-Lead PDIP (Narrow 0.300)
(LTC DWG \# 05-08-1510)

PACKAGE DESCRIPTION Dimension in inches (millimeters) unless otherwise noted.

S8 Package
8-Lead Plastic Small Outline (Narrow 0.150)
(LTC DWG \# 05-08-1610)

*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH **DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD SHALL NOT EXCEED $0.006^{\prime \prime}(0.152 \mathrm{~mm})$ PER SIDE FLASH SHALL NOT EXCEED 0.010 " $(0.254 \mathrm{~mm})$ PER SIDE

S Package
16-Lead Plastic Small Outline (Narrow 0.150)
(LTC DWG \# 05-08-1610)

*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED $0.006^{\prime \prime}$ (0.152 mm) PER SIDE

PACKAGE DESCRIPTIO Dimension in inches (millimeters) unless otherwise noted.

S Package

14-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610)

NOTE:

1. DIMENSIONS IN $\frac{\text { INCHES }}{\text { (MILLIMETERS }}$
2. DRAWING NOT TO SCALE
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)

TYPICAL APPLICATIONS

Instrumentation Amplifier

TRIM R5 FOR GAIN
TRIM R1 FOR COMMON-MODE REJECTION
$B W=250 \mathrm{kHz}$
135859 TA03

200kHz, 4th Order Butterworth Filter

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1357	25MHz, 600V/us Op Amp	Single Version of LT1358/LT1359
LT1361/LT1362	Dual and Quad 50MHz, 800V/us Op Amps	Faster Version of LT1358/LT1359, $\mathrm{V}_{0 S}=1 \mathrm{mV}$, $\mathrm{I}_{S}=4 \mathrm{~mA} /$ Amplifier
LT1355/LT1356	Dual and Quad 12MHz, 400V/us Op Amps	Lower Power Version of LT1358/LT1359, $\mathrm{V}_{0 S}=0.8 \mathrm{mV}$, $\mathrm{I}_{S}=1 \mathrm{~mA} /$ Amplifier
LT1812/LT1813/ LT1814	Single/Dual/Quad 100MHz, 750V/ $\mu \mathrm{s}$ Op Amps	3.6mA/Amplifier, SOT-23, MSOP-8 and SSOP-16 Packages

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Operational Amplifiers - Op Amps category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
OPA2991IDSGR OPA607IDCKT 007614D 633773R 635798C 635801A 702115D 709228FB 741528D NCV33072ADR2G SC2903DR2G
SC2903VDR2G LM258AYDT LM358SNG 430227FB 430228DB 460932C AZV831KTR-G1 514272R 409256CB 430232AB
LM2904DR2GH LM358YDT 508582D LT1026CN8 LT1678IS8 042225DB 058184EB 070530X 714228XB 714846BB 873836HB
TS912BIYDT NCS5651MNTXG NCS2004MUTAG NCV33202DMR2G M38510/13101BPA NTE925 TL082IYDT SC2904DR2G
SC358DR2G LM2904EDR2G LM358EDR2G AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E NJM358CG-TE2
HA1630S01LPEL-E AD8037SRZ-EP LM324AWPT

