

$V_{\text {RSM }}$	$\mathrm{V}_{\text {RRM }}, \mathrm{V}_{\text {DRM }}$	$\mathrm{I}_{\mathrm{D}}=83 \mathrm{~A}$ (full conduction)
V	V	$\left(\mathrm{T}_{\mathrm{s}}=95^{\circ} \mathrm{C}\right.$)
500	400	SKD 83/04
900	800	SKD 83/08
1300	1200	SKD 83/12
1600	1400	SKD 83/14
1700	1600	SKD 83/16
1900	1800	SKD 83/18

Power Bridge Rectifiers

SKD 83

Features

- Glass passivated silicon chips
- Low thermal impedance through use of direct copper bonded aluminum substrate (DCB) base plate
- Blocking voltage up to 1800 V
- Suitable for PCB mounting and wave soldering
- For applications with high vibrations we recommend to fasten the bridge to the pcb with 4 selftapping screw

Typical Applications*

- Three phase rectifiers for power supplies
- Input rectifiers for variable frequency drives
- Rectifiers for DC motor field supplies
- Battery charger rectifiers

1) Freely suspended or mounted on an insulator
2) Mounted on a painted metal sheet of min. $250 \times 250 \times 1 \mathrm{~mm}$
3) $\mathrm{T}_{\text {solder }}=250 \pm 10^{\circ} \mathrm{C}(10 \mathrm{~s})$

Symbol	Conditions	Values	Units
I_{D}	$\begin{aligned} & \mathrm{T}_{\mathrm{s}}=95^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{a}}=45^{\circ} \mathrm{C} ; \text { isolated }{ }^{1)} \\ & \mathrm{T}_{\mathrm{a}}=45^{\circ} \mathrm{C} ; \text { chassis }{ }^{2)} \\ & \mathrm{T}_{\mathrm{a}}=45^{\circ} \mathrm{C} ; \text { P5A/100 (R4A/120) } \\ & \mathrm{T}_{\mathrm{a}}=35^{\circ} \mathrm{C} ; \text { P1A/120F } \end{aligned}$	$\begin{gathered} 83 \\ 4 \\ 20 \\ 32(34) \\ 83 \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$
$\begin{aligned} & \mathrm{I}_{\mathrm{FSM}} \\ & \mathrm{i}^{2 \mathrm{t}} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C} ; 10 \mathrm{~ms} \\ & \mathrm{~T}_{\mathrm{vj}}=150^{\circ} \mathrm{C} ; 10 \mathrm{~ms} \\ & \mathrm{~T}_{\mathrm{vj}}=25^{\circ} \mathrm{C} ; 8,3 \ldots 10 \mathrm{~ms} \\ & \mathrm{~T}_{\mathrm{vj}}=150^{\circ} \mathrm{C} ; 8,3 \ldots 10 \mathrm{~ms} \end{aligned}$	$\begin{gathered} 700 \\ 560 \\ 2450 \\ 1570 \end{gathered}$	$\begin{gathered} \mathrm{A} \\ \mathrm{~A} \\ \mathrm{~A}^{2} \mathrm{~S} \\ \mathrm{~A}^{2} \mathrm{~S} \end{gathered}$
$\begin{aligned} & \hline \mathrm{V}_{\mathrm{F}} \\ & \mathrm{~V}_{(\mathrm{TO})} \\ & \mathrm{r}_{\mathrm{T}} \\ & \mathrm{I}_{\mathrm{RD}} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C} ; \mathrm{I}_{\mathrm{F}}=80 \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{vj}}=150^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{vj}}=150^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{vj}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DRM}} ; \mathrm{V}_{\mathrm{RD}}=\mathrm{V}_{\mathrm{RRM}} \\ & \mathrm{~T}_{\mathrm{vj}}=150^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{RD}}=\mathrm{V}_{\mathrm{RRM}} \end{aligned}$	$\begin{gathered} \hline \max .1,45 \\ \max .0,8 \\ \max .7,5 \\ \max .0,2 \\ 4 \end{gathered}$	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~m} \Omega \\ \mathrm{~mA} \\ \mathrm{~mA} \end{gathered}$
$\begin{aligned} & \mathrm{R}_{\mathrm{th}(j-\mathrm{s})} \mathrm{I} \\ & \mathrm{R}_{\mathrm{th}(j-\mathrm{a})} \\ & \mathrm{T}_{\mathrm{vj}} \\ & \mathrm{~T}_{\mathrm{stg}} \end{aligned}$	per diode total isolated ${ }^{1)}$ chassis ${ }^{2)}$	$\begin{gathered} 1,4 \\ 0,233 \\ 14,83 \\ 2,83 \\ -40 \ldots+150 \\ -40 \ldots+125^{3)} \end{gathered}$	K/W K/W K/W K/W ${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$
$\begin{array}{\|l} \hline V_{\text {isol }} \\ M_{s} \\ M_{t} \\ a \\ m \end{array}$	a. c. 50 Hz ; r.m.s.; $1 \mathrm{~s} / 1 \mathrm{~min}$. to heatsink; SI units	$\begin{gathered} \hline 3600(3000) \\ 2 \pm 15 \% \\ 5 \text { * } 9,81 \\ 30 \end{gathered}$	V Nm $\mathrm{m} / \mathrm{s}^{2}$ g
Case		G 55	

SKD

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bridge Rectifiers category:
Click to view products by Semikron manufacturer:
Other Similar products are found below :
G3SBA60-E351 GBJ1504-BP GBU10B-BP GBU15J-BP GBU15K-BP GBU4A-BP GBU4D-BP GBU6B-E3/45 GSIB680-E3/45 DB101BP DF10SA-E345 RMB2S RCG APT30DF100HJ APT60DF20HJ B2S-E3/80 BU1506-E351 BU15085S-E345 BU1508-E3/45 BU1510E3/45 RS404GL-BP RS405GL-BP G3SBA20-E3/51 G5SBA20-E3/51 G5SBA60-E3/51 GBJ1502-BP GBL02-E351 GBL10-E3/45 GBU10J-BP GBU4J-BP GBU4K-BP GBU8B-E3/45 GBU8D-BP GBU8J-BP GSIB1520-E3/45 MB1510 MB352W MB6M-G B2M-E345 B40C7000A B500C7000A MP5010W-BP MP501W-BP MP502-BP BR1005-BP BR101-BP BU1006-E345 BU12065S-E3/45 BU1508E3/51 BU2006-E3/45 BU2008-E345

