## $120 \mathrm{~m} \Omega$, 1.3A Power Switch with Programmable Current Limit

## General Description

The RT9728A is a cost effective, low voltage, single P-MOSFET high side power switch IC for USB application with a programmable current limit feature. Low switch-on resistance (typ. $120 \mathrm{~m} \Omega$ ) and low supply current (typ. $120 \mu \mathrm{~A}$ ) are realized in this IC. The RT9728A can offer a programmable current limit threshold between 75 mA and 1.3 A (typ.) via an external resistor. The $\pm 10 \%$ current limit accuracy can be realized for all current limit settings. In addition, a flag output is available to indicate fault conditions to the local USB controller. Furthermore, the chip also integrates an embedded delay function to prevent mis-operation from happening due to high inrush current. The RT9728A is an ideal solution for USB power supply and can support flexible applications since it is functional for various current limit requirements. It is available in SOT-23-6 and WDFN-6L $2 \times 2$ packages.

## Ordering Information

RT9728ADロロ
-Package Type
E: SOT-23-6
QW : WDFN-6L 2x2
Lead Plating System
G: Green (Halogen Free and Pb Free)
Z : ECO (Ecological Element with Halogen Free and Pb free)

H: Chip Enable High
L : Chip Enable Low

## Note:

Richtek products are :

- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020
- Suitable for use in SnPb or Pb -free soldering processes.


## Features

- $\pm 10 \%$ Current Limit Accuracy @ 1.3A
- Adjustable Current Limit : 75mA to 1.3A (typ.)
- Meets USB Current Limiting Requirements
- Operating Voltage Range : 2.5V to 5.5V
- Reverse Input-Output Voltage Protection
- Built-in Soft-Start
- $120 \mathrm{~m} \Omega$ High Side MOSFET
- 120 $\mu$ A Supply Current
- RoHS Compliant and Halogen Free


## Applications

- USB Bus/Self Powered Hubs
- USB Peripheral Ports
- ACPI Power Distribution
- Battery Power Equipment
- 3G/3.5GData Card, Set-Top Boxes


## Pin Configurations



WDFN-6L 2x2

## Marking Information

RT9728AHGE

| $01=$ DNN | 01 Product Code <br> DNN : Date Code |
| :--- | :--- |

RT9728ALGE

| $02=$ DNN | $02=:$ Product Code <br> DNN : Date Code |
| :--- | :--- |

RT9728AHGQW


17 : Product Code
W : Date Code

## RT9728ALGQW



19 : Product Code
W : Date Code

RT9728AHZQW


17 : Product Code
W : Date Code


19 : Product Code
W : Date Code

Typical Application Circuit


## Functional Pin Description

| Pin No. |  | Pin Name | Pin Function |
| :---: | :---: | :--- | :--- |
| SOT-23-6 | WDFN-6L 2x2 |  | Input Voltage. |
| 1 | 6 | VIN | Ground. The exposed pad must be soldered to a large PCB and <br> connected to GND for maximum power dissipation. |
| 2 | 7 (Exposed Pad) | GND | EN/EN | | Chip Enable. |
| :--- |
| 3 |

## Function Block Diagram


Absolute Maximum Ratings (Note 1)

- Other Pin Voltage -0.3 V to 6 V
- Power Dissipation, $\mathrm{P}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ SOT-23-6 ..... 0.4 W
WDFN-6L 2x2 ..... 0.606 W
- Package Thermal Resistance (Note 2)
SOT-23-6, $\theta_{\mathrm{JA}}$ - ..... $250^{\circ} \mathrm{C} / \mathrm{W}$
WDFN-6L $2 x 2, \theta_{\mathrm{JA}}$ ..... $165^{\circ} \mathrm{C} / \mathrm{W}$
WDFN-6L $2 \times 2, \theta_{\mathrm{Jc}}$ ..... $7^{\circ} \mathrm{C} / \mathrm{W}$
- Lead Temperature (Soldering, 10 sec.$)$ ..... $260^{\circ} \mathrm{C}$
- Junction Temperature ..... $150^{\circ} \mathrm{C}$
- Storage Temperature Range ..... $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
- ESD Susceptibility (Note 3)HBM (Human Body Model)2kV
Recommended Operating Conditions (Note 4)
- Supply Input Voltage, VIN 2.5 V to 5.5 V- Ambient Temperature Range$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$


## Electrical Characteristics

$\left(\mathrm{V}_{\mathbb{I N}}=3.6 \mathrm{~V}, 19.1 \mathrm{k} \Omega \leq \mathrm{R}_{\mathrm{IL}} \mathrm{M} \leq 232 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

| Parameter |  | Symbol | Test Co | ditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EN Input Voltage | Logic-High | $\mathrm{V}_{1}$ |  |  | 1.1 | -- | -- | V |
|  | Logic- Low | $\mathrm{V}_{\text {IL }}$ |  |  | -- | -- | 0.66 |  |
| Current Limit Threshold Resistor Range |  | RILIM | (nominal 1\%) from ILIM to GND |  | 19.1 | -- | 232 | k $\Omega$ |
| Under Voltage Lockout Threshold |  | VuvLo | $\mathrm{V}_{\text {IN }}$ Rising |  | -- | 2.3 | -- | V |
|  |  | $\mathrm{V}_{\text {IN }}$ Falling | -- | 2.1 | -- |  |
| Shutdown Current |  |  | ISHDN | $\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$, No Load on $\mathrm{V}_{\text {OUt }}$, $\mathrm{V}_{\text {EN }}=0 \mathrm{~V}$ |  | -- | 1 | 3 | $\mu \mathrm{A}$ |
| Quiescent Current |  | ${ }_{\text {l }}$ | $\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ <br> No Load on Vout | $\mathrm{R}_{\text {ILIM }}=20 \mathrm{k} \Omega$ | -- | 120 | 170 | $\mu \mathrm{A}$ |
|  |  | $\mathrm{R}_{\text {ILIM }}=210 \mathrm{k} \Omega$ |  | -- | 120 | 170 |  |
| Reverse Leakage Current |  |  | IREV | $\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ |  | -- | 1 | 3 | $\mu \mathrm{A}$ |
| Thermal Shutdown Temperature |  | $\mathrm{T}_{\text {SD }}$ |  |  | -- | 160 | -- | ${ }^{\circ} \mathrm{C}$ |
| Static Drain-Source On-State Resistance |  | RDS(ON) | $\mathrm{Isw}=0.2 \mathrm{~A}$ |  | -- | 120 | -- | $\mathrm{m} \Omega$ |
| Current Limit |  | ILIM | $\mathrm{R}_{\text {ILIM }}=20 \mathrm{k} \Omega$ |  | 1166 | 1295 | 1425 | mA |
|  |  | $\text { RILIM }=49.9 \mathrm{k} \Omega$ | 468 | 520 | 572 |  |
|  |  | $\mathrm{R}_{\text {ILIM }}=210 \mathrm{k} \Omega$ | 110 | 130 | 150 |  |
|  |  | ILIM Shorted to VIN | 50 | 75 | 100 |  |


| Parameter | Symbol | Test Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Reverse Voltage Comparator Trip Point (VOUT - VIN) |  |  | -- | 135 | -- | mV |
| FAULT Output Low Voltage | VoL | $1 \overline{\text { FAULT }}=1 \mathrm{~mA}$ | -- | 180 | -- | mV |
| $\overline{\text { FAULT Off State Leakage }}$ |  | $\mathrm{V}_{\text {FAULT }}=5.5 \mathrm{~V}$ | -- | 1 | -- | $\mu \mathrm{A}$ |
| $\overline{\text { FAULT }}$ Deglitch |  | FAULT assertion or de-assertion due to over current condition | 5 | 7.5 | 10 | ms |
|  |  | $\overline{\mathrm{FAULT}}$ assertion or de-assertion due to reverse voltage condition | 2 | 4 | 6 |  |

Note 1. Stresses beyond those listed "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
Note 2. $\theta_{\mathrm{JA}}$ is measured at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ on a low effective thermal conductivity single-layer test board per JEDEC 51-3. $\theta_{\mathrm{Jc}}$ is measured at the exposed pad of the package.
Note 3. Devices are ESD sensitive. Handling precaution is recommended.
Note 4. The device is not guaranteed to function outside its operating conditions.

## Typical Operating Characteristics



On- Resistance vs. Temperature


EN/EN Threshold Voltage vs. Temperature



Current Limit vs. Temperature


Under Voltage Lockout vs. Temperature



## Power On from EN



## Current Limit



Power Off from EN


Power Off from EN


Current Limit




## Current Limit



Static Drain-Source Current vs. VIN - V $_{\text {OUT }}$


## Applications Information

The RT9728A is a single P-MOSFET high side power switch with active-high/low enable input, optimized for selfpowered and bus-powered Universal Serial Bus (USB) applications. The switch's low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ meets USB voltage drop requirements and a flag output is available to indicate fault conditions to the local USB controller.

## Current Limiting and Short Circuit Protection

When a heavy load or short circuit situation occurs while the switch is enabled, large transient current may flow through the device. The RT9728A includes a current-limit circuitry to prevent these large currents from damaging the MOSFET switch and the hub downstream ports. The RT9728A provides an adjustable current limit threshold between 120 mA and 1.3 A (typ) via an external resistor, $R_{\text {ILIM, }}$, between $19.1 \mathrm{k} \Omega$ and $232 \mathrm{k} \Omega$. However, if the ILIM pin is connected to $\mathrm{V}_{\mathrm{IN}}$, the current limit threshold will be 75 mA (typ). Once the current limit threshold is exceeded,
the device enters constant-current mode until either thermal shutdown occurs or the fault is removed. The table1 shows a recommended current limit value vs. RIIIM resistor.

Current Limit Threshold vs. R1LIM


Figure 1. Current Limit Threshold vs R1IIM

Table 1. Recommended RIIIM Resistor Selections

| Desired Nominal <br> Current Limit (mA) | Ideal Resistor <br> $(\mathrm{k} \Omega)$ | Closet 1\% <br> Resistor (k $\Omega)$ | Actual Limits (Include R Tolerance) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Short ILIM to VIN Min (mA) |  | IOS Nom (mA) | IOS Max (mA) |
| 75 | 226.1 | 226.0 | 50.0 | 75.0 | 100.0 |
| 120 | 134.0 | 133.0 | 101.3 | 120.0 | 142.1 |
| 200 | 88.5 | 88.7 | 173.7 | 201.5 | 233.9 |
| 300 | 65.9 | 66.5 | 262.1 | 299.4 | 342.3 |
| 400 | 52.5 | 52.3 | 351.1 | 396.7 | 448.7 |
| 500 | 43.5 | 43.2 | 443.9 | 501.6 | 562.4 |
| 600 | 37.2 | 37.4 | 616.0 | 69.1 | 604.6 |
| 700 | 32.4 | 32.4 | 708.7 | 800.8 | 674.1 |
| 800 | 28.7 | 28.7 | 797.8 | 901.5 | 776.0 |
| 900 | 25.8 | 26.1 | 875.4 | 989.1 | 1005.2 |
| 1000 | 23.4 | 23.2 | 982.1 | 1109.7 | 1102.8 |
| 1100 | 21.4 | 21.5 | 1057.9 | 1195.4 | 1237.3 |
| 1200 | 19.7 | 19.6 | 1158.0 | 1308.5 | 1332.9 |
| 1300 |  |  |  |  | 1459.0 |

## Fault Flag

The RT9728A provides a $\overline{\text { FAULT }}$ signal pin which is an N channel open drain MOSFET output. This open drain output goes low when current exceeds current limit threshold, $\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {IN }}$ exceeds reverse voltage trip level, or the die temperature exceeds $160^{\circ} \mathrm{C}$ approximately. The FAULT output is capable of sinking a 1 mA load to typically 180 mV above ground. The $\overline{\text { FAULT }}$ pin requires a pull-up resistor; this resistor should be large in value to reduce energy drain. A $100 \mathrm{k} \Omega$ pull-up resistor works well for most applications. In case of an over current condition, $\overline{\text { FAULT }}$ will be asserted only after the flag response delay time, tD, has elapsed. This ensures that FAULT is asserted upon valid over current conditions and that erroneous error reporting is eliminated. For example, false over current conditions may occur during hot-plug events when extremely large capacitive loads are connected, which induces a high transient inrush current that exceeds the current limit threshold. The $\overline{\text { FAULT }}$ response delay time, $t_{D}$, is typically 7.5 ms .

## Supply Filter/Bypass Capacitor

A $10 \mu \mathrm{~F}$ low ESR ceramic capacitor connected from $\mathrm{V}_{\text {IN }}$ to GND and located close to the device is strongly recommended to prevent input voltage drooping during hotplug events. However, higher capacitor values may be used to further reduce the voltage droop on the input. Without this bypass capacitor, an output short may cause sufficient ringing on the input (from source lead inductance) to destroy the internal control circuitry. Note that the input transient voltage must never exceed 6 V as stated in the Absolute Maximum Ratings.

## Output Filter Capacitor

A low ESR $150 \mu \mathrm{~F}$ aluminum electrolytic capacitor connected between $\mathrm{V}_{\text {out }}$ and GND is strongly recommended to meet the USB standard maximum droop requirement for the hub, VBUS. Standard bypass methods should be used to minimize inductance and resistance between the bypass capacitor and the downstream connector to reduce EMI and decouple voltage droop caused by hot-insertion transients in downstream cables. Ferrite beads in series with VBUS, the ground line and the $0.1 \mu \mathrm{~F}$ bypass capacitors at the power connector pins
are recommended for EMI and ESD protection. The bypass capacitor itself should have a low dissipation factor to allow decoupling at higher frequencies.

## Chip Enable Input

The RT9728AH/L will be disabled when the EN/EN pin is in a logic-low/high condition. During this condition, the internal circuitry and MOSFET are turned off, reducing the supply current to $1 \mu \mathrm{~A}$ typical. The maximum guaranteed voltage for a logic-low at the EN/EN pin is 0.66 V . A minimum guaranteed voltage of 1.1 V at the EN/ $\overline{\mathrm{EN}}$ pin will turn off the RT9728A. Floating the input may cause unpredictable operation. EN/EN should not be allowed to go negative with respect to GND.

## Under Voltage Lockout

Under voltage lockout (UVLO) prevents the MOSFET switch from turning on until input voltage exceeds approximately 2.3 V . If input voltage drops below approximately 2.1 V , UVLO turns off the MOSFET switch and $\overline{\mathrm{FAULT}}$ will be asserted accordingly. The under voltage lockout detection functions only when the switch is enabled.

## Thermal Considerations

For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula :
$P_{D(\text { MAX })}=\left(T_{J(M A X)}-T_{A}\right) / \theta_{J A}$
where $T_{J(M A X)}$ is the maximum junction temperature, $T_{A}$ is the ambient temperature, and $\theta_{\mathrm{JA}}$ is the junction to ambient thermal resistance.

For recommended operating condition specifications, the maximum junction temperature is $125^{\circ} \mathrm{C}$. The junction to ambient thermal resistance, $\theta_{\mathrm{JA}}$, is layout dependent. For SOT-23-6 packages, the thermal resistance, $\theta_{\mathrm{JA}}$, is $250^{\circ} \mathrm{C} /$ W on a standard JEDEC 51-3 single-layer thermal test board. For WDFN-6L $2 \times 2$ packages, the thermal resistance, $\theta_{\mathrm{JA}}$, is $165^{\circ} \mathrm{C} / \mathrm{W}$ on a standard JEDEC 51-3
single-layer thermal test board. The maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ can be calculated by the following formula :
$P_{D(\text { MAX })}=\left(125^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right) /\left(250^{\circ} \mathrm{C} / \mathrm{W}\right)=0.400 \mathrm{~W}$ for SOT-23-6 package
$P_{D(\text { MAX })}=\left(125^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right) /\left(165^{\circ} \mathrm{C} / \mathrm{W}\right)=0.606 \mathrm{~W}$ for WDFN-6L $2 \times 2$ package

The maximum power dissipation depends on the operating ambient temperature for fixed $\mathrm{T}_{\mathrm{J}(\mathrm{MAX})}$ and thermal resistance, $\theta_{\mathrm{JA}}$. The derating curves in Figure 2 allow the designer to see the effect of rising ambient temperature on the maximum power dissipation.


Figure 2. Derating Curve of Maximum Power Dissipation

## Outline Dimension



| Symbol | Dimensions In Millimeters |  | Dimensions In Inches |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Min | Max | Min | Max |
| A | 0.889 | 1.295 | 0.031 | 0.051 |
| A1 | 0.000 | 0.152 | 0.000 | 0.006 |
| B | 1.397 | 1.803 | 0.055 | 0.071 |
| b | 0.250 | 0.560 | 0.010 | 0.022 |
| C | 2.591 | 2.997 | 0.102 | 0.118 |
| D | 2.692 | 3.099 | 0.106 | 0.122 |
| e | 0.838 | 1.041 | 0.033 | 0.041 |
| H | 0.080 | 0.254 | 0.003 | 0.010 |
| L | 0.300 | 0.610 | 0.012 | 0.024 |

SOT-23-6 Surface Mount Package


21
21

DETAILA
Pin \#1 ID and Tie Bar Mark Options

Note : The configuration of the Pin \#1 identifier is optional, but must be located within the zone indicated.

| Symbol | Dimensions In Millimeters |  | Dimensions In Inches |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Min | Max | Min | Max |  |  |  |  |
| A | 0.700 | 0.800 | 0.028 | 0.031 |  |  |  |  |
| A1 | 0.000 | 0.050 | 0.000 | 0.002 |  |  |  |  |
| A3 | 0.175 | 0.250 | 0.007 | 0.010 |  |  |  |  |
| b | 0.200 | 0.350 | 0.008 | 0.014 |  |  |  |  |
| D | 1.950 | 2.050 | 0.077 | 0.081 |  |  |  |  |
| D2 | 1.000 | 1.450 | 0.039 | 0.057 |  |  |  |  |
| E | 1.950 | 2.050 | 0.077 | 0.081 |  |  |  |  |
| E2 | 0.500 | 0.850 | 0.020 | 0.033 |  |  |  |  |
| e | 0.650 |  |  |  |  |  |  | 0.026 |
| L | 0.300 | 0.400 | 0.012 | 0.016 |  |  |  |  |

W-Type 6L DFN 2x2 Package

## Richtek Technology Corporation

5F, No. 20, Taiyuen Street, Chupei City
Hsinchu, Taiwan, R.O.C.
Tel: (8863)5526789

[^0]
## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by Richtek manufacturer:
Other Similar products are found below :
AP22652AW6-7 MAPDCC0001 L9347LF L9349TR-LF MAPDCC0005 VND10N06TR-E NCP45520IMNTWG-L TPS22968NDPUR
VND5050K-E VND5E004ATR-E MP6205DD-LF-P FPF1018 DS1222 NCV380HMUAJAATBG TCK2065G,LF SZNCP3712ASNT3G L9352BLF L9362013TR L9781TR NCP45520IMNTWG-H VNQ690SPTR-E VNQ690SP-E TCK2065GLF MC17XS6500BEK SP2525A-1EN-L/TR SP2526A-1EN-L/TR SP2526A-2EN-L/TR MAX4999ETJ+T MC22XS4200BEK L9347LF-TR MAX14575BETA+T VN1160C-1-E VN750PEP-E TLE7244SL L9352B-TR-LF BTS50060-1EGA MAX1693HEUB+T MC07XSG517EK TLE7237SL MIC2033-05BYMT-T5 MIC2033-12AYMTT5 MIC2033-05BYM6-T5 MP6513LGJ-P MP6513GJ-P NCP3902FCCTBG AP22811BW5-7 SLG5NT1437VTR SZNCP3712ASNT1G NCV330MUTBG DML1008LDS-7


[^0]:    Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

