Variable Frequency Drive / Inverter Starvert iC5

0.4-2.2kW 1 phase 200-230Volts

Drive Solution

www.lgis.com

" Global standard IC5, serves a wide variety of applications to meet the majority of user needs."

- Modbus communication (Option)
- PID control
- Sensorless vector control
- Motor parameter auto tuning
(E c(UL) us ISO9001 ISO14000

LS Inverter iC5 Series

Sensorless vector control

The iC5 adopts sensorless vector control algorithm, and it improves not only the torque control characteristics, but the speed controlability in an uncertain condition caused by the load variation as well.

Auto tuning

The auto tuning algorithm in the iC5 sets the motor factors automatically that brings the traditional commissioning difficulties mainly in low speed by the load variation and the low torque generation to a settlement.

- Difficulty of measuring the motor constant - Input errors by an user
- Low torque in low speed • Low speed by the load variation. Setup by an expert

- Setup by an user • Improving torque in low speed
- Auto tuning of the motor characteristics. Optimized motor control

PNP and NPN switchable dual signals

The iC5 provides PNP and NPN signals for outside controllers. It works with 24 Vdc regardless of the type of PLC or control signals.

Communication interface, ModBus-RTU

The iC5 provides the most popular communication interface, ModBus-RTU for remote control by PLC or other devices.

Programmable PID process control

PID process control is used in iC5 to make speed corrections quickly with a minimal amount of overshoot and oscillation for the control of flow, temperature, pressure and etc.
Applicable motor

0.4kW (0.5HP)		SV004iC5-1
0.75kW (1HP)		SV008iC5-1
1.5kW (2HP)		SV015iC5-1
2.2kW (3HP)	\cdots	SV022iC5-1

Specifications (200-230V class)

Model		SV004iC5-1	SV008iC5-1	SV015iC5-1	SV022iC5-1
Motor rating	[HP]	0.5	1	2	3
	[kW]	0.4	0.75	1.5	2.2
Output ratings	Capacity[kVA]	0.95	1.9	3	4.5
	FLA[A]	2.5	5	8	12
	Voltage	Three phase, 200 to 230 V 0 to 400 Hz			
	Frequency				
Input ratings	Voltage	Single phase, 200 to 230 V ($\pm 10 \%$)			
	Frequency	50 to $60 \mathrm{~Hz}(\pm 5 \%)$			

Control

Control method	V/F control, Sensorless vector control	
Frequency setting resolution	- Digital reference : 0.01 Hz	- Analog reference : $0.06 \mathrm{~Hz} / 60 \mathrm{~Hz}$
Frequency setting accuracy	- Digital : 0.01% of Maximum output frequency	- Analog : 0.1% of Maximum output frequency
V/F ratio	Linear, Squar pattem, User V/F	
Overload capacity	1 min . at $150 \%, 30 \mathrm{sec}$. at 200% (with inverse chara	(eristic)
Torque boost	Manual(0 to 15\% adjustable), Auto	

- Operation

Input signal	Operator control	Keypad / Terminal / Commu		
	Frequency setting	- Analog : 0~10V/4~20mA	- Digital : Keypad	- Communication: RS48
	Start signal	Forward / Reverse		
	Multi-step	Setting up to 8 speeds (use m	ion terminal)	
	Multi-step accel /decel time	$0.1 \sim 6000$ sec. Max. 8 types a Selectable accel/decel pat	multi-function tem r, U andS	
	Emergency stop	Interupting the output of the		
	Jog	Jog operation		
	Fault reset	Reset the fault when protective	is active	
Output signal	Operation status \&	Frequency detection, Overload	Stalling, Overvolta	rvoltage,
	Fault output	Drive overheating, Run, Stop, Fault output (Relay and Op	speed, Speed sea routput)	
	Indicator	Choose one from output frequer	urent, voltage and	age.(Output voltage : 0~1
Operation function		DC braking, Frequency limit, Slip compensation, Reversing	jump, Second fun n, Auto restart, PID	
\square Protection functions				
Drive trip	Overvoltage, Undervoltage, Overcurrent, Drive overtemperature, Motor overtemperature, I/O phase loss, I/O mis-wining, Overload , External device fault 1.2, Loss of speed command, Hardware fault, Communication error, CPU error			
Drive alarm	Stall prevention, Overload alarm			
Momentary power less	- Less than 15 msec : keeping operation - More than 15 msec : auto restart available			
\square Display keypad				
Operation information		Output frequency, current	e, Set frequency va	eration speed, DC voltag
Trip information		Display the trip cause when	ction function activ	cent 5 faults records stored
\square Environment				
Operating ambient temp.		$-10^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$		
Storage temperature		$-20^{\circ} \mathrm{C} \sim 65^{\circ} \mathrm{C}$		
Humidity		90% Rh max.(non condensing		
Altitude \& Vibration		$1000 \mathrm{mmax}, \quad 5.9 \mathrm{~m} / \mathrm{sec}^{2}(0.6$		
Atmosphere		No corrosive gas, flammabl	mist or dust	
Pressure		70~106k Pa		

Note: 1. = Main circuit terminal $\mathrm{O}=$ Control circuit terminal
2. Analog output voltage is adjustable upto 12 V .
3. Speed command can be set by Voltage, Current, Voltage+Current, Keypad, Keypad knob+Vollage , and Keypad knob+current.

Terminal	Signal	Description
$\mathbf{L 1 , \mathbf { L }}$	AC line input	Single phase AC line input
$\mathbf{U}, \mathbf{V}, \mathbf{W}$	Drive output	3phase output terminals to motor
$\mathbf{P}, \mathbf{P 1}$	DC reactor	Connecting DC reactor
\mathbf{G}	Ground	Chassis ground

\section*{| P4 | P5 | VR | V1 | CM | I | AM |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

30A	30B	30C	M0	EXTG	P24	P1	P2	CM	P3

Terminal		Signal	Description
Input	$\begin{gathered} \mathrm{P} 1, \mathrm{P} 2 \\ \mathrm{P} 3, \mathrm{P} 4, \mathrm{P} 5 \end{gathered}$	Multi-function input	Used for multi-function input. Factory default settings are as follows. $\mathrm{Pl}=\mathrm{FX}$, Forward $P 2=R X$, Reverse P3=BX, Emergency stop P4=RST,Fault reset P5=JOG, Jog Operation Command
	P24	PNP DC24V output	DC24V power supply in case of PNP mode
	VR	Frequency setting power	Power for Analog frequency setting, Maximum output is +12 V 10 mA
	VI	Frequency setting(Voltage)	Input DC 0 to 10 V to set frequency. Input resistance is $20 \mathrm{k} \Omega$
	1	Frequency setting(Curent)	Input DC 4 to 20mA to set frequency. Input resistance is 250Ω
	CM	Common	Common terminal for the analog frequency setting signal and the FM(for monitoring)
Output	AM-CM	Formonitoring	Output one out of Output frequency, Output current, Output voltage and DC voltage. Factory default set is to Output frequency. Maximum output voltage $=0$ to 12 V , output current $=10 \mathrm{~mA}$
		Multi-function relay and Open collector output Terminal	To interupt the output when the protection function activates or output multi-function signal. Multi-function relay terminal :Max. AC250V/1A, DC30V/IA Open collector output terminal : Max. DC24V 50mA

Keypad

Program parameters

- Parameter group

There are 4 parameter groups to set parameters properly for the operation.

Group	Description
Drive group	Basic parameters such as Command frequency, Accel/Decel time, etc.
Function $\mathbf{1}$ group	Basic functional parameters such as Max. frequency, Torque boost, etc.
Function 2 group	Application parameters such as Frequency jump, Max./Min. of limit of frequency, etc.
Input/Output group	Parameters to construct the sequence such as Multi-function terminal setting, Auto operation, etc.

■ Parameter group navigation

- Shiffing between groups is possible only in the first code of each group.
Shift by using Right shift key (\downarrow)
(1) The value of the Command frequency will be displayed in the first code of the Drive group. It will show the value set by the operator. The factory set value is 0.0 .
- Parameter navigation in Drive group

Procedure to set command frequency in Drive group
To input new command trequency $30.05[\mathrm{~Hz}]$ trom 0.0 set in the factory

Ti.1	- The first code " 0.0 " displayed. - Press pro/ent(\bullet) key.
1	- The digit of the first decimal place can be changed. - Press right ($\stackrel{\text { key. }}{ }$ ke
	- The digit of the second decimal place can be changed. - Press up($\mathbf{\Delta}$) key until the digit becomes 5.
I	- Press left(4) key.
5	- The left digit can be set. - Press left(4) key.
Ti	- Press left(4) key.
$7 \text { IT }$	- Though 00.0 is displayed, the actual value remains at 0.05 . - Make 3 by pressing up($\mathbf{\Delta}$) key.
$8 \text { च }$	- Press pro/ent(\bullet) key. - 30.0 is flickering. - Press pro/ent (\bullet) key to stop the flickering.
9 בirioi	- Command frequency 30.0 is stored.

Note: (1) The LCD on the keypad of Drive iC5 displays only 3 digits.
Use the shift keys ($\langle>$) to monitor and set the parameters.
(2) To cancel the parameter setting press the shift keys
(\langle or \rangle) while 30.0 is flickering in the procedure no. 8 .

Drive group	Keypad display	Description	Setting range	Factory default	Adjustable during run
	0.00	Output frequency: during run Reference frequency : during stop	O to Max. frequency[Hz]	0.00	Yes
	ACC	Acceleration time	0 to 6000 [sec]	5	Yes
	DEC	Deceleration time	0 to 6000 [sec]	10	Yes
	Drv	Drive mode	0 (Keypad) 1(Fx/Rx-1) 2(Fx/Rx-2) 3(ModBus)	1	No
			0(Keypad-1) 1 (Keypad-2) 2(Volume) 3(VI)		
	Frq	Frequency mode		0	No
			$\begin{aligned} & 5(\mathrm{Volume}+1) \\ & 6(\mathrm{~V} 1+1) \end{aligned}$		
			7(Volume+VI) 8(ModBus)		
	St1	Step frequency 1	Oto Max. frequency [Hz]	10.00	Yes
	St2	Step frequency 2	0 to Max. frequency [Hz]	20.00	Yes
	St3	Step frequency 3	0 to Max. frequency [Hz]	30.00	Yes
	Cur	Output curent	${ }^{*}$ [A]	*	*
	RPM	Motor speed	*[rpm]	*	*
	DCL	DC voltage	* V]	*	*
	vOL/POr/Hor	User display selection	*	*	*
	nOn	Fault display	*	*	*
	drC	Motor direction set	F(Forward) R(Reverse)	F	Yes
FU1	FU1	Function Group 1 selection		*	Yes
group	FU2	Function Group 2 selection		*	Yes
	1/0	1/O Group selection		*	Yes
	FO	Jump to desired code \#	1 to 60	1	Yes
	F3	Run prevention	O(None) 1(Forward disable) 2(Reverse disable)	0	No
	F5	Acceleration pattem	0 (Linear) 1(S-curve)	0	No
	F6	Deceleration pattem	O(Linear) 1(S-curve)	0	No
	F7	Stop mode	O(Decel) 1(Dc-brake) 2(Free-run)	0	No
	F8	DC injection braking frequency	F23 to 60[Hz]	5	No
	F9	DC injection braking ON-delay	0 to 60 [sec]	0.1	No
	F10	DC injection braking voltage	0 to 200[\%]	50	No
	F11	DC injection braking time	0 to 60 [sec]	1	No
	F12	Starting DC injection braking voltage	0 to 200[\%]	50	No
	F13	Starting DC injection braking time	0 to 60 [sec]	0	No
	F14	Motor exciting time	0 to 60 [sec]	1	No
	F20	Jog frequency	0 to 400 [Hz]	10	No
	F21	Maximum frequency	40 to 400 [Hz$]$	60	No
	F22	Base frequency	30 to Max. frequency [Hz]	60	No
	F23	Starting frequency	0 to 10 [Hz$]$	0.5	No
	F24	Frequency limit selection	O(No), 1 (Yes)	0	No
	F25	Frequency limit - high	0 to High limit [Hz]	60	No
	F26	Frequency limit - low	Low limit to Max. frequency[Hz]	0.5	No
	F27	Manual/Auto torque boost selection	O(Manuall), 1(Auto)	0	No
	F28	Torque boost in forward direction	0.0 to 15.0[\%]	5	No
	F29	Torque boost in reverse direction	0.0 to 15.0[\%]	5	No
	F30	Volts/Hz pattem	0(Linear) 1 (Square) 2(User V/F)	0	No

FU1 group	Keypad display	Description	Setting range	Factory default	Adjustable during run
	F31	User V/F-frequency 1	Oto F33[Hz]	15	No
	F32	User V/F-voltage 1	0 to 100[\%]	25	No
	F33	User V/F-frequency 2	F31 to F35[Hz]	30	No
	F34	User V/F-voltage 2	0 to 100[\%]	50	No
	F35	User V/F-frequency 3	F33 to F37[Hz]	45	No
	F36	User V/F-voltage 3	0 to 100[\%]	75	No
	F37	User V/F-frequency 4	F35 to Maximum frequency $[\mathrm{Hz}]$	60	No
	F38	User V/F-voltage 4	0 to 100[\%]	100	No
	F39	Output voltage adjustment	40.0 to 110.0[\%]	100	No
	F40	Energy save	0 to 30[\%]	0	Yes
	F50	Electronic thermal selection	$0(\mathrm{No}), 1$ (Yes)	0	Yes
	F51	Electronic thermal level-1 min.	F52 to 200[\%]	150	Yes
	F52	Electronic thermal level-continuous	50 to F51[\%]	100	Yes
	F53	Motor cooling system	O(self cool) 1 (forced cool)	0	Yes
	F54	Overload alarm level	30 to 150[\%]	150	Yes
	F55	Overload alarm hold time	0 to 30[sec]	10	Yes
	F56	Overload trip selection	0 (No), 1 (Yes)	1	Yes
	F57	Overload trip level	30 to 200[\%]	180	Yes
	F58	Overload trip delay time	0 to 60[sec]	60	Yes
	F59	Stall prevention mode selection	000 to 111 (bit set) Bit 0 : During accel. Bit 1 : During steady speed Bit 2 : During decel.	000	No
	F60	Stall prevention level	30 to 150[\%]	150	No
	H0	Jump to desired code \#	1 to 95	1	Yes
group	H1	Previous fault history 1		nOn	*
	H2	Previous fault history 2		nOn	*
	H3	Previous fault history 3		nOn	*
	H4	Previous fault history 4		nOn	*
	H5	Previous fault history 5		nOn	*
	H6	Delete fault history	O(No), 1 (Yes)	0	Yes
	H7	Dwell frequency	O to Max. frequency[Hz]	5	No
	H8	Dwell fime	0 to 10[sec]	0	No
	H10	Selection of jump frequency	0 (No), 1 (Yes)	0	No
	H11	Jump frequency 1, low	0 to $\mathrm{H} 12[\mathrm{~Hz}]$	10	No
	H12	Jump frequency 1, high	H 11 to Maximum frequency $[\mathrm{Hz}]$	15	No
	H13	Jump frequency 2, low	0 to $\mathrm{H} 14[\mathrm{~Hz}]$	20	No
	H14	Jump frequency 2 , high	H 13 to Maximum frequency[Hz]	25	No
	H15	Jump frequency 3 , low	0 to $\mathrm{Hl6}[\mathrm{~Hz}]$]	30	No
	H16	Jump frequency 3 , high	H 15 to Maximum frequency[Hz]	35	No
	H17	Inclination at the beginning of S curve	1 to 100[\%]	40	No
	H18	Inclination at the end of S curve	1 to 100[\%]	40	No
	H19	Output phase loss protection	0 (No), 1 1 (Yes)	0	Yes
	H2O	Power ON start selection	0 (No), 1 (Yes)	0	Yes
	H21	Restart after fault reset	0 (No), 1 (Yes)	0	Yes
	H22	Speed search selection	0000 to 111 (bit set) Bit 0 : During accel. Bit 1 : Affer fault reset Bit 2 : Restarted after instant power failure Bit 3 : When H 2 O is set to 1 (Yes)	0	No
	H23	Speed search current limitation level	8 to 200[\%]	100	Yes
	H24	Speed search P gain	Oto 9999	100	Yes
	H25	Speed search I gain	Oto 9999	1000	Yes
	H26	Number of auto restart attempt	0 to 10	0	Yes
	H27	Delay time before auto restart	0 to 60[sec]	1	Yes
	H30	Motor power rating selection	0.2, 0.75, 1.5, 2.2[kW]	*	No
	H31	Number of motor poles	2 to 12	4	No
	H32	Rated motorslip	0 to 10[Hz]	*	No
	H33	Rated motor current in RMS	0 to 20[A]	*	No
	H34	No load motor curent in RMS	0.1 to 20[A]	*	No
	H36	Motor efficiency	70 to 100[\%]	*	No

Program parameters descriptions

FU2 group	Keypad display	Description	Setting range	Factory default	Adjustable during run
	H37	Load inertia	0 to 2	0	No
	H39	Carier frequency	1 to $15[\mathrm{kHz}]$	3.0	Yes
	H40	Control mode selection	O(V/F) 1 (Slip compen) 2(PID) 3(Sensorless vector control)	0	No
	H41	Auto tuning	0 tol	0	Yes
	H42	Stator reristance	0 to 5 [BŸ]	0	Yes
	H44	Leakage inductance	Oto 300[mH]	0	Yes
	H45	Sensorless P gain	0 to 32767	1000	Yes
	H46	Sensorless I gain	0 to 32767	100	Yes
	H50	PID feedback signal selection	$\begin{aligned} & 0(1) \\ & 1(\mathrm{~V} 1) \end{aligned}$	0	No
	H51	P gain for PID control	0 to 999.9 [\%]	300	Yes
	H52	I gain for PID control	0.1 to $32.0[\mathrm{sec}]$,	Yes
	H53	D gain for PID control	0.1 to 30.0[sec]	0	Yes
	H54	Fgain for PID control	0 to 999.9 [\%]	0	Yes
	H55	Limit frequency for PID control	0 to Max. frequency[Hz]	60	Yes
	H70	Reference frequency for Accel/Decel	O(Max. freq.) 1 (Delta frea.)	0	Yes
	H71	Accel/Decel time scale	$0(0.001 \mathrm{sec})$ $1(0.01 \mathrm{sec})$ 2(1sec)	1	No
	H72	Power On display	O(Command frequency) 1 (Accel. Time) 2(Decel. Time) 3(Drive mode) 4(Frequency mode) 5(Step frequency 1) 6(Step frequency 2) 7(Step frequency 3) 8(Current) 9(Speed) 10(DC link voltage) 11 (User display) 12(Fault display) 13(Motor direction)	0	Yes
	H73	User display selection	o(Voltage) 1 (Watt) 2(Torque)	0	Yes
	H74	Gain for motor speed display	1 to 1000[\%]	100	Yes
	H79	Software version	x.xx	x.xx	*
	H81	2nd acceleration time	0 to 6000 [sec]	5	Yes
	H82	2nd deceleration time	0 to 6000 [sec]	10	Yes
	H83	2nd acceleration time	30 to Max. frequency [Hz]	60	No
	H84	2nd V/F pattem	0(Linear) 1(Square) 2(User V/F)	0	No
	H85	2nd forward torque boost	0.0 to 15.0[\%]	5	No
	H86	2nd reverse torque boost	0.0 to 15.0[\%]	5	No
	H87	2nd stall prevention level	30 to 150[\%]	150	No
	H88	2nd electronic thermal level-1 min.	H89 to 200[\%]	150	Yes
	H89	2 nd electronic thermal level -continuous	50 to H88[\%]	100	Yes
	H90	2nd motor rated current	0.1 to 20[A]	*	No
	H93	Parameter initializing	$0(\mathrm{No})$ 1 (All groups) 2(Dive) 3(Function 1) 4(Function 2) 5(//O)	0	No
	H94	Parameter witing protection	0 to FFF	0	Yes
	H95	Parameter change protection	0 to FFF	0	Yes

$\begin{aligned} & \hline \mathrm{I} / \mathrm{O} \\ & \text { group } \end{aligned}$	Keypad display	Description	Setting range	Factory default	Adjustable during run
	143	Deceleration time 5	0 to 600 [sec]	7	Yes
	144	Acceleration time 6	0 to 600 [sec]	8	Yes
	145	Deceleration time 6	0 to 600 [sec]	8	Yes
	146	Acceleration time 7	0 to 600 [sec]	9	Yes
	147	Deceleration time 7	0 to 600 [sec]	9	Yes
	150	AM output	0(Frequency) 1 (Current) 2(Voltage) 3(DC link voltage)	0	Yes
	151	AM output adjustment	100 to 200[\%]	100	Yes
	152	Frequency detection level	0 to Max. frequency [Hz$]$	30	Yes
	153	Frequency detection bandwidth	0 to Max. frequency [Hz]	10	Yes
			$\begin{aligned} & \text { O(FDT-1) } \\ & \text { 1(FDT-2) } \\ & \text { 2(FDT-3) } \\ & \text { 3(FDT-4) } \\ & \text { 4(FDT-5) } \\ & \text { 5(OL) } \\ & \text { 6(IOL) } \\ & 7 \text { (Stall) } \end{aligned}$		
	154	Definition of multifunction output terminal MO	$\begin{aligned} & \text { 8(OV) } \\ & 9 \text { (LV) } \\ & 10(\text { OH) } \\ & 11 \text { (Lost command) } \\ & \text { 12(Run) } \\ & \text { 13(Stop) } \\ & \text { 14(Steady) } \\ & 15(\text { Search) } \\ & 16 \text { (Ready) } \\ & \text { 17(Fault select) } \end{aligned}$	12	Yes
	155	Definition of relay functions	Same as above 154	17	Yes
	156	Fault relay setting (30A, 30B, 30C)	000 to 111 (bit set) Bit 0 : Low voltage Bit 1 : Tip Bit 2 : Number of auto retry	010	Yes
	160	Inverter number	1 to 32	1	Yes
	161	Baud rate	O(1200bps) 1(2400bps) 2(4800bps) 3(9600bps) 4(19200bps)	3	Yes
	162	Operating selection at loss of freq. reference	0(None) 1(Free run) 2(Stop)	0	Yes
	163	Wailing time after loss of freq. reference	0.1 to $12[\mathrm{sec}]$	1.0	Yes

Warning:
 If protection function activates due to error/fault in the inverter, corresponding alarm is displayed on the keypad as shown below.
 Correct the errorffault before restarting or it may decrease the inverter's life expectancy.

Display	Fault/Error	Description

Fault/Error	Possibsle cause	Solution
8ct Overcurrent	- Accel/Decel time is not enough for the load inertia (GD²) Increase the Accel/Decel time - The load is greater than the rating of the inverter. - Inverter output is assigned during the free run of the motor. - The motor brake operates too fast.	- Replace the inverter with a higher rating - Operate affer the motor stops or use speed search(H22) in FU2 in the output terminals. - Verify the output wining - Verify the mechanical brake.
EFE Ground fault	- Ground fault at the load side of the inverter. - Insulation of the motor is broken.	- Check to see if there is something wrong with output wing. - Replace a motor.
BOL Inverter overload BLE Overload trip	- The load is greater than the rating of the inverter. - Power rating is set to the lower value than the load - Torque boost is too great.	- Increase the ratings of a motor and an inverter. - Check to see if the setting is correct. - Reduce the torque boost.
BHE Cooling fan overheat	- Fault in the cooling system. - The cooling fan is used beyond the life expectancy. - High ambient temperature	Check to see if there is any alien substance in the ventilation system. Replace the cooling fan. Keep the ambient temperature below 40°...
POL Output phase loss	- Fault in the load side contactor - Wining problem	Replace the contactor. - Verify the output wiring
FRn Coolingfan error	- Alien substances are in the ventilator. - The cooling fan is used beyond the expectancy.	Check to see if there is any alien substance in the ventilation system. Replace the cooling fan.
But Overvoltage	- Decel time is not enough for the load inertia(GD²) - There is a survived load in the load side. - Higher voltage than rating is supplied.	- Increase the Decel time - Uase DB unit. - Verify the power voltage.
BLL Undervoltage	- Lower voltage than rating is supplied. - Power capacity is not enough for the additional loads like welders and direct-on-line starting motors. - Fault in the line side contactor	- Verify the power voltage. - Increase the power capacity. - Replace the contactor.
EEH Electronic thermal	- Overtemperature of the motor - The load is greater than the rating of the inverter. - Electronic themal level is set lower than rating. - Inverter power rating is set to the lower value than the load - Long operation at low speed.	Reduce the load or operation times. - Increase the ratings of the inverter. - Adjust the electronic thermal properly. - Adjust the inverter rating properly. - Replace the motor with the separated power cable for the cooling fan.
5ER A contact fault signal input LEB B contact fault signal input	- The terminal 120/21/22/23/24 set to $18 / 19$ is ON	Verify the circuits connected to the extermal fault terminals.
$\begin{gathered} \text { Frequency command loss } \end{gathered}$	- Frequency command loss at terminals Vl and l	Verify the wiring connected to VI and I terminals.
Err Parameter store emor HOLE Output instant interrupting Ere Communication error	- Refer to LS or distributors	

Warning:

Carefully read the instruction for installation and wiring of inverters and relevant devices. Normal operation is impossible in case of the improper system design and wiring. These can shorten the life of the inverter and damage it at the worst.

※ Filter for use of LS Inverters :

Vector Motor Control Ib'erica (VMC)
C/Mar del Carib, 10 - Pol. Ind. La Torre del Rector 08130 - Santa Perp`etua de Mogoda (Barcelona) - SPAIN Tel: (+34) 935748206 - Fax: (+34) 935748248 e-mail: info@vmc.es -www.vmc.es

Leading Innovation, Creating Tomorrow

- For your safety, please read user's manual thoroughly before operating.
- Contact the nearest authorized service facility for examination, repair, or adjustment.
- Please contact qualified service technician when you need maintenance.

Do not disassemble or repair by yourself!

- Any maintenance and inspection shall be performed by the personnel having expertise concerned
(C) 2003.2 LS Industrial Systems Co.,Ltd. All rights reserved.

LS Industrial Systems Co., Ltd.

www.lgis.com

HEAD OFFICE

LS Tower 1026-6, Hogye-dong, Dongan-gu,
Anyang-si, Gyeonggi-do 431-848, Korea

- Europe	+82-2-2034-4376 / ywsohn@Isis.biz
- Middle East	+82-2-2034-4901 / bonseongk@Isis.biz
-South West Asia	+82-2-2034-4645 / sungkyup@Isis.biz
-South East Asia	+82-2-2034-4707 / ohpark@lsis.biz
- CIS	+82-2-2034-4913 / jinhkang@Isis.biz
- America	+82-2-2034-4377 / younsupl@lsis.biz

Specifications in this catalog are subject to change without notice due to continuous product development and improvement.

Global Network

- LS Industrial Systems (Middle East) FZE \gg Dubai, U.A.E. Address: P.O.Box-114216, API World Tower, 303B, Sheikhe Zayed Road, Dubai, U.A.E Tel: 971-4-886 5360 Fax: 971-4-886-5361 e-mail: hwyim@ |sis.biz
- Dalian LS Industrial Systems Co., Ltd. >> Dalian, China Address: No.15, Liaohexi 3-Road, Economic and Technical Development zone, Dalian 116600, China Tel: 86-411-8273-7777 Fax: 86-411-8730-7560 e-mail: lixk@|sis.com.cn
- LS Industrial Systems (Wuxi) Co., Ltd. >> Wuxi, China Address: 102-A , National High \& New Tech Industrial Development Area, Wuxi, Jiangsu,214028, P.R.China Tel: 86-510-8534-6666 Fax: 86-510-522-4078 e-mail: xuhg@|sis.com.cn
- LS-VINA Industrial Systems Co., Ltd. >> Hanoi, Vietnam Address: Nguyen Khe - Dong Anh - Ha Noi - Viet Nam Tel: 84-4-882-0222 Fax: 84-4-882-0220 e-mail: srjo @lsisvina.com
- LS-VINA Industrial Systems Co., Ltd. >> Hochiminh , Vietnam Address: 41 Nguyen Thi Minh Khai Str. Yoco Bldg 4th Floor, Hochiminh City, Vietnam Tel: 84-8-3822-7941 Fax: 84-8-3822-7942 e-mail: sbpark@ Isisvina.com
- LS Industrial Systems Tokyo Office >> Tokyo, Japan

Address: 16FL, Higashi-Kan, Akasaka Twin Tower 17-22, 2-chome, Akasaka, Minato-ku Tokyo 107-8470, Japan Tel: 81-3-3582-9128 Fax: 81-3-3582-2667 e-mail: jschuna@Isis.biz

- LS Industrial Systems Shanghai Office >>Shanghai, China Address: Room E-G, 12th Floor Huamin Empire Plaza, No.726, West Yan'an Road Shanghai 200050, P.R. China Tel: 86-21-5237-9977 (609) Fax: 89-21-5237-7191 e-mail: jinhk@|sis.com.cn
- LS Industrial Systems Beijing Office >> Beijing, China

Address: B-Tower 17FL.Beijing Global Trade Center B/D. No.36, BeiSanHuanDong-Lu, DongCheng-District, Beiiing 100013, P.R. China
Tel: 86-10-5825-6025,7 Fax: 86-10-5825-6026 e-mail: cuixiaorong@Isis.com.cn

- LS Industrial Systems Guangzhou Office >> Guangzhou, China Address: Room 1403,14F,New Poly Tower,2 Zhongshan Liu Road,Guangzhou, P.R. China Tel: 86-20-8326-6764 Fax: 86-20-8326-6287 e-mail: linsz@|sis.biz
- LS Industrial Systems Chengdu Office \gg Chengdu, China Address: 12Floor, Guodong Building, No52 Jindun Road Chengdu, 610041, P.R. China Tel: 86-28-8612-9151 Fax: 86-28-8612-9236 e-mail: yangct@|sis.com.cn
- LS Industrial Systems Qingdao Office >> Qingdao, China

Address: 7B40,Haixin Guangchang Shenye Building B, No.9, Shandong Road Qingdao 26600, P.R. China Tel: 86-532-8501-6568 Fax: 86-532-583-3793 e-mail: lirj@Isis.com.cn

X-ON Electronics

```
Largest Supplier of Electrical and Electronic Components
Click to view similar products for Inverters category:
Click to view products by LS INDUSTRIAL SYSTEMS manufacturer:
Other Similar products are found below :
5962-8550101CA E5-652Z NL17SGU04P5T5G NLX2G04BMX1TCG 412327H 022413E 065228GB NL17SG14AMUTCG NLU2G04AMUTCG
NLU2GU04BMX1TCG NLV14049UBDR2G NLV14069UBDTR2G NLV17SZ14DFT2G 74LVC2G17FW4-7 NLV17SZ06DFT2G
NLV27WZ04DFT2G NLV74HCT14ADTR2G NLX2G14CMUTCG SNJ54ALS04BW SNJ54AHCU04W SNJ54AHC04W SNJ54ACT14W
NCV1729SN35T1G TC74VHC04FK(EL,K) NLV74HC04ADTR2G NLV17SZ04DFT2G 74AUP2G04FW3-7 NLU1G04AMUTCG
NLX2G04CMUTCG NLX2G04AMUTCG NLV74ACT00DR2G NLV74AC14DR2G NLV27WZ04DFT1G NLV14106BDG NLU1GU04CMUTCG
NLU1GT14AMUTCG NLU1G04CMUTCG NL17SZU04P5T5G NL17SG14DFT2G 74LVC06ADTR2G 74LVC04ADR2G TC7SZ04AFS,L3J
NLU1GT04AMUTCG NLV37WZ04USG NLX3G14FMUTCG NL17SZ04P5T5G NL17SG14P5T5G NLV27WZU04DFT2G XL62083
I5DAE215B10V10000S
```

