feATURES

- Frequency Range: 800 MHz to 1.5 GHz
- High IIP3: 21.5 dBm at 900 MHz
- High IIP2: 52dBm
- Noise Figure: 12.8 dB at 900 MHz
- Conversion Gain: 4.3 dB at 900 MHz
- I/Q Gain Mismatch: 0.2dB
- Shutdown Mode
- 16-Lead QFN 4mm $\times 4 \mathrm{~mm}$ Package with Exposed Pad

APPLICATIONS

- Cellular/PCS/UMTS Infrastructure
- High Linearity Direct Conversion I/Q Receiver
- High Linearity I/Q Demodulator

DESCRIPTIOn

The $\mathrm{LT}^{\circledR} 5516$ is an 800 MHz to 1.5 GHz direct conversion quadrature demodulator optimized for high linearity receiver applications. It is suitable for communications receivers where an RF or IF signal is directly converted into I and Q baseband signals with bandwidth up to 260 MHz . The LT5516 incorporates balanced I and Q mixers, LO buffer amplifiers and a precision, high frequency quadrature generator.

In an RF receiver, the high linearity of the LT5516 provides excellent spur-free dynamic range, even with fixed gain front end amplification. This direct conversion receiver can eliminate the need for intermediate frequency (IF) signal processing, as well as the corresponding requirements for image filtering and IF filtering. Channel filtering can be performed directly at the outputs of the I and Q channels. These outputs can interface directly to channelselect filters (LPFs) or to a baseband amplifier.
$\boldsymbol{\boxed { } \boldsymbol { Y }}$ LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

TYPICAL APPLICATION

5516 TA01

Figure 1. High Signal-Level I/Q Demodulator for Wireless Infrastructure
ABSOLUTE MAXIMUM RATINGS
(Note 1)
Power Supply Voltage 5.5V
Enable Voltage $0, V_{C C}$
LO+ to LO- Differential Voltage $\pm 2 \mathrm{~V}$
RF^{+}to RF^{-}Differential Voltage $\pm 2 \mathrm{~V}$
Operating Ambient Temperature

\qquad
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Maximum Junction Temperature $125^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

	ORDER PART NUMBER
	LT5516EUF
$\begin{array}{ll} \mathrm{RF}^{+} \\ \mathrm{RF}^{-} & = \\ \hline \end{array}$	
	UF PART
$\mathrm{H}_{>}^{\text {¢ }}$	MARKING
UF PACKAGE 16-LEAD ($4 \mathrm{~mm} \times 4 \mathrm{~mm}$) PLASTIC QFN	5516
EXPOSED PAD (PIN 17) IS GROUND (MUST BE SOLDERED TO PCB)	
$\mathrm{T}_{\text {JMax }}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=38^{\circ} \mathrm{C} / \mathrm{W}$	
Order Options Tape and Reel: Add \#TR	
Lead Free: Add \#PBF Lead Free Tape and Reel: Add \#TRPBF	
Lead Free Part Marking: http://w	om/leadfree/

Consult LTC Marketing for parts specified with wider operating temperature ranges.

AC ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{EN}=$ high, $\mathrm{f}_{\mathrm{RF} 1}=899.9 \mathrm{MHz}, \mathrm{f}_{\mathrm{RF} 2}=900.1 \mathrm{MHz}$,
$\mathrm{f}_{\mathrm{LO}}=901 \mathrm{MHz}, \mathrm{P}_{\mathrm{LO}}=-10 \mathrm{dBm}$ unless otherwise noted. (Notes 2, 3) (Test circuit shown in Figure 2)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Frequency Range				0.8 to 1.5		GHz
LO Power				-13 to -2		dBm
Conversion Gain	Voltage Gain, Load Impedance $=1 \mathrm{k}$		2	4.3		dB
Conversion Gain Variation vs Temperature	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			0.01		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Noise Figure		$\begin{aligned} & \mathrm{R} 1=8.2 \Omega \\ & \mathrm{R} 1=3.3 \Omega, \mathrm{P}_{\mathrm{L} 0}=-5 \mathrm{dBm} \end{aligned}$		$\begin{aligned} & 11.4 \\ & 12.8 \end{aligned}$		dB dB
Input 3rd Order Intercept	$\begin{aligned} & \text { 2-Tone, -10dBm/Tone, } \\ & \Delta f=200 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & \mathrm{R} 1=8.2 \Omega \\ & \mathrm{R} 1=3.3 \Omega, \mathrm{P}_{\mathrm{L} 0}=-5 \mathrm{dBm} \end{aligned}$		$\begin{aligned} & 17.0 \\ & 21.5 \end{aligned}$		dBm dBm
Input 2nd Order Intercept	Input $=-10 \mathrm{dBm}$	$\begin{aligned} & \mathrm{R} 1=8.2 \Omega \\ & \mathrm{R} 1=3.3 \Omega, \mathrm{P}_{\mathrm{L} 0}=-5 \mathrm{dBm} \end{aligned}$		$\begin{aligned} & 46.0 \\ & 52.0 \end{aligned}$		dBm dBm
Input 1dB Compression	$\mathrm{R} 1=8.2 \Omega$			6.6		dBm
Baseband Bandwidth				260		MHz
I/Q Gain Mismatch	(Note 4)			0.2	0.7	dB
I/Q Phase Mismatch	(Note 4)			1		degree
Output Impedance	Differential			120		Ω
LO to RF Leakage				-65		dBm
RF to LO Isolation				57		dB

DC ELECTRICAL CHARACTGRISTICS $T_{A}=25^{\circ} C$. $V_{C C}=5 V$ unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage		4		5.25	V
Supply Current		80	117	150	mA
Shutdown Current	EN = Low			20	$\mu \mathrm{A}$
Turn-On Time			120		ns
Turn-Off Time			650		ns
EN = High (On)		1.6			V
EN = Low (Off)				1.3	V
EN Input Current	$V_{\text {ENABLE }}=5 \mathrm{~V}$		2		$\mu \mathrm{A}$
Output DC Offset Voltage $\left(\left\|I_{\text {OUT }^{+}}-I_{\text {OUT }^{-}}\right\|,\left\|Q_{\text {OUT }^{+}}-Q_{\text {OUTT }^{-}}\right\|\right)$	$\mathrm{f}_{\mathrm{LO}}=901 \mathrm{MHz}, \mathrm{P}_{\mathrm{LO}}=-10 \mathrm{dBm}$		1	25	mV
Output DC Offset Variation vs Temperature	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$		20		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: Tests are performed as shown in the configuration of Figure 2 with $R 1=8.2 \Omega$, unless otherwise noted.

Note 3: Specifications over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ temperature range are assured by design, characterization and correlation with statistical process control.
Note 4: Measured at $\mathrm{P}_{\mathrm{RF}}=-10 \mathrm{dBm}$ and output frequency $=1 \mathrm{MHz}$.

TYPICAL PERFORMANCE CHARACTERISTICS

(Test circuit optimized for 900 MHz operation as shown in Figure 2)

IIP2 vs RF Input Frequency

Conv Gain, NF, IIP3 vs RF Input Frequency

5516 G02
I/Q Output Power, IM3 vs RF Input Power

I/Q Gain Mismatch vs RF Input Frequency

TYPICAL PERFORMANCE CHARACTERISTICS

(Test circuit optimized for 900 MHz operation as shown in Figure 2)

5516 G06
Conv Gain, IIP3 vs LO Input Power

5516 G08

NF vs LO Input Power

IIP2 vs LO Input Power

Conv Gain, IIP3 vs Supply Voltage

TYPICAL PERFORMAOCE CHARACTERISTICS

(Test circuit optimized for 900 MHz operation as shown in Figure 2)

5516 G11
RF, LO Port Return Loss vs
Frequency

5516 G13
Conv Gain, NF, IIP3 vs R1

5516 G15

RF-LO Isolation vs RF Input Power

5516 G12

Conv Gain vs Baseband Frequency

5516 G14
Supply Current, IIP2 vs R1

5516 G16

PIn functions

GND (Pins 1, 4): Ground Pin.
RF $^{+}$, RF${ }^{-}$(Pins 2, 3): Differential RF Input Pins. These pins are internally biased to 1.54 V . They must be driven with a differential signal. An external matching network is required for impedance transformation.
$V_{\text {CC }}$ (Pins 5, 8, 9, 12): Power Supply Pins. These pins should be decoupled using 1000 pF and $0.1 \mu \mathrm{~F}$ capacitors.
$V_{\text {CM }}$ (Pin 6): Common Mode and DC Return for the I-Mixer and Q-Mixer. An external resistor must be connected between this pin and ground to set the dc bias current of the I/Q demodulator.

EN (Pin 7): Enable Pin. When the input voltage is higher than 1.6 V , the circuit is completely turned on. When the input voltage is less than 1.3 V , the circuit is turned off.
$\mathrm{LO}^{+}, \mathrm{LO}^{-}$(Pins 10, 11): Differential Local Oscillator Input Pins. These pins are internally biased to 2.44 V . They can be driven single-ended by connecting one to an AC ground through a 1000 pF capacitor. However, differential input drive is recommended to minimize LO feedthrough to the RF input pins.
$\mathrm{Q}_{\text {OUT }}{ }^{-}, \mathrm{Q}_{\text {OUT }}{ }^{+}$(Pins 13, 14): Differential Baseband Output Pins of the Q-Channel. The internal DC bias voltage is $V_{C C}$ -0.68 V for each pin.
$\mathrm{I}_{\text {OUT }}{ }^{-}, \mathrm{I}_{\text {OUT }}{ }^{+}$(Pins 15, 16): Differential Baseband Output Pins of the I-Channel. The internal DC bias voltage is $\mathrm{V}_{C C}$ -0.68 V for each pin.
GROUND (Pin 17, Backside Contact): Ground Return for the Entire IC. This pin must be soldered to the printed circuit board ground plane.

BLOCK DIAGRAM

LT5516

TEST CIRCUITS

REFERENCE DESIGNATION	VALUE	SIZE	PART NUMBER
$\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 16, \mathrm{C} 17$	100 pF	0402	AVX 04025C101JAT
$\mathrm{C5}, \mathrm{C} 6, \mathrm{C} 7$	1 nF	0402	AVX 04025C102JAT
C3	$0.1 \mu \mathrm{~F}$	0402	AVX 0402ZD104KAT
C 4	$2.2 \mu \mathrm{~F}$	3216	AVX TPSA225M010R1800
$\mathrm{L1}$	33 nH	0402	Murata LQP10A
L 2	27 nH	0402	Murata LQP10A
R1	3.3Ω	0402	
R2	100 k	0402	
R3	1 k	0402	
T1, T2	$1: 4$		Murata LDB31900M20C-416

Figure 2. 900MHz Evaluation Circuit Schematic

Figure 3. Topside of Evaluation Board

Figure 4. Bottom Side of Evaluation Board

APPLICATIONS INFORMATION

The LT5516 is a direct I/Q demodulator targeting high linearity receiver applications, including wireless infrastructure. It consists of an RF amplifier, I/Q mixers, a quadrature LO carrier generator and bias circuitry.
The RF signal is applied to the inputs of the RF amplifier and is then demodulated into I/Q baseband signals using quadrature LO signals. The quadrature LO signals are internally generated by precision 90° phase shifters. The demodulated I/Q signals are lowpass filtered internally with a -3 dB bandwidth of 265 MHz . The differential outputs of the I-channel and Q-channel are well matched in amplitude; their phases are 90° apart.

RF Input Port

Differential drive is highly recommended for the RF inputs to minimize the LO feedthrough to the RF port and to maximize gain. (See Figure 2.) A 1:4 transformer is used on the demonstration board for wider bandwidth matching. To assure good NF and maximize the demodulator gain, a low loss transformer is employed. Shunt inductor L1, with high resonance frequency, is required for proper impedance matching. Single-ended to differential conversion can also be implemented using narrow band, discrete L-C circuits to produce the required balanced waveforms at the RF^{+}and RF^{-}inputs. The differential impedance of the RF inputs is listed in Table 1.
Table 1. RF Input Differential Impedance

FREQUENCY (MHz)	DIFFERENTIAL INPUT IMPEDANCE (Ω)	DIFFERENTIAL S11	
		MAG	ANGLE $\left({ }^{\circ}\right)$
800	$156.1-\mathrm{j} 181.8$	0.779	-16.9
900	$145.6-\mathrm{j} 170.0$	0.753	-18.3
1000	$137.3-\mathrm{j} 160.0$	0.740	-19.6
1100	$130.7-\mathrm{j} 152.1$	0.729	-20.9
1200	$124.9-\mathrm{j} 144.7$	0.718	-23.0
1300	$119.9-\mathrm{j} 138.3$	0.707	-24.0
1400	$115.7-\mathrm{j} 133.1$	0.698	-24.9
1500			

The RF+ and RF- inputs (Pins 2, 3) are internally biased at 2.44 V . These two pins should be DC blocked when connected to ground or other matching components. The RF input equivalent circuit is shown in Figure 5.

An external resistor (R1) is connected to Pin $6\left(\mathrm{~V}_{\mathrm{CM}}\right)$ to set the optimum DC current for I/Q mixer linearity. The IIP3 can be improved with a smaller R1 at a price of slightly higher NF and $I_{C C}$. The RF performances of NF, IIP3 and IIP2 vs R1 are shown in the Typical Performance Characteristics.

LO Input Port

The LO inputs (Pins 10,11) should be driven differentially to minimize LO feedthrough to the RF port. This can be accomplished by means of a single-ended to differential conversion as shown in Figure 2. L4, the 27 nH shunt inductor, serves to tune out the capacitive component of the LO differential input. The resonance frequency of the inductor should be greater than the operating frequency. A 1:4 transformer is used on the demo board to match the 200Ω on-chip resistance to a 50Ω source. Figure 6 shows the LO input equivalent circuit and the associated matching network.
Single-ended to differential conversion at the LO inputs can also be implemented using a discrete L-C circuit to produce a balanced waveform without a transformer.

An alternative solution is a simple single-ended termination. However, the LO feedthrough to RF may be degraded. Either LO ${ }^{+}$or LO-input can be terminated to a 50Ω source with a matching circuit, while the other input is connected to ground through a 100pF bypass capacitor.
Table 2 shows the differential input impedance of the LO input port.
Table 2. LO Input Differential Impedance

FREQUENCY (MHz)	DIFFERENTIAL INPUT IMPEDANCE (Ω)	DIFFERENTIAL S11	
		MAG	ANGLE (${ }^{\circ}$)
800	$118.4-\mathrm{j} 65.1$	0.552	-22.5
900	$110.1-\mathrm{j} 66.7$	0.517	-25.4
1000	$102.2-\mathrm{j} 67.5$	0.512	-28.5
1100	$94.6-\mathrm{j} 67.2$	0.505	-31.8
1200	$87.5-\mathrm{j} 66.1$	0.498	-35.0
1300	$80.8-\mathrm{j} 64.4$	0.490	-38.3
1400	$74.7-\mathrm{j} 62.1$	0.480	-42.0
1500	$69.3-\mathrm{j} 59.4$	0.469	-45.8

APPLICATIONS InfORMATION

I-Channel and Q-Channel Outputs

Each of the I-channel and Q-channel outputs is internally connected to $\mathrm{V}_{\text {CC }}$ though a 60Ω resistor. The output dc bias voltage is $\mathrm{V}_{\text {CC }}-0.68 \mathrm{~V}$. The outputs can be DC coupled or AC coupled to the external loads. The differential output impedance of the demodulator is 120Ω in parallel with a 5 pF internal capacitor, forming a lowpass filter with a -3 dB corner frequency at 265 MHz . R LOAD (the singleended load resistance) should be larger than 600Ω to assure full gain. The gain is reduced by $20 \cdot \log (1+120 \Omega /$ $\mathrm{R}_{\text {LOAD }}$) in dB when the differential output is terminated by $R_{\text {LOAD }}$. For instance, the gain is reduced by 6.85 dB when each output pin is connected to a 50Ω load (100Ω differential load). The output should be taken differentially (or by using differential-to-single-ended conversion) for best RF performance, including NF and IM2.

The phase relationship between the I-channel output signal and Q-channel output signal is fixed. When the LO input frequency is larger (or smaller) than the RF input frequency, the Q-channel outputs ($Q_{\text {OUT }}{ }^{+}, Q_{\text {OUT }}{ }^{-}$) lead (or lag) I-channel outputs ($\mathrm{IOUT}^{+}, \mathrm{I}_{\text {OUT }}{ }^{-}$) by 90°.

When AC output coupling is used, the resulting highpass filter's -3 dB roll-off frequency is defined by the R-C constant of the blocking capacitor and R ROAD , assuming $R_{\text {LOAD }}>600 \Omega$.
Care should be taken when the demodulator's outputs are DC coupled to the external load, to make sure that the I/Q mixers are biased properly. If the current drain from the outputs exceeds 6 mA , there can be significant degradation of the linearity performance. Each output can sink no more than 13mA when the outputs are connected to an external Ioad with a DC voltage higher than $\mathrm{V}_{\mathrm{CC}}-0.68 \mathrm{~V}$. The I/Q output equivalent circuit is shown in Figure 7.

Figure 5. RF Input Equivalent Circuit with External Matching

APPLICATIONS Information

Figure 6. LO Input Equivalent Circuit with External Matching

Figure 7. I/Q Output Equivalent Circuit

PACKAGE DESCRIPTION

UF Package
16-Lead Plastic QFN ($4 \mathrm{~mm} \times 4 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1692)

NOTE:

1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC) 2. DRAWING NOT TO SCALE
2. ALL DIMENSIONS ARE IN MILLIMETERS
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCIUDE

MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15 mm ON ANY SIDE

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
RF Power Controllers		
LTC1757A	RF Power Controller	Multiband GSM/DCS/GPRS Mobile Phones
LTC1758	RF Power Controller	Multiband GSM/DCS/GPRS Mobile Phones
LTC1957	RF Power Controller	Multiband GSM/DCS/GPRS Mobile Phones
LTC4400	SOT-23 RF PA Controller	Multiband GSM/DCS/GPRS Phones, 45dB Dynamic Range, 450kHz Loop BW
LTC4401	SOT-23 RF PA Controller	Multiband GSM/DCS/GPRS Phones, 45dB Dynamic Range, 250kHz Loop BW
LTC4403	RF Power Controller for EDGE/TDMA	Multiband GSM/GPRS/EDGE Mobile Phones
LT5500	RF Front End	Dual LNA gain Setting $+13.5 \mathrm{~dB} /-14 \mathrm{~dB}$ at 2.5 GHz , Double-Balanced Mixer, $1.8 \mathrm{~V} \leq \mathrm{V}_{\text {SUPPLY }} \leq 5.25 \mathrm{~V}$
LT5502	400MHz Quadrature Demodulator with RSSI	1.8 V to 5.25V Supply, 70 MHz to 400MHz IF, 84dB Limiting Gain, 90dB RSSI Range
LT5503	1.2 GHz to 2.7GHz Direct IQ Modulator and Up Converting Mixer	1.8 V to 5.25V Supply, Four-Step RF Power Control, 120MHz Modulation Bandwidth
LT5504	800 MHz to 2.7GHz RF Measuring Receiver	80dB Dynamic Range, Temperature Compensated, 2.7V to 5.5V Supply
LTC5505	300 MHz to 3.5GHz RF Power Detector	$>40 \mathrm{~dB}$ Dynamic Range, Temperature Compensated, 2.7V to 6V Supply
LT5506	500 MHz Quadrature IF Demodulator with VGA	1.8 V to 5.25V Supply, 40MHz to 500MHz IF, $4 \mathrm{4dB}$ to 57dB Linear Power Gain
LTC5507	100kHz to 1GHz RF Power Detector	48dB Dynamic Range, Temperature Compensated, 2.7V to 6V Supply
LTC5508	300 MHz to 7GHz RF Power Detector	SC70 Package
LTC5509	300MHz to 3GHz RF Power Detector	36dB Dynamic Range, SC70 Package
LT5511	High Signal Level Up Converting Mixer	RF Output to 3GHz, 17dBm IIP3, Integrated LO Buffer
$\underline{\text { LT5512 }}$	High Signal Level Down Converting Mixer	DC-3GHz, 20dBm IIP3, Integrated L0 Buffer

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Modulator/Demodulator category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
F1653NLGI SKY73009-11 LC72722PM-TLM-E LT5568-2EUF\#PBF PM-103-PIN HMC495LP3TR MAX2309ETI+ MAX2021ETX + MAX2308ETI+ MAX2306ETI+ MAX2150ETI LT5517EUF\#PBF HMC1097LP4ETR LT5516EUF\#PBF LT5575EUF\#PBF ADL5373ACPZ-R7
ADRF6821ACPZ LTC5588IPF-1\#PBF LA72912V-TLM-H LT5506EUF\#PBF LT5515EUF\#PBF LT5572EUF\#PBF LT5546EUF\#PBF
LTC5585IUF\#PBF LT5528EUF\#PBF TDA8296HN/C1,557 LA72914V-TLM-H RFMD2081TR13 LT5502EGN\#PBF ADRF6702ACPZ-R7 031-5
AD630ADZ AD630ARZ AD630BDZ AD630JNZ AD630KNZ AD630SD AD630SD/883B AD8346ARUZ-REEL7 AD8333ACPZ-WP AD8339ACPZ AD8345ARE AD8345AREZ AD8345AREZ-RL7 AD8346ARUZ AD8347ARUZ AD8347ARUZ-REEL7 AD8348ARUZ AD8348ARUZ-REEL7 AD8349AREZ

