5 mm Low profile,
 2 Form C and 2 A (surfacemount type) relays

TQ RELAYS

FEATURES

RoHS compliant

1. Flat compact size
2. Nominal operating power: insertion (SA type)
$14.0(\mathrm{~L}) \times 9.0(\mathrm{~W}) \times 5.0(\mathrm{H}) \mathrm{mm}$
$.551(\mathrm{~L}) \times .354(\mathrm{~W}) \times .197(\mathrm{H})$ inch
High sensitivity of 140 mW (2 Form C single side stable type)
3. Suitable for SMD automatic

With a height of 5.6 mm .220 inch , the relays meet JIS C 0806 specifications.
4. DIL terminal array enables use of IC sockets
5. Low thermal electromotive force (approx. $5 \mu \mathrm{~V}$) [approx. $2 \mu \mathrm{~V}$ (surface-mount type)]
6. Latching types also available
7. Self-clinching terminal also available
8. A range of surface-mount types is also available
SA: Low-profile surface-mount terminal type
SL: High connection reliability surfacemount terminal type
SS: Space saving surface-mount terminal type
9. M.B.B. contact types available

TYPICAL APPLICATIONS

1. Telephone-related equipment
2. Communications
3. Measurement equipment
4. OA equipment
5. Industrial machines

ORDERING INFORMATION

Contact arrangement
2: 2 Form C
Terminal shape
Nil: Standard PC board terminal
H: Self-clinching terminal
SA: SA type
SL: SL type
SS: SS type
Operating function
Nil: Single side stable
L : 1 coil latching
L2: 2 coil latching
MBB function
Nil: Standard (B.B.M.) type
2M: 2M.B.B. type
Nominal coil voltage (DC)*
1.5 (SMD only), 3, 4.5, 5, 6, 9, 12, 24, 48V

Packing style

Nil: Tube packing
X: Tape and reel (picked from 1/2/3/4/5-pin side)
Z: Tape and reel packing (picked from the 6/7/8/9/10-pin side)
Notes: 1. *48 V coil type: Single side stable only
2. In case of 5 V transistor drive circuit, it is recommended to use 4.5 V type relay.

TYPES

\square Standard PC board terminal and self-clinching terminal

1. Standard (B.B.M.) type
1) Standard PC board terminal

Contact	Nominal coil voltage	Single side stable	1 coil latching	2 coil latching
arrangement		Part No.	Part No.	Part No.
2 Form C	3 V DC	TQ2-3V	TQ2-L-3V	TQ2-L2-3V
	4.5 V DC	TQ2-4.5V	TQ2-L-4.5V	TQ2-L2-4.5V
	5 V DC	TQ2-5V	TQ2-L-5V	TQ2-L2-5V
	6 VDC	TQ2-6V	TQ2-L-6V	TQ2-L2-6V
	9 V DC	TQ2-9V	TQ2-L-9V	TQ2-L2-9V
	12 VDC	TQ2-12V	TQ2-L-12V	TQ2-L2-12V
	24 V DC	TQ2-24V	TQ2-L-24V	TQ2-L2-24V
	48 V DC	TQ2-48V	-	-

Standard packing (2 Form C): Tube: 50 pcs.; Case: 1,000 pcs.
2) Self-clinching terminal

Contact arrangement	Nominal coil voltage	Single side stable	1 coil latching	2 coil latching
		Part No.	Part No.	Part No.
2 Form C	3 V DC	TQ2H-3V	TQ2H-L-3V	TQ2H-L2-3V
	4.5 V DC	TQ2H-4.5V	TQ2H-L-4.5V	TQ2H-L2-4.5V
	5 V DC	TQ2H-5V	TQ2H-L-5V	TQ2H-L2-5V
	6 V DC	TQ2H-6V	TQ2H-L-6V	TQ2H-L2-6V
	9 V DC	TQ2H-9V	TQ2H-L-9V	TQ2H-L2-9V
	12 VDC	TQ2H-12V	TQ2H-L-12V	TQ2H-L2-12V
	24 V DC	TQ2H-24V	TQ2H-L-24V	TQ2H-L2-24V
	48 V DC	TQ2H-48V	-	-

Note: Types ("-3" to the end of part No.) designed to withstand strong vibration caused, for example, by the use of terminal cutters, can also be ordered. However, please contact us if you need parts for use in low level load.
2. M.B.B. type

1) Standard PC board terminal

Contact arrangement	Nominal coil voltage	Single side stable
		Part No.
2 Form C	3 V DC	TQ2-2M-3V
	4.5 V DC	TQ2-2M-4.5V
	5 V DC	TQ2-2M-5V
	6 V DC	TQ2-2M-6V
	9 V DC	TQ2-2M-9V
	12 V DC	TQ2-2M-12V
	24 V DC	TQ2-2M-24V

Standard packing: Tube: 50 pcs.; Case: 1,000 pcs.
2) Self-clinching terminal

Contact arrangement	Nominal coil voltage	Single side stable
		Part No.
2 Form C	3 V DC	TQ2H-2M-3V
	4.5 V DC	TQ2H-2M-4.5V
	5 V DC	TQ2H-2M-5V
	6 V DC	TQ2H-2M-6V
	9 V DC	TQ2H-2M-9V
	12 V DC	TQ2H-2M-12V
	24 V DC	TQ2H-2M-24V

Standard packing: Tube: 50 pcs.; Case: 1,000 pcs.
Notes: 1. Latching types are available by request. Please consult us for details.
2. UL/CSA approved (UL file No.:E 43149, CSA file No.: LR26550)
3. Types ("-1" to the end of part No.) designed to withstand strong vibration caused, for example, by the use of terminal cutters, can also be ordered. However, please contact us if you need parts for use in low level load and low thermal power.

- Surface-mount terminal

1) Tube packing

Contact arrangement	Nominal coil voltage	Single side stable	1 coil latching	2 coil latching
		Part No.	Part No.	Part No.
2c	1.5 V DC	TQ2S \square-1.5V	TQ2S \square-L-1.5V	TQ2S \square-L2-1.5V
	3 V DC	TQ2S \square-3V	TQ2S \square-L-3V	TQ2S \square-L2-3V
	4.5 V DC	TQ2S \square-4.5V	TQ2S \square-L-4.5V	TQ2S \square-L2-4.5V
	5 VDC	TQ2S \square-5V	TQ2S $\square-L-5 \mathrm{~V}$	TQ2S \square-L2-5V
	6 V DC	TQ2S \square-6V	TQ2S $\square-L-6 \mathrm{~V}$	TQ2S \square-L2-6V
	9 VDC	TQ2S \square-9V	TQ2S $\square-L-9 \mathrm{~V}$	TQ2S \square-L2-9V
	12 VDC	TQ2S \square-12V	TQ2S \square-L-12V	TQ2S \square-L2-12V
	24 VDC	TQ2S \square-24V	TQ2S \square-L-24V	TQ2S $\square-$ L2-24V
	48 VDC	TQ2S \square-48V	-	-

\square : For each surface-mounted terminal identification, input the following letter. SA type: \underline{A}, SL type: \underline{L}, SS type: \underline{S}
Standard packing: Tube: 50 pcs.; Case: 1,000 pcs.
2) Tape and reel packing

Contact	Nominal coil voltage	Single side stable	1 coil latching	2 coil latching
arrangement		Part No.	Part No.	Part No.
2 Form C	1.5 V DC	TQ2S $\square-1.5 \mathrm{~V}-\mathrm{Z}$	TQ2S \square-L-1.5V-Z	TQ2S \square-L2-1.5V-Z
	3 V DC	TQ2S \square-3V-Z	TQ2S \square-L-3V-Z	TQ2S \square-L2-3V-Z
	4.5 V DC	TQ2S $\square-4.5 \mathrm{~V}-\mathrm{Z}$	TQ2S \square-L-4.5V-Z	TQ2S \square-L2-4.5V-Z
	5 V DC	TQ2S \square-5V-Z	TQ2S \square-L-5V-Z	TQ2S \square-L2-5V-Z
	6 V DC	TQ2S \square-6V-Z	TQ2S \square-L-6V-Z	TQ2S \square-L2-6V-Z
	9 V DC	TQ2S \square-9V-Z	TQ2S \square-L-9V-Z	TQ2S \square-L2-9V-Z
	12 V DC	TQ2S \square-12V-Z	TQ2S \square-L-12V-Z	TQ2S \square-L2-12V-Z
	24 V DC	TQ2S \square-24V-Z	TQ2S \square-L-24V-Z	TQ2S \square-L2-24V-Z
	48 V DC	TQ2S \square-48V-Z	-	-

\square : For each surface-mounted terminal identification, input the following letter. SA type: $\underline{A}, S L$ type: $\underline{\underline{L}}, \mathrm{SS}$ type: \underline{S}
Standard packing: Tape and reel: 500 pcs.; Case: 1,000 pcs.
Note: Tape and reel packing symbol "-Z" is not marked on the relay. " X " type tape and reel packing (picked from 1/2/3/4-pin side) is also available.

RATING

\square Standard PC board terminal and self-clinching terminal

1. Coil data

[Standard (B.B.M.) type]

1) Single side stable (2 Form C)

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \\ \hline \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
3 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage* (Initial)	46.7 mA	64.3Ω	140 mW	$150 \% \mathrm{~V}$ of nominal voltage
4.5 V DC			31.1 mA	144.6Ω		
5 V DC			28.1 mA	178 ת		
6 V DC			23.3 mA	257 ת		
9 V DC			15.5 mA	579Ω		
12 V DC			11.7 mA	1,028 Ω		
24 V DC			8.3 mA	2,880 Ω	200 mW	
48 V DC			6.25 mA	7,680 Ω	300 mW	$120 \% \mathrm{~V}$ of nominal voltage

2) 1 coil latching (2 Form C)

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right. \text {) }} \end{gathered}$	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
3 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	33.3 mA	90Ω	100 mW	$150 \% \mathrm{~V}$ of nominal voltage
4.5 V DC			22.2 mA	202.5Ω		
5 V DC			20 mA	250Ω		
6 V DC			16.7 mA	360Ω		
9 V DC			11.1 mA	810Ω		
12 V DC			8.3 mA	1,440 Ω		
24 V DC			6.3 mA	$3,840 \quad \Omega$	150 mW	

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		perating ent $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	$\begin{array}{r} \text { Coil re } \\ {[\pm 10 \%] \text { (at }} \end{array}$	stance $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Nomina	perating er	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
3 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	66.7 mA	66.7 mA	45Ω	45Ω	200 mW	200 mW	$150 \% \mathrm{~V}$ of nominal voltage
4.5 V DC			44.4 mA	44.4 mA	101.2Ω	101.2Ω			
5 V DC			40 mA	40 mA	125Ω	125Ω			
6 V DC			33.3 mA	33.3 mA	180Ω	180Ω			
9 V DC			22.2 mA	22.2 mA	405Ω	405Ω			
12 V DC			16.7 mA	16.7 mA	720Ω	720Ω			
24 V DC			12.5 mA	12.5 mA	1,920 Ω	1,920 Ω	300 mW	300 mW	$120 \% \mathrm{~V}$ of nominal voltage

[M.B.B. type]

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
3 V DC	$80 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage* (Initial)	66.7 mA	45Ω	200 mW	$150 \% \mathrm{~V}$ of nominal voltage
4.5 V DC			44.4 mA	101Ω		
5 V DC			40 mA	125Ω		
6 V DC			33.3 mA	180Ω		
9 V DC			22.2 mA	405Ω		
12 VDC			16.7 mA	720Ω		
24 V DC			8.3 mA	2,880 Ω		

*Pulse drive (JIS C 5442-1986)

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		2 Form C, 2 Form D (M.B.B.)
	Initial contact resistance, max.		Max. $50 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material		Ag+Au clad
Rating	Nominal switching capacity		1 A 30 V DC, 0.5 A 125 V AC (resistive load)
	Max. switching power		30 W (DC), $62.5 \mathrm{~V} \mathrm{~A} \mathrm{(AC)} \mathrm{(resistive} \mathrm{load)}$
	Max. switching voltage		110 V DC, 125 V AC
	Max. switching current		1 A
	Min. switching capacity (Reference value)*1		$10 \mu \mathrm{~A} 10 \mathrm{mV}$ DC
	Nominal operating power	Single side stable	Standard (B.B.M) type: 140 mW (3 to 12 V DC), 200 mW (24 V DC), 300 mW (48 V DC) M.B.B. type: 200 mW
		1 coil latching	100 mW (3 to 12 V DC), 150 mW (24 V DC)
		2 coil latching	200 mW (3 to 12 V DC), 300 mW (24 V DC)
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000M Ω (at 500 V DC) Measurement at same location as "Initial breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	Standard (B.B.M) type: 750 Vrms for 1 min . (Detection current: 10 mA), M.B.B. type: 300 Vrms for 1 min . (Detection current: 10 mA)
		Between contact and coil	1,000 Vrms for 1 min . (Detection current: 10 mA)
		Between contact sets	1,000 Vrms for 1 min . (Detection current: 10 mA)
	Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $50^{\circ} \mathrm{C}$ (By resistive method, nominal coil voltage applied to the coil; contact carrying current: 1A.)
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 3 ms [Max. 3 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.)
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 3 ms [Max. 3 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)
Mechanical characteristics	Shock resistance	Functional	Min. $490 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 5 mm
Expected life	Mechanical (at 180 cpm)		Standard (B.B.M) type: Min. 108, M.B.B. type: Min. 10^{7}
	Electrical (at 20 cpm)		Standard (B.B.M) type: Min. 2×10^{5} (1 A 30 V DC resistive), Min. 10^{5} (0.5 A 125 V AC resistive) M.B.B. type: Min. 10^{5} (1 A 30 V DC resistive)
Conditions	Conditions for operation, transport and storage ${ }^{* 2}$		Standard (B.B.M) type: Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature) M.B.B. type: Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+122^{\circ} \mathrm{F}$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed (at rated load)		20 cpm
Unit weight			Approx. 1.5 g .053 oz

Notes: *1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. TX/TX-S/TX-D relay AgPd contact type are available for low level load switching (10V DC, 10mA max. level).
*2 Refer to "AMBIENT ENVIRONMENT" in GENERAL APPLICATION GUIDELINES.

Surface-mount terminal

1. Coil data

1) Single side stable

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage* (Initial)	93.8 mA	16Ω	140 mW	$150 \% \mathrm{~V}$ of nominal voltage
3 V DC			46.7 mA	64.3Ω		
4.5 V DC			31 mA	145Ω		
5 V DC			28.1 mA	178 ת		
6 V DC			23.3 mA	257Ω		
9 V DC			15.5 mA	579Ω		
12 V DC			11.7 mA	1,028 Ω		
24 V DC			8.3 mA	2,880 Ω	200 mW	
48 V DC			6.3 mA	7,680 Ω	300 mW	$120 \% \mathrm{~V}$ of nominal voltage

2) 1 coil latching

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating current (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	46.9 mA	32Ω	70 mW	$150 \% \mathrm{~V}$ of nominal voltage
3 V DC			23.3 mA	128.6Ω		
4.5 V DC			15.6 mA	289.3Ω		
5 V DC			14 mA	357 ת		
6 V DC			11.7 mA	514Ω		
9 V DC			7.8 mA	1,157 Ω		
12 VDC			5.8 mA	2,057 Ω		
24 V DC			4.2 mA	5,760 Ω	100 mW	

3) 2 coil latching

Nominal coil voltage	$\begin{gathered} \text { Set voltage } \\ \left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right. \text {) } \end{gathered}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nomina (at 20	perating ent 68우)	$\begin{array}{r} \text { Coil re } \\ {[\pm 10 \%] \text { (at }} \end{array}$	stance $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Nomin	perating er	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
1.5 V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	93.8 mA	93.8 mA	16Ω	16Ω	140 mW	140 mW	$150 \% \mathrm{~V}$ of nominal voltage
3 VDC			46.7 mA	46.7 mA	64.3Ω	64.3Ω			
4.5 V DC			31 mA	31 mA	145Ω	145Ω			
5 V DC			28.1 mA	28.1 mA	178 ת	178 ת			
6 V DC			23.3 mA	23.3 mA	257 ת	257 ת			
9 V DC			15.5 mA	15.5 mA	579Ω	579Ω			
12 V DC			11.7 mA	11.7 mA	1,028 Ω	1,028 Ω			
24 V DC			8.3 mA	8.3 mA	2,880 Ω	2,880 Ω	200 mW	200 mW	

*Pulse drive (JIS C 5442-1986)

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		2 Form C
	Initial contact resistance, max.		Max. $75 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material		AgNi type+Au clad
Rating	Nominal switching capacity		2 A 30 V DC, 0.5 A 125 V AC (resistive load)
	Max. switching power		60 W (DC), $62.5 \mathrm{VA}(\mathrm{AC)}$ (resistive load)
	Max. switching voltage		220 V DC, 125 V AC
	Max. switching current		2 A
	Min. switching capacity (Reference value)*		$10 \mu \mathrm{~A} 10 \mathrm{mV}$ DC
	Nominal operating power	Single side stable	140 mW (1.5 to 12 V DC), 200 mW (24 V DC), 300 mW (48 V DC)
		1 coil latching	70 mW (1.5 to 12 V DC), 100 mW (24 V DC)
		2 coil latching	140 mW (1.5 to $12 \mathrm{~V} \mathrm{DC)}$,200 mW (24 V DC)
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000M Ω (at 500V DC) Measurement at same location as "Initial breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	1,000 Vrms for 1 min . (Detection current: 10 mA)
		Between contact and coil	$1,500 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)
		Between contact sets	1,500 Vrms for 1 min . (Detection current: 10 mA)
	Surge breakdown voltage (Initial)	Between open contacts	$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$ (FCC Part 68)
		Between contacts and coil	$2,500 \mathrm{~V}(2 \times 10 \mu \mathrm{~s})$ (Bellcore)
	Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $50^{\circ} \mathrm{C}$ (By resistive method, nominal coil voltage applied to the coil; contact carrying current: 2A.)
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 4 ms [Max. 4 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.)
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 4 ms [Max. 4 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)
Mechanical characteristics	Shock resistance	Functional	Min. $750 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3.3 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 5 mm
Expected life	Mechanical		Min. 10^{8} (at 180 cpm)
	Electrical		Min. 10^{5} (2 A 30 V DC resistive), Min. 2×10^{5} (1 A 30 V DC resistive), Min. 10^{5} (0.5 A 125 V AC resistive) (at 20 cpm)
Conditions	Conditions for operation, transport and storage*2		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$, Max. $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}(2 \mathrm{~A}) \mathrm{Max} . ~-40^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}(2 \mathrm{~A})$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed (at rated load)		20 cpm
Unit weight			Approx. 2 g .071 oz

Notes: *1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. (TX/TX-S/TX-D relay AgPd contact type are available for low level load switching [10V DC, 10mA max. level])
*2 Refer to "AMBIENT ENVIRONMENT" in GENERAL APPLICATION GUIDELINES.

REFERENCE DATA

\square Standard PC board terminal and self-clinching terminal

1. Maximum switching capacity

2. Life curve

3. Mechanical life

Tested sample: TQ2-12V, 10 pcs.

4.-(1) Electrical life (DC load)

Tested sample:TQ2-12V, 6 pcs.
Condition: 1 A 30 V DC resistive load, 20 cpm Change of pick-up and drop-out voltage

Change of contact resistance

4.-(2) Electrical life (AC load)

Tested sample: TQ2-12V, 6 pcs.
Condition: 0.5 A 125 V AC resistive load, 20 cpm
Change of pick-up and drop-out voltage

5. Coil temperature rise (2C)

Tested sample: TQ2-12V
Measured portion: Inside the coil
Ambient temperature: $30^{\circ} \mathrm{C} 86^{\circ} \mathrm{F}$

6. Ambient temperature characteristics Tested sample: TQ2-12V, 5 pcs.

8. Malfunctional shock (single side stable) Tested sample: TQ2-12V, 6 pcs.

9.-(1) Influence of adjacent mounting
9.-(2) Influence of adjacent mounting

10. Contact reliability

 (1 mA 5 V DC resistive load)Tested sample: TQ2-12V
Condition: Detection level 10 W

11. Actual load test (35 mA 48 V DC wire spring relay load)

Circuit

Change of pick-up and drop-out voltage

Change of contact resistance

12. 0.1 A 53 V DC resistive load test

Change of pick-up and drop-out voltage
Change of contact resistance

13. Distribution of M.B.B. time

Tested sample: TQ2-2M-5V, 85 pcs.

■ Surface-mount terminal

1. Maximum switching capacity

4.-(1) Electrical life (2 A 30 V DC resistive load)

Tested sample: TQ2SA-12V, 6 pcs
Operating speed: 20 cpm
Change of pick-up and drop-out voltage (mounting by IRS method)

Change of contact resistance (mounting by IRS method)

7. Ambient temperature characteristics

Tested sample: TQ2SA-12V, 5 pcs

2. Life curve

3. Mechanical life (mounting by IRS method) Tested sample: TQ2SA-12V, 10 pcs.

4.-(2) Electrical life (0.5 A 125 V AC resistive load) Tested sample:TQ2SA-12V, 6 pcs
Operating speed: 20 cpm
Change of pick-up and drop-out voltage (mounting by IRS method)

5. Coil temperature rise

Tested sample:TQ2SA-12V, 6 pcs.
Point measured: Inside the coil
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

8.-(1) High-frequency characteristics (Isolation)

6. Operate/release time

Tested sample: TQ2SA-12V, 6 pcs.

8.-(2) High-frequency characteristics (Insertion loss)

9. Malfunctional shock (single side stable) Tested sample:TQ2SA-12V, 6 pcs

10.-(1) Influence of adjacent mounting Tested sample: TQ2SA-12V, 5 pcs.

10.-(2) Influence of adjacent mounting Tested sample:TQ2SA-12V, 6 pcs.

11. Pulse dialing test
(35 mA 48 V DC wire spring relay load) Tested sample: TQ2SA-12V, 6 pcs. Circuit

Change of pick-up and drop-out voltage (mounting by IRS method)

Change of contact resistance (mounting by IRS method)

1. Standard PC board terminal and Self-clinching terminal

CAD Data

External dimensions

 Standard PC board terminal

Self-clinching terminal

General tolerance: $\pm 0.3 \pm .012$

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

Schematic (Bottom view)
Single side stable 1-coil latching

(Reset condition)

2. Surface-mount terminal

CAD Data

Type	External dimensions (General tolerance: $\pm 0.3 \pm .012$)	Suggested mounting pad (Top view) (Tolerance: $\pm 0.1 \pm .004$)
SA type		
SL type		
SS type		

Schematic (Top view)

Single side stable
1-coil latching

NOTES

1. Packing style

1) The relay is packed in a tube with the relay orientation mark on the left side, as shown in the figure below.

2) Tape and reel packing (surface-mount terminal type)
(1) Tape dimensions
(i) SA type

(ii) SL, SS type

(2) Dimensions of plastic reel

2. Automatic insertion

To maintain the internal function of the relay, the chucking pressure should not exceed the values below.
Chucking pressure in the direction A:
$9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less
Chucking pressure in the direction B :
$9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less
Chucking pressure in the direction C : $9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less

Please chuck the \square portion. Avoid chucking the center of the relay. In addition, excessive chucking pressure to the pinpoint of the relay should be avoided.

For general cautions for use, please refer to the "Cautions for use of Signal Relays" or "General Application Guidelines".

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Low Signal Relays - PCB category:
Click to view products by Panasonic manufacturer:
Other Similar products are found below :
617-12 M39016/11-048P D3493L 7-1393809-0 7-1393813-3 80.010.4522.1 FTR-B4GA006Z FW1210S02 9-1393813-6 9-1617519-3 G6AK-2-H-
DC5 A-1.5W-K DF2E-L2-DC3V DS1EM24J DS1EM5J DS1ES5J DS4E-M-DC5V-H48 EC2-4.5TNJ EC2-9NJ B07B939BC1-0868 1617076-5
1617117-3 1617137-2 HMB1130K00 HMB1131S06 HMS1119S01 HMS1131S10 HMS1201S03 HMS1201S87 HMS1205S02 2-1393807-6 2-
1617071-2 JMGSC-5LW K6-PS 9-1393761-0 276XAXH-9D 1617139-2 1617354-6 A178URE1-24DC 2-1393813-3 2-1617011-2 2-1617039-0 G5V-2-H4-DC48 G6E134PLSTUS5DC 3SBC1100A2 3SBC1723A2 3SBC5004K1R 432202094871 49R1C4VW-24DC-SCO 49RE1C1VW-24DCSCO

