



Į.	□38	=1
4-R3	19.05±0.1	<u>2-M2.5</u>
		M
	- 	
		\$ R2.3
B-B coder +/	IIIII	

Rear view

CONNECTION	UNIPOLAR OR	BIPOLAF	2						
SPECIFICATION	BIPOLAR-1 WINDING	SERIAL	PARALLEL	PERMISSIBLE	RADIAL	_+AXIA	L FO	RCE	
VOLTAGE (VDC)	3.0			ROTOR SPRING-				SPRING	
AMPS/PHASE	3.0	2.1	4.2	MOUNTED IN AXIAL DIRECTION	Г			'ASHER	7
RESISTANCE/PHASE (0hms)@25°C	1.0±10%	2.0±10%	0.5±10%		<u>-</u> ,	BE	EARING	• /	
INDUCTANCE/PHASE (mH) @1KHz	2.2±20%	8.8±20%	2.2±20%	↓	' _r	1)		
HOLDING TORQUE (Nm) [lb-in]	1.32 [11.71] 🐧	1.87 [16.52] <u>/</u> 3\	1.87 [16.52 <u>]/</u> 3\	√ Fa		<u> </u>			
DETENT TORQUE (Nm) [lb-in]	0.068 [[0.602]]					
STEP ANGLE (*) ± ACCURACY	1.8±5%	(NON-ACCUM)			Ц				
ROTOR INERTIA (Kg-m²) [lb-in²]	4.8x10 ⁻	⁵ [0.164]			a l				
WEIGHT (Kg) [lb]	1.0 [2.2	2]			• ~				
TEMPERATURE RISE: MAX.80°C (MOTO	OR STANDSTILL; FOR 2	PHASE ENERGIZ	ZED)	AXIAL-FORCE For	ı (N)		Fa=1	5	
AMBIENT TEMPERATURE −10°~ 50°C	[14°F ~ 122°F]			DISTANCE a (n	nm)	5	10	15	20
INSULATION RESISTANCE 100 MOhm	(UNDER NORMAL TEM	PERATURE AND I	HUMIDITY)	RADIAL-FORCE I	Fr (N)	130	90	70	52
INSULATION CLASS B 130° [266°F]						AXI	AL	RAE	DIAL
DIELECTRIC STRENGTH 500VAC FOR 1	MIN. (BETWEEN THE MO	TOR COILS AND T	HE MOTOR CASE)	SHAFT PLAY (m	nm)	0.08	3	0.0	2
AMBIENT HUMIDITY MAX. 85% (NO C	ONDENSATION)			AT LOAD MAX:	(N)	4.5)	4.5	
3 NEW VALUE OF HOLD T	OR 04 11 13 J.D		<u>.</u>		SCAL	F FRE	FΤ	VD/\U	

TYPI	OF CONNECTION (EXTERN)	MOTOR		
UNIPOLAR	BIPOLAR 1WINDING SERIAL PARALLEL	CONNECTOR LEADS WINDING		
A — COM — A\ — B — COM — B\ — B\ —	A A A A A A A A A A A B B B B B B B B B	1 BLK 3 BLK/WHT 2 GRN/WHT 4 GRN 5 RED 7 RED/WHT 6 BLU/WHT 8 BLU		

FULL STEP 2 PHASE-Ex., WHEN FACING MOUNTING END (X)							
STEP	Α	В	Α\	B\		CCW	
1	+	+	ı	ı		4	
2	1	+	+	-			
3	ı	-	+	+	†		
4	+	-	-	+	CW		

WIRING D	IAGRAM
(A) BLK ⊶	7
BLK/WHT :== GRN/WHT :== (A\) GRN :==	
	(B) RED CRED/WHT CRED

3	NEW VALUE OF HOLD. TOR.	04.11.13.	J.D.
2	UL NO.	20.07.09	J.W.
1	PIN-ASSIGNMENT	04.01.08	J.W.
REV	DESCRIPTION	DATE	APVD

Nanotec[®]
PLUG & DRIVE

ST5918L3008

SCALE	FREE	APVD	S.Ha.	19.03.07
Χ	±0.5	CHKD		
1PL 2PL	±0.5 ±0.2 ±0.1	DRN	J.W.	21.11.06
ANGLE	±30'	SIGN	ATURE	DATE

STE	PPING	MOTOR	
DWG.NO			
	ST5918	3L3008	

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Nanotec manufacturer:

Other Similar products are found below:

<u>DF45M024053-A2</u> <u>ST4118D3004-A</u> <u>LSNUT-T6X2-F</u> <u>STF2818X0504-A</u> <u>SP1518M0204-A</u> <u>ZKRS485-USB</u> <u>ST6018L3008-A</u> DB59C024035-A ST2818M1006-B C5-01 ST4118L1804-A SP3575M0906-A SP2575M0206-A