RMS TRANSDUCER OF HIGH AC/DC CURRENT OR VOLTAGE type U-S2A

- Smart current or voltage transducer:
- current RMS up to $\mathbf{5} \mathbf{A}_{\text {AC/DC }}$
- voltage RMS up to $750 \mathrm{~V}_{\mathrm{AC} / \mathrm{DC}}$
- Frequency band: 5kHz for error $\mathbf{1 \%}$
- Wide range of supply voltage
$18 . . .350 V_{D C} / 18 \ldots .230 V_{A C}$
- Galvanic separation between input, output and supply circuits
- High accuracy, digital linearization
- Standard output signal
- Standard time constant $\tau=1 \mathrm{~s}$ (95% of steady state after $\mathrm{T}=\mathbf{3} \tau=3 \mathrm{~s}$) or 0.2 s or 50 ms

APPLICATION:

Transducer U-S2A is designed to measure AC/DC current or voltage and convert it into standard output signal. $\mathrm{AC}, \mathrm{AC}+\mathrm{DC}$ or DC current or voltage signal processing is performer according to the RMS value algorithm:

$$
U(R M S)=\frac{\sqrt{f^{2}(t) d t}}{T}
$$

Max. current in steady state flowing through internet shunt is up to 5A. For measuring greater currents user have to use current transformer or external shunt. Max. temporary overload is 25 A for 1 sec .

By analogy - for measuring greater voltage than $750 \mathrm{~V}_{\mathrm{AC}}$, voltage transformer is necessary.

All the circuits (input, output and supply) are mutually galvanically separated.

For advanced user the calibration procedure is also available.

BASIC TECHNICAL PARAMETERS:

Input signal AC and DC
voltage RMS
current RMS
max range $0 \ldots . .750 \mathrm{~V}$ max range $0 . . .5 \mathrm{~A}$
overload max - 1.2 x continuous range current
temporary overload for internal shunt peak ratio
Input signal shape
Sample frequency Input resistance
current input voltage input -Input signal measurement band $\max 25 \mathrm{~A}$ for 1 s

2 x measuring range alternating ($\mathrm{DC}+\mathrm{AC)}$ 100 kHz depending on range $\sim 0.02 \Omega$ for 5 A $\geq 2 \mathrm{M} \Omega$ for 230 V $3 \mathrm{~Hz} \ldots 10 \mathrm{kHz}$

Output signal
any standard : $0 / 4 \ldots 20 \mathrm{~mA}$, $0 . . .10 \mathrm{~V}$ or other
Load resistance
for $0 / 4 \ldots 20 \mathrm{~mA}$
for $0 \ldots 10 \mathrm{~V}$
Accuracy

Nonlinearity
Temperature drift
Error due to load resistance changes
Galvanic separation
"Zero" and "Range"
regulation
Correct operation indicator
Digital filter time constant

Power supply
Housing
Housing protection level
Working condition
ambient temperature relative humidity

2 kV between all circuits
in range $\pm 6.6 \%$ with potentiometers on the front panel
LED on the front panel standard 1 s
or other specified in order
code (check page 2)
$18 \ldots 350 \mathrm{~V}_{\mathrm{DC}} / 1.5 \mathrm{~W}$
$18 \ldots . .230 \mathrm{~V}_{\mathrm{AC}} / 1.5 \mathrm{VA}$
on rail $22.5 \times 99 \times 114.5 \mathrm{~mm}$ IP 20
$\max .750 \Omega$
$\geq 2 \mathrm{k} \Omega$
$0,2 \%$ for $\mathrm{f}=1 \mathrm{kHz}$
1% for $\mathrm{f}=5 \mathrm{kHz}$
5% for $\mathrm{f}=15 \mathrm{kHz}$ $\pm 0.025 \%$
$0.006 \% /{ }^{\circ} \mathrm{C}$
$0.05 \% / F S$
$55^{\circ} \mathrm{C}$ up to 95%

FUNCTIONAL DESCRIPTION:

The transducer measures the input signal, converts it according to preset parameters and calculates the output signal.

Green LED informs that transducer is supplied and processor operates properly.

There are two potentiometers on the front panel, which can be used for calibrating "Zero" and "Range". It is advised to use auto-calibration button for reference voltage, if input signal is AC (RMS analysis) .

TRANSDUCER CALIBRATION:

WARNING: The transducer is fabric calibrated. Incorrect calibration may cause malfunction.
For RMS AC signals, the calibration should start with setting the reference voltage in the way described below:

- Short the input terminals and push "Uref" button for 6s till the green LED starts blinking. For next 4s (LED still blinking) the transducer is being calibrated and then returns to normal operation.
- Calibration can be improved using " 0% " and " 100% " potentiometers. Provided that the signal connected to the input terminals is accurately set and measured.

Note: Terminals 5-6 are used to connect the braided shield of the input signal cable. If the input signal (terminals 7-8) is not galvanically separated from the ground GND or PE terminals 5-6 (shield) cannot be connected to GND or PE. Terminals 5-6 can be connected to the braided shield of the input signal cable only if the braided shield is not connected to the ground GND or PE from the other side of this cable.
If in some point the shield is connected to the ground GND or PE connecting the shield to the terminals 5-6 can cause a burn (damage) of the input circuit when the measured signal is galvanically connected with power supply network e.g. 230 Vac . This situation can occur when measuring voltage or current (shunt) in power grid without the use of transformers with separation.

Oscillogram shows the $4-20 \mathrm{~mA}$ output signal (blue) as a response to a unit step with 50 Hz frequency of the input signal (white). This is the version with 50 ms time constant. Full determination of the $4-20 \mathrm{~mA}$ signal is after 140 ms .
ORDER EXAMPLE: Transducer U-S2A, input $0 \div 230 \mathrm{Vac}$, output $4 \div 20 \mathrm{~mA}$, frequency band 50 Hz , time constant 50 ms (95% of the steady state after 150ms): type U-S2A-0..230Vac - $\mathbf{3 - 5 0 H z} \mathbf{- 5 0 m s}$

Production and distribution: LABOR - ASTER Poland, 04-218 Warsaw, ul. Czechowicka 19 tel. +48 2261071 80; +48 2261089 45; fax. +48 226108948

e-mail: biuro@labor-automatyka.pl labor@labor-automatyka.pl; http:// www.labor-automatyka.pl The manufacturer reserves the right to make changes to the product.

Issued. 02/2017

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Measuring Tools category:
Click to view products by LABOR-ASTER manufacturer:
Other Similar products are found below :
G336 M225203-01 G426 G1333 G1327 G1154 G1150 G1152 G1157 G1153 G1155 G1009 $\frac{1051-03}{\underline{\text { G1 }} \text { 121010D 121050D } 25541} \frac{8255}{} \frac{\text { NF- }}{}$
 D1020D D1032Q D1033Q 1150D 1200 121010GF 121020D 121030D $\underline{121050 G F} \underline{314392} 33232$ UT107 $1500 \underline{15922} \underline{15923} \underline{15924}$

