

Phase Asymmetry, Failure, Sequence, Under Voltage plus Time Delay

Type: LPRA/2

4-wire monitoring

220, 230, 240V AC

250V 5A (1250VA)

25V 5A (125W)

250V 2A

≈ 2% of trip level (factory set)

± 0.5% at constant conditions

≈ 1s (worst case = Td x 2)

≥ 150,000 ops at rated load

Orange flame retardant UL94

 $\leq 2 \times 2.5$ mm² solid or stranded

clips provided on the rear of the unit.

Conforms to IEC. CE, Cand RoHS Compliant.

Immunity: EN 61000-6-2 Emissions: EN 61000-6-4

2kV AC (rms) IEC 60947-1 4kV (1.2/50µS) IEC 60664

Note: actual delay (t) = adjustable delay + response time

On to 35mm symmetric DIN rail to BS EN 60715 or direct

surface mounting via 2 x M3.5 or 4BA screws using the black

± 3%

<50ms

≈ 50ms

0.2 - 10s (± 5%)

50 – 100ms

-20 to +60°C

+95% max

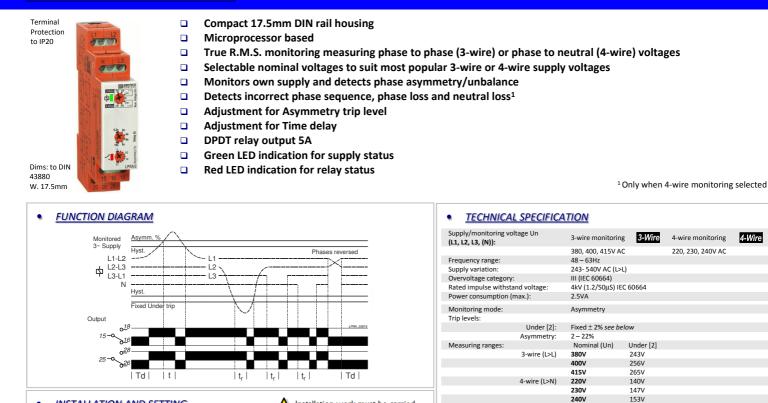
DPDT relay

AC1

DC1

90g

FMC:


"L>L" has the same meaning as "phase to phase" and "L>N", the same as "phase to neutral"

AC15

Green LED

Red LED

4-Wire

INSTALLATION AND SETTING ٠

Installation work must be carried out by qualified personnel.

[ANSI/NEMA MG 1-2001]

Hysteresis:

Setting accuracy:

Repeat accuracy:

Response time (t_r):

Power on delay (Td):

Power on indication: Relay status indication:

Ambient temperature

Output (15, 16, 18 / 25, 26, 28)

Dielectric voltage: Rated impulse withstand voltage:

Relative humidity:

Output rating

Electrical life:

Housing:

Approvals:

Note.

Weight: Mounting option:

Terminal conductor size

Time delay (t):

Reset time

Immunity from micro power cuts:

- BEFORE INSTALLATION, ISOLATE THE SUPPLY. Connect the unit as required. The Connection Diagram below shows a typical installation, whereby the supply to a load is being monitored by the Phase monitoring relay. If a fault should occur (i.e. fuse blowing), the relay will de-energise and assuming control of the external Contactor, de-energise the Contactor as well.
- Only connect the Neutral if available and 4-wire monitoring is required.

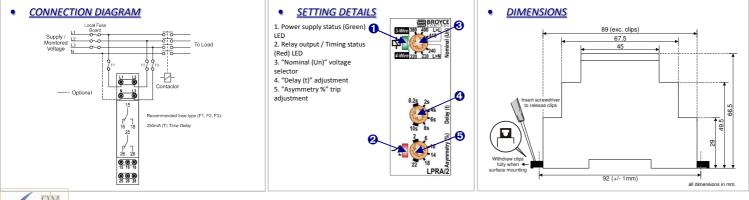
Applving power.

- Set the "Nominal (Un)" 🕄 voltage selector to match that of the voltage being monitored.
- Set the "Asymmetry %" 😉 adjustment to maximum. Set the "Delay (t)" 🔮 to minimum .
- Apply power and the green "Power supply" ● LED will illuminate. The red LED ❷ will illuminate and relay energise after the short Power on delay (Td).
- Refer to the troubleshooting table if the unit fails to operate correctly

Setting the unit (with power applied).

- Assuming all phases are perfectly balanced it should be possible to set the "Asymmetry (%)" adjustment to minimum which will ensure that it will detect the smallest of changes in the phase voltages. However, if large changes in phase voltages are likely, then the "Asymmetry (%)" setting should be increased
- The formula used for calculating "Asymmetry" is as follows:

Maximum deviation from Vave Asymmetry = x100% Vave


where V_{ave} is the average of the three phases

- Note that "Phase asymmetry" can also referred to as "Phase unbalance"
- Set the "Delay (t)" as required. (Note that the delay is only effective should any phases exceed the set trip point. However, if the supply drops below the 2nd under voltage trip level, any set time delay is automatically cancelled and the relays de-energise immediately).

Troubleshooting.

The table below shows the status of the unit during a particular fault condition.

Supply fault	Green LED 🜖	Red LED 😢	Relay
Phase or neutral missing	LED's flash alternately		De-energised
Phases reversed (no delay)	Flashing	Off	De-energised
Phase asymmetry trip point exceeded (during timing)	On	Flashing	Energised for delay (t)
Phase asymmetry trip point exceeded (after timing)	On	Off	De-energised
Phases < fixed under trip level [2]	On	Off	De-energised

Broyce Control Ltd., Pool Street, Wolverhampton, West Midlands WV2 4HN. England Tel: +44 (0) 1902 773746 Fax: +44 (0) 1902 420639 Email: sales@broycecontrol.com Web: www.broycecontrol.com The Information provided in this literature is believed to be accurate (subject to change without prior notice); however, use of such information shall be entirely at the user's own risk.

LPRA 2-1-A.DOCX

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Broyce Control manufacturer:

Other Similar products are found below :

LART 12-230V AC/DC LXCVR 230V LBVR/A 12-24VDC LMCCR-10A LESW 12-230V AC/DC