Multi-function SMARTimer

Type 84.02

- 1 CO (16 A) + 1 CO (16 A)
- 2 in 1: two independent channels
- Two supply version available: $12 . . .24 \mathrm{~V}$ AC/DC and 110... $240 \mathrm{~V} \mathrm{AC/DC}$ (not polarized)
- Two programming modes: "Smart" mode via smartphone with NFC communication or "Classic" mode via the joystick
- Wide backlit display for easy reading all information during the programming phase and during normal operation
- Flexibility: possible to create new specific functions, mixing the 25 available functions on each channel
- High precision and possibility of choice in time set-up:
Time units; 0.1 seconds, seconds, minutes, hours
Set-time to 4 digits, anywhere between 000.1 second and 9999 hours
- Large display allows easy viewing: set time, current time, timing in progress, input command state, output state
- Two independent Start inputs - one per channel
- One common Reset input (select to apply to either, or both, channels)
- One common Pause input (select to apply to either, or both, channels)
PIN to protect access to programming session
- Up or Down timing modes
- Type 84.02.0.024.0000: it's possible to directly connect timer input to proximity sensors (both PNP and NPN)
- 35 mm rail (EN 60715) mount

For outline drawing see page 3
Contact specification
Contact configuration

| Rated current/Maximum peak current |
| :--- | :--- |
| Rated voltage/ |
| Maximum switching voltage VAC |

Rated load AC1

Single phase motor rating (230 V AC) kW

Breaking capacity DC1:30/110/220 V	A
Minimum switching load	$\mathrm{mW}(\mathrm{V} / \mathrm{mA})$

| Standard contact material |
| :--- | :--- |
| Supply specification |

Nominal voltage $\left(\mathrm{U}_{\mathrm{N}}\right)$	V DC/AC $(50 / 60 \mathrm{~Hz})$
Rated power AC/DC	$\mathrm{VA}(50 \mathrm{~Hz}) / \mathrm{W}$
Operating range	$\mathrm{V} \mathrm{DC} / \mathrm{AC}$

Technical data

Specified time range

- * Applies where timer function is controlled by an input to B terminal(s). Where power-off is used to reset the timer, the recovery time can increase up to 500 ms , depending on supply voltage.

Ordering information

Example: 84 series, SMARTimer, 2 CO-16 A, supply rated at (110...240)V AC/DC.

Technical data

Insulation				
Dielectric strength $\quad \frac{\text { be }}{\frac{\text { betw }}{\text { betw }}}$	between input and output circuit V AC	4000		
	between open contacts V AC	1000		
	utput and display V AC	2000		
Insulation (1.2/50 $\mu \mathrm{s}$) between input and output kV		6		
EMC specifications				
Type of test		Reference standard	84.02.0.230	84.02.0.024
Electrostatic discharge	contact discharge	EN 61000-4-2	4 kV	4 kV
	air discharge	EN 61000-4-2	8 kV	8 kV
Radio-frequency electromagnetic field ($80 \div 1000 \mathrm{MHz}$)		EN 61000-4-3	$10 \mathrm{~V} / \mathrm{m}$	$10 \mathrm{~V} / \mathrm{m}$
Fast transients (burst) ($5-50 \mathrm{~ns}, 5 \mathrm{kHz}$) on Supply terminals		EN 61000-4-4	4 kV	4 kV
Surges (1.2/50 s) on Supply terminals	common mode	EN 61000-4-5	4 kV	2 kV
	differential mode	EN 61000-4-5	4 kV	1.5 kV
on start terminal (B1...B4)	common mode	EN 61000-4-5	4 kV	2 kV
	differential mode	EN 61000-4-5	3 kV	1 kV
Radio-frequency common mode ($0.15 \div 80 \mathrm{MHz}$) on Supply terminals		EN 61000-4-6	10 V	10 V
Radiated and conducted emission		EN 55022	class B	class B
Other data				
Current absorption on control terminals (B1...B4)		< $2.4 \mathrm{~mA}(0.230),<5.5 \mathrm{~mA}(0.024)$		
Power lost to the environment	without contact current W	1.6		
	with rated current W	3.6		
(7)ㄲ) Screw torque	Nm	0.8		
Max. wire size	mm^{2}	solid cable		stranded cable
		$1 \times 6 / 2 \times 4$		$1 \times 4 / 2 \times 2.5$
	AWG	$1 \times 10 / 2 \times 12$		$1 \times 12 / 2 \times 14$

Outline drawings

84.02

Screw terminal

Two programming modes

Functions

Wiring diagram

(OFF) Relay OFF.
The output contact stays permanently open.

(ON) Relay ON.

The output contact stays permanently closed.
(AI) On-delay.
Apply power to timer. Output contact transfers after preset time has elapsed. Reset occurs when power is removed.
(DI) Interval.

Apply power to timer. Output contact transfers immediately. After the preset time has elapsed, contact resets.

(GI) Pulse delayed.

Apply power to timer. Output contact transfers after time T1 has elapsed. Reset occurs after T2 time.

(니) Asymmetrical flasher (starting pulse on).

Apply power to timer. Output contact transfers immediately and cycle between ON and OFF for as long as power is applied. The ON and OFF times are independently adjustable.

(PI) Asymmetrical flasher (starting pulse off).

Apply power to timer. Output contact transfers after time T1 has elapsed and cycle between OFF and ON for as long as power is applied. The ON and OFF times are independently adjustable.
(SW) Symmetrical flasher (starting pulse on).
Apply power to timer. Output contact transfers immediately and cycle between ON and OFF for as long as power is applied. The ratio is $1: 1$ (time on = time off).
(SP) Symmetrical flasher (starting pulse off).
Apply power to timer. First transfer of contact occurs after preset time has elapsed. The timer now cycles between OFF and ON as long as power is applied. The ratio is $1: 1$ (time on = time off).
(AE) On-delay with control signal.
Power is permanently applied to the timer. Closing the Signal Switch (S) initiates the preset delay, after which the output contact transfers and remains so until the power is removed.

(BE) Off-delay with control signal.

Power is permanently applied to the timer. The output contact transfers immediately on closure of the Signal Switch (S). Opening the Signal Switch initiates the preset delay, after which the output contact resets.

(CE) On- and off-delay with control signal

Power is permanently applied to the timer. Closing the Signal Switch (S) initiates the preset delay, after which the output contact transfers. Opening the Signal switch initiates the same preset delay, after which the output contact resets.

(DE) Interval with control signal on

Power is permanently applied to the timer. On momentary or maintained closure of Signal Switch (S), the output contact transfers, and remain so for the duration of the preset delay, after which it resets.

(EE) Interval with control signal off

Power is permanently applied to the timer. On opening of the Signal Switch (S) the output contact transfers, and remain so for the duration of the preset delay, after which it resets.

Functions

Wiring diagram

(FE) Interval with control signal on and off.
Power is permanently applied to the timer. Both the opening and the closing of the Signal Switch (S) initiates the transfer of the output contact (or extends the time). In both instances the contact resets after the preset delay has elapsed.

(EEa) Interval with control signal off (retriggerable)

Power is permanently applied to the timer. On opening of the Signal Switch (S) the output contact transfers, and remain so for the duration of the preset delay, after which it resets.

(EEb) Interval with control signal off.

Power is permanently applied to the timer. On opening of the Signal Switch (S) the output contact transfers, and remain so for the duration of the preset delay, after which it resets.

(WD) Watchdog
 (retriggerable interval with control signal on).

 Power is permanently applied to the timer. On momentary or maintained closure of Signal Switch (S), the output contact transfers, and remain so for the duration of the preset delay, after which it resets; subsequent closures of Signal Switch during the delay will extend the time. If the closure of the Signal Switch $(\mathrm{S}$) is longer than the preset time (T) then the output contact resets.
(GE) Pulse delayed with control signal on.

Power is permanently applied to the timer. Closing the Signal Switch (S) initiates T1 delay, after which the output contact transfers. Reset occurs after T2 time.

(LE) Asymmetrical flasher (starting pulse on) with control

 signal.Power is permanently applied to the timer. Closing Signal Switch (S) causes the output contact to transfer immediately and cycle between ON and OFF, until opened.
(PE) Asymmetrical flasher (starting pulse off) with control signal.
Power is permanently applied to the timer. Closing the Signal Switch (S) initiates delay T1 after which the output contact transfers and continues to cycle between OFF and ON, until the Signal Switch is opened.

(IT) Timing step.

Closing the Signal Switch (S) the output contact transfers and remains so after S opening, for the duration of the preset delay, after which it resets. During the timing period it is possible to immediate open the contact with a further impulse on S.

(SS) Monostable controlled by Signal switch.

The output contact follows the status of Signal Switch (S).

(PS) Monostable controlled by Pause switch.

The output contact follows the status of Pause Switch (P).

Functions

Wiring diagram

	$\begin{aligned} & \text { Type } \\ & 84.02 \end{aligned}$		(SHp) "Shower" (off-delay with control signal and pause signal). Power is permanently applied to the timer. The output contact transfers immediately on closure of the Signal Switch (S). Opening the signal switch initiates the preset delay, after which the output contact resets. Closure of the Pause Switch (P) will immediately halt the timing process, but the elapsed time will be retained. During the pause, the output contact will be open. On opening of the Pause Switch, timing resumes from the retained value and the output contact will take the previous condition.

PAUSE and RESET options

Ex. (Al) function

(P) PAUSE option*

Closure of the pause switch will immediately halt the timing process, but the elapsed time will be retained. The current state of the output contacts will be maintained. On opening of the pause switch, timing resumes from the retained value.

(R) RESET option*

For each and every function and time range, the timer is immediately reset when the reset switch is closed.

* Select to apply to either, or both, channels.

Interfacing the SMARTimer with proximity PNP-NPN sensors

Wiring diagram

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Finder manufacturer:
Other Similar products are found below :

40.52.8.230.5000	60.12.9.012.0040	12.01.8.230.0000	12.11.8.230.1000	12.31.8.230.0000	14.81.8.230.0000	14.71.8.230.000
20.21.9.048.4000	20.23.8.012.4000	22.24.9.024.4000	22.34.0.024.4340	22.34.0.024.4720	22.64.0.230.4310	20.21.8.024.4000
20.21.9.012.4000	20.22.8.024.4000	20.28.8.024.4000	26.06.8.024.0000	27.01.8.230.0000	38.52.0.240.0060	43.41.7.024.4000
10.42.8.230.0000	10.61.8.230.0000	11.42.8.230.0000	56.34.9.012.0000	56.34.9.024.0000T	T 60.42.8.230.000	60.13.4.102.0040
20.22.9.048.4000	27.05.8.230.0000	40.51.9.048.0000	72.11.8.024.0000	90.12.0.000.0000	77.31.8.230.8050	4CP281100060SPA
58P482300060S	MA 70.31.8.400.2	22 83.91.0.240.0	0013.01 .8 .230 .000	00 13.12.0.024.00	000 22.22.9.048.4	00 22.64.0.230.4710
26.02.8.230.0000	26.03.8.230.0000	20.23.9.110.4000	22.22.8.024.4000	22.22.9.024.4000	22.32.0.230.4440	22.34.0.230.4720
22.44.0.230.4310						

