Power Choke Coil for Automotive application

Series: PCC-M0530M (MC) PCC-M0540M (MC) PCC-M0630M (MC) PCC-M0645M (MC) PCC-M0754M (MC) PCC-M0750M (MC) PCC-M0854M (MC) PCC-M0850M (MC) PCC-M1054M (MC) PCC-M1050M (MC) PCC-M1050ML (MC) PCC-M1060ML (MC)

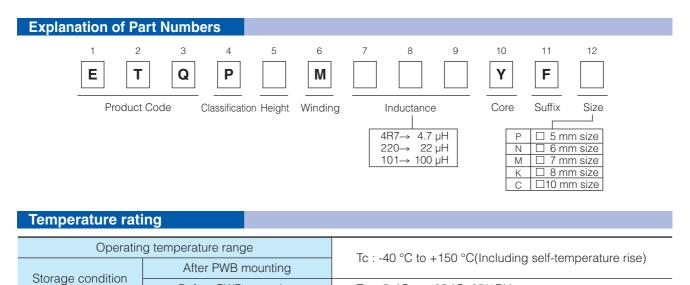
IDC (A)

High heat resistance and high reliability Using metal composite core (MC)

Industrial Property : patents 21 (Registered 2/Pending 19)

Features		
 High heat resistance 	: Operation up to 150 °C including self-heating	• Fig.1 Inductance v.s. DC current, Tem
 High-reliability 	: High vibration resistance as result of newly	ETQP5M470YFM(reference)
	developed integral construction; under severe	
	reliability conditions of automotive and other	50.0
	strenuous applications	-
 High bias current 	: Excellent inductance stability using ferrous alloy	
	magnetic material (Fig.1)	eg 30.0 mg 20.0 mg
	: Excellent inductance stability over broad temp. range (Fig.1)	P 20.0 → 100 °C
	: New metal composite core technology	= −+− 125 °C
	: Low RDC of winding and low eddy-current loss of the core	10.0
 Shielded construction 		0.0 0.5 1.0 1.5 2.0 2.5 3.0

- AEC-Q200 Automotive gualified
- RoHS compliant


Recommended Applications

- Noise filter for various drive circuitry requiring high temp. operation and peak current handling capability
- Boost-Converter, Buck-Converter DC/DC

Standard Packing Quantity (Minimum Quantity/Packing Unit)

Before PWB mounting

- 1,000 pcs./box (2 reel) : PCC-M0645M, M0754M, M0750M, M0854M, M0850M, M1054M,
 - M1050M, M1050ML, M1060ML
- 2,000 pcs./box (2 reel) : PCC-M0530M, M0540M, M0630M

Ta : -5 °C to +35 °C 85%RH max.

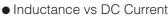
Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use Should a safety concern arise regarding this product, please be sure to contact us immediately

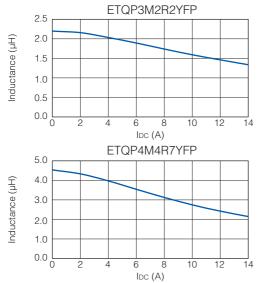
1. Series PCC-M0530M/PCC-M0540M (ETQP3M VFP/ETQP4M VFP)

Standard Parts								
		Inductance *1		DCR (at 20 °C) (m Ω)		Rated Current (Typ. : A)		
Series	Part No.	LO	Tolerance	Тур.	Tolerance	∆T=	40K	△L=-30%
		(µH)	(%)	(max.)	(%)	(*2)	(*3)	(*4)
PCC-M0530M	ETQP3M2R2YFP	2.2		22.6 (24.8)		4.8	5.8	10.9
[5.5×5.0×3.0(mm)]	ETQP3M3R3YFP	3.3	±20	31.3 (34.4)	. 10	4.1	5.0	8.6
PCC-M0540M	ETQP4M4R7YFP	4.7	1 ±20	36.0 (39.6)	±10	4.0	4.8	7.7
[5.5×5.0×4.0(mm)]	ETQP4M220YFP	22]	163 (179)		1.9	2.3	3.1

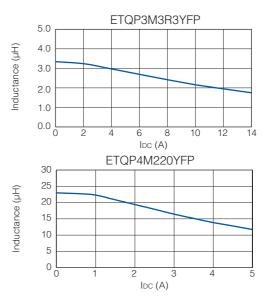
(*1) Measured at 100 kHz.

(*2) DC current which causes temperature rise of 40 K. Parts are soldered by reflow on four-layer PWB (1.6 mm FR4) and measured at room temperature. See also (*5)

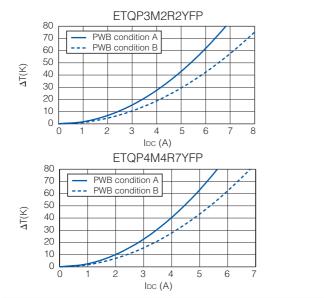

(*3) DC current which causes temperature rise of 40 K. Parts are soldered by reflow on multilayer PWB with high heat dissipation performance. Note: Heat radiation constant are approx. 52 K/W measured on 5.5×5.0×3.0 mm case size and approx. 48 K/W measured on 5.5×5.0×4.0 mm case size. See also (*5)

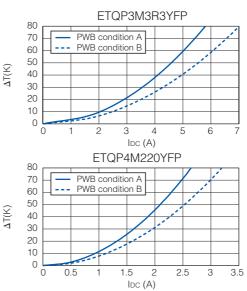

(*4) Saturation rated current : DC current which causes L(0) drop -30 %.

(*5) Within a suitable application, the part's temperature depends on circuit design and certain heat dissipation conditions. This should be double checked in a worst case operation mode. In normal case, the max.standard operating temperature of +150 °C should not be exceeded.


For higher operating temperature conditions, please contact Panasonic representative in your area.

Performance Characteristics (Reference)





PWB condition A : Four-layer PWB (1.6 mm FR4), See also (*2) PWB condition B : Multilayer PWB with high heat dissipation performance. See also (*3)

Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use Should a safety concern arise regarding this product, please be sure to contact us immediately.

2. Series PCC-M0630M/PCC-M0645M (ETQP3M VFN/ETQP4M VFN)

Standard Parts								
		Inductance *1		DCR (at 20) °C) (mΩ)	Rated Current (Typ. : A)		
Series	Part No.	LO	L0 Tolerance		Tolerance	∆T=	-40K	△L=-30%
		(µH)	(%)	(max.)	(%)	(*2)	(*3)	(*4)
PCC-M0630M	ETQP3MR68YFN	0.68	±20	6.3 (6.9)		9.8	12.0	24.0
[6.5×6.0×3.0(mm)]	ETQP3M1R0YFN	1.0		7.9 (8.7)		8.8	10.7	20.0
	ETQP4M6R8YFN	6.8		39.3 (43.2)		4.1	5.2	10.0
	ETQP4M100YFN	10		54.2 (59.6)	±10	3.3	4.5	8.3
PCC-M0645M [6.5×6.0×4.5(mm)]	ETQP4M220YFN	22		126(138.6)		2.3	2.9	6.0
	ETQP4M330YFN	33		172(189.2)		2.0	2.5	4.1
	ETQP4M470YFN	47		210 (231)		1.8	2.2	3.8

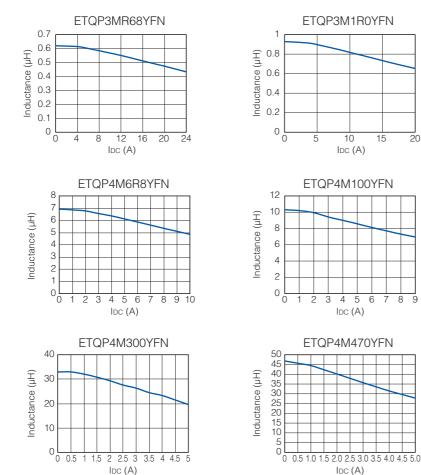
(*1) Measured at 100 kHz.

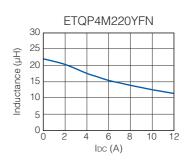
(*2) DC current which causes temperature rise of 40 K. Parts are soldered by reflow on four-layer PWB (1.6 mm FR4) and measured at room temperature. See also (*5)

(*3) DC current which causes temperature rise of 40 K. Partsare soldered by reflow on multilayer PWB with high heat dissipation performance. Note: Heat radiation constant are approx. 44 K/W measured on 6.5×6.0×3.0 mm case size and approx. 37 K/W measured on 6.5×6.0×4.5 mm case size. See also (*5)

(*4) Saturation rated current : DC current which causes L(0) drop -30 %.

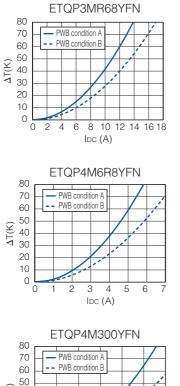
(*5) Within a suitable application, the part's temperature depends on circuit design and certain heat dissipation conditions. This should be double checked in a worst case operation mode. In normal case, the max.standard operating temperature of +150 °C should not be exceeded.

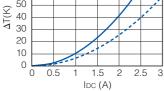

20

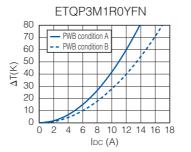

9

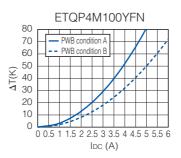
For higher operating temperature conditions, please contact Panasonic representative in your area.

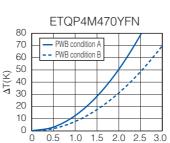
Performance Characteristics (Reference)


Inductance vs DC Current






• Case Temperature vs DC Current

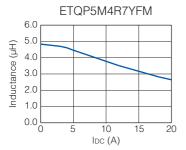

PWB condition A : Four-layer PWB (1.6 mm FR4), See also (*2) PWB condition B : Multilayer PWB with high heat dissipation performance. See also (*3)

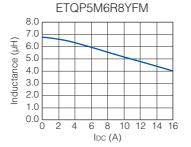
IDC (A)

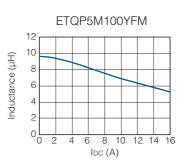
3. Series PCC-M0754M/PCC-M0750M (ETQP5M YFM/ETQP5M YGM)

Standard Parts								
		Inductance *1		DCR (at 20 °C) (mΩ)		Rated Current (Typ. : A)		
Series	Part No.	LO	Tolerance	Тур.	Tolerance	∆T=	-40K	△L=-30%
		(µH)	(%)	(max.)	(%)	(*2)	(*3)	(*4)
	ETQP5M4R7YFM	4.7		20(23)	{	6.3	8.0	13.1
	ETQP5M6R8YFM	6.8	4 }	26.7(29.4)		5.5	6.9	12.1
PCC-M0754M	ETQP5M100YFM	10		37.6(41.3)		4.7	5.7	10.6
[7.5×7.0×5.4(mm)]	ETQP5M220YFM	22	±20	92(102)] _{±10} [3.0	3.7	5.8
	ETQP5M330YFM	33	120	120(132)		2.6	3.3	4.8
	ETQP5M470YFM	48		156(172)] [2.3	2.9	4.1
PCC-M0750M [7.5×7.0×5.0(mm)]	ETQP5M101YGM	95		348(382.8)		1.4	1.9	3.1

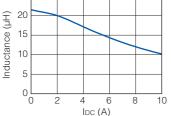
(*1) Measured at 100 kHz.

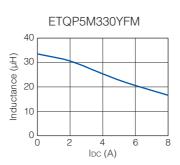

(*2) DC current which causes temperature rise of 40 K. Parts are soldered by reflow on four-layer PWB (1.6 mm FR4) and measured at room temperature. See also (*5)
 (*3) DC current which causes temperature rise of 40 K. Parts are soldered by reflow on multilayer PWB with high

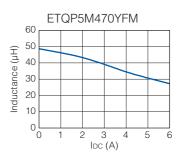

(*3) DC current which causes temperature rise of 40 K. Parts are soldered by reflow on multilayer PWB with high heat dissipation performance. Note: Heat radiation constant is approx. 31 K/W measured on 7.5×7.0×5.4 mm case size and approx. 29 K/W measured on 7.5×7.0×5.0 mm case size. See also (*5)
(*4) Saturation rated current : DC current which causes L(0) drop -30 %.


(*5) Within a suitable application, the part's temperature depends on circuit design and certain heat dissipation conditions. This should be double checked in a worst case operation mode.
 In normal case, the max.standard operating temperature of +150 °C should not be exceeded.
 For higher operating temperature conditions, please contact Panasonic representative in your area.

Performance Characteristics (Reference)


Inductance vs DC Current

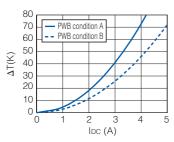




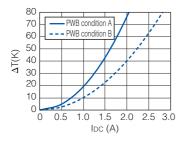
ETQP5M101YGM

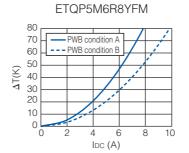
Power Inductors

Panasonic

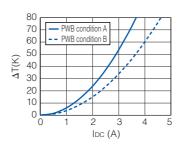

• Case Temperature vs DC Current

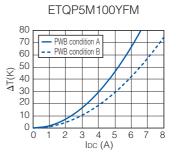
PWB condition A : Four-layer PWB (1.6 mm FR4), See also (*2) PWB condition B : Multilayer PWB with high heat dissipation performance. See also (*3)

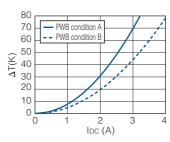

ETQP5M4R7YFM 80 70 PWB condition A PWB condition B 60 50 ΔT(K) 40 30 20 10 0 10 0 4 6 8 2



IDC (A)




ETQP5M101YGM



ETQP5M330YFM

ETQP5M470YFM

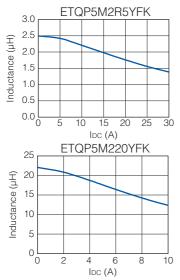
4. Series PCC-M0854M/PCC-M0850M (ETQP5M U)YFK/ETQP5M U)YGK)

Standard Parts								
		Inducta	ance *1	DCR (at 2	0 °C) (mΩ)	Rated Current (Typ. : A)		
Series	Part No.	LO	Tolerance	Тур.	Tolerance	∆T=	=40K	∆L=–30%
		(µH)	(%)	(max.)	(%)	(*2)	(*3)	(*4)
	ETQP5M2R5YFK	2.5	-	7.6(8.4)	±10	11.9	14.0	20.1
PCC-M0854M	ETQP5M100YFK	10		33(37)		5.7	6.7	13.0
$[8.5 \times 8.0 \times 5.4(mm)]$	ETQP5M150YFK	15		48.2(53.1)		4.7	5.5	7.2
[8.3×8.0×3.4(1111)]	ETQP5M220YFK	22	±20	63(70)		4.1	4.8	6.9
	ETQP5M470YFK	48]	125(138)		2.9	3.4	5.4
PCC-M0850M [8.5×8.0×5.0(mm)]	ETQP5M101YGK	100		302(333)		1.7	2.1	3.0

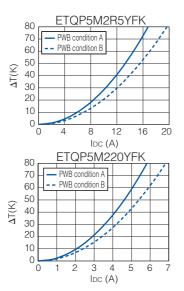
(*1) Measured at 100 kHz.

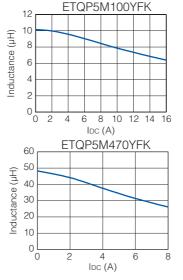
(*2) DC current which causes temperature rise of 40 K. Parts are soldered by reflow on four-layer PWB (1.6 mm FR4) and measured at room temperature. See also (*5)

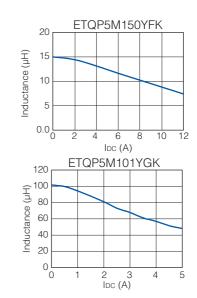
(*3) DC current which causes temperature rise of 40 K. Parts are soldered by reflow on multilayer PWB with high heat dissipation performance. Note: Heat radiation constant are approx. 27 K/W measured on 8.5×8.0×5.4 mm case size and approx. 29 K/W measured on 8.5×8.0×5.0 mm case size. See also (*5) (*4) Saturation rated current : DC current which causes L(0) drop -30 %.

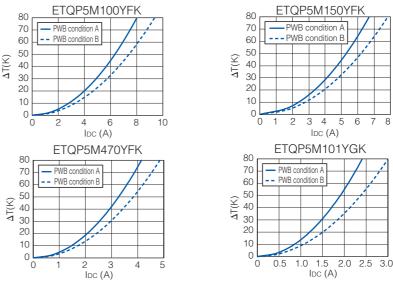

(*5) Within a suitable application, the part's temperature depends on circuit design and certain heat dissipation conditions. This should be double checked in a worst case operation mode.

In normal case, the max standard operating temperature of + 150 °C should not be exceeded.


For higher operating temperature conditions, please contact Panasonic representative in your area.


Performance Characteristics (Reference)


Inductance vs DC Current

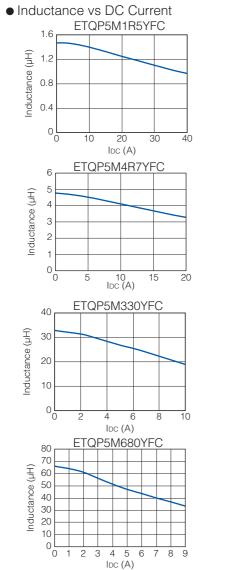

Case Temperature vs DC Current

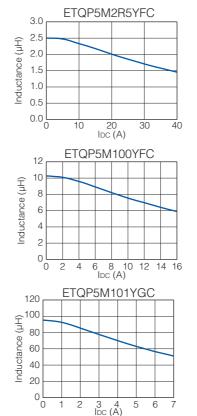
PWB condition A : Four-layer PWB (1.6 mm FR4), See also (*2) PWB condition B : Multilayer PWB with high heat dissipation performance. See also (*3)

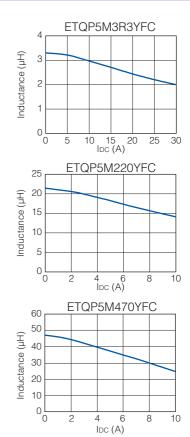
Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use Should a safety concern arise regarding this product, please be sure to contact us immediately

8

5. Series PCC-M1054M/PCC-M1050M (ETQP5M VFC/ETQP5M VGC)

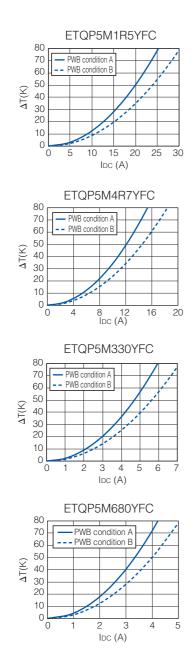

Standard Parts								
		Inducta	ance *1	DCR (at 2	0 °C) (mΩ)	Rate	d Current (Тур. : А)
Series	Part No.	LO	Tolerance	Тур.	Tolerance	∆T=	=40K	∆L=–30%
		(µH)	(%)	(max.)	(%)	(*2)	(*3)	(*4)
	ETQP5M1R5YFC	1.45		3.8(4.2)		17.9	21.4	35.1
	ETQP5M2R5YFC	2.5		5.3(5.9)		15.1	18.1	27.2
	ETQP5M3R3YFC	3.3		7.1(7.9)		13.1	15.7	22.7
PCC-M1054M	ETQP5M4R7YFC	4.7		10.2(11.3)		10.9	13.1	20.0
$[10.7 \times 10.0 \times 5.4(\text{mm})]$	ETQP5M100YFC	10		23.8(26.2)] [7.1	8.5	10.7
[10.7 × 10.0 × 5.4(1111)]	ETQP5M220YFC	22	±20	45(50)) ±10 [5.2	6.2	8.8
	ETQP5M330YFC	32.5		68.5(75.4)] [4.2	5.0	7.6
	ETQP5M470YFC	47		99(108.9)] [3.5	4.2	6.8
	ETQP5M680YFC	66		136(149.6)] [3.0	3.6	4.9
PCC-M1050M [10.7×10.0×5.0(mm)]	ETQP5M101YGC	97		208(229)		2.2	2.7	3.0

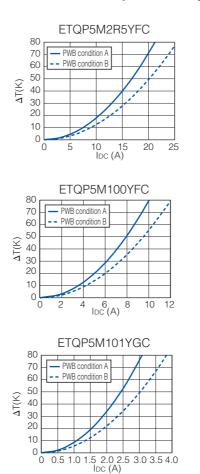

(*1) Measured at 100 kHz.

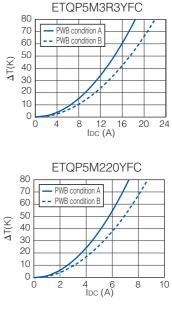

(*2) DC current which causes temperature rise of 40 K. Parts are soldered by reflow on four-layer PWB (1.6 mm FR4)

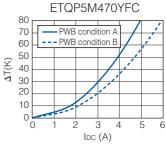
(*2) DC current which causes temperature rise of 40 K. Parts are soldered by reflow on four-layer PWB (1.6 mm FR4) and measured at room temperature. See also (*5)
(*3) DC current which causes temperature rise of 40 K. Parts are soldered by reflow on multilayer PWB with high heat dissipation performance. Note: Heat radiation constant are approx. 23 KW measured on 10.7×10.0x5.4 mm case size and approx. 26 KW measured on 10.7×10.0x5.0 mm case size. See also (*5)
(*4) Saturation rated current : Dc current which causes L(0) drop -30 %.
(*5) Within a suitable application, the part's temperature depends on circuit design and certain heat dissipation conditions. This should be double checked in a worst case operation mode. In normal case, the max.standard operating temperature of +150 °C should not be exceeded. For higher operating temperature conditions, please contact Panasonic representative in your area.

Performance Characteristics (Reference)

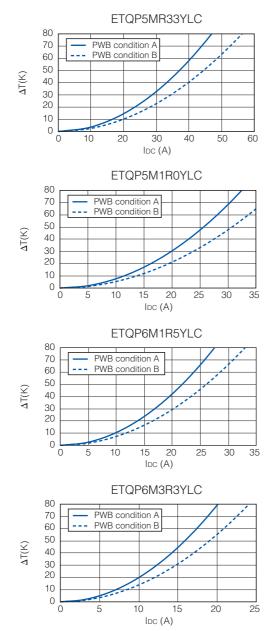


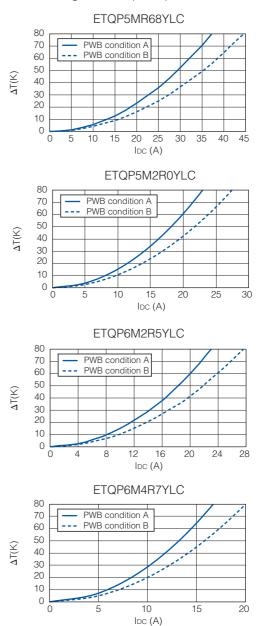





• Case Temperature vs DC Current

PWB condition A : Four-layer PWB (1.6 mm FR4), See also (*2) PWB condition B : Multilayer PWB with high heat dissipation performance. See also (*3)

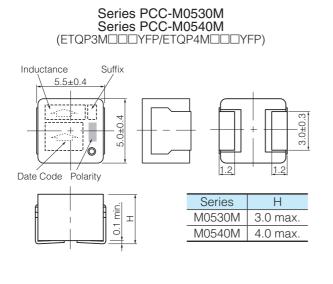

6. Series PCC-M1050ML/PCC-M1060ML (ETQP5M UL/ETQP6M UL/PLC)

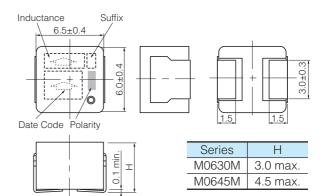

Sta	andard Parts								
			Inducta	ance *1	DCR (at	20 °C) (mΩ)	Rated Current (Typ.		(Typ. : A)
	Series	Part No.	LO	Tolerance	Тур.	Tolerance	∆T=40K ∆L:		△L=-30%
		FTODEL DOOL #	(µH)	(%)	(max.)	(%)	(*2)	(*3)	(*4)
_		ETQP5MR33YLC	0.33		1.1(1.21		33.2	39.7	56.7
	CC-M1050ML ×10.0×5.0(mm)]	ETQP5MR68YLC	0.68		1.75(1.93		26.3	31.5	40.0
10.9	10.0×5.0(mm)]	ETQP5M1R0YLC ETQP5M2R0YLC	1.0 2.0		2.3(2.53		23.0 16.2	27.5	37.8 31.3
		ETQP5M2R0YLC ETQP6M1R5YLC	1.5	±20	4.6(5.06		16.2	19.4 23.3	31.3
р	CC-M1060ML	ETQP6M2R5YLC	2.5		4.55(5.0		16.3	19.6	25.8
	$\times 10.0 \times 6.0(\text{mm})$	ETQP6M3R3YLC	3.3		6.0(6.6)		14.2	17.0	26.3
		ETQP6M4R7YLC	4.7		8.7(9.57		11.8	14.1	22.5
*2) [*3) [*4) { *5) \ c	and measured at r C current which causes constant are approx. 23 k Saturation rated cu Vithin a suitable conditions. This shi n normal case, the	causes temperature com temperature. Si temperature rise of 40 K. (W measured on 10.9×10. Irrent : Dc current w application, the p ould be double che e max.standard opel ig temperature cond	ee also (*5 Parts are solder 0x5.0 mm case hich causes art's tempe cked in a w rating temp) ed by reflow or size and app s L(0) drop erature dep vorst case c erature of +	n multilayer F rox. 23 K/W –30 %. pends or peration 150 °C s	WB with high h measured on 10 circuit de mode. hould not be	eat dissipation .9×10.0×6.0 n sign and	performance. hm case size. certain he	Note: Heat radiation See also (*5)
Ре	rformance Ch	aracteristics (R	eference						
	uctance vs DC (• • • • • • • • • • • • • • • • • • •							
	0.4	QP5MR33YLC			0.	7E	TQP5MR68	SYLC	
					○ 0.				
Inductance (µH)	0.3				nductance (µH)				
JCe	0.2				e 0.				
ctaı	0.2				o ctan				
nqn	0.1				0 0. 0.				
_	0.0				- 0. 0.				
	0.0 0 10 20	30 40 50 60 70	0 80		0.	0 10	20 30	40 50	0 60
		IDC (A)					IDC (A	·	
	1.2	QP5M1R0YLC			2.5	E	TQP5M2RC	YLC	
~	1.2								
iductance (μH)					(Hrl) 2.0 1.5 1.0				
Ce	0.8				eg 1.5				
ctan	0.6				0.1 Stan				
	0.4								
<u> </u>	0.2				0.5				
	0.0 0 10 20	0 30 40 50	60		0.0	0 5 10 15	5 20 25 30) 35 40 4	5 50
	0 10 20	IDC (A)	00			0 0 10 10	IDC (A)	5 55 40 4	.5 .50
	E-T-	QP6M1R5YLC					ETQP6M2I		
	2.0				3.	0			
Ŧ					$\widehat{\tau}$ ² .	5			
Inductance (µH)	1.5				Inductance (µH)	0			
nce	1.0				ери 1.	5			
lcta					rcta	0			
nqr	0.5				Diput				
_	0.0				0.				
	0.0 0 5 10 15		45 50		0.	0 10		30	40
		IDC (A)					IDC (A		
	3.5	QP6M3R3YLC				5	TQP6M4R7	YLC	
~	3.0								
Ξ	2.5				Inductance (µH)	4	\rightarrow		
<u>–</u>	2.0	++			JCe	3		$\rightarrow \downarrow$	
ce (µ	1.5				stan	2			
stance (µ					ĭ				
iductance (µ	1.0				ē	1			
Inductance (µH)	1.0				_	1			
Inductance (µ	0.5	15 20 25 30 35	5 40		_	1 0 0 5 10) 15 20	25 30	35 40

Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately.

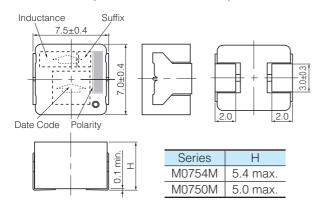
• Case Temperature vs DC Current

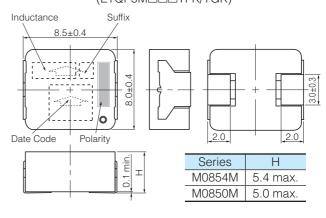
PWB condition A : Four-layer PWB (1.6 mm FR4), See also (*2) PWB condition B : Multilayer PWB with high heat dissipation performance. See also (*3)

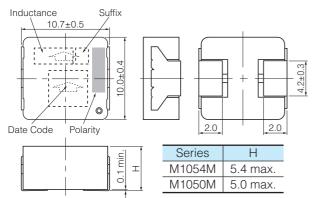


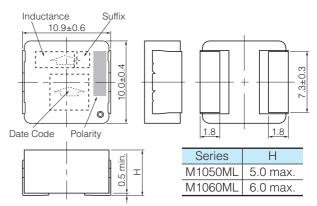

Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately.

Dimensions in mm (not to scale)

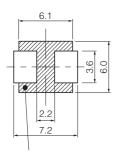

Dimensional tolerance unless noted : ±0.5


Series PCC-M0630M Series PCC-M0645M (ETQP3MDDDYFN/ETQP4MDDDYFN)


Series PCC-M0754M Series PCC-M0750M (ETQP5MDDDYFM/YGM)


Series PCC-M0854M Series PCC-M0850M (ETQP5MDDDYFK/YGK)

Series PCC-M1050ML Series PCC-M1060ML (ETQP5MDDDYLC/ETQP6MDDDYLC)


Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately.

Recommended Land Pattern in mm (not to scale)

Dimensional tolerance unless noted : ±0.5

Series PCC-M0530M

Series PCC-M0540M (ETQP3MUUUYFP/ETQP4MUUUYFP)

Don't wire on the pattern on shaded portion the PWB.

Series PCC-M0630M Series PCC-M0645M (ETQP3MUUUYFN/ETQP4MUUUYFN)

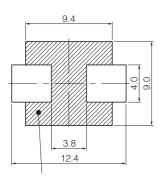
71

28

8.8

The same as the left

V


3.6 0

Series PCC-M0754M Series PCC-M0750M (ETQP5MDDDYFM/YGM)

The same as the left.

Series PCC-M0854M Series PCC-M0850M (ETQP5MDDYFK/YGK)

Don't wire on the pattern on shaded portion the PWB

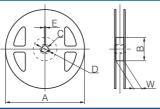
Series PCC-M1054M Series PCC-M1050M (ETQP5MDDYFC/YGC)

11.7 4.0 6.1 13.7 The same as the left.

Series PCC-M1050ML Series PCC-M1060ML $(ETQP5M\Box\BoxYLC/ETQP6M\Box\BoxYLC)$

> 11.9 0 ÷ /6 6.5 13.9

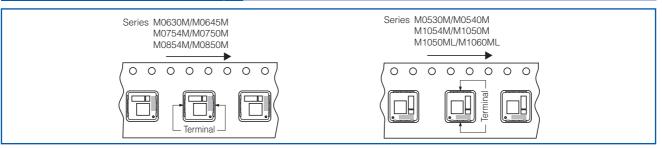
The same as the left.


■ As for Soldering Conditions and Safety Precautions (Power Choke Coils for Automotive application), Please see Data Files

Packaging Methods (Taping)

• Embossed Carrier Tape Dimensions in mm (not to scale)

	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $										
Series	А	В	W	E	F	P1	P ₂	Po	φDo	t1	t2
PCC-M0530M	5.6	6.1									3.3
PCC-M0540M	5.0	0.1									4.3
PCC-M0630M	7.1	6.6	16.0		7.5	12.0				0.4	3.3
PCC-M0645M	1.1	0.0	10.0	1.75	1.5	12.0	2.0	4.0	1.5	0.4	5.0
PCC-M0754M/M0750M	8.1	7.6		1.75			2.0	4.0	1.0		6.0
PCC-M0854M/M0850M	9.1	8.6									0.0
PCC-M1054M/M1050M PCC-M1050ML/M1060ML	10.7	11.9	24.0		11.5	16.0				0.5	6.3


• Taping Reel Dimensions in mm (not to scale)

Standard Reel Dimensions

	-					
Series	A	В	С	D	E	W
PCC-M0530M/M0540M PCC-M0630M/M0645M PCC-M0754M/M0750M PCC-M0854M/M0850M	330	100	13	21	2	17.5
PCC-M1054M/M1050M PCC-M1050ML/M1060ML						25.5

Component Placement (Taping)

Standard Packing Quantity/Reel

Series	Part No.	Minimum Quantity / Packing Unit	Quantity per reel		
PCC-M0530M	ETQP3MDDYFP				
PCC-M0540M	ETQP4MDDYFP	2,000 pcs. / box (2 reel)	1,000 pcs.		
PCC-M0630M	ETQP3MDDYFN				
PCC-M0645M	ETQP4MDDYFN				
PCC-M0754M	ETQP5MDDYFM				
PCC-M0750M	ETQP5MDDYGM				
PCC-M0854M	ETQP5MDDYFK				
PCC-M0850M	ETQP5MDDYGK	1,000 pcs. / box (2 reel)	500 pcs.		
PCC-M1054M	ETQP5MDDYFC				
PCC-M1050M	ETQP5MDDYGC				
PCC-M1050ML	ETQP5MDDYLC				
PCC-M1060ML	ETQP6MDDYLC				

Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Panasonic manufacturer:

Other Similar products are found below :

ERD-S1TJ8R2V ERO-S2PHF1502 DP3-22 ECE-A1HKAR47 RP-SMLE04DA1 AH64-05846A ELL-ATV100M ERA-14EB121U ECOS1JA122BA ECW-U1C184JB9 HC2-H-AC48V-F ERA-S15J471V ERA-V15J682V HC2-HP-AC115V-F ECJ-2FF1A475Z ECOS2GP271EA LC-R063R4P EYG-A091210P EEV-HB1HR22R HC4-H-DC12V ELC-12D471E EVM-3RSX50B13 EEF-SD0E221R ELL-CTV150M EET-HC2D102DA EVM-1USX30B12 EEF-UE0E471LR PA-LN19 EEF-UE0E471R ERA-W27J101X ELC-10D330E ERA-V15J101V EEV-TG2A220P HHR-80AAAB3B 036506R ERD-S1TJ165V ECE-V0JA220NR 2SB15990QL EVM-3VSX50B52 ECOS2GP121CX ELJRF22NJFB EET-HC2S471DA ECOS1KP392CA ELJFCR82KF EEV-HA2A3R3P EVM-F6SA00B55 ESE-15700 EEV-TG1J330P EEF-CD0K8R2R AXE260124A