Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics atta abooks, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU ROHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

16

H8/36079 Group, H8/36077 Group

Hardware Manual

Renesas 16-Bit Single-Chip Microcomputer H8 Family/H8/300H Tiny Series

H8/36079

H8/36077

H8/36079GF, H8/36079LF, H8/36078GF, H8/36078LF, H8/36077GF, H8/36077LF, H8/36074GF, H8/36074LF, HD64F36079G HD64F36079L HD64F36078G HD64F36078L HD64F36077G HD64F36077L HD64F36074G HD64F36074L

Renesas Electronics

www.renesas.com

Rev.3.00 2007.09

Rev. 3.00 Sep. 10, 2007 Page ii of xxxii

- and careful attention to additional and different information to be disclosed by Renesas such as that dis through our website. (http://www.renesas.com)
- Renesas has used reasonable care in compiling the information included in this document, but Renesa
 assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the info
 included in this document.
- 6. When using or otherwise relying on the information in this document, you should evaluate the informati light of the total system before deciding about the applicability of such information to the intended appli Renesas makes no representations, warranties or guaranties regarding the suitability of its products for particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
- 7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which respecially high quality and reliability such as safety systems, or equipment or systems for transportatio traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea commu transmission. If you are considering the use of our products for such purposes, please contact a Renes sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth ab
- Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes liste (1) artificial life support devices or systems
 - (2) surgical implantations
 - (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 - (4) any other purposes that pose a direct threat to human life

Renesas shall have no liability for damages arising out of the uses set forth in the above and purchase elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless F Technology Corp., its affiliated companies and their officers, directors, and employees against any and damages arising out of such applications.

- 9. You should use the products described herein within the range specified by Renesas, especially with re to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfund damages arising out of the use of Renesas products beyond such specified ranges.
- 10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specharacteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injinjury or damage caused by fire in the event of the failure of a Renesas product, such as safety design hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final prod system manufactured by you.
- 11. In case Renesas products listed in this document are detached from the products to which the Renesa products are attached or affixed, the risk of accident such as swallowing by infants and small children is high. You should implement safety measures so that Renesas products may not be easily detached from products. Renesas shall have no liability for damages arising out of such detachment.
- This document may not be reproduced or duplicated, in any form, in whole or in part, without prior write approval from Renesas.
- 13. Please contact a Renesas sales office if you have any questions regarding the information contained in document, Renesas semiconductor products, or if you have any other inquiries.

Rev. 3.00 Sep. 10, 2007 Pa

- are in their open states, intermediate levels are induced by noise in the vicinity, a through current flows internally, and a malfunction may occur.
- 3. Processing before Initialization
- Note: When power is first supplied, the product's state is undefined.
 - The states of internal circuits are undefined until full power is supplied throughout chip and a low level is input on the reset pin. During the period where the states a undefined, the register settings and the output state of each pin are also undefined your system so that it does not malfunction because of processing while it is in the undefined state. For those products which have a reset function, reset the LSI immafter the power supply has been turned on.
- 4. Prohibition of Access to Undefined or Reserved Addresses
- Note: Access to undefined or reserved addresses is prohibited. The undefined or reserved addresses may be used to expand functions, or test reg may have been be allocated to these addresses. Do not access these registers; the operation is not guaranteed if they are accessed.

Rev. 3.00 Sep. 10, 2007 Page iv of xxxii

- 1
 - CPU and System-Control Modules
 - On-Chip Peripheral Modules

The configuration of the functional description of each module differs according module. However, the generic style includes the following items:

- i) Feature
- ii) Input/Output Pin
- iii) Register Description
- iv) Operation
- v) Usage Note

When designing an application system that includes this LSI, take notes into account. Exincludes notes in relation to the descriptions given, and usage notes are given, as require final part of each section.

- 7. List of Registers
- 8. Electrical Characteristics
- 9. Appendix
- 10. Main Revisions and Additions in this Edition (only for revised versions)

The list of revisions is a summary of points that have been revised or added to earlier ve This does not include all of the revised contents. For details, see the actual locations in t manual.

11. Index

RENESAS

Rev. 3.00 Sep. 10, 2007 Pa

- interocomputers.
- Objective: This manual was written to explain the hardware functions and electrical characteristics of the H8/36079 Group and H8/36077 Group to the target Refer to the H8/300H Series Software Manual for a detailed description or instruction set.

Notes on reading this manual:

- In order to understand the overall functions of the chip Read the manual according to the contents. This manual can be roughly categorized in on the CPU, system control functions, peripheral functions and electrical characteristi
- In order to understand the details of the CPU's functions Read the H8/300H Series Software Manual.
- In order to understand the details of a register when its name is known Read the index that is the final part of the manual to find the page number of the entry register. The addresses, bits, and initial values of the registers are summarized in secti List of Registers.

Example:	Register name:	The following notation is used for cases when the sa similar function, e.g. serial communication interface implemented on more than one channel: XXX_N (XXX is the register name and N is the cha number)
	Bit order:	The MSB is on the left and the LSB is on the right.

Rev. 3.00 Sep. 10, 2007 Page vi of xxxii

RENESAS

- 1
- The following areas must on no account be accessed. H8/36079 Group: H'FFF780 to H'FFFB7F H8/36077 Group: H'F780 to H'FB7F
- 5. In usage with the E7 or E8, address breaks can be set as either available to the user of by the E7 or E8. If address breaks are set as being used by the E7, the address break registers must not be accessed.
- 6. In usage with the E7 or E8, NMI is an input/output pin (open-drain in output mode), P87 are input pins, and P86 is an output pin.
- Use channel 1 of the SCI3 (P21/RXD, P22/TXD) in on-board programming mode by mode.
- 8. In usage with the E7or E8, the power supply voltage for H8/36079 Group products n greater than the reset detection voltage of the low voltage detection circuit.
- Related Manuals: The latest versions of all related manuals are available from our we Please ensure you have the latest versions of all documents you rec http://www.renesas.com/

RENESAS

Rev. 3.00 Sep. 10, 2007 Pag

H8S, H8/300 Series Simulator/Debugger User's Manual	REJ10B02
H8S, H8/300 Series High-Performance Embedded Workshop 3, Tutorial	REJ10B0
H8S, H8/300 Series High-Performance Embedded Workshop 3, User's Manual	REJ10B0

Application notes:

Document Title	Documen
H8S, H8/300 Series C/C++ Compiler Package Application Note	REJ05B04
Single Power Supply F-ZTAT [™] On-Board Programming	REJ05B0

All trademarks and registered trademarks are the property of their respective owners.

Rev. 3.00 Sep. 10, 2007 Page viii of xxxii

2.1	Address Space and Memory Map		
2.2	Register	Configuration	
	2.2.1	General Registers	
	2.2.2	Program Counter (PC)	
	2.2.3	Condition-Code Register (CCR)	
2.3	Data For	mats	
	2.3.1	General Register Data Formats	
	2.3.2	Memory Data Formats	
2.4	Instructio	on Set	
	2.4.1	Table of Instructions Classified by Function	
	2.4.2	Basic Instruction Formats	
2.5	Addressi	ng Modes and Effective Address Calculation	
	2.5.1	Addressing Modes	
	2.5.2	Effective Address Calculation	
2.6	Basic Bu	s Cycle	
	2.6.1	Access to On-Chip Memory (RAM, ROM)	
	2.6.2	On-Chip Peripheral Modules	
2.7	CPU Sta	tes	
2.8	Usage N	otes	
	2.8.1	Notes on Data Access to Empty Areas	
	2.8.2	EEPMOV Instruction	
	2.8.3	Bit-Manipulation Instruction	
		•	
Sectio	on 3 Exc	eption Handling	
3.1	Exception Sources and Vector Address		
		Descriptions	
	3.2.1	Interrupt Edge Select Register 1 (IEGR1)	
	3.2.2	Interrupt Edge Select Register 2 (IEGR2)	
	3.2.3	Interrupt Enable Register 1 (IENR1)	

Rev. 3.00 Sep. 10, 2007 Pa

	3.5.1	Interrupts after Reset
	3.5.2	Notes on Stack Area Use
	3.5.3	Notes on Rewriting Port Mode Registers
Section	on 4 Add	Iress Break
4.1	Register	Descriptions
	4.1.1	Address Break Control Register (ABRKCR)
	4.1.2	Address Break Status Register (ABRKSR)
	4.1.3	Break Address Registers (BARE, BARH, BARL)
	4.1.4	Break Data Registers (BDRH, BDRL)
4.2	Operation	n
Section	on 5 Clo	ck Pulse Generator
5.1	Features.	
5.2 Register Descriptions		Descriptions
	5.2.1	RC Control Register (RCCR)
	5.2.2	RC Trimming Data Protect Register (RCTRMDPR)
	5.2.3	RC Trimming Data Register (RCTRMDR)
	5.2.4	Clock Control/Status Register (CKCSR)
5.3	System C	Clock Select Operation
	5.3.1	Clock Control Operation
	5.3.2	Clock Switching Timing
5.4	Trimming	g of On-Chip Oscillator Frequency
5.5	.5 External Oscillators	
	5.5.1	Connecting Crystal Resonator
	5.5.2	Connecting Ceramic Resonator
	5.5.3	Inputting External Clock
5.6	Subclock	Oscillator
	5.6.1	Connecting 32.768-kHz Crystal Resonator

Rev. 3.00 Sep. 10, 2007 Page x of xxxii

	6.1.2	System Control Register 2 (SYSCR2)
	6.1.3	Module Standby Control Register 1 (MSTCR1)
	6.1.4	Module Standby Control Register 2 (MSTCR2)
6.2	Mode Tr	ansitions and States of LSI
	6.2.1	Sleep Mode
	6.2.2	Standby Mode
	6.2.3	Subsleep Mode
	6.2.4	Subactive Mode
6.3	Operatin	g Frequency in Active Mode
6.4	Direct T	ransition
	6.4.1	Direct Transition from Active Mode to Subactive Mode
	6.4.2	Direct Transition from Subactive Mode to Active Mode
6.5	Module	Standby Function
Secti	on 7 RO	M
7.1	Block Configuration	
7.2	Register Descriptions	
	7.2.1	Flash Memory Control Register 1 (FLMCR1)
	7.2.2	Flash Memory Control Register 2 (FLMCR2)
	7.2.3	Erase Block Register 1 (EBR1)
	7.2.4	Flash Memory Power Control Register (FLPWCR)
	7.2.5	Flash Memory Enable Register (FENR)
7.3	On-Boar	d Programming Modes
	7.3.1	Boot Mode
	7.3.2	Programming/Erasing in User Program Mode
7.4	Flash Me	emory Programming/Erasing
	7.4.1	Program/Program-Verify
	7.4.2	Erase/Erase-Verify
	7.4.3	Interrupt Handling when Programming/Erasing Flash Memory

Rev. 3.00 Sep. 10, 2007 Pa

	9.1.1	Port Mode Register 1 (PMR1)
	9.1.2	Port Control Register 1 (PCR1)
	9.1.3	Port Data Register 1 (PDR1)
	9.1.4	Port Pull-Up Control Register 1 (PUCR1)
	9.1.5	Pin Functions
9.2	Port 2	
	9.2.1	Port Control Register 2 (PCR2)
	9.2.2	Port Data Register 2 (PDR2)
	9.2.3	Port Mode Register 3 (PMR3)
	9.2.4	Pin Functions
9.3	Port 3	
	9.3.1	Port Control Register 3 (PCR3)
	9.3.2	Port Data Register 3 (PDR3)
	9.3.3	Pin Functions
9.4	Port 5	
	9.4.1	Port Mode Register 5 (PMR5)
	9.4.2	Port Control Register 5 (PCR5)
	9.4.3	Port Data Register 5 (PDR5)
	9.4.4	Port Pull-Up Control Register 5 (PUCR5)
	9.4.5	Pin Functions
9.5	Port 6	
	9.5.1	Port Control Register 6 (PCR6)
	9.5.2	Port Data Register 6 (PDR6)
	9.5.3	Pin Functions
9.6	Port 7	
	9.6.1	Port Control Register 7 (PCR7)
	9.6.2	Port Data Register 7 (PDR7)
	9.6.3	Pin Functions
9.7	Port 8	

Rev. 3.00 Sep. 10, 2007 Page xii of xxxii

Secti	Section 10 Realtime Clock (RTC)		
10.1	Features		
10.2	Input/Ou	ıtput Pin	
10.3	Register	Descriptions	
	10.3.1	Second Data Register/Free Running Counter Data Register (RSECDR	
	10.3.2	Minute Data Register (RMINDR)	
	10.3.3	Hour Data Register (RHRDR)	
	10.3.4	Day-of-Week Data Register (RWKDR)	
	10.3.5	RTC Control Register 1 (RTCCR1)	
	10.3.6	RTC Control Register 2 (RTCCR2)	
	10.3.7	Clock Source Select Register (RTCCSR)	
10.4	Operatio)n	
	10.4.1	Initial Settings of Registers after Power-On	
	10.4.2	Initial Setting Procedure	
	10.4.3	Data Reading Procedure	
10.5	Interrup	t Sources	
Secti	on 11 Ti	imer B1	
11.1	Features		
11.2	Input/Output Pin		
11.3	· ·		
	11.3.1	Timer Mode Register B1 (TMB1)	
	11.3.2	Timer Counter B1 (TCB1)	
	11.3.3	Timer Load Register B1 (TLB1)	
11.4	-		
	11.4.1	Interval Timer Operation	
	11.4.2	Auto-Reload Timer Operation	
	11.4.3	Event Counter Operation	
11.5	Timer B	1 Operating Modes	

Rev. 3.00 Sep. 10, 2007 Pag

12.5	Timer V Application Examples	
	12.5.1	Pulse Output with Arbitrary Duty Cycle
	12.5.2	Pulse Output with Arbitrary Pulse Width and Delay from TRGV Input
12.6	Usage N	otes
Secti	on 13 Ti	mer Z
13.1	Features	
13.2	Input/Ou	Itput Pins
13.3	Register	Descriptions
	13.3.1	Timer Start Register (TSTR)
	13.3.2	Timer Mode Register (TMDR)
	13.3.3	Timer PWM Mode Register (TPMR)
	13.3.4	Timer Function Control Register (TFCR)
	13.3.5	Timer Output Master Enable Register (TOER)
	13.3.6	Timer Output Control Register (TOCR)
	13.3.7	Timer Counter (TCNT)
	13.3.8	General Registers A, B, C, and D (GRA, GRB, GRC, and GRD)
	13.3.9	Timer Control Register (TCR)
	13.3.10	Timer I/O Control Register (TIORA and TIORC)
	13.3.11	Timer Status Register (TSR)
	13.3.12	Timer Interrupt Enable Register (TIER)
	13.3.13	PWM Mode Output Level Control Register (POCR)
	13.3.14	Interface with CPU
13.4	Operatio	n
	13.4.1	Counter Operation
	13.4.2	Waveform Output by Compare Match
	13.4.3	Input Capture Function
	13.4.4	Synchronous Operation
	13.4.5	PWM Mode

Rev. 3.00 Sep. 10, 2007 Page xiv of xxxii

14.2	Register Descriptions		
	14.2.1	Timer Control/Status Register WD (TCSRWD)	
	14.2.2	Timer Counter WD (TCWD)	
	14.2.3	Timer Mode Register WD (TMWD)	
14.3	Operatio	n	
Section	on 15 14	-Bit PWM	
15.1	Features		
15.2	Input/Ou	ıtput Pin	
15.3	Register	Descriptions	
	15.3.1	PWM Control Register (PWCR)	
	15.3.2	PWM Data Registers U and L (PWDRU, PWDRL)	
15.4	Operatio	n	
Section	on 16 Se	erial Communication Interface 3 (SCI3)	
16.1	Features		
16.2	Input/Output Pins		
16.3	Register Descriptions		
	16.3.1	Receive Shift Register (RSR)	
	16.3.2	Receive Data Register (RDR)	
	16.3.3	Transmit Shift Register (TSR)	
	16.3.4	Transmit Data Register (TDR)	
	16.3.5	Serial Mode Register (SMR)	
	16.3.6	Serial Control Register 3 (SCR3)	
	16.3.7	Serial Status Register (SSR)	
	16.3.8	Bit Rate Register (BRR)	
16.4	Operatio	n in Asynchronous Mode	
	16.4.1	Clock	
	16.4.2	SCI3 Initialization	

Rev. 3.00 Sep. 10, 2007 Pag

16.7	Interrup	ts
16.8	3 Usage Notes	
	16.8.1	Break Detection and Processing
	16.8.2	Mark State and Break Sending
	16.8.3	Receive Error Flags and Transmit Operations
		(Clock Synchronous Mode Only)
	16.8.4	Receive Data Sampling Timing and Reception Margin in
		Asynchronous Mode
	2	
Secti	on 17 I^2	C Bus Interface 2 (IIC2)
17.1	Features	
17.2	Input/Ou	ıtput Pins
17.3	Register	Descriptions
	17.3.1	I ² C Bus Control Register 1 (ICCR1)
	17.3.2	I ² C Bus Control Register 2 (ICCR2)
	17.3.3	I ² C Bus Mode Register (ICMR)
	17.3.4	I ² C Bus Interrupt Enable Register (ICIER)
	17.3.5	I ² C Bus Status Register (ICSR)
	17.3.6	Slave Address Register (SAR)
	17.3.7	I ² C Bus Transmit Data Register (ICDRT)
	17.3.8	I ² C Bus Receive Data Register (ICDRR)
	17.3.9	I ² C Bus Shift Register (ICDRS)
17.4	Operatio	- n
	17.4.1	I ² C Bus Format
	17.4.2	Master Transmit Operation
	17.4.3	Master Receive Operation
	17.4.4	Slave Transmit Operation
	17.4.5	Slave Receive Operation
	17.4.6	Clock Synchronous Serial Format
		•

Rev. 3.00 Sep. 10, 2007 Page xvi of xxxii

18.1	Features		
18.2	Input/Output Pins		
18.3	Register Descriptions		
	18.3.1	A/D Data Registers A to D (ADDRA to ADDRD)	
	18.3.2	A/D Control/Status Register (ADCSR)	
	18.3.3	A/D Control Register (ADCR)	
18.4	Operatio	n	
	18.4.1	Single Mode	
	18.4.2	Scan Mode	
	18.4.3	Input Sampling and A/D Conversion Time	
	18.4.4	External Trigger Input Timing	
18.5	A/D Con	version Accuracy Definitions	
18.6	Usage Notes		
	18.6.1	Permissible Signal Source Impedance	
	18.6.2	Influences on Absolute Accuracy	
Sectio	on 19 Ba	and-Gap Circuit, Power-On Reset, and	
Low-Voltage Detection Circuits			
19.1	Features		
19.2	Register Descriptions		
	19.2.1	Low-Voltage-Detection Control Register (LVDCR)	
	19.2.2	Low-Voltage-Detection Status Register (LVDSR)	
	19.2.3	Reset Source Decision Register (LVDRF)	
19.3	9.3 Operations		
	19.3.1	Power-On Reset Circuit	
	19.3.2	Low-Voltage Detection Circuit	
	19.3.3	Deciding Reset Source	

Rev. 3.00 Sep. 10, 2007 Page

22.1	Absolute	e Maximum Ratings
22.2	Electrical Characteristics (F-ZTAT TM 5.0-V Version)	
	22.2.1	Power Supply Voltage and Operating Ranges
	22.2.2	DC Characteristics
	22.2.3	AC Characteristics
	22.2.4	A/D Converter Characteristics
	22.2.5	Watchdog Timer Characteristics
	22.2.6	Flash Memory Characteristics
	22.2.7	Power-Supply-Voltage Detection Circuit Characteristics
	22.2.8	LVDI External Input Voltage Detection Circuit Characteristics
	22.2.9	Power-On Reset Circuit Characteristics
22.3	Electrica	al Characteristics (F-ZTAT [™] 3.3-V Version)
	22.3.1	Power Supply Voltage and Operating Ranges
	22.3.2	DC Characteristics
	22.3.3	AC Characteristics
	22.3.4	A/D Converter Characteristics
	22.3.5	Watchdog Timer Characteristics
	22.3.6	Flash Memory Characteristics
	22.3.7	Power-Supply-Voltage Detection Circuit Characteristics
	22.3.8	LVDI External Input Voltage Detection Circuit Characteristics
	22.3.9	Power-On Reset Circuit Characteristics
22.4	Operatio	n Timing
22.5	Output I	Load Condition
Appe	endix A	Instruction Set
A.1	Instructi	on List
A.2	Operatio	n Code Map
A.3	Number	of Execution States
A.4	Combina	ations of Instructions and Addressing Modes

Rev. 3.00 Sep. 10, 2007 Page xviii of xxxii

Rev. 3.00 Sep. 10, 2007 Pag

Rev. 3.00 Sep. 10, 2007 Page xx of xxxii

rigule 2.5	Usage of General Registers
Figure 2.4	Relationship between Stack Pointer and Stack Area
Figure 2.5	General Register Data Formats (1)
Figure 2.5	General Register Data Formats (2)
Figure 2.6	Memory Data Formats
Figure 2.7	Instruction Formats
Figure 2.8	Branch Address Specification in Memory Indirect Mode
Figure 2.9	On-Chip Memory Access Cycle
Figure 2.10	On-Chip Peripheral Module Access Cycle (3-State Access)
Figure 2.11	CPU Operation States
Figure 2.12	State Transitions
Figure 2.13	Example of Timer Configuration with Two Registers
	Allocated to Same Address
Section 3	Exception Handling
Figure 3.1	Reset Sequence
Figure 3.2	Stack Status after Exception Handling
Figure 3.3	Interrupt Sequence
Figure 3.4	Port Mode Register Setting and Interrupt Request Flag Clearing Procedure .
Section 4	Address Break
Figure 4.1	Block Diagram of Address Break
Figure 4.2	Address Break Interrupt Operation Example (1)
Figure 4.2	Address Break Interrupt Operation Example (2)
Section 5	Clock Pulse Generator
Figure 5.1	Block Diagram of Clock Pulse Generator
Figure 5.2	State Transition of System Clock
Figure 5.3	Flowchart of Clock Switching with Backup Function Enabled
Figure 5.4	Flowchart of Clock Switching with Backup Function Disabled (1)
	(From On-Chip Oscillator Clock to External Clock)

Rev. 3.00 Sep. 10, 2007 Pag

Figure 5.13	Equivalent Circuit of Crystal Resonator
Figure 5.14	Example of Connection to Ceramic Resonator
	Example of External Clock Input
Figure 5.16	Block Diagram of Subclock Oscillator
Figure 5.17	Typical Connection to 32.768-kHz Crystal Resonator
Figure 5.18	Equivalent Circuit of 32.768-kHz Crystal Resonator
Figure 5.19	Pin Connection when not Using Subclock
Figure 5.20	Example of Incorrect Board Design
Section 6	Power-Down Modes
Figure 6.1	Mode Transition Diagram
Section 7	ROM
Figure 7.1	Flash Memory Block Configuration (1) (H8/36079GF and H8/36079LF)
Figure 7.1	Flash Memory Block Configuration (2) (H8/36078GF and H8/36078LF)
Figure 7.1	Flash Memory Block Configuration (3) (H8/36077GF and H8/36077LF)
Figure 7.1	Flash Memory Block Configuration (4) (H8/36074GF and H8/36074LF)
Figure 7.2	Programming/Erasing Flowchart Example in User Program Mode
Figure 7.3	Program/Program-Verify Flowchart
Figure 7.4	Erase/Erase-Verify Flowchart
Section 9	I/O Ports
Figure 9.1	Port 1 Pin Configuration
Figure 9.2	Port 2 Pin Configuration
Figure 9.3	Port 3 Pin Configuration
Figure 9.4	Port 5 Pin Configuration
Figure 9.5	Port 6 Pin Configuration
Figure 9.6	Port 7 Pin Configuration
Figure 9.7	Port 8 Pin Configuration
Figure 9.8	Port B Pin Configuration
Figure 9.9	Port C Pin Configuration

Rev. 3.00 Sep. 10, 2007 Page xxii of xxxii

Figure 12.3 Increment Timing with External Clock
Figure 12.4 OVF Set Timing
Figure 12.5 CMFA and CMFB Set Timing
Figure 12.6 TMOV Output Timing
Figure 12.7 Clear Timing by Compare Match
Figure 12.8 Clear Timing by TMRIV Input
Figure 12.9 Pulse Output Example
Figure 12.10 Example of Pulse Output Synchronized to TRGV Input
Figure 12.11 Contention between TCNTV Write and Clear
Figure 12.12 Contention between TCORA Write and Compare Match
Figure 12.13 Internal Clock Switching and TCNTV Operation
Section 13 Timer Z
Figure 13.1 Timer Z Block Diagram
Figure 13.2 Timer Z (Channel 0) Block Diagram
Figure 13.3 Timer Z (Channel 1) Block Diagram
Figure 13.4 Example of Outputs in Reset Synchronous PWM Mode and
Complementary PWM Mode
Figure 13.5 Accessing Operation of 16-Bit Register
(between CPU and TCNT (16 bits))
Figure 13.6 Accessing Operation of 8-Bit Register
(between CPU and TSTR (8 bits))
Figure 13.7 Example of Counter Operation Setting Procedure
Figure 13.8 Free-Running Counter Operation
Figure 13.9 Periodic Counter Operation
Figure 13.10 Count Timing at Internal Clock Operation
Figure 13.11 Count Timing at External Clock Operation (Both Edges Detected)
Figure 13.12 Example of Setting Procedure for Waveform Output
by Compare Match
Figure 13.13 Example of 0 Output/1 Output Operation

Rev. 3.00 Sep. 10, 2007 Page

Figure 13.25	Example of PWM Mode Operation (4)
Figure 13.26	Example of Reset Synchronous PWM Mode Setting Procedure
Figure 13.27	Example of Reset Synchronous PWM Mode Operation
	(OLS0 = OLS1 = 1)
Figure 13.28	Example of Reset Synchronous PWM Mode Operation
	(OLS0 = OLS1 = 0)
Figure 13.29	Example of Complementary PWM Mode Setting Procedure
Figure 13.30	Canceling Procedure of Complementary PWM Mode
Figure 13.31	Example of Complementary PWM Mode Operation (1)
Figure 13.32	(1) Example of Complementary PWM Mode Operation
	(TPSC2 = TPSC1 = TPSC0 = 0) (2).
Figure 13.32	(2) Example of Complementary PWM Mode Operation
	$(TPSC2 = TPSC1 = TPSC0 \neq 0) (3)$
Figure 13.33	Timing of Overshooting
Figure 13.34	Timing of Undershooting
Figure 13.35	Compare Match Buffer Operation
Figure 13.36	Input Capture Buffer Operation
Figure 13.37	Example of Buffer Operation Setting Procedure
Figure 13.38	Example of Buffer Operation (1)
	(Buffer Operation for Output Compare Register)
Figure 13.39	Example of Compare Match Timing for Buffer Operation
Figure 13.40	Example of Buffer Operation (2)
	(Buffer Operation for Input Capture Register)
Figure 13.41	Input Capture Timing of Buffer Operation
Figure 13.42	Buffer Operation (3)
	(Buffer Operation in Complementary PWM Mode CMD1 = CMD0 = 1).
Figure 13.43	Buffer Operation (4)
	(Buffer Operation in Complementary PWM Mode CMD1 = CMD0 = 1)
Figure 13.44	Example of Output Disable Timing of Timer Z by Writing to TOER

Rev. 3.00 Sep. 10, 2007 Page xxiv of xxxii

RENESAS

Figure 13.56	Contention between GR Read and Input Capture	
Figure 13.57 Contention between Count Clearing and Increment Operations		
	by Input Capture	
Figure 13.58	Contention between GR Write and Input Capture	
Figure 13.59	When Compare Match and Bit Manipulation Instruction to TOCR	
	Occur at the Same Timing	
Section 14	Watchdog Timer	
Figure 14.1	Block Diagram of Watchdog Timer	
	Watchdog Timer Operation Example	
Section 15	14-BIt PWM	
Figure 15.1	Block Diagram of 14-Bit PWM	
Figure 15.2	Waveform Output by 14-Bit PWM	
Section 16	Serial Communication Interface 3 (SCI3)	
Figure 16.1	Block Diagram of SCI3	
Figure 16.2	Data Format in Asynchronous Communication	
Figure 16.3	Relationship between Output Clock and Transfer Data Phase	
	(Asynchronous Mode) (Example with 8-Bit Data, Parity, Two Stop Bits).	
Figure 16.4	Sample SCI3 Initialization Flowchart	
Figure 16.5	Example of SCI3 Transmission in Asynchronous Mode	
	(8-Bit Data, Parity, One Stop Bit)	
Figure 16.6	Sample Serial Transmission Data Flowchart (Asynchronous Mode)	
Figure 16.7	Example of SCI3 Reception in Asynchronous Mode	
	(8-Bit Data, Parity, One Stop Bit)	
Figure 16.8	Sample Serial Reception Data Flowchart (Asynchronous Mode) (1)	
Figure 16.8	Sample Serial Reception Data Flowchart (Asynchronous Mode) (2)	
Figure 16.9		
	Example of SCI3 Transmission in Clock Synchronous Mode	
Figure 16.11	Sample Serial Transmission Flowchart (Clock Synchronous Mode)	

Rev. 3.00 Sep. 10, 2007 Page

Figure 16.19 Receive Data Sampling Timing in Asynchronous Mode
Section 17 I ² C Bus Interface 2 (IIC2)
Figure 17.1 Block Diagram of I ² C Bus Interface 2
Figure 17.2 External Circuit Connections of I/O Pins
Figure 17.3 I ² C Bus Formats
Figure 17.4 I ² C Bus Timing
Figure 17.5 Master Transmit Mode Operation Timing (1)
Figure 17.6 Master Transmit Mode Operation Timing (2)
Figure 17.7 Master Receive Mode Operation Timing (1)
Figure 17.8 Master Receive Mode Operation Timing (2)
Figure 17.9 Slave Transmit Mode Operation Timing (1)
Figure 17.10 Slave Transmit Mode Operation Timing (2)
Figure 17.11 Slave Receive Mode Operation Timing (1)
Figure 17.12 Slave Receive Mode Operation Timing (2)
Figure 17.13 Clock Synchronous Serial Transfer Format
Figure 17.14 Transmit Mode Operation Timing
Figure 17.15 Receive Mode Operation Timing
Figure 17.16 Block Diagram of Noise Filter
Figure 17.17 Sample Flowchart for Master Transmit Mode
Figure 17.18 Sample Flowchart for Master Receive Mode
Figure 17.19 Sample Flowchart for Slave Transmit Mode
Figure 17.20 Sample Flowchart for Slave Receive Mode
Figure 17.21 The Timing of the Bit Synchronous Circuit
Section 18 A/D Converter
Figure 18.1 Block Diagram of A/D Converter
Figure 18.2 A/D Conversion Timing
Figure 18.3 External Trigger Input Timing
Figure 18.4 A/D Conversion Accuracy Definitions (1)

Rev. 3.00 Sep. 10, 2007 Page xxvi of xxxii

Figure 19.7	Timing of Setting Bits in Reset Source Decision Register
Section 20	Power Supply Circuit
Figure 20.1	Power Supply Connection of 5.0-V-Specification Microcontrollers
Figure 20.2	Power Supply Connection of 3.3-V-Specification Microcontrollers
Section 22	Electrical Characteristics
Figure 22.1	System Clock Input Timing
Figure 22.2	RES Low Width Timing
Figure 22.3	Input Timing
Figure 22.4	I ² C Bus Interface Input/Output Timing
Figure 22.5	SCK3 Input Clock Timing
Figure 22.6	SCI Input/Output Timing in Clock Synchronous Mode
Figure 22.7	Output Load Circuit
Appendix	
Figure B.1	Port 1 Block Diagram (P17)
Figure B.2	Port 1 Block Diagram (P14, P16)
Figure B.3	Port 1 Block Diagram (P15)
Figure B.4	Port 1 Block Diagram (P12)
Figure B.5	Port 2 Block Diagram (P11)
Figure B.6	Port 1 Block Diagram (P10)
Figure B.7	Port 2 Block Diagram (P24, P23)
Figure B.8	Port 2 Block Diagram (P22)
Figure B.9	Port 2 Block Diagram (P21)
Figure B.10	Port 2 Block Diagram (P20)
Figure B.11	Port 3 Block Diagram (P37 to P30)
Figure B.12	Port 5 Block Diagram (P57, P56)
Figure B.13	Port 5 Block Diagram (P55)
Figure B.14	Port 5 Block Diagram (P54 to P50)

Rev. 3.00 Sep. 10, 2007 Page

Figure B.26	Port B Block Diagram (PC0)
e	FP-64K Package Dimensions
e	FP-64A Package Dimensions

Rev. 3.00 Sep. 10, 2007 Page xxviii of xxxii

1 able 2.4	Logic Operations instructions
Table 2.5	Shift Instructions
Table 2.6	Bit Manipulation Instructions (1)
Table 2.6	Bit Manipulation Instructions (2)
Table 2.7	Branch Instructions
Table 2.8	System Control Instructions
Table 2.9	Block Data Transfer Instructions
Table 2.10	Addressing Modes
Table 2.11	Absolute Address Access Ranges
Table 2.12	Effective Address Calculation (1)
Table 2.12	Effective Address Calculation (2)
Section 3	Exception Handling
Table 3.1	Exception Sources and Vector Address
Table 3.2	Interrupt Wait States
Section 4	Address Break
Section 4 Table 4.1	Address Break Access and Data Bus Used
Table 4.1	Access and Data Bus Used
Table 4.1 Section 5 Table 5.1	Access and Data Bus Used Clock Pulse Generator
Table 4.1 Section 5 Table 5.1	Access and Data Bus Used Clock Pulse Generator Crystal Resonator Parameters
Table 4.1 Section 5 Table 5.1 Section 6	Access and Data Bus Used Clock Pulse Generator Crystal Resonator Parameters Power-Down Modes
Table 4.1 Section 5 Table 5.1 Section 6 Table 6.1	Access and Data Bus Used Clock Pulse Generator Crystal Resonator Parameters Power-Down Modes Operating Frequency and Waiting Time
Table 4.1 Section 5 Table 5.1 Section 6 Table 6.1	Access and Data Bus Used Clock Pulse Generator Crystal Resonator Parameters Power-Down Modes Operating Frequency and Waiting Time Transition Mode after SLEEP Instruction Execution and Transition Mode
Table 4.1Section 5Table 5.1Section 6Table 6.1Table 6.2	Access and Data Bus Used Clock Pulse Generator Crystal Resonator Parameters Power-Down Modes Operating Frequency and Waiting Time Transition Mode after SLEEP Instruction Execution and Transition Mod due to Interrupt Internal State in Each Operating Mode
Table 4.1Section 5Table 5.1Section 6Table 6.1Table 6.2Table 6.3	Access and Data Bus Used Clock Pulse Generator Crystal Resonator Parameters Power-Down Modes Operating Frequency and Waiting Time Transition Mode after SLEEP Instruction Execution and Transition Mod due to Interrupt Internal State in Each Operating Mode
Table 4.1Section 5Table 5.1Section 6Table 6.1Table 6.2Table 6.3Section 7	Access and Data Bus Used Clock Pulse Generator Crystal Resonator Parameters Power-Down Modes Operating Frequency and Waiting Time Transition Mode after SLEEP Instruction Execution and Transition Mod due to Interrupt Internal State in Each Operating Mode ROM

Rev. 3.00 Sep. 10, 2007 Page

Table 11.1	Pin Configuration
Table 11.2	Timer B1 Operating Modes
Section 12	Timer V
Table 12.1	Pin Configuration
Table 12.2	Clock Signals to Input to TCNTV and Counting Conditions
Section 13	Timer Z
Table 13.1	Timer Z Functions
Table 13.2	Pin Configuration
Table 13.3	Initial Output Level of FTIOB0 Pin
Table 13.4	Output Pins in Reset Synchronous PWM Mode
Table 13.5	Register Settings in Reset Synchronous PWM Mode
Table 13.6	Output Pins in Complementary PWM Mode
Table 13.7	Register Settings in Complementary PWM Mode
Table 13.8	Register Combinations in Buffer Operation
Section 15	14-Bit PWM
Section 15 Table 15.1	14-Bit PWM Pin Configuration
	Pin Configuration
Table 15.1	
Table 15.1 Section 16	Pin Configuration Serial Communication Interface 3 (SCI3)
Table 15.1 Section 16 Table 16.1	Pin Configuration Serial Communication Interface 3 (SCI3) Channel Configuration
Table 15.1 Section 16 Table 16.1 Table 16.2	Pin Configuration Serial Communication Interface 3 (SCI3) Channel Configuration Pin Configuration
Table 15.1 Section 16 Table 16.1 Table 16.2 Table 16.3	Pin Configuration Serial Communication Interface 3 (SCI3) Channel Configuration Pin Configuration Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (
Table 15.1 Section 16 Table 16.1 Table 16.2 Table 16.3 Table 16.3	Pin Configuration Serial Communication Interface 3 (SCI3) Channel Configuration Pin Configuration Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (
Table 15.1 Section 16 Table 16.1 Table 16.2 Table 16.3 Table 16.3 Table 16.3 Table 16.3	Pin Configuration Serial Communication Interface 3 (SCI3) Channel Configuration Pin Configuration Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (
Table 15.1 Section 16 Table 16.1 Table 16.2 Table 16.3 Table 16.3 Table 16.3 Table 16.4	Pin Configuration Serial Communication Interface 3 (SCI3) Channel Configuration Pin Configuration Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (Maximum Bit Rate for Each Frequency (Asynchronous Mode)
Table 15.1 Section 16 Table 16.1 Table 16.2 Table 16.3 Table 16.3 Table 16.3 Table 16.4	Pin Configuration Serial Communication Interface 3 (SCI3) Channel Configuration Pin Configuration Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (Maximum Bit Rate for Each Frequency (Asynchronous Mode) Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (Maximum Bit Rate for Each Frequency (Asynchronous Mode)
Table 15.1 Section 16 Table 16.1 Table 16.2 Table 16.3 Table 16.3 Table 16.3 Table 16.3 Table 16.4 Table 16.5	Pin Configuration Serial Communication Interface 3 (SCI3) Channel Configuration Pin Configuration Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (Maximum Bit Rate for Each Frequency (Asynchronous Mode) Examples of BRR Settings for Various Bit Rates (Clock Synchronous Mode) (1)

Rev. 3.00 Sep. 10, 2007 Page xxx of xxxii

Table 18.3	A/D Conversion Time (Single Mode)
Section 19	Band-Gap Circuit, Power-On Reset, and Low-Voltage Detection Circu
Table 19.1	LVDCR Settings and Select Functions
Table 19.2	Deciding Reset Source
Section 22	Electrical Characteristics
Table 22.1	Absolute Maximum Ratings
Table 22.2	DC Characteristics (1)
Table 22.2	DC Characteristics (2)
Table 22.3	AC Characteristics
Table 22.4	I ² C Bus Interface Timing
Table 22.5	Serial Communication Interface (SCI) Timing
Table 22.6	A/D Converter Characteristics
Table 22.7	Watchdog Timer Characteristics
Table 22.8	Flash Memory Characteristics
Table 22.9	Power-Supply-Voltage Detection Circuit Characteristics
Table 22.10	LVDI External Input Voltage Detection Circuit Characteristics
Table 22.11	Power-On Reset Circuit Characteristics
Table 22.12	DC Characteristics (1)
Table 22.12	DC Characteristics (2)
Table 22.13	AC Characteristics
Table 22.14	I ² C Bus Interface Timing
Table 22.15	Serial Communication Interface (SCI) Timing
Table 22.16	A/D Converter Characteristics
Table 22.17	Watchdog Timer Characteristics
Table 22.18	Flash Memory Characteristics
Table 22.19	Power-Supply-Voltage Detection Circuit Characteristics
Table 22.20	LVDI External Input Voltage Detection Circuit Characteristics
Table 22.21	Power-On Reset Circuit Characteristics

Rev. 3.00 Sep. 10, 2007 Page

Rev. 3.00 Sep. 10, 2007 Page xxxii of xxxii

- RTC (can be used as a free running counter)
- Timer B1 (8-bit timer)
- Timer V (8-bit timer)
- Timer Z (16-bit timer)
- 14-bit PWM
- Watchdog timer
- SCI (asynchronous or clock synchronous serial communication interface) × 2 cha
- I²C bus interface (conforms to the I²C bus interface format that is advocated by P Electronics)
- 10-bit A/D converter
- POR/LVD (power-on reset & low-voltage detection circuit)
- On-chip oscillator

Rev. 3.00 Sep. 10, 2007 P REJ09 3.3-V model H8/36074LF HD64F36074L

- Operating Maximum Voltage Operating Product Classification Product Model Range Frequency Flash memory version H8/36079 5.0-V model H8/36079GF HD64F36079G 4.5 V to 5.5 V 20.0 MHz (F-ZTAT[™] version) Group 3.3-V model H8/36079LF HD64F36079L 3.0 V to 3.6 V 16.0 MHz 5.0-V model H8/36078GF HD64F36078G 4.5 V to 5.5 V 20.0 MHz 3.3-V model H8/36078LF HD64F36078L 3.0 V to 3.6 V 16.0 MHz H8/36077 5.0-V model H8/36077GF HD64F36077G 4.5 V to 5.5 V 20.0 MHz Group 3.3-V model H8/36077LF HD64F36077L 3.0 V to 3.6 V 16.0 MHz 5.0-V model H8/36074GF HD64F36074G 4.5 V to 5.5 V 20.0 MHz 3.3-V model H8/36074LF HD64F36074L 3.0 V to 3.6 V 16.0 MHz
- Operating voltage and maximum operating frequency

Rev. 3.00 Sep. 10, 2007 Page 2 of 528 REJ09B0216-0300

P	3.3-V model	H8/36077LF	HD64F36077L
	5.0-V model	H8/36074GF	HD64F36074G
	3.3-V model	H8/36074LF	HD64F36074L

- General I/O ports
 - I/O pins: 47 I/O pins, including 8 for large currents ($I_{OL} = 20 \text{ mA}$, @ $V_{OL} = 1.5 \text{ V}$)
 - Input-only pins: 8 (also used for analog input)
- I²C bus interface (conforms to the I²C bus interface format put forward by Philips Ele
- Supports various power-down modes

Note: F-ZTATTM is a trademark of Renesas Technology Corp.

• Compact package

Package	Code	Body Size	Pin Pitch
LQFP-64	FP-64K	10.0 imes 10.0 mm	0.5 mm
QFP-64	FP-64A	14.0 imes 14.0 mm	0.8 mm

RENESAS

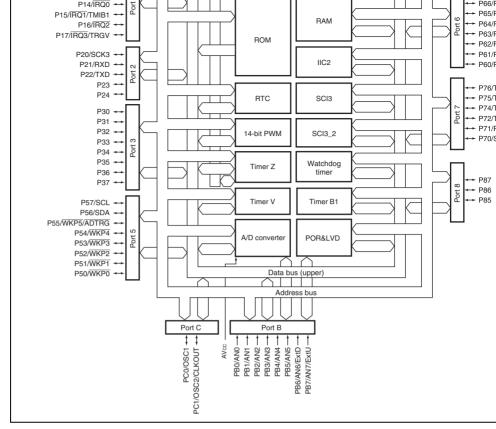
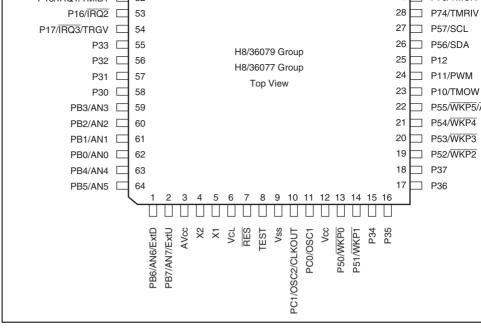
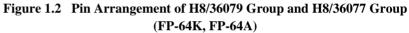




Figure 1.1 Block Diagram of H8/36079 Group and H8/36077 Group

Rev. 3.00 Sep. 10, 2007 Page 4 of 528 REJ09B0216-0300

RENESAS

RENESAS

	AV_{cc}	3	Input	Analog power supply pin for the A/D co When the A/D converter is not used, co this pin to the system power supply.
	V _{CL}	6	Input	See section 20, Power Supply Circuit, t typical connection.
Clock pins	OSC1	11	Input	These pins connect with crystal or cera
	OSC2/ CLKOUT	10	Output	resonator for the system clock, or can to to input an external clock. When the on oscillator is used, the system clock can output on OSC2 pin.
				See section 5, Clock Pulse Generator, typical connection.
	X1	5	Input	These pins connect with a 32.768 kHz
	X2	4	Output	resonator for the subclock. See section Pulse Generator, for a typical connection
System control	RES	7	Input	Reset pin. The pull-up resistor (typ. 150 incorporated. When driven low, this LS
	TEST	8	Input	Test pin. Connect this pin to Vss.
Interrupt pins	NMI	35	Input	Non-maskable interrupt request input p sure to pull up by a resistor.
	IRQ0 to IRQ3	51 to 54	Input	External interrupt request input pins. Cathe rising or falling edge.
	WKP0 to WKP5	13, 14, 19 to 22	Input	External interrupt request input pins. Cathe rising or falling edge.
RTC	TMOW	23	Output	This is an output pin for a divided clock
Timer B1	TMIB1	52	Input	External event input pin

Rev. 3.00 Sep. 10, 2007 Page 6 of 528 REJ09B0216-0300

RENESAS

	FTIOB0	34	I/O	Output compare output/input capture input/PWM output pin
	FTIOC0	33	I/O	Output compare output/input capture input/PWM sync output pin (at a reso complementary PWM mode)
	FTIOD0	32	I/O	Output compare output/input capture input/PWM output pin
	FTIOA1	37	I/O	Output compare output/input capture input/PWM output pin (at a reset, complementary PWM mode)
	FTIOB1 to FTIOD1	38 to 40	I/O	Output compare output/input capture input/PWM output pin
14-bit PWM	PWM	24	Output	14-bit PWM square wave output pin
I ² C bus interface 2 (IIC2)	SDA	26	I/O	I ² C data I/O pin. Can directly drive a NMOS open-drain output. When usin external pull-up resistor is required.
	SCL	27	I/O	I ² C clock I/O pin. Can directly drive a NMOS open-drain output. When usin external pull-up resistor is required.
Serial com- munication	TXD, TXD_2	46, 50	Output	Transmit data output pin
interface 3 (SCI3)	RXD, RXD_2	45, 49	Input	Receive data input pin
_	SCK3, SCK3_2	44, 48	I/O	Clock I/O pin

Renesas

	- ,	- /		
	P17 to P14, P12 to P10	54 to 51, 25 to 23	I/O	7-bit I/O port
	P24 to P20	31, 47 to 44	I/O	5-bit I/O port
	P37 to P30	18 to 15, 55 to 58	I/O	8-bit I/O port
	P57 to P50	27, 26 22 to 19 14, 13	I/O	8-bit I/O port
	P67 to P60	40 to 37 32 to 34, 36	I/O	8-bit I/O port
	P76 to P74, P72 to P70	30 to 28, 50 to 48	I/O	6-bit I/O port
	P87 to P85	43 to 41	I/O	3-bit I/O port
Low-voltage detection circuit	ExtU, ExtD	2, 1	Input	This pin is used to externally input the detection voltage for the low-voltage or circuit.

Rev. 3.00 Sep. 10, 2007 Page 8 of 528 REJ09B0216-0300

- 32-bit transfer and arithmetic and logic instructions are added
- Signed multiply and divide instructions are added.
- General-register architecture
 - Sixteen 16-bit general registers also usable as sixteen 8-bit registers and eight 16 registers, or eight 32-bit registers
- Sixty-two basic instructions
 - 8/16/32-bit data transfer and arithmetic and logic instructions
 - Multiply and divide instructions
 - Powerful bit-manipulation instructions
- Eight addressing modes
 - Register direct [Rn]
 - Register indirect [@ERn]
 - Register indirect with displacement [@(d:16,ERn) or @(d:24,ERn)]
 - Register indirect with post-increment or pre-decrement [@ERn+ or @-ERn]
 - Absolute address [@aa:8, @aa:16, @aa:24]
 - Immediate [#xx:8, #xx:16, or #xx:32]
 - Program-counter relative [@(d:8,PC) or @(d:16,PC)]
 - Memory indirect [@@aa:8]
- Address space
 - H8/36079 Group: 16 Mbytes
 - H8/36077 Group: 64 Kbytes

CPU30H2C_000120030300

RENESAS

- 110/50077 Group. Normar mode
- Power-down state
 - Transition to power-down state by SLEEP instruction

Rev. 3.00 Sep. 10, 2007 Page 10 of 528 REJ09B0216-0300

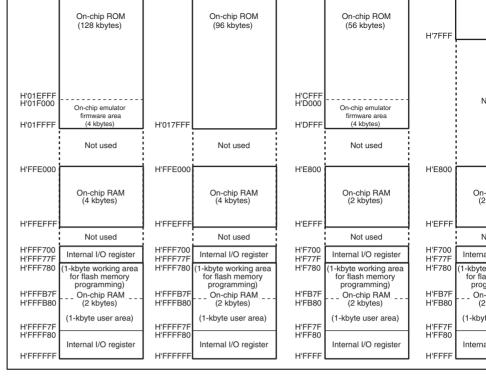


Figure 2.1 Memory Map

RENESAS

ER3	E3		R3H	R3L		
ER4	E4		R4H	R4L		
ER5	E5		R5H	R5L		
ER6	E6		R6H	R6L		
ER7	E7 (S	SP)	R7H	R7L		
PC: Progr CCR: Cond	pointer am counter ition-code register upt mask bit	H: U: N: Z:	CCR Half-carry flag User bit Negative flag Zero flag	0 7 6 5 4 3 2 1 0 1 UI H U N Z V C		
UI: User	bit	V: C:	Overflow flag Carry flag			

Rev. 3.00 Sep. 10, 2007 Page 12 of 528 REJ09B0216-0300

The R registers are divided into 8-bit registers designated by the letters RH (R0H to R7H (R0L to R7L). These registers are functionally equivalent, providing a maximum of sixt registers.

The usage of each register can be selected independently.

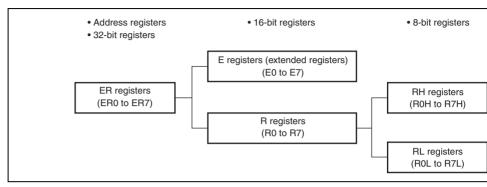


Figure 2.3 Usage of General Registers

General register ER7 has the function of stack pointer (SP) in addition to its general-reg function, and is used implicitly in exception handling and subroutine calls. Figure 2.4 sh relationship between the stack pointer and the stack area.

Figure 2.4 Relationship between Stack Pointer and Stack Area

2.2.2 Program Counter (PC)

This 24-bit counter indicates the address of the next instruction the CPU will execute. Th of all CPU instructions is 2 bytes (one word), so the least significant PC bit is ignored. (W instruction is fetched, the least significant PC bit is regarded as 0). The PC is initialized w start address is loaded by the vector address generated during reset exception-handling se

2.2.3 Condition-Code Register (CCR)

This 8-bit register contains internal CPU status information, including an interrupt mask l half-carry (H), negative (N), zero (Z), overflow (V), and carry (C) flags. The I bit is initial by reset exception-handling sequence, but other bits are not initialized.

Some instructions leave flag bits unchanged. Operations can be performed on the CCR bit LDC, STC, ANDC, ORC, and XORC instructions. The N, Z, V, and C flags are used as be conditions for conditional branch (Bcc) instructions.

For the action of each instruction on the flag bits, see appendix A.1, Instruction List.

Rev. 3.00 Sep. 10, 2007 Page 14 of 528 REJ09B0216-0300

				or NEG.B instruction is executed, this flag is a there is a carry or borrow at bit 3, and cleared otherwise. When the ADD.W, SUB.W, CMP.V NEG.W instruction is executed, the H flag is a there is a carry or borrow at bit 11, and cleared otherwise. When the ADD.L, SUB.L, CMP.L, instruction is executed, the H flag is set to 1 in carry or borrow at bit 27, and cleared to 0 oth
4	U	Undefined	R/W	User Bit
				Can be written and read by software using the STC, ANDC, ORC, and XORC instructions.
3	Ν	Undefined	R/W	Negative Flag
				Stores the value of the most significant bit of sign bit.
2	Z	Undefined	R/W	Zero Flag
				Set to 1 to indicate zero data, and cleared to indicate non-zero data.
1	V	Undefined	R/W	Overflow Flag
				Set to 1 when an arithmetic overflow occurs, cleared to 0 at other times.
0	С	Undefined	R/W	Carry Flag
				Set to 1 when a carry occurs, and cleared to otherwise. Used by:
				Add instructions, to indicate a carry
				Subtract instructions, to indicate a borrow
				Shift and rotate instructions, to indicate a
				The carry flag is also used as a bit accumulat manipulation instructions.

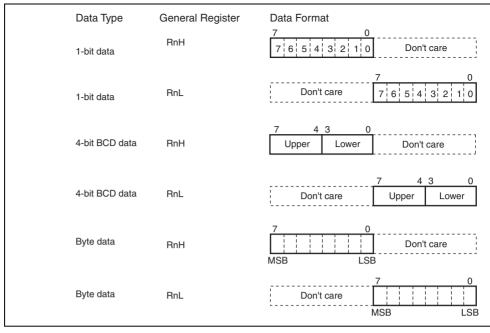


Figure 2.5 General Register Data Formats (1)

Rev. 3.00 Sep. 10, 2007 Page 16 of 528 REJ09B0216-0300

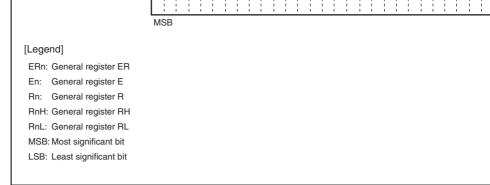


Figure 2.5 General Register Data Formats (2)

Data Type	Address		Da	ata I	For	nat		
		\sim		<u> </u>	-	_		_
		7						0
1-bit data	Address L	7	6 5	4	3	2	1	0
Byte data	Address L	MSB:				:	:	LSB
		<u> </u>						
Word data	Address 2M	MSB¦	-				:	:
	Address 2M+1						-	LSB
Longword data	Address 2N	MSB		:		:	:	
	Address 2N+1			-				
	Address 2N+2							
	Address 2N+3				 	1		LSB
				_	_			
							_	

Figure 2.6 Memory Data Formats

Rev. 3.00 Sep. 10, 2007 Page 18 of 528 REJ09B0216-0300

Rs	General register (source)*
Rn	General register*
ERn	General register (32-bit register or address register)
(EAd)	Destination operand
(EAs)	Source operand
CCR	Condition-code register
Ν	N (negative) flag in CCR
Z	Z (zero) flag in CCR
V	V (overflow) flag in CCR
С	C (carry) flag in CCR
PC	Program counter
SP	Stack pointer
#IMM	Immediate data
disp	Displacement
+	Addition
	Subtraction
×	Multiplication
÷	Division
^	Logical AND
V	Logical OR
\oplus	Logical XOR
\rightarrow	Move
~	NOT (logical complement)
:3/:8/:16/:24	3-, 8-, 16-, or 24-bit length

Renesas

MOVT	ΡE	В	Rs o (EAs) Cannot be used in this LSI.
POP		W/L	$@SP+ \rightarrow Rn$ Pops a general register from the stack. POP.W Rn is identical t MOV.W @SP+, Rn. POP.L ERn is identical to MOV.L @SP+, B
PUSH		W/L	$Rn \rightarrow @-SP$ Pushes a general register onto the stack. PUSH.W Rn is identif MOV.W Rn, @-SP. PUSH.L ERn is identical to MOV.L ERn, @
Note:	*	Refers to the	operand size.
	B:	Byte	

W: Word

L: Longword

Rev. 3.00 Sep. 10, 2007 Page 20 of 528 REJ09B0216-0300

DEC		Increments or decrements a general register by 1 or 2. (Byte c can be incremented or decremented by 1 only.)
ADDS SUBS	L	$Rd \pm 1 \rightarrow Rd$, $Rd \pm 2 \rightarrow Rd$, $Rd \pm 4 \rightarrow Rd$ Adds or subtracts the value 1, 2, or 4 to or from data in a 32-b
DAA DAS	В	Rd (decimal adjust) \rightarrow Rd Decimal-adjusts an addition or subtraction result in a general r referring to the CCR to produce 4-bit BCD data.
MULXU	B/W	$Rd \times Rs \rightarrow Rd$ Performs unsigned multiplication on data in two general regist 8 bits × 8 bits \rightarrow 16 bits or 16 bits × 16 bits \rightarrow 32 bits.
MULXS	B/W	$Rd \times Rs \rightarrow Rd$ Performs signed multiplication on data in two general registers bits $\times 8$ bits $\rightarrow 16$ bits or 16 bits $\times 16$ bits $\rightarrow 32$ bits.
DIVXU	B/W	Rd \div Rs \rightarrow Rd Performs unsigned division on data in two general registers: e bits \div 8 bits \rightarrow 8-bit quotient and 8-bit remainder or 32 bits \div 1 16-bit quotient and 16-bit remainder.
Note: *	Refers to the	operand size.
B:	Byte	

W: Word

L: Longword

RENESAS

			Takes the two's complement (arithmetic complement) of data ir general register.
EXTU		W/L	Rd (zero extension) \rightarrow Rd Extends the lower 8 bits of a 16-bit register to word size, or the bits of a 32-bit register to longword size, by padding with zeros left.
EXTS		W/L	Rd (sign extension) \rightarrow Rd Extends the lower 8 bits of a 16-bit register to word size, or the bits of a 32-bit register to longword size, by extending the sign l
Note:	*	Refers to the	e operand size.
	B:	Byte	
	W:	Word	

L: Longword

Rev. 3.00 Sep. 10, 2007 Page 22 of 528 REJ09B0216-0300

		g
NOT	B/W/L	$\sim\!\!(\text{Rd}) \rightarrow (\text{Rd})$ Takes the one's complement (logical complement) of general contents.
Note:	* Refers to the	operand size.
	B: Byte	
	W: Word	
	L: Longword	

Table 2.5Shift Instructions

Instructio	n Size*	Function
SHAL SHAR	B/W/L	Rd (shift) \rightarrow Rd Performs an arithmetic shift on general register contents.
SHLL	B/W/L	Rd (shift) \rightarrow Rd Performs a logical shift on general register contents.
ROTL ROTR	B/W/L	$ \begin{array}{l} \text{Rd (rotate)} \rightarrow \text{Rd} \\ \text{Rotates general register contents.} \end{array} $
ROTXL ROTXR	B/W/L	Rd (rotate) \rightarrow Rd Rotates general register contents through the carry flag.
Note: * B:	Refers to the Byte	operand size.

W: Word

L: Longword

RENESAS

	_	Inverts a specified bit in a general register or memory operand. number is specified by 3-bit immediate data or the lower three general register.
BTST	В	~(<bit-no.> of <ead>) \rightarrow Z Tests a specified bit in a general register or memory operand a or clears the Z flag accordingly. The bit number is specified by immediate data or the lower three bits of a general register.</ead></bit-no.>
BAND	В	$C \land (of) \rightarrow C$ ANDs the carry flag with a specified bit in a general register or operand and stores the result in the carry flag.
BIAND	В	$C \land \neg$ (<bit-no.> of <ead>) $\rightarrow C$ ANDs the carry flag with the inverse of a specified bit in a gene register or memory operand and stores the result in the carry fl The bit number is specified by 3-bit immediate data.</ead></bit-no.>
BOR	В	$C \lor (of) \rightarrow C$ ORs the carry flag with a specified bit in a general register or m operand and stores the result in the carry flag.
BIOR	В	$C \lor \sim (\langle bit-No. \rangle of \langle EAd \rangle) \rightarrow C$ ORs the carry flag with the inverse of a specified bit in a general or memory operand and stores the result in the carry flag. The bit number is specified by 3-bit immediate data.
Note: *	Befers to the	e operand size.

Note: * Refers to the operand size.

B: Byte

Rev. 3.00 Sep. 10, 2007 Page 24 of 528 REJ09B0216-0300

		carry flag.
BILD	В	~(<bit-no.> of <ead>) \rightarrow C Transfers the inverse of a specified bit in a general register or operand to the carry flag. The bit number is specified by 3-bit immediate data.</ead></bit-no.>
BST	В	$C \rightarrow (\text{-bit-No.> of -EAd>})$ Transfers the carry flag value to a specified bit in a general req memory operand.
BIST	В	\sim C \rightarrow (<bit-no.> of <ead>) Transfers the inverse of the carry flag value to a specified bit in general register or memory operand. The bit number is specified by 3-bit immediate data.</ead></bit-no.>
Note: *	Befers to th	e operand size

Note: * Refers to the operand size.

B: Byte

Carry clear (high or same)	C = 0
Carry set (low)	C = 1
Not equal	Z = 0
Equal	Z = 1
Overflow clear	V = 0
Overflow set	V = 1
Plus	N = 0
Minus	N = 1
Greater or equal	$N \oplus V = 0$
Less than	N ⊕ V = 1
Greater than	$Z{\scriptstyle\vee}(N\oplusV)=0$
Less or equal	$Z \lor (N \oplus V) = 1$
	(high or same) Carry set (low) Not equal Equal Overflow clear Overflow set Plus Minus Greater or equal Less than Greater than

JMP		Branches unconditionally to a specified address.
BSR	_	Branches to a subroutine at a specified address.
JSR	_	Branches to a subroutine at a specified address.
RTS	_	Returns from a subroutine

Note: * Bcc is the general name for conditional branch instructions.

Rev. 3.00 Sep. 10, 2007 Page 26 of 528 REJ09B0216-0300

		code register size is one byte, but in transfer to memory, data by word access.
ANDC	В	CCR \land #IMM \rightarrow CCR Logically ANDs the CCR with immediate data.
ORC	В	CCR \vee #IMM \rightarrow CCR Logically ORs the CCR with immediate data.
XORC	В	$CCR \oplus \#IMM \rightarrow CCR$ Logically XORs the CCR with immediate data.
NOP		$PC + 2 \rightarrow PC$ Only increments the program counter.

Note: * Refers to the operand size.

B: Byte

W: Word

else next;

Transfers a data block. Starting from the address set in ER5, tradata for the number of bytes set in R4L or R4 to the address loo in ER6.

Execution of the next instruction begins as soon as the transfer completed.

Rev. 3.00 Sep. 10, 2007 Page 28 of 528 REJ09B0216-0300

Some instructions have two operation fields.

• Register Field

Specifies a general register. Address registers are specified by 3 bits, and data register bits or 4 bits. Some instructions have two register fields. Some have no register field

• Effective Address Extension

8, 16, or 32 bits specifying immediate data, an absolute address, or a displacement. A address or displacement is treated as a 32-bit data in which the first 8 bits are 0 (H'00

• Condition Field

Specifies the branching condition of Bcc instructions.

op NOP, RTS, etc. (2) Operation field and register fields	(1) Operation field or	nly					
op rn rm ADD.B Rn, Rm, etc.		ор					
	(2) Operation field ar	(2) Operation field and register fields					
(3) Operation field, register fields, and effective address extension	ot	D	rn	rm	ADD.B Rn, Rm, etc.		
op rn rm MOV B @(d:16 Bn) Bm		ор	rn	rm	MOV.B @(d:16, Rn), Rm		
EA(disp)		EA(disp)					
(4) Operation field, effective address extension, and condition field							
op cc EA(disp) BRA d:8	ор	op cc EA(disp)					

Figure 2.7 Instruction Formats

RENESAS

Bit-manipulation instructions use register direct, register indirect, or the absolute addressi (@aa:8) to specify an operand, and register direct (BSET, BCLR, BNOT, and BTST instr or immediate (3-bit) addressing mode to specify a bit number in the operand.

No.	Addressing Mode	Symbol
1	Register direct	Rn
2	Register indirect	@ERn
3	Register indirect with displacement	@(d:16,ERn)/@(d:24,ERn)
4	Register indirect with post-increment Register indirect with pre-decrement	@ERn+ @-ERn
5	Absolute address	@aa:8/@aa:16/@aa:24
6	Immediate	#xx:8/#xx:16/#xx:32
7	Program-counter relative	@(d:8,PC)/@(d:16,PC)
8	Memory indirect	@ @ aa:8

Table 2.10 Addressing Modes

(1) Register Direct—Rn

The register field of the instruction specifies an 8-, 16-, or 32-bit general register containing operand. R0H to R7H and R0L to R7L can be specified as 8-bit registers. R0 to R7 and E can be specified as 16-bit registers. ER0 to ER7 can be specified as 32-bit registers.

Rev. 3.00 Sep. 10, 2007 Page 30 of 528 REJ09B0216-0300

(a) Register indirect with post-increment—@ERn+

The register field of the instruction code specifies an address register (ERn) the lower of which contains the address of a memory operand. After the operand is accessed, 1 added to the address register contents (32 bits) and the sum is stored in the address reg-The value added is 1 for byte access, 2 for word access, or 4 for longword access. For or longword access, the register value should be even.

(b) Register indirect with pre-decrement—@-ERn

The value 1, 2, or 4 is subtracted from an address register (ERn) specified by the reg in the instruction code, and the lower 24 bits of the result is the address of a memory The result is also stored in the address register. The value subtracted is 1 for byte acc word access, or 4 for longword access. For the word or longword access, the register should be even.

(5) Absolute Address—@aa:8, @aa:16, @aa:24

The instruction code contains the absolute address of a memory operand. The absolute a may be 8 bits long (@aa:8), 16 bits long (@aa:16), 24 bits long (@aa:24)

For an 8-bit absolute address, the upper 16 bits are all assumed to be 1 (H'FFFF). For a 2 absolute address the upper 8 bits are a sign extension. A 24-bit absolute address can accurentire address space.

Table 2.11 shows the access ranges of absolute addresses according to the modes of ope each product group.

RENESAS

operand.

The ADDS, SUBS, INC, and DEC instructions contain immediate data implicitly. Some manipulation instructions contain 3-bit immediate data in the instruction code, specifying number. The TRAPA instruction contains 2-bit immediate data in its instruction code, sp vector address.

(7) Program-Counter Relative—@(d:8, PC) or @(d:16, PC)

This mode is used in the BSR instruction. An 8-bit or 16-bit displacement contained in the instruction is sign-extended and added to the 24-bit PC contents to generate a branch add PC value to which the displacement is added is the address of the first byte of the next ins so the possible branching range is -126 to +128 bytes (-63 to +64 words) or -32766 to +50 bytes (-16383 to +16384 words) from the branch instruction. The resulting value should even number.

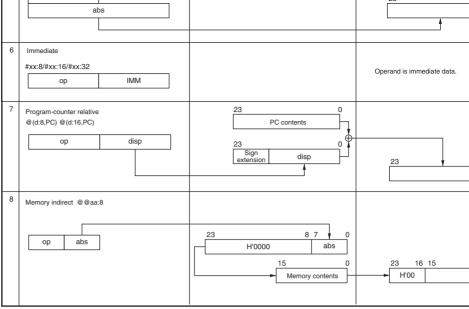
(8) Memory Indirect—@@aa:8

This mode can be used by the JMP and JSR instructions. The instruction code contains ar absolute address specifying a memory operand. This memory operand contains a branch a The memory operand is accessed by longword access. The first byte of the memory operaignored, generating a 24-bit branch address. Figure 2.8 shows how to specify branch address memory indirect mode. The upper bits of the absolute address are all assumed to be 0, so address range is 0 to 255 (H'0000 to H'00FF).

Note that the first part of the address range is also the exception vector area.

Rev. 3.00 Sep. 10, 2007 Page 32 of 528 REJ09B0216-0300

2.5.2 Effective Address Calculation


Table 2.12 indicates how effective addresses are calculated in each addressing mode. For operation in normal mode, the upper 8 bits of the effective address are ignored in order to a 16-bit effective address. For operation in advanced mode, the 24-bit result of effective calculation is generated as the address.

		31 0 Sign extension disp	
4	Register indirect with post-increment or pre-decrement •Register indirect with post-increment @ERn+	31 0 General register contents	23
	Register indirect with pre-decrement @-ERn	31 General register contents 1, 2, or 4 The value to be added or subtracted is 1 when the operand is byte size, 2 for word size, and 4 for longword size.	23

Rev. 3.00 Sep. 10, 2007 Page 34 of 528 REJ09B0216-0300

[Legend]

r, rm,rn : Register field

op: Operation field

disp : Displacement

IMM : Immediate data

abs : Absolute address

RENESAS

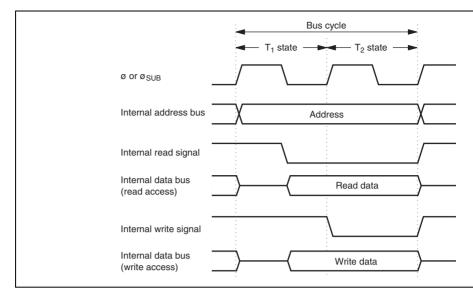


Figure 2.9 On-Chip Memory Access Cycle

Rev. 3.00 Sep. 10, 2007 Page 36 of 528 REJ09B0216-0300

module.

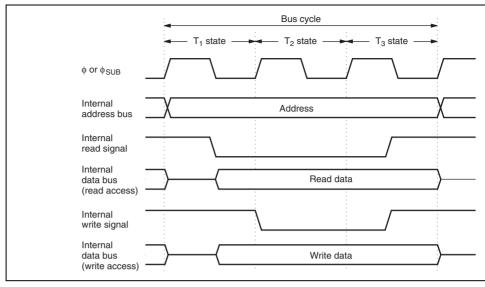


Figure 2.10 On-Chip Peripheral Module Access Cycle (3-State Access)

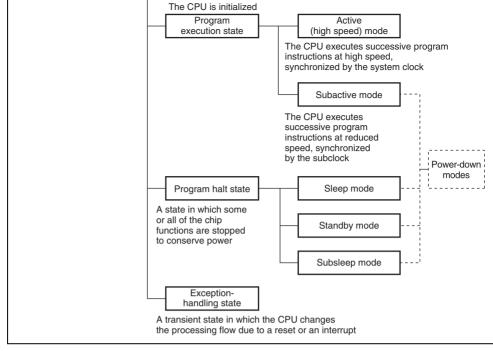


Figure 2.11 CPU Operation States

Rev. 3.00 Sep. 10, 2007 Page 38 of 528 REJ09B0216-0300

2.8 Usage Notes

2.8.1 Notes on Data Access to Empty Areas

The address space of this LSI includes empty areas in addition to the ROM, RAM, and or I/O registers areas available to the user. When data is transferred from CPU to empty are transferred data will be lost. This action may also cause the CPU to malfunction. When transferred from an empty area to CPU, the contents of the data cannot be guaranteed.

2.8.2 EEPMOV Instruction

Example 1: Bit manipulation for the timer load register and timer counter (Applicable for timer B1 in the H8/36079 Group and H8/36077 Group.)

Figure 2.13 shows an example of a timer in which two timer registers are assigned to the address. When a bit-manipulation instruction accesses the timer load register and timer co a reloadable timer, since these two registers share the same address, the following operation place.

- 1. Data is read in byte units.
- 2. The CPU sets or resets the bit to be manipulated with the bit-manipulation instruction
- 3. The written data is written again in byte units to the timer load register.

The timer is counting, so the value read is not necessarily the same as the value in the timer register. As a result, bits other than the intended bit in the timer counter may be modified modified value may be written to the timer load register.

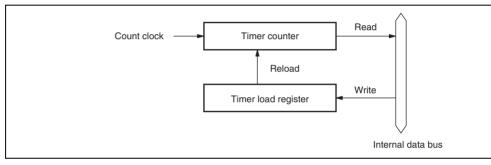
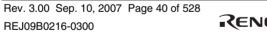



Figure 2.13 Example of Timer Configuration with Two Registers Allocated to Same Address

PCR5	0	0	1	1	1	1	1	
PDR5	1	0	0	0	0	0	0	

• BSET instruction executed instruction

BSET	#O,	@PDR5

The BSET instruction is executed for port 5.

• After executing BSET instruction

_	P57	P56	P55	P54	P53	P52	P51
Input/output	Input	Input	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level
PCR5	0	0	1	1	1	1	1
PDR5	0	1	0	0	0	0	0

- Description on operation
- 1. When the BSET instruction is executed, first the CPU reads port 5.

Since P57 and P56 are input pins, the CPU reads the pin states (low-level and high-le input).

P55 to P50 are output pins, so the CPU reads the value in PDR5. In this example PD value of H'80, but the value read by the CPU is H'40.

- 2. Next, the CPU sets bit 0 of the read data to 1, changing the PDR5 data to H'41.
- 3. Finally, the CPU writes H'41 to PDR5, completing execution of BSET instruction.

RENESAS

	P57	P56	P55	P54	P53	P52	P51
Input/output	Input	Input	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level
PCR5	0	0	1	1	1	1	1
PDR5	1	0	0	0	0	0	0
RAM0	1	0	0	0	0	0	0

• BSET instruction executed

BSET	#O,	@RAM0

The BSET instruction is executed designating the work area (RAM0).

• After executing BSET instruction

MOV.B	@RAMO, ROL
MOV.B	ROL, @PDR5

The work area (RAM0) value is written to PDR5.

	P57	P56	P55	P54	P53	P52	P51
Input/output	Input	Input	Output	Output	Output	Output	Output
Pin state	Low level	High Ievel	Low level	Low level	Low level	Low level	Low level
PCR5	0	0	1	1	1	1	1
PDR5	1	0	0	0	0	0	0
RAM0	1	0	0	0	0	0	0

Rev. 3.00 Sep. 10, 2007 Page 42 of 528 REJ09B0216-0300

RENESAS

Input/output	Input	Input	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level
PCR5	0	0	1	1	1	1	1
PDR5	1	0	0	0	0	0	0

• BCLR instruction executed

BCLR #0, @PCR5

The BCLR instruction is executed for PCR5.

• After executing BCLR instruction

	P57	P56	P55	P54	P53	P52	P51
Input/output	Output	Output	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level
PCR5	1	1	1	1	1	1	1
PDR5	1	0	0	0	0	0	0

- Description on operation
- 1. When the BCLR instruction is executed, first the CPU reads PCR5. Since PCR5 is a register, the CPU reads a value of H'FF, even though the PCR5 value is actually H'3
- 2. Next, the CPU clears bit 0 in the read data to 0, changing the data to H'FE.
- 3. Finally, H'FE is written to PCR5 and BCLR instruction execution ends.

As a result of this operation, bit 0 in PCR5 becomes 0, making P50 an input port. Ho bits 7 and 6 in PCR5 change to 1, so that P57 and P56 change from input pins to out To prevent this problem, store a copy of the PDR5 data in a work area in memory an manipulate data of the bit in the work area, then write this data to PDR5.

PDR5	1	0	0	0	0	0	0	
RAM0	0	0	1	1	1	1	1	

• BCLR instruction executed

BCLR #0,	@RAM0
----------	-------

The BCLR instructions executed for the PCR5 we (RAM0).

• After executing BCLR instruction

MOV.B	@RAM0, ROL	
MOV.B	ROL, @PCR5	

The work area (RAM0) value is written to PCR5.

	P57	P56	P55	P54	P53	P52	P51
Input/output	Input	Input	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level
PCR5	0	0	1	1	1	1	1
PDR5	1	0	0	0	0	0	0
RAM0	0	0	1	1	1	1	1

Rev. 3.00 Sep. 10, 2007 Page 44 of 528 REJ09B0216-0300

Exception handling starts when a trap instruction (TRAPA) is executed. The TRAPA instruction generates a vector address corresponding to a vector number from 0 to 3, specified in the instruction code. Exception handling can be executed at all times in a program execution state, regardless of the setting of the I bit in CCR.

• Interrupts

External interrupts other than NMI and internal interrupts other than address break a by the I bit in CCR, and kept masked while the I bit is set to 1. Exception handling s the current instruction or exception handling ends, if an interrupt request has been is

_	Reserved for system use	1 to 6	H'0002 to H'000D	H'000004 to H'00001B
External interrupt pin	NMI	7	H'000E to H'000F	H'00001C to H'00001F
CPU	Trap instruction #0	8	H'0010 to H'0011	H'000020 to H'000023
	Trap instruction #1	9	H'0012 to H'0013	H'000024 to H'000027
	Trap instruction #2	10	H'0014 to H'0015	H'000028 to H'00002B
	Trap instruction #3	11	H'0016 to H'0017	H'00002C to H'00002F
Address break	Break conditions satisfied	12	H'0018 to H'0019	H'000030 to H'000033
CPU	Direct transition by executing the SLEEP instruction	13	H'001A to H'001B	H'000034 to H'000037
External interrupt pin	IRQ0 Low-voltage detection interrupt	14	H'001C to H'001D	H'000038 to H'00003B
	IRQ1	15	H'001E to H'001F	H'00003C to H'00003F
	IRQ2	16	H'0020 to H'0021	H'000040 to H'000043
	IRQ3	17	H'0022 to H'0023	H'000044 to H'000047
	WKP	18	H'0024 to H'0025	H'000048 to H'00004B
RTC	Overflow	19	H'0026 to H'0027	H'00004C to H'0004F

Rev. 3.00 Sep. 10, 2007 Page 46 of 528 REJ09B0216-0300

IIC2	Transmit data empty Transmit end Receive data full Arbitration lost/Overrun error NACK detection Stop conditions detected	24	H'0030 to H'0031	H'000060 to H'00006
A/D converter	A/D conversion end	25	H'0032 to H'0033	H'000064 to H'00006
Timer Z	Compare match/input capture A0 to D0 Timer Z overflow	26	H'0034 to H'0035	H'000068 to H'00006
	Compare match/input capture A1 to D1 Timer Z overflow Timer Z underflow	27	H'0036 to H'0037	H'00006C to H'00006
_	Reserved for system use	28	H'0038 to H'0039	H'000070 to H'00007
Timer B1	Timer B1 overflow	29	H'003A to H'003B	H'000074 to H'00007
_	Reserved for system use	30, 31	H'003C to H'003F	H'000078 to H'00007
SCI3_2	Receive data full Transmit data empty Transmit end Receive error	32	H'0040 to H'0041	H'000080 to H'00008
_	Reserved for system use	33	H'0042 to H'0043	H'000084 to H'00008
Clock source switching	Clock source switching (from external clock to on-chip oscillator)	34	H'0044 to H'0045	H'000088 to H'00008

on reset and low-voltage detection circuit.

RENESAS

• Wakeup interrupt flag register (IWPR)

3.2.1 Interrupt Edge Select Register 1 (IEGR1)

IEGR1 selects the direction of an edge that generates interrupt requests of pins $\overline{\text{NMI}}$ and $\overline{\text{IRQ0}}$.

Bit	Bit Name	Initial Value	R/W	Description
7	NMIEG	0	R/W	NMI Edge Select
				0: Falling edge of $\overline{\text{NMI}}$ pin input is detected
				1: Rising edge of NMI pin input is detected
6 to 4	_	All 1	_	Reserved
				These bits are always read as 1.
3	IEG3	0	R/W	IRQ3 Edge Select
				0: Falling edge of IRQ3 pin input is detected
				1: Rising edge of IRQ3 pin input is detected
2	IEG2	0	R/W	IRQ2 Edge Select
				0: Falling edge of IRQ2 pin input is detected
				1: Rising edge of IRQ2 pin input is detected
1	IEG1	0	R/W	IRQ1 Edge Select
				0: Falling edge of $\overline{IRQ1}$ pin input is detected
				1: Rising edge of IRQ1 pin input is detected
0	IEG0	0	R/W	IRQ0 Edge Select
				0: Falling edge of $\overline{IRQ0}$ pin input is detected
				1: Rising edge of IRQ0 pin input is detected

Rev. 3.00 Sep. 10, 2007 Page 48 of 528 REJ09B0216-0300

RENESAS

				· · · · · · · · · · · · · · · · · · ·
				1: Rising edge of WKP5(ADTRG) pin input is de
4	WPEG4	0	R/W	WKP4 Edge Select
				0: Falling edge of $\overline{WKP4}$ pin input is detected
				1: Rising edge of $\overline{WKP4}$ pin input is detected
3	WPEG3	0	R/W	WKP3 Edge Select
				0: Falling edge of $\overline{\text{WKP3}}$ pin input is detected
				1: Rising edge of $\overline{WKP3}$ pin input is detected
2	WPEG2	0	R/W	WKP2 Edge Select
				0: Falling edge of $\overline{\text{WKP2}}$ pin input is detected
				1: Rising edge of $\overline{WKP2}$ pin input is detected
1	WPEG1	0	R/W	WKP1Edge Select
				0: Falling edge of $\overline{WKP1}$ pin input is detected
				1: Rising edge of $\overline{WKP1}$ pin input is detected
0	WPEG0	0	R/W	WKP0 Edge Select
				0: Falling edge of $\overline{WKP0}$ pin input is detected
				1: Rising edge of $\overline{WKP0}$ pin input is detected

RENESAS

				enabled.
5	IENWP	0	R/W	Wakeup Interrupt Enable
				This bit is an enable bit, which is common to the $\overline{WKP5}$ to $\overline{WKP0}$. When the bit is set to 1, interrup requests are enabled.
4		1	_	Reserved
				This bit is always read as 1.
3	IEN3	0	R/W	IRQ3 Interrupt Enable
				When this bit is set to 1, interrupt requests of the are enabled.
2	IEN2	0	R/W	IRQ2 Interrupt Enable
				When this bit is set to 1, interrupt requests of the are enabled.
1	IEN1	0	R/W	IRQ1 Interrupt Enable
				When this bit is set to 1, interrupt requests of the are enabled.
0	IEN0	0	R/W	IRQ0 Interrupt Enable
				When this bit is set to 1, interrupt requests of the are enabled.

When disabling interrupts by clearing bits in an interrupt enable register, or when clearing an interrupt flag register, always do so while interrupts are masked (I = 1). If the above cl operations are performed while I = 0, and as a result a conflict arises between the clear in and an interrupt request, exception handling for the interrupt will be executed after the clear instruction has been executed.

Rev. 3.00 Sep. 10, 2007 Page 50 of 528 REJ09B0216-0300

			·
4 to 0 —	All 1	—	Reserved
			These bits are always read as 1.

When disabling interrupts by clearing bits in an interrupt enable register, or when clearing an interrupt flag register, always do so while interrupts are masked (I = 1). If the above operations are performed while I = 0, and as a result a conflict arises between the clear if and an interrupt request, exception handling for the interrupt will be executed after the client instruction has been executed.

3.2.5 Interrupt Flag Register 1 (IRR1)

IRR1 is a status flag register for direct transition interrupts, RTC interrupts, and $\overline{IRQ3}$ to interrupt requests.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	IRRDT	0	R/W	Direct Transfer Interrupt Request Flag
				[Setting condition]
				When a direct transfer is made by executing a instruction while DTON in SYSCR2 is set to 1.
				[Clearing condition]
				When IRRDT is cleared by writing 0

RENESAS

				[Setting condition]
				When IRQ3 pin is designated for interrupt input a designated signal edge is detected.
				[Clearing condition]
				When IRRI3 is cleared by writing 0
2	IRRI2	0	R/W	IRQ2 Interrupt Request Flag
				[Setting condition]
				When IRQ2 pin is designated for interrupt input a designated signal edge is detected.
				[Clearing condition]
				When IRRI2 is cleared by writing 0
1	IRRI1	0	R/W	IRQ1 Interrupt Request Flag
				[Setting condition]
				When IRQ1 pin is designated for interrupt input a designated signal edge is detected.
				[Clearing condition]
				When IRRI1 is cleared by writing 0
0	IRRI0	0	R/W	IRQ0 Interrupt Request Flag
				[Setting condition]
				When IRQ0 pin is designated for interrupt input a designated signal edge is detected.
				[Clearing condition]
				When IRRI0 is cleared by writing 0

Rev. 3.00 Sep. 10, 2007 Page 52 of 528 REJ09B0216-0300

			When the timer B1 counter value overflows
			[Clearing condition]
			When IRRTB1 is cleared by writing 0
4 to 0 —	All 1	_	Reserved
			These bits are always read as 1.

3.2.7 Wakeup Interrupt Flag Register (IWPR)

IWPR is a status flag register for $\overline{WKP5}$ to $\overline{WKP0}$ interrupt requests.

Bit	Bit Name	Initial Value	R/W	Description
7, 6		All 1		Reserved
				These bits are always read as 1.
5	IWPF5	0	R/W	WKP5 Interrupt Request Flag
				[Setting condition]
				When $\overline{\rm WKP5}$ pin is designated for interrupt inpudesignated signal edge is detected.
				[Clearing condition]
				When IWPF5 is cleared by writing 0.
4	IWPF4	0	R/W	WKP4 Interrupt Request Flag
				[Setting condition]
				When $\overline{\text{WKP4}}$ pin is designated for interrupt inpudesignated signal edge is detected.
				[Clearing condition]
				When IWPF4 is cleared by writing 0.
				Pov 3.00 Son 10.2007 Po

RENESAS

				When WKP2 pin is designated for interrupt input designated signal edge is detected.
				[Clearing condition]
				When IWPF2 is cleared by writing 0.
1	IWPF1	0	R/W	WKP1 Interrupt Request Flag
				[Setting condition]
				When WKP1 pin is designated for interrupt input designated signal edge is detected.
				[Clearing condition]
				When IWPF1 is cleared by writing 0.
0	IWPF0	0	R/W	WKP0 Interrupt Request Flag
				[Setting condition]
				When WKP0 pin is designated for interrupt input designated signal edge is detected.
				[Clearing condition]
				When IWPF0 is cleared by writing 0.

Rev. 3.00 Sep. 10, 2007 Page 54 of 528 REJ09B0216-0300

The reset exception handling sequence is as follows:

- 1. Set the I bit in the condition code register (CCR) to 1.
- 2. The CPU generates a reset exception handling vector address, the data in that address the program counter (PC) as the start address, and program execution starts from tha The reset exception handling vector address is H'0000 to H'0001 for normal mode op and H'000000 to H'000003 in advanced mode operation.

bit value in CCR.

(2) IRQ3 to IRQ0 Interrupts

IRQ3 to IRQ0 interrupts are requested by input signals to pins $\overline{IRQ3}$ to $\overline{IRQ0}$. These f interrupts are given different vector addresses, and are detected individually by either edge sensing or falling edge sensing, depending on the settings of bits IEG3 to IEG0 i When pins $\overline{IRQ3}$ to $\overline{IRQ0}$ are designated for interrupt input in PMR1 and the designate edge is input, the corresponding bit in IRR1 is set to 1, requesting the CPU of an inter These interrupts can be masked by setting bits IEN3 to IEN0 in IENR1.

(3) WKP5 to WKP0 Interrupts

WKP5 to WKP0 interrupts are requested by input signals to pins WKP5 to WKP0. The interrupts have the same vector addresses, and are detected individually by either risin sensing or falling edge sensing, depending on the settings of bits WPEG5 to WPEG0 IEGR2.

When pins $\overline{WKP5}$ to $\overline{WKP0}$ are designated for interrupt input in PMR5 and the design signal edge is input, the corresponding bit in IWPR is set to 1, requesting the CPU of interrupt. These interrupts can be masked by setting bit IENWP in IENR1.

Rev. 3.00 Sep. 10, 2007 Page 56 of 528 REJ09B0216-0300

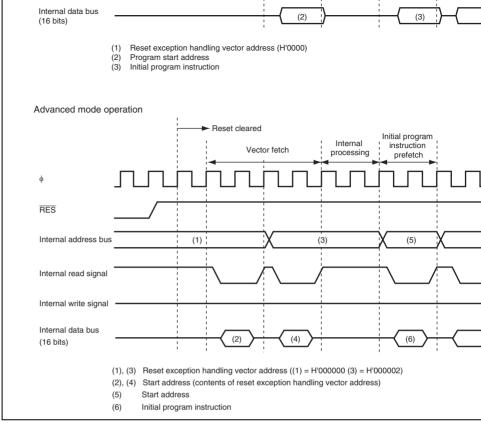


Figure 3.1 Reset Sequence

Renesas

3.4.3 Interrupt Handling Sequence

Interrupts are controlled by an interrupt controller.

Interrupt operation is described as follows.

- 1. If an interrupt occurs while the NMI or interrupt enable bit is set to 1, an interrupt req signal is sent to the interrupt controller.
- 2. When multiple interrupt requests are generated, the interrupt controller requests to the the interrupt handling with the highest priority at that time according to table 3.1. Oth interrupt requests are held pending.
- 3. The CPU accepts the NMI and address break without depending on the I bit value. Ot interrupt requests are accepted, if the I bit is cleared to 0 in CCR; if the I bit is set to 1 interrupt request is held pending.
- 4. If the CPU accepts the interrupt after processing of the current instruction is complete interrupt exception handling will begin. First, both PC and CCR are pushed onto the s state of the stack at this time is shown in figure 3.2. The PC value pushed onto the sta address of the first instruction to be executed upon return from interrupt handling.
- 5. Then, the I bit of CCR is set to 1, masking further interrupts excluding the NMI and a break. Upon return from interrupt handling, the values of I bit and other bits in CCR we restored and returned to the values prior to the start of interrupt exception handling.
- 6. Next, the CPU generates the vector address corresponding to the accepted interrupt, a transfers the address to PC as a start address of the interrupt handling-routine. Then a starts executing from the address indicated in PC.

Figure 3.3 shows a typical interrupt sequence where the program area is in the on-chip R0 the stack area is in the on-chip RAM.

Rev. 3.00 Sep. 10, 2007 Page 58 of 528 REJ09B0216-0300

RENESAS

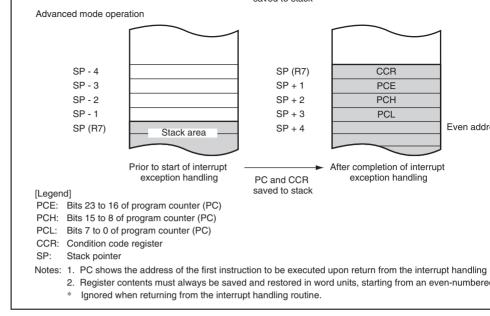


Figure 3.2 Stack Status after Exception Handling

	= ()
Instruction fetch	4
Internal processing	4

Notes: 1. Not including EEPMOV instruction.

2. The value in parentheses is the number of states in advance mode.

Rev. 3.00 Sep. 10, 2007 Page 60 of 528 REJ09B0216-0300

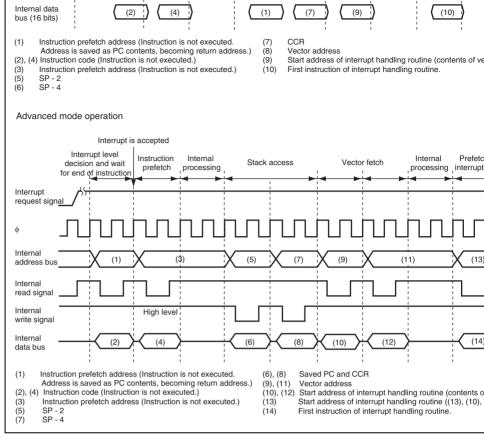


Figure 3.3 Interrupt Sequence

RENESAS

3.5.2 Notes on Stack Area Use

When word data is accessed, the least significant bit of the address is regarded as 0. Access stack always takes place in word size, so the stack pointer (SP: R7) should never indicate address. Use PUSH Rn (MOV.W Rn, @-SP) or POP Rn (MOV.W @SP+, Rn) to save or register values.

3.5.3 Notes on Rewriting Port Mode Registers

When a port mode register is rewritten to switch the functions of external interrupt pins, \overline{I} IRQ0, and WKP5 to WKP0, the interrupt request flag may be set to 1.

When switching a pin function, mask the interrupt before setting the bit in the port mode After accessing the port mode register, execute at least one instruction (e.g., NOP), then c interrupt request flag from 1 to 0.

Figure 3.4 shows a port mode register setting and interrupt request flag clearing procedur

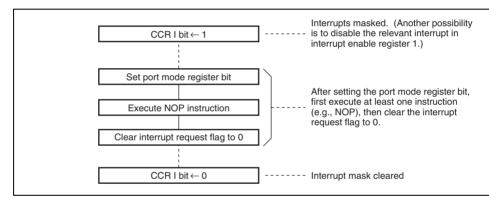


Figure 3.4 Port Mode Register Setting and Interrupt Request Flag Clearing Pro

Rev. 3.00 Sep. 10, 2007 Page 62 of 528 REJ09B0216-0300

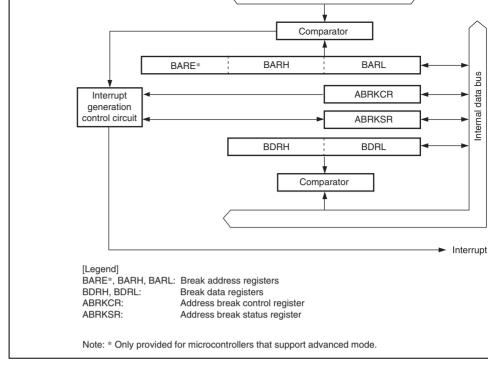


Figure 4.1 Block Diagram of Address Break

ABK0001A_000020020200

RENESAS

ABRKCR sets address break conditions.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	RTINTE	1	R/W	RTE Interrupt Enable
				When this bit is 0, the interrupt immediately after executing RTE is masked and then one instruction be executed. When this bit is 1, the interrupt is n masked.
6	CSEL1	0	R/W	Condition Select 1 and 0
5	CSEL0	0	R/W	These bits set address break conditions.
				00: Instruction execution cycle
				01: CPU data read cycle
				10: CPU data write cycle
				11: CPU data read/write cycle

Rev. 3.00 Sep. 10, 2007 Page 64 of 528 REJ09B0216-0300

				1XX: Reserved (setting prohibited)
				Advanced mode
				000: Compares 24-bit addresses
				001: Compares the higher-order 20 bits of the
				010: Compares the higher-order 16 bits of the a
				011: Compares the higher-order 12 bits of the a
				1XX: Reserved (setting prohibited)
1	DCMP1	0	R/W	Data Compare Condition Select 1 and 0
0	DCMP0	0	R/W	These bits set the comparison condition betwee set in BDR and the internal data bus.
				00: No data comparison
				01: Compares lower 8-bit data between BDRL bus
				10: Compares upper 8-bit data between BDRH bus
				11: Compares 16-bit data between BDR and da
[Leger	nd] X: Don't ca	are.		

[Legena]

Renesas

RAM space	Upper 8 bits	Lower 8 bits	Upper 8 bits	Upper
I/O register with 8-bit data bus width	Upper 8 bits	Upper 8 bits	Upper 8 bits	Upper
I/O register with 16-bit data bus width	Upper 8 bits	Lower 8 bits		—

Rev. 3.00 Sep. 10, 2007 Page 66 of 528 REJ09B0216-0300

				When 0 is written after ABIF=1 is read
6	ABIE	0	R/W	Address Break Interrupt Enable
				When this bit is 1, an address break interrupt re enabled.
5 to 0		All 1		Reserved
				These bits are always read as 1.

4.1.3 Break Address Registers (BARE, BARH, BARL)

Settings of the address where an address-break interrupt is to be generated are made in t address registers (BAR: BARE*, BARH and BARL). For microcontrollers that support mode operation, BAR is a 16-bit readable/writable register with initial value H'FFFF. For microcontrollers that support advanced-mode operation, BAR is a 24-bit readable/writable with the initial value H'FFFFF. When setting an instruction execution cycle as the address condition, set BAR to the address of the first byte of the instruction.

Note: * BARE is only provided for microcontrollers that support advanced-mode ope

4.1.4 Break Data Registers (BDRH, BDRL)

BDRH and BDRL are 16-bit read/write registers that set the data for generating an addres interrupt. BDRH is compared with the upper 8-bit data bus. BDRL is compared with the bit data bus. When memory or registers are accessed by byte, the upper 8-bit data bus is even and odd addresses in the data transmission. Therefore, comparison data must be set for byte access. For word access, the data bus used depends on the address. See section 4 Address Break Control Register (ABRKCR), for details. The initial value of this register undefined.

RENESAS

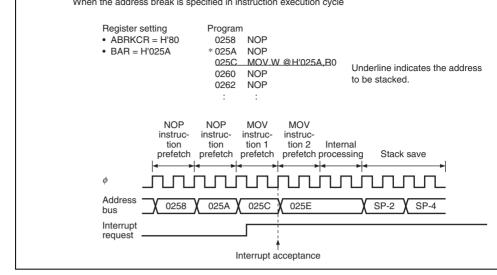


Figure 4.2 Address Break Interrupt Operation Example (1)

Rev. 3.00 Sep. 10, 2007 Page 68 of 528 REJ09B0216-0300

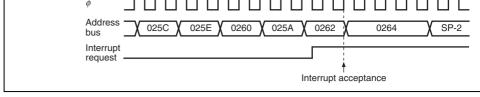


Figure 4.2 Address Break Interrupt Operation Example (2)

Rev. 3.00 Sep. 10, 2007 Page 70 of 528 REJ09B0216-0300

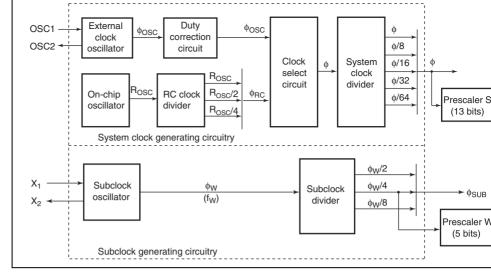


Figure 5.1 Block Diagram of Clock Pulse Generator

The system clock (ϕ) and subclock (ϕ_{SUB}) are basic clocks on which the CPU and on-chip peripheral modules operate. The system clock is divided into from $\phi/2$ to $\phi/8192$ by press. The subclock is divided into from $\phi_w/8$ to $\phi_w/128$ by prescaler W. These divided clocks a supplied to respective peripheral modules.

CPG0200A_000020020200	-	Rev. 3.00 Sep. 10, 2007 Pa
	RENESAS	REJ09

- range of two frequencies shown above, it is normally unnecessary to trim the frequence however, still possible to adjust it by rewriting the trimming registers.
- Backup of the external oscillation halt This system detects the external oscillator halt. If detected, the system clock source is automatically switched to the on-chip oscillator clock.
- Interrupt can be requested to the CPU when the system clock is switched from the ext clock to the on-chip oscillator clock.

5.2 **Register Descriptions**

The CPG has the following registers.

- RC control register (RCCR)
- RC trimming data protect register (RCTRMDPR)
- RC trimming data register (RCTRMDR)
- Clock control/status register (CKCSR)

Rev. 3.00 Sep. 10, 2007 Page 72 of 528 REJ09B0216-0300

				1: 20 MHz
5	VCLSEL	0	R/W	Power Supply Select for On-chip Oscillator
				0: Selects VBGR
				1: Selects VCL
				When the VCL power is selected, the accuracy chip oscillator frequency cannot be guaranteed
4 to 2	_	All 0		Reserved
				These bits are always read as 0.
1	RCPSC1	1	R/W	Division Ratio Select for On-chip Oscillator
0	RCPSC0	0	R/W	The division ratio of R _{osc} changes right after revisit.
				These bits can be written to only when the CKS CKCSR is 0.
				0x: R _{osc} (not divided)
				10: R _{osc} /2
				11: R _{osc} /4

Renesas

0		0	11/99	
				Bits 5 and 4 can be written to when this bit is set
				[Setting condition]
				 When writing 0 to the WRI bit and writing 1 to PRWE bit
				[Clearing conditions]
				Reset
				 When writing 0 to the WRI bit and writing 0 to PRWE bit
5	LOCKDW	0	R/W	Trimming Data Register Lock Down
				The RC trimming data register (RCTRMDR) can written to when this bit is set to 1. Once this bit is this register cannot be written to until a reset is in if 0 is written to this bit.
				[Setting condition]
				 When writing 0 to the WRI bit and writing 1 to LOCKDW bit while the PRWE bit is 1
				[Clearing condition]
				Reset

Rev. 3.00 Sep. 10, 2007 Page 74 of 528 REJ09B0216-0300

			 When writing 0 to the WRI bit and writing 0
			TRMDRWE bit while the PRWE bit is 1
3 to 0	—	All 1	 Reserved
			These bits are always read as 1.

5.2.3 RC Trimming Data Register (RCTRMDR)

RCTRMDR stores the trimming data of the on-chip oscillator frequency (FSEL = 1, 20

		Initial		
Bit	Bit Name	Value	R/W	Description
7	TRMD7	(0)*	R/W	Trimming Data (FSEL = 1, 20 MHz)
6	TRMD6	(0)*	R/W	The trimming data is loaded from the flash men
5	TRMD5	(0)*	R/W	register right after a reset.
4	TRMD4	(0)*	R/W	The on-chip oscillator clock (FSEL = 1, 20 MHz
3	TRMD3	(0)*	R/W	trimmed by changing these bits.
2	TRMD2	(0)*	R/W	The frequency of the on-chip oscillator clock ch right after writing these bits. These bits are initia
1	TRMD1	(0)*	R/W	Н'00.
0	TRMD0	(0)*	R/W	Changes in frequency are shown below (bit TR sign bit).
				(Min.) H'80 ← ← H'FF ← ← H'00 → → \rightarrow H'7F (Max.)
Note:	* These valu	ies are in	itialized	to the trimming data loaded from the flash memo

RENESAS

			1	0	CLKOUT	I/O
			0	1	(Open)	OSC1 (extern clock input)
			1	1	OSC2	OSC1
5	OSCBAKE 0	R/W	Exterr	nal Clock Bac	kup Enable	
			0: Ext	ernal clock ba	ckup disabled	
			1: Ext	ernal clock ba	ckup enabled	
			this bi while syster	t is 1. When t this LSI opera n clock sourc scillator regar	he external os ates on the exte e is automatica	circuit is enable cillator halt is de ernal input sign ally switched to alue of bit 4 in th
			Note:	on the on-ch to 1, do not s	ip oscillator clo	tecting circuit op ock. When this oscillator to the RCCR.

Rev. 3.00 Sep. 10, 2007 Page 76 of 528 REJ09B0216-0300

				This bit is used to switch the on-chip oscillator of external clock. While this LSI is operating on the oscillator clock, setting this bit to 1 switches the clocks to the external clock.
				[Setting condition]
				• When 1 is written to this bit while CKSWIF =
				[Clearing conditions]
				When 0 is written to this bit
				When the external oscillator halt is detected OSCBAKE = 1
3	CKSWIE	0	R/W	Clock Switching Interrupt Enable
				Setting this bit to 1 enables the clock switching request.
2	CKSWIF	0	R/W	Clock Switching Interrupt Request Flag
				[Setting condition]
				When the external clock is switched to the c oscillator clock as the system clock source
				[Clearing condition]
				When writing 0 after reading as 1

Renesas

0	CKSTA	0	R	LSI Operating Clock Status
				0: This LSI operates on the on-chip oscillator clo
				1: This LSI operates on the external clock.

Rev. 3.00 Sep. 10, 2007 Page 78 of 528 REJ09B0216-0300

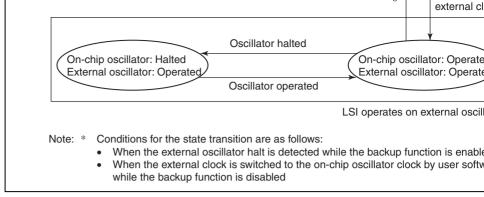


Figure 5.2 State Transition of System Clock

5.3.1 Clock Control Operation

The LSI system clock is generated by the on-chip oscillator clock after a reset. The system sources are switched from the on-chip oscillator to the external clock by the user softwar 5.3 shows the flowchart to switch clocks with the external clock backup function enable 5.4 and 5.5 show the flowcharts to switch clocks with the external clock backup function.

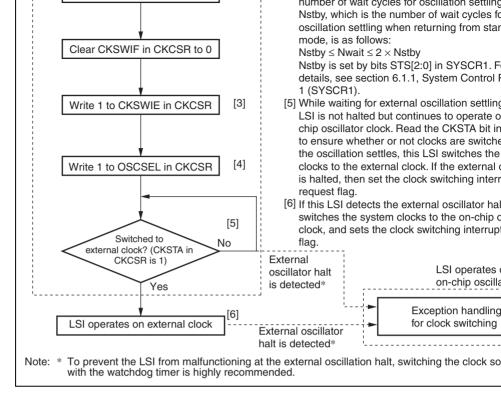
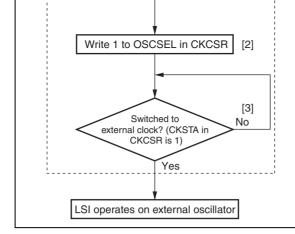



Figure 5.3 Flowchart of Clock Switching with Backup Function Enabled

Rev. 3.00 Sep. 10, 2007 Page 80 of 528 REJ09B0216-0300

- Nstby \leq Nwait \leq 2 \times Nstby Nstby is set by bits STS[2:0] in SYSCR details, see section 6.1.1, System Cont Register 1 (SYSCR1).
- [3] While the system is waiting for the external oscillation settling, this LSI is not halted continues to operate on the on-chip oscillock. Read the value of the CKSTA bit CKCSR to ensure that the system clock switched.

Figure 5.4 Flowchart of Clock Switching with Backup Function Disabled ((From On-Chip Oscillator Clock to External Clock)

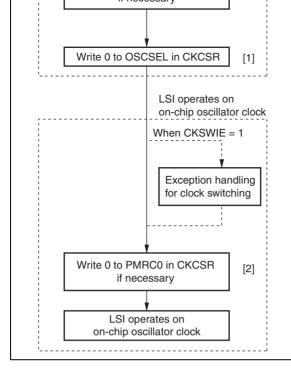
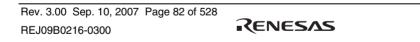



Figure 5.5 Flowchart of Clock Switching with Backup Function Disabled (2 (From External Clock to On-Chip Oscillator Clock)

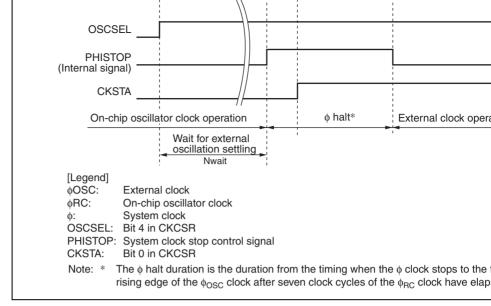


Figure 5.6 Timing Chart of Switching from On-Chip Oscillator Clock to Extern

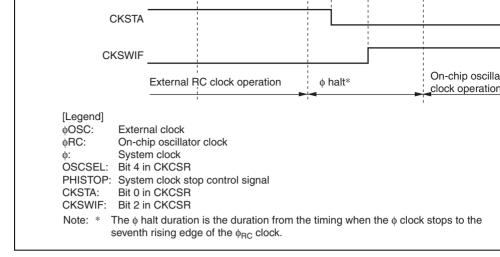


Figure 5.7 Timing Chart to Switch from External Clock to On-Chip Oscillator

Rev. 3.00 Sep. 10, 2007 Page 84 of 528 REJ09B0216-0300

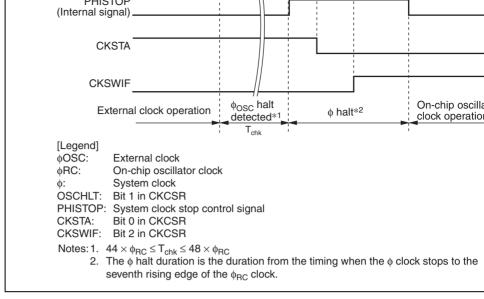
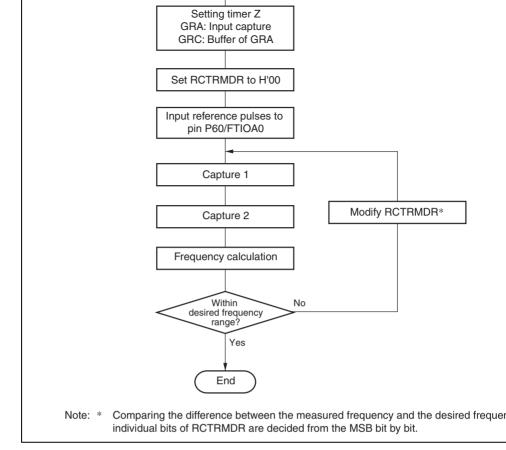
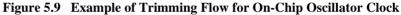
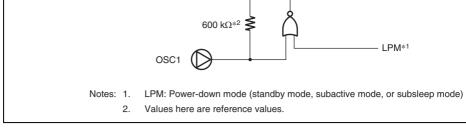




Figure 5.8 External Oscillation Backup Timing

Rev. 3.00 Sep. 10, 2007 Page 86 of 528 REJ09B0216-0300

1	Capture 1	C	aptui
1	I. Construction of the second s		

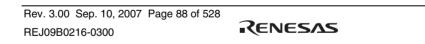
Figure 5.10 Timing Chart of Trimming of On-Chip Oscillator Frequenc


The on-chip oscillator frequency is gained by the expression below. Since the input-cap is sampled by the ϕ_{RC} clock, the calculated result may include a sampling error of ± 1 cyc $\phi_{_{RC}} \, clock.$

$$\phi \mathsf{RC} = \frac{(\mathsf{M} + \alpha) - \mathsf{M}}{\mathsf{t}_{\mathsf{A}}} \quad (\mathsf{MHz})$$

Period of reference clock (µs) t_A: M:

Timer Z counter value


Figure 5.11 Block Diagram of External Clock Oscillator

5.5.1 Connecting Crystal Resonator

Figure 5.12 shows an example of connecting a crystal resonator. An AT-cut parallel-resonator crystal resonator should be used. Figure 5.13 shows the equivalent circuit of a crystal resonator having the characteristics given in table 5.1 should be used.

Figure 5.12 Example of Connection to Crystal Resonator

-	
C _o (Max.)	70 pF

5.5.2 Connecting Ceramic Resonator

Figure 5.14 shows an example of connecting a ceramic resonator.

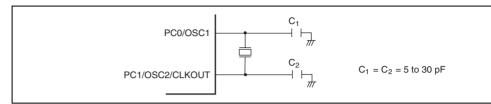


Figure 5.14 Example of Connection to Ceramic Resonator

5.5.3 Inputting External Clock

To use the external clock, input the external clock on pin OSC1. Figure 5.15 shows an e connection. The duty cycle of the external clock signal must range from 45 to 55%.

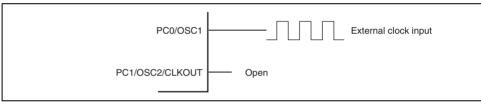


Figure 5.15 Example of External Clock Input

Figure 5.16 Block Diagram of Subclock Oscillator

5.6.1 Connecting 32.768-kHz Crystal Resonator

Clock pulses can be supplied to the subclock divider by connecting a 32.768-kHz crystal resonator, as shown in figure 5.17. Figure 5.18 shows the equivalent circuit of the 32.768 crystal resonator.

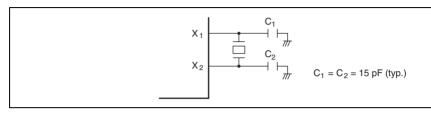


Figure 5.17 Typical Connection to 32.768-kHz Crystal Resonator

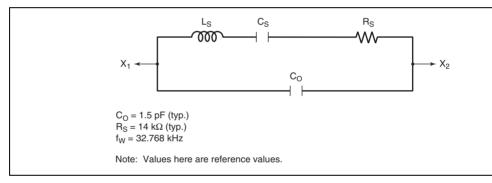


Figure 5.18 Equivalent Circuit of 32.768-kHz Crystal Resonator

Rev. 3.00 Sep. 10, 2007 Page 90 of 528 REJ09B0216-0300

5.7 Prescaler

5.7.1 Prescaler S

Prescaler S is a 13-bit counter using the system clock (ϕ) as its input clock. The outputs, divided clocks, are used as internal clocks by the on-chip peripheral modules. Prescaler initialized to H'0000 by a reset, and starts counting on exit from the reset state. In standard and subsleep mode, the external clock oscillator stops. Prescaler S also stops and is initialized H'0000. It cannot be read from or written to by the CPU.

The outputs from prescaler S are shared by the on-chip peripheral modules. The division be set separately for each on-chip peripheral module. In active mode and sleep mode, the input to prescaler S is a system clock with the division ratio specified by bits MA2 to M SYSCR2.

5.7.2 Prescaler W

Prescaler W is a 5-bit counter using a 32.768-kHz signal divided by 4 as its input clock. divided output is used for clock time base operation of the RTC. Prescaler W is initialized by a reset, and starts counting on exit from the reset state. Even in standby mode, subact or subsleep mode, prescaler W continues functioning.

5.8.2 Notes on Board Design

When using a crystal resonator (ceramic resonator), place the resonator and its load capac close as possible to pins OSC1 and OSC2. Other signal lines should be routed away from oscillator circuit to prevent induction from interfering with correct oscillation (see figure

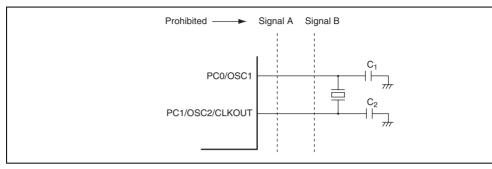


Figure 5.20 Example of Incorrect Board Design

Rev. 3.00 Sep. 10, 2007 Page 92 of 528 REJ09B0216-0300

The CPU and all on-chip peripheral modules are operable on the subclock. The subc frequency can be selected from $\frac{\phi w}{2}$, $\frac{\phi w}{4}$, and $\frac{\phi w}{8}$.

• Sleep mode

The CPU halts. On-chip peripheral modules are operable on the system clock.

- Subsleep mode The CPU halts. On-chip peripheral modules are operable on the subclock.
- Standby mode

The CPU and all on-chip peripheral modules halt. When the clock time-base function selected, the RTC is operable.

• Module standby mode

Independent of the above modes, power consumption can be reduced by halting onperipheral modules that are not used in module units.

LPW3002A_000120030300

RENESAS

Bit	Bit Name	Initial Value	R/W	Description
7	SSBY	0	R/W	Software Standby
				This bit selects the mode to transit after the exec the SLEEP instruction.
				0: Enters sleep mode or subsleep mode.
				1: Enters standby mode.
				For details, see table 6.2.

SYSCR1 controls the power-down modes, as well as SYSCR2.

Rev. 3.00 Sep. 10, 2007 Page 94 of 528 REJ09B0216-0300

				These bits are always read as 0.
2 to 0	_	All 0		Reserved
				1: Sampling rate is $\phi_{osc}/4$
				0: Sampling rate is $\phi_{osc}/16$
				The subclock pulse generator generates the was signal (ϕ_w) and the external clock pulse generates generates the oscillator clock (ϕ_{osc}). This bit sets sampling frequency of the oscillator clock when clock signal (ϕ_w) is sampled. When ϕ_{osc} = 4 to 2 clear NESEL to 0.
3	NESEL	0	R/W	Noise Elimination Sampling Frequency Select
				Nstby \leq Nwait \leq 2 \times Nstby
				The relationship between Nwait (number of wa oscillation stabilization) and Nstby (number of w for recovering to the standby mode) is as follow
				These bits also set the wait states for external stabilization when system clock is switched from chip oscillator clock to the external clock by use software.
				When using an external clock, set the wait time 100 μs or longer.
				STS2 to STS0 values and the wait time.

Renesas

1	0	128 states	0.00	0.00	0.01	0.02	0.03	(
	1	16 states	0.00	0.00	0.00	0.00	0.00	

Note: Time unit is ms.

Rev. 3.00 Sep. 10, 2007 Page 96 of 528 REJ09B0216-0300

				a SLEEP Instruction, as well as bit SSDT of ST
				For details, see table 6.2.
4	MA2	0	R/W	Active Mode Clock Select 2 to 0
3	MA1	0	R/W	These bits select the operating clock frequency
2	MA0	0	R/W	and sleep modes. The operating clock frequenc changes to the set frequency after the SLEEP i is executed.
				0XX: φ _{osc}
				100:
				101:
				110: φ _{osc} /32
				111: φ _{osc} /64
1	SA1	0	R/W	Subactive Mode Clock Select 1 and 0
0	SA0	0	R/W	These bits select the operating clock frequency subactive and subsleep modes. The operating frequency changes to the set frequency after th instruction is executed.
				00: _{\$\phi_w} /8
				01:
				1X:

[Legend] X: Don't care.

RENESAS

4 MSTAD 0 R/W A/D Converter Module Standby 3 MSTWD 0 R/W Watchdog Timer Module Standby 3 MSTWD 0 R/W Watchdog Timer Module Standby Watchdog timer enters standby mode when the internal oscillator is selected for watchdog timer clock, the watchdog timer op regardless of the setting of this bit 2 — 0 — 1 MSTTV 0 R/W Timer V Module Standby 0 MSTTA 0 R/W RTC Module Standby	5	MSTS3	0	R/W	SCI3 Module Standby
A/D converter enters standby mode when this to 1 3 MSTWD 0 R/W Watchdog Timer Module Standby Watchdog timer enters standby mode when to to 1.When the internal oscillator is selected for watchdog timer clock, the watchdog timer op regardless of the setting of this bit 2 — 0 — Reserved This bit is always read as 0. 1 MSTTV 0 R/W Timer V Module Standby Timer V Module Standby 0 MSTTA 0 R/W RTC Module Standby					SCI3 enters standby mode when this bit is set to
to 1 3 MSTWD 0 R/W Watchdog Timer Module Standby Watchdog timer enters standby mode when to to 1.When the internal oscillator is selected for watchdog timer clock, the watchdog timer op regardless of the setting of this bit 2 — 0 — Reserved This bit is always read as 0. 1 MSTTV 0 R/W Timer V Module Standby Timer V enters standby mode when this bit is 0 MSTTA 0 R/W RTC Module Standby	4	MSTAD	0	R/W	A/D Converter Module Standby
Watchdog timer enters standby mode when to 1. When the internal oscillator is selected for watchdog timer clock, the watchdog timer op regardless of the setting of this bit 2 — 0 — Reserved 1 MSTTV 0 R/W Timer V Module Standby 0 MSTTA 0 R/W RTC Module Standby					A/D converter enters standby mode when this bi to 1
to 1.When the internal oscillator is selected for watchdog timer clock, the watchdog timer op regardless of the setting of this bit 2 — 0 — Reserved This bit is always read as 0. 1 MSTTV 0 R/W Timer V Module Standby Timer V enters standby mode when this bit is always 0 MSTTA 0 R/W RTC Module Standby	3	MSTWD	0	R/W	Watchdog Timer Module Standby
Image: Solution of the second seco					Watchdog timer enters standby mode when this to 1. When the internal oscillator is selected for the watchdog timer clock, the watchdog timer operative regardless of the setting of this bit
1 MSTTV 0 R/W Timer V Module Standby 1 MSTTA 0 R/W RTC Module Standby	2		0		Reserved
Timer V enters standby mode when this bit is 0 MSTTA 0 R/W R/W					This bit is always read as 0.
0 MSTTA 0 R/W RTC Module Standby	1	MSTTV	0	R/W	Timer V Module Standby
					Timer V enters standby mode when this bit is se
RTC enters standby mode when this bit is se	0	MSTTA	0	R/W	RTC Module Standby
•					RTC enters standby mode when this bit is set to

Rev. 3.00 Sep. 10, 2007 Page 98 of 528 REJ09B0216-0300

4	MSTTB1	0	R/W	Timer B1 Module Standby
				Timer B1 enters standby mode when this bit is
3, 2	_	All 0	_	Reserved
				These bits are always read as 0.
1	MSTTZ	0	R/W	Timer Z Module Standby
				Timer Z enters standby mode when this bit is se
0	MSTPWM	0	R/W	PWM Module Standby
				PWM enters standby mode when this bit is set

Renesas

by an interrupt. Table 0.5 shows the internal states of the LST in each mode.

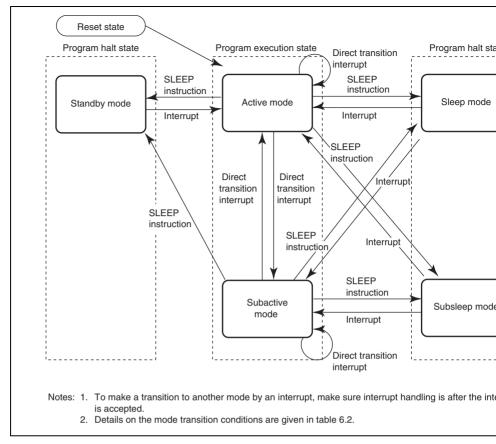


Figure 6.1 Mode Transition Diagram

Rev. 3.00 Sep. 10, 2007 Page 100 of 528 REJ09B0216-0300

1	Х	0*	0	Active mode (direct transition)	
	Х	Х	1	Subactive mode (direct transition)	

X: Don't care.

Note: * When a state transition is performed while SMSEL is 1, timer V, SCI3, SCI3_ A/D converter are reset, and all registers are set to their initial values. To use functions after entering active mode, reset the registers.

come
retain
outpu
high-i
state.

						State.
External	IRQ3 to IRQ0	Functioning	Functioning	Functioning	Functioning	Func
interrupts	WKP5 to WKP0	Functioning	Functioning	Functioning	Functioning	Func
Peripheral functions	RTC	Functioning	Functioning	0	the timekeeping lected, and retai	•
	Timer V	Functioning	Functioning	Reset	Reset	Rese
	Watchdog timer	Functioning	Functioning		ctioning if the in count clock*)	iternal o
	SCI3, SCI3_2	Functioning	Functioning	Reset	Reset	Rese
	IIC2	Functioning	Functioning	Retained*	Retained	Retai
	Timer B1	Functioning	Functioning	Retained*	Retained	Retai
	Timer Z	Functioning	Functioning		counter increm ne internal clock *)	
	A/D converter	Functioning	Functioning	Reset	Reset	Rese
	LVD	Functioning	Functioning	Functioning	Functioning	Func
				-		

Note: * Registers can be read or written in subactive mode.

Rev. 3.00 Sep. 10, 2007 Page 102 of 528 REJ09B0216-0300

6.2.2 Standby Mode

In standby mode, the external clock oscillator is halted, and operation of the CPU and or peripheral modules is halted. However, as long as the rated voltage is supplied, the conto CPU registers, on-chip RAM, and some on-chip peripheral module registers are retained RAM contents will be retained as long as the voltage set by the RAM data retention volto provided. The I/O ports go to the high-impedance state.

Standby mode is cleared by an interrupt. When an interrupt is requested, the on-chip osc starts functioning. The external oscillator also starts functioning when used. After the tin the STS2 to STS0 bits in SYSCR1 has elapsed, standby mode is cleared and the CPU sta interrupt exception handling. Standby mode is not cleared if the I bit in the condition co (CCR) is set to 1 or the requested interrupt is disabled by the interrupt enable bit.

When the $\overline{\text{RES}}$ pin is driven low in standby mode, the on-chip oscillator starts functioning the oscillator starts, the system clock is supplied to the entire chip. The $\overline{\text{RES}}$ pin must be for the rated period set by the power-on reset circuit, until the oscillator stabilizes. If the is driven high after the oscillator has stabilized, the internal reset signal is cleared and the starts reset exception handling.

made to subactive mode when the bit is 1. After the time set in bits STS2 to STS0 in SYS elapsed, a transition is made to active mode.

When the $\overline{\text{RES}}$ pin is driven low in standby mode, the on-chip oscillator starts functioning the oscillator starts, the system clock is supplied to the entire chip. The $\overline{\text{RES}}$ pin must be for the rated period set by the power-on reset circuit, until the oscillator stabilizes. If the \overline{I} is driven high after the oscillator has stabilized, the internal reset signal is cleared and the starts reset exception handling.

6.2.4 Subactive Mode

The operating frequency of subactive mode is selected from $\phi_w/2$, $\phi_w/4$, and $\phi_w/8$ by the S SA0 bits in SYSCR2. After the SLEEP instruction is executed, the operating frequency c the frequency which is set before the execution.

When the SLEEP instruction is executed in subactive mode, a transition to sleep mode, su mode, standby mode, active mode, or subactive mode is made, depending on the combina SYSCR1 and SYSCR2.

When the $\overline{\text{RES}}$ pin is driven low in standby mode, the on-chip oscillator starts functioning the oscillator starts, the system clock is supplied to the entire chip. The $\overline{\text{RES}}$ pin must be for the rated period set by the power-on reset circuit, until the oscillator stabilizes. If the $\overline{\text{I}}$ is driven high after the oscillator has stabilized, the internal reset signal is cleared and the starts reset exception handling.

Rev. 3.00 Sep. 10, 2007 Page 104 of 528 REJ09B0216-0300

transition also enables operating frequency modification in active or subactive mode. Af mode transition, direct transition interrupt exception handling starts.

If the direct transition interrupt is disabled in interrupt enable register 1, a transition is n instead to sleep or subsleep mode. Note that if a direct transition is attempted while the CCR is set to 1, sleep or subsleep mode will be entered, and the resulting mode cannot be by means of an interrupt.

6.4.1 Direct Transition from Active Mode to Subactive Mode

The time from the start of SLEEP instruction execution to the end of interrupt exception (the direct transition time) is calculated by equation (1).

Direct transition time = {(number of SLEEP instruction execution states) + (number of interrupt exception handling states)} (tcyc before transition) + (number of interrupt exception handling states) (tsubcyc after transition) (1)

Example

Direct transition time = $(2 + 1) \times \text{tosc} + 14 \times 8\text{tw} = 3\text{tosc} + 112\text{tw}$ (when the CPU operating clock of $\phi_{\text{osc}} \rightarrow \phi_w/8$ is selected)

Legend

tosc: OSC clock cycle time tw: Watch clock cycle time tcyc: System clock (ϕ) cycle time tsubcyc: Subclock (ϕ_{SUB}) cycle time

RENESAS

(when the CPU operating clock of $\phi_w/8 \rightarrow \phi_{osc}$ and a waiting time of 8192 states are se

Legend

tosc: OSC clock cycle time tw: Watch clock cycle time tcyc: System clock (ϕ) cycle time tsubcyc: Subclock (ϕ_{SUB}) cycle time

6.5 Module Standby Function

The module-standby function can be set to any peripheral module. In module standby mode clock supply to modules stops to enter the power-down mode. Module standby mode ena on-chip peripheral module to enter the standby state by setting a bit that corresponds to emodule to 1 and cancels the mode by clearing the bit to 0.

Rev. 3.00 Sep. 10, 2007 Page 106 of 528 REJ09B0216-0300

- On-board programming/erasing can be done in boot mode, in which the boot prointo the chip is started to erase or program of the entire flash memory. In normal program mode, individual blocks can be erased or programmed.
- Programmer mode
 - Flash memory can be programmed/erased in programmer mode using a PROM programmer, as well as in on-board programming mode.
- Automatic bit rate adjustment
 - For data transfer in boot mode, this LSI's bit rate can be automatically adjusted to the transfer bit rate of the host.
- Programming/erasing protection
 - Sets software protection against flash memory programming/erasing.
- Power-down mode
 - Operation of the power supply circuit can be partly halted in subactive mode. As flash memory can be read with low power consumption.

7.1 Block Configuration

Figure 7.1 shows the block configuration of flash memory of each product model. The t indicate erasing units, the narrow lines indicate programming units, and the values are a Erasing is performed in erasing units shown in these figures. Programming is performed byte units starting from an address with lower eight bits H'00 or H'80.

ROM3560A_000120030300

RENESAS

	Erase unit: 1 Kbyte	\sim	
		H'000F80 ¦ H'000F81 ¦ H'000F82 ¦	H'00
		H'001000 ¦ H'001001 ¦ H'001002 ¦ ← Programming unit: 128 bytes →	H'00
	Erase unit: 28 Kbytes	$\overset{\circ}{\gamma}$	
		H'007F80 ¹ H'007F81 ¹ H'007F82 ¹	H'00
		H'008000 ¦ H'008001 ¦ H'008002 ¦ - Programming unit: 128 bytes -	H'00
	Erase unit: 32 Kbytes	$\sim \sim $	
		H'00FF80 H'00FF81 H'00FF82	H'00
		H'010000 H'010001 H'010002	H'01
	Erase unit: 32 Kbytes	\sim	
		H'017F80 ¦ H'017F81 ¦ H'017F82	H'01
		H'018000 H'018001 H'018002 - Programming unit: 128 bytes -	H'01
	Erase unit: 32 Kbytes	$\tilde{\gamma}$	
		H'01FF80 ¦ H'01FF81 ¦ H'01FF82	H'01
1			

Figure 7.1 Flash Memory Block Configuration (1) (H8/36079GF and H8/36079LF)

Rev. 3.00 Sep. 10, 2007 Page 108 of 528 REJ09B0216-0300

	え				
Erase unit: 1 Kbyte	γ	1			1
	H'000F80	H'000F81	H'000F82		, H,0
	H'001000	H'001001	H'001002	🗕 Programming unit: 128 bytes ->	¦ H'0
Erase unit: 28 Kbytes	L ~	1			1 1 1
	H'007F80	H'007F81	H'007F82		H'0
	H'008000	H'008001	H'008002	- Programming unit: 128 bytes -	¦ H'0
Erase unit: 32 Kbytes		1 1 1			1 1 1
	H'00FF80	H'00FF81	H'00FF82		- H'0
	H'010000	H'010001	H'010002	← Programming unit: 128 bytes →	- H'0
Erase unit: 32 Kbytes	L Ŷ	 			-
	H'017F80	H'017F81	H'017F82		H'0

Figure 7.1 Flash Memory Block Configuration (2) (H8/36078GF and H8/36078LF)

Erase unit: 1 Kbytes	ř				
	H'0F80	H'0F81	H'0F82		H'0
	H'1000	H'1001	H'1002	🗲 Programming unit: 128 bytes →	H'1
Erase unit: 28 Kbytes	Ļ	1 1 1			1 1 1
	H'7F80	H'7F81	H'7F82		H'7
	H'8000	H'8001	H'8002	🗕 Programming unit: 128 bytes ->	H'8
Erase unit: 16 Kbytes	L T				
	H'BF80	H'BF81	H'BF82		' H'B
	H'C000	H'C001	H'C002	← Programming unit: 128 bytes →	H'C
Erase unit: 8 Kbytes	L T				
	H'DF80	H'DF81	H'DF82		H'D
	-				

Figure 7.1 Flash Memory Block Configuration (3) (H8/36077GF and H8/36077LF)

Rev. 3.00 Sep. 10, 2007 Page 110 of 528 REJ09B0216-0300

Erase unit: 1 Kbyte	$\tilde{\gamma}$	· · ·		i.
	H'0F80 ¦ H'0F81	H'0F82		¦ H'
	H'1000 ¦ H'1001	H'1002	- Programming unit: 128 bytes -	¦ H'
Erase unit: 28 Kbytes	s 			
	H'7F80 H'7F81	H'7F82		H'

Figure 7.1 Flash Memory Block Configuration (4) (H8/36074GF and H8/36074LF)

7.2.1 Flash Memory Control Register 1 (FLMCR1)

FLMCR1 is a register that makes the flash memory change to program mode, program-ve mode, erase mode, or erase-verify mode. For details on register setting, refer to section 7. Memory Programming/Erasing.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	—	0		Reserved
				This bit is always read as 0.
6	SWE	0	R/W	Software Write Enable
				When this bit is set to 1, flash memory programming/erasing is enabled. When this bit is to 0, other FLMCR1 register bits and all EBR1 bit be set.
5	ESU	0	R/W	Erase Setup
				When this bit is set to 1, the flash memory changerase setup state. When it is cleared to 0, the error state is cancelled. Set this bit to 1 before setting to 1 in FLMCR1.
4	PSU	0	R/W	Program Setup
				When this bit is set to 1, the flash memory chang program setup state. When it is cleared to 0, the setup state is cancelled. Set this bit to 1 before s P bit in FLMCR1.

Rev. 3.00 Sep. 10, 2007 Page 112 of 528 REJ09B0216-0300

				When this bit is set to 1 while SWE=1 and ESU flash memory changes to erase mode. When it to 0, erase mode is cancelled.
0	Р	0	R/W	Program
				When this bit is set to 1 while SWE=1 and PSU flash memory changes to program mode. When cleared to 0, program mode is cancelled.

7.2.2 Flash Memory Control Register 2 (FLMCR2)

FLMCR2 is a register that displays the state of flash memory programming/erasing. FLM read-only register, and should not be written to.

Bit	Bit Name	Initial Value	R/W	Description
7	FLER	0	R	Flash Memory Error
				Indicates that an error has occurred during an or on flash memory (programming or erasing). Wh is set to 1, flash memory goes to the error-prote state.
				See section 7.5.3, Error Protection, for details.
6 to 0	_	All 0		Reserved
				These bits are always read as 0.

RENESAS

6	EB6	0	R/W	When this bit is set to 1, 32 Kbytes of H'010000 to H'017FFF will b
5	EB5	0	R/W	When this bit is set to 1, H'008000 to H'00FFFF 32 Kbytes of H'01 H'017FFF will be erased.
4	EB4	0	R/W	When this bit is set to 1, 28 Kbytes of H'001000 to H'007FFF will b
3	EB3	0	R/W	When this bit is set to 1, 1 Kbyte of H'000C00 to H'000FFF will be
2	EB2	0	R/W	When this bit is set to 1, 1 Kbyte of H'000800 to H'000BFF will be
1	EB1	0	R/W	When this bit is set to 1, 1 Kbyte of H'000400 to H'0007FF will be
0	EB0	0	R/W	When this bit is set to 1, 1 Kbyte of H'000000 to H'0003FF will be

(2) H8/36078GF and H8/36078LF

		Initial		
Bit	Bit Name	Value	R/W	Description
7	_	0	_	Reserved. Although this bit is readable/writable, do not set this bit
6	EB6	0	R/W	When this bit is set to 1, 32 Kbytes of H'010000 to H'017FFF will b
5	EB5	0	R/W	When this bit is set to 1, 32 Kbytes of H'008000 to H'00FFFF will b
4	EB4	0	R/W	When this bit is set to 1, 28 Kbytes of H'001000 to H'007FFF will b
3	EB3	0	R/W	When this bit is set to 1, 1 Kbyte of H'000C00 to H'000FFF will be
2	EB2	0	R/W	When this bit is set to 1, 1 Kbyte of H'000800 to H'000BFF will be
1	EB1	0	R/W	When this bit is set to 1, 1 Kbyte of H'000400 to H'0007FF will be ϵ
0	EB0	0	R/W	When this bit is set to 1, 1 Kbyte of H'000000 to H'0003FF will be e
_				

Rev. 3.00 Sep. 10, 2007 Page 114 of 528 REJ09B0216-0300

RENESAS

1	EB1	0	R/W	When this bit is set to 1, 1 Kbyte of H'0400 to H'07FF will be eras
0	EB0	0	R/W	When this bit is set to 1, 1 Kbyte of H'0000 to H'03FF will be eras

(4) H8/36074GF and H8/36074LF

		Initial		
Bit	Bit Name	Value	R/W	Description
7	_	0	_	Reserved. This bit is always read as 0.
6		0		Reserved. Although this bit is readable/writable, do not set this bit
5	_	0	_	Reserved. Although this bit is readable/writable, do not set this bit
4	EB4	0	R/W	When this bit is set to 1, 28 Kbytes of H'1000 to H'7FFF will be e
3	EB3	0	R/W	When this bit is set to 1, 1 Kbyte of H'0C00 to H'0FFF will be eras
2	EB2	0	R/W	When this bit is set to 1, 1 Kbyte of H'0800 to H'0BFF will be eras
1	EB1	0	R/W	When this bit is set to 1, 1 Kbyte of H'0400 to H'07FF will be eras
0	EB0	0	R/W	When this bit is set to 1, 1 Kbyte of H'0000 to H'03FF will be eras

RENESAS

				When this bit is 0 and a transition is made to sub mode, the flash memory enters the power-down When this bit is 1, the flash memory remains in t normal mode even after a transition is made to s mode.
6 to 0	_	All 0	_	Reserved
				These bits are always read as 0.

7.2.5 Flash Memory Enable Register (FENR)

Bit 7 (FLSHE) in FENR enables or disables the CPU access to the flash memory control FLMCR1, FLMCR2, EBR1, and FLPWCR.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	FLSHE	0	R/W	Flash Memory Control Register Enable
				Flash memory control registers can be accessed this bit is set to 1. Flash memory control register be accessed when this bit is set to 0.
6 to 0	_	All 0		Reserved
				These bits are always read as 0.

Rev. 3.00 Sep. 10, 2007 Page 116 of 528 REJ09B0216-0300

via SCI3. After erasing the entire flash memory, the programming control program is ex This can be used for programming initial values in the on-board state or for a forcible re programming/erasing can no longer be done in user program mode. In user program mo individual blocks can be erased and programmed by branching to the user program/erase program prepared by the user.

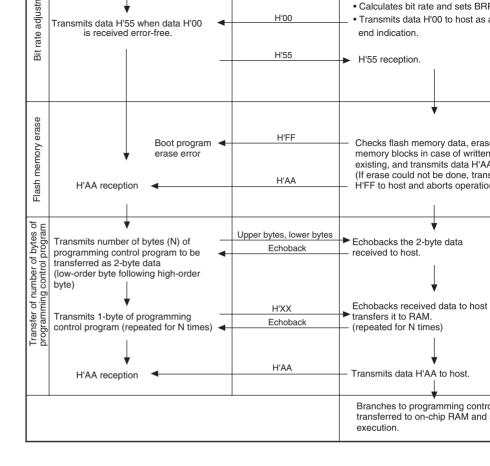
TEST	NMI	P85	PB0	PB1	PB2	LSI State after Reset End
0	1	x	х	х	х	User Mode
0	0	1	х	х	х	Boot Mode
1	х	х	0	0	0	Programmer Mode

 Table 7.1
 Setting Programming Modes

[Legend] x: Don't care.

7.3.1 Boot Mode

Table 7.2 shows the boot mode operations between reset end and branching to the progr control program.


- 1. When boot mode is used, the flash memory programming control program must be p the host beforehand. Prepare a programming control program in accordance with the description in section 7.4, Flash Memory Programming/Erasing.
- 2. SCI3 should be set to asynchronous mode, and the transfer format as follows: 8-bit d bit, and no parity.
- 3. When the boot program is initiated, the chip measures the low-level period of asynch SCI communication data (H'00) transmitted continuously from the host. The chip the calculates the bit rate of transmission from the host, and adjusts the SCI3 bit rate to n of the host. The reset should end with the RxD pin high. The RxD and TxD pins sho

RENESAS

- microcontrollers supporting normal mode, is the area to which the programming control program is transferred from the host. The boot program area cannot be used until the state in boot mode switches to the programming control program.
- 6. Before branching to the programming control program, the chip terminates transfer of by SCI3 (by clearing the RE and TE bits in SCR to 0), however the adjusted bit rate v remains set in BRR. Therefore, the programming control program can still use it for the program data or verify data with the host. The TxD pin is high (PCR22 = 1, P22 = 1), contents of the CPU general registers are undefined immediately after branching to the programming control program. These registers must be initialized at the beginning of programming control program, as the stack pointer (SP), in particular, is used implicit subroutine calls, etc.
- Boot mode can be cleared by a reset. End the reset after driving the reset pin low, wai least 20 states, and then setting the NMI pin. Boot mode is also cleared when a WDT occurs.
- 8. Do not change the TEST pin and $\overline{\text{NMI}}$ pin input levels in boot mode.

Rev. 3.00 Sep. 10, 2007 Page 118 of 528 REJ09B0216-0300

Rev. 3.00 Sep. 10, 2007 Pag REJ09

RENESAS

program mode by branching to a user program/erase control program. The user must set be conditions and provide on-board means of supplying programming data. The flash memo contain the user program/erase control program or a program that provides the user progr control program from external memory. As the flash memory itself cannot be read during programming/erasing, transfer the user program/erase control program to on-chip RAM, a mode. Figure 7.2 shows a sample procedure for programming/erasing in user program me Prepare a user program/erase control program in accordance with the description in section Flash Memory Programming/Erasing.

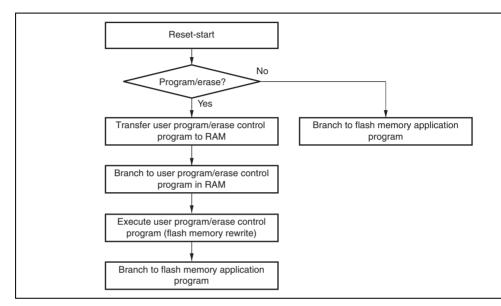


Figure 7.2 Programming/Erasing Flowchart Example in User Program Mod

7.4.1 Program/Program-Verify

When writing data or programs to the flash memory, the program/program-verify flowed in figure 7.3 should be followed. Performing programming operations according to this will enable data or programs to be written to the flash memory without subjecting the ch voltage stress or sacrificing program data reliability.

- 1. Programming must be done to an empty address. Do not reprogram an address to whe programming has already been performed.
- 2. Programming should be carried out 128 bytes at a time. A 128-byte data transfer mu performed even if writing fewer than 128 bytes. In this case, H'FF data must be write extra addresses.
- 3. Prepare the following data storage areas in RAM: A 128-byte programming data area byte reprogramming data area, and a 128-byte additional-programming data area. Per reprogramming data computation according to table 7.4, and additional programming computation according to table 7.5.
- 4. Consecutively transfer 128 bytes of data in byte units from the reprogramming data a additional-programming data area to the flash memory. The program address and 12 data are latched in the flash memory. The lower 8 bits of the start address in the flash destination area must be H'00 or H'80.
- 5. The time during which the P bit is set to 1 is the programming time. Table 7.6 shows allowable programming times.
- 6. The watchdog timer (WDT) is set to prevent overprogramming due to program runa An overflow cycle of approximately 6.6 ms is allowed.
- For a dummy write to a verify address, write 1-byte data H'FF to an address whose leare B'00. Verify data can be read in words or in longwords from the address to which write was performed.

RENESAS

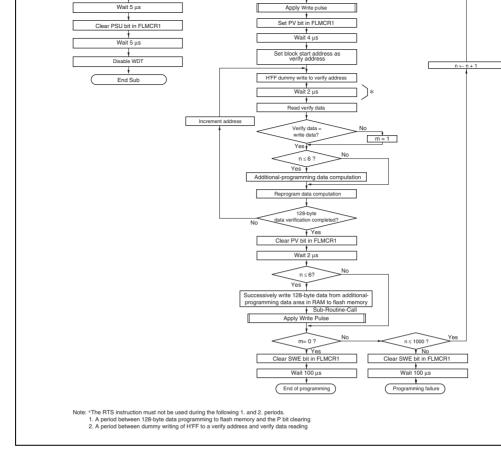


Figure 7.3 Program/Program-Verify Flowchart

Reprogram Data	Verify Data	Data	Comments
0	0	0	Additional-program
0	1	1	No additional progr
1	0	1	No additional progr
1	1	1	No additional progr

Table 7.6Programming Time

n (Number of Writes)	Programming Time	In Additional Programming	Comments
1 to 6	30	10	
7 to 1,000	200	—	

Note: Time shown in μ s.

- overflow cycle of approximately 19.8 ms is allowed.
- For a dummy write to a verify address, write 1-byte data H'FF to an address whose lo bits are B'00. Verify data can be read in longwords from the address to which a dumn was performed.
- 6. If the read data is not erased successfully, set erase mode again, and repeat the erase/erase/erase/erase/erase/erase/erase/erase-ver sequence is 100.

7.4.3 Interrupt Handling when Programming/Erasing Flash Memory

All interrupts, including the NMI interrupt, are disabled while flash memory is being proor erased, or while the boot program is executing, for the following three reasons:

- 1. Interrupt during programming/erasing may cause a violation of the programming or e algorithm, with the result that normal operation cannot be assured.
- 2. If interrupt exception handling starts before the vector address is written or during programming/erasing, a correct vector cannot be fetched and the CPU malfunctions.
- 3. If an interrupt occurs during boot program execution, normal boot mode sequence car carried out.

Rev. 3.00 Sep. 10, 2007 Page 124 of 528 REJ09B0216-0300

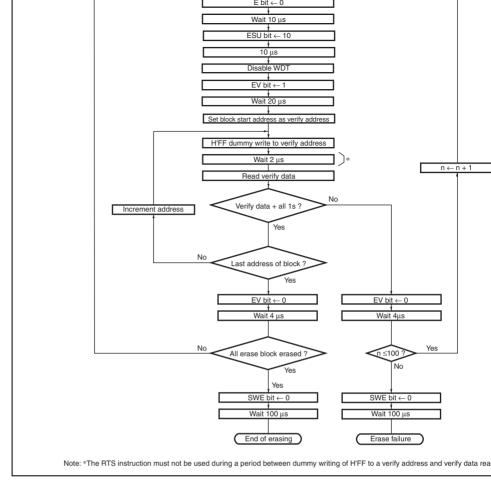


Figure 7.4 Erase/Erase-Verify Flowchart

entered unless the $\overline{\text{RES}}$ pin is held low until oscillation stabilizes after powering on. In the a reset during operation, hold the $\overline{\text{RES}}$ pin low for the $\overline{\text{RES}}$ pulse width specified in the A Characteristics section.

7.5.2 Software Protection

Software protection can be implemented against programming/erasing of all flash memor by clearing the SWE bit in FLMCR1. When software protection is in effect, setting the P in FLMCR1 does not cause a transition to program mode or erase mode. By setting the er register 1 (EBR1), erase protection can be set for individual blocks. When EBR1 is set to erase protection is set for all blocks.

7.5.3 Error Protection

In error protection, an error is detected when CPU runaway occurs during flash memory programming/erasing, or operation is not performed in accordance with the program/eras algorithm, and the program/erase operation is forcibly aborted. Aborting the program/erase operation prevents damage to the flash memory due to overprogramming or overerasing.

When the following errors are detected during programming/erasing of flash memory, the bit in FLMCR2 is set to 1, and the error protection state is entered.

- When the flash memory of the relevant address area is read during programming/erast (including vector read and instruction fetch)
- Immediately after exception handling excluding a reset during programming/erasing
- When a SLEEP instruction is executed during programming/erasing

Rev. 3.00 Sep. 10, 2007 Page 126 of 528 REJ09B0216-0300

7.7 Power-Down States for Flash Memory

In user mode, the flash memory will operate in either of the following states:

• Normal operating mode

The flash memory can be read and written to at high speed.

• Power-down operating mode

The power supply circuit of flash memory can be partly halted. As a result, flash me be read with low power consumption.

• Standby mode

All flash memory circuits are halted.

Table 7.7 shows the correspondence between the operating modes of this LSI and the flamemory. In subactive mode, the flash memory can be set to operate in power-down mode PDWND bit in FLPWCR. When the flash memory returns to its normal operating state power-down mode or standby mode, a period to stabilize operation of the power supply that were stopped is needed. When the flash memory returns to its normal operating state STS2 to STS0 in SYSCR1 must be set to provide a wait time of at least 20 µs, even whe external clock is being used.

Rev. 3.00 Sep. 10, 2007 Page 128 of 528 REJ09B0216-0300

		3.3-V specification	H8/36078LF		
	H8/36077	5.0-V specification	H8/36077GF	4 Kbytes	H'E800 to H'
	Group	3.3-V specification	H8/36077LF	_	H'F780 to H'l
		5.0-V specification	H8/36074GF	_	
		3.3-V specification	H8/36074LF	_	

Notes: 1. When the E7 or E8 is used, area H'FFF780 to H'FFFB7F must not be access 2. When the E7 or E8 is used, area H'F780 to H'FB7F must not be accessed.

RAM0500A_000120030300

Rev. 3.00 Sep. 10, 2007 Page 130 of 528 REJ09B0216-0300

For functions in each port, see appendix B.1, I/O Port Block Diagrams. For the executio manipulation instructions to the port control register and port data register, see section 2 Manipulation Instruction.

9.1 Port 1

Port 1 is a general I/O port also functioning as IRQ interrupt input pins, an RTC output p bit PWM output pin, a timer B1 input pin, and a timer V input pin. Figure 9.1 shows its configuration.

Figure 9.1 Port 1 Pin Configuration

Port 1 has the following registers.

- Port mode register 1 (PMR1)
- Port control register 1 (PCR1)
- Port data register 1 (PDR1)
- Port pull-up control register 1 (PUCR1)

RENESAS

				o. deneral %o port
				1: IRQ2 input pin
5	IRQ1	0	R/W	This bit selects the function of pin P15/IRQ1/TM
				0: General I/O port
				1: IRQ1/TMIB1 input pin
4	IRQ0	0	R/W	This bit selects the function of pin P14/IRQ0.
				0: General I/O port
				1: IRQ0 input pin
3	TXD2	0	R/W	This bit selects the function of pin P72/TXD_2.
				0: General I/O port
				1: TXD_2 output pin
2	PWM	0	R/W	This bit selects the function of pin P11/PWM.
				0: General I/O port
				1: PWM output pin
1	TXD	0	R/W	This bit selects the function of pin P22/TXD.
				0: General I/O port
				1: TXD output pin
0	TMOW	0	R/W	This bit selects the function of pin P10/TMOW.
				0: General I/O port
				1: TMOW output pin

Rev. 3.00 Sep. 10, 2007 Page 132 of 528 REJ09B0216-0300

3	_	_	_
2	PCR12	0	W
1	PCR11	0	W
0	PCR10	0	W

9.1.3 Port Data Register 1 (PDR1)

PDR1 is a general I/O port data register of port 1.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	P17	0	R/W	PDR1 stores output data for port 1 pins.
6	P16	0	R/W	If PDR1 is read while PCR1 bits are set to 1, th
5	P15	0	R/W	stored in PDR1 are read. If PDR1 is read while
4	P14	0	R/W	are cleared to 0, the pin states are read regardl value stored in PDR1.
3		1		Bit 3 is a reserved bit. This bit is always read as
2	P12	0	R/W	
1	P11	0	R/W	
0	P10	0	R/W	

RENESAS

3		1	—	
2	PUCR12	0	R/W	
1	PUCR11	0	R/W	
0	PUCR10	0	R/W	

9.1.5 Pin Functions

The correspondence between the register specification and the port functions is shown be

P17/IRQ3/TRGV pin

Register	PMR1	PCR1	
Bit Name	IRQ3	PCR17	Pin Function
Setting value	0	0	P17 input pin
		1	P17 output pin
	1	х	IRQ3 input/TRGV input pin

[Legend] x: Don't care.

Rev. 3.00 Sep. 10, 2007 Page 134 of 528 REJ09B0216-0300

Register	PMR1	PCR1	
Bit Name	IRQ1	PCR15	Pin Function
Setting value	0	0	P15 input pin
		1	P15 output pin
	1	х	IRQ1 input/TMIB1 input pin

[Legend] x: Don't care.

P14/IRQ0 pin

Register	PMR1	PCR1	
Bit Name	IRQ0	PCR14	Pin Function
Setting value	0	0	P14 input pin
		1	P14 output pin
	1	х	IRQ0 input pin

[Legend] x: Don't care.

P12 pin

Register	PCR1	
Bit Name	PCR12	Pin Function
Setting value	0	P12 input pin
_	1	P12 output pin

RENESAS

Register	PMR1	PCR1	
Bit Name	TMOW	PCR10	Pin Function
Setting value	0	0	P10 input pin
		1	P10 output pin
	1	х	TMOW output pin

[Legend] x: Don't care.

Rev. 3.00 Sep. 10, 2007 Page 136 of 528 REJ09B0216-0300

Figure 9.2 Port 2 Pin Configuration

Port 2 has the following registers.

- Port control register 2 (PCR2)
- Port data register 2 (PDR2)
- Port mode register 3 (PMR3)

9.2.1 Port Control Register 2 (PCR2)

PCR2 selects inputs/outputs in bit units for pins to be used as general I/O ports of port 2

		Initial		
Bit	Bit Name	Value	R/W	Description
7 to 5	_		_	Reserved
4	PCR24	0	W	When each of the port 2 pins P24 to P20 functi
3	PCR23	0	W	general I/O port, setting a PCR2 bit to 1 makes corresponding pin an output port, while clearing
2	PCR22	0	W	0 makes the pin an input port.
1	PCR21	0	W	
0	PCR20	0	W	

RENESAS

2	P22	0	R/W	are cleared to 0, the pin states are read regardle
1	P21	0	R/W	value stored in PDR2.
0	P20	0	R/W	

9.2.3 Port Mode Register 3 (PMR3)

PMR3 selects the CMOS output or NMOS open-drain output for port 2.

Bit	Bit Name	Initial Value	R/W	Description
7 to 5	—	All 0	_	Reserved
				These bits are always read as 0.
4	POF24	0	R/W	When the bit is set to 1, the corresponding pin is
3	POF23	0	R/W	by PMOS and it functions as the NMOS open-dr output. When cleared to 0, the pin functions as the output.
2 to 0	_	All 1	_	Reserved
				These bits are always read as 1.

Rev. 3.00 Sep. 10, 2007 Page 138 of 528 REJ09B0216-0300

P23 pin

Register	PCR2	
Bit Name	PCR23	Pin Function
Setting Value	0	P23 input pin
	1	P23 output pin

P22/TXD pin

	PCR2	
TXD	PCR22	Pin Function
0	0	P22 input pin
	1	P22 output pin
1	Х	TXD output pin
		$0 \qquad \frac{0}{1}$

[Legend] x: Don't care.

Register	SCR3		SMR	PCR2	
Bit Name	CKE1	CKE0	СОМ	PCR20	Pin Function
Setting Value	0	0	0	0	P20 input pin
				1	P20 output pin
	0	0	1	х	SCK3 output pin
	0	1	х	х	SCK3 output pin
	1	х	х	х	SCK3 input pin

[Legend] x: Don't care.

Rev. 3.00 Sep. 10, 2007 Page 140 of 528 REJ09B0216-0300

Figure 9.3 Port 3 Pin Configuration

Port 3 has the following registers.

- Port control register 3 (PCR3)
- Port data register 3 (PDR3)

9.3.1 Port Control Register 3 (PCR3)

PCR3 selects inputs/outputs in bit units for pins to be used as general I/O ports of port 3

		Initial		
Bit	Bit Name	Value	R/W	Description
7	PCR37	0	W	Setting a PCR3 bit to 1 makes the correspondir
6	PCR36	0	W	output port, while clearing the bit to 0 makes the
5	PCR35	0	W	input port.
4	PCR34	0	W	
3	PCR33	0	W	
2	PCR32	0	W	
1	PCR31	0	W	
0	PCR30	0	W	

RENESAS

3	P33	0	R/W	
2	P32	0	R/W	
1	P31	0	R/W	
0	P30	0	R/W	

9.3.3 Pin Functions

The correspondence between the register specification and the port functions is shown be

P37 pin

Register	PCR3	
Bit Name	PCR37	Pin Function
Setting Value 0		P37 input pin
	1	P37 output pin

P36 pin

Register	PCR3	
Bit Name	PCR36	Pin Function
Setting Value	0	P36 input pin
	1	P36 output pin

Rev. 3.00 Sep. 10, 2007 Page 142 of 528 REJ09B0216-0300

Bit Name	PCR34	Pin Function
Setting Value 0		P34 input pin
	1	P34 output pin
P33 pin		
Register	PCR3	
Bit Name	PCR33	Pin Function
Setting Value	0	P33 input pin
	1	P33 output pin
P32 pin		
Register	PCR3	
Bit Name	PCR32	Pin Function
Setting Value	0	P32 input pin
	1	P32 output pin

Bit Name	PCR30	Pin Function
Setting Value	0	P30 input pin
1		P30 output pin

Rev. 3.00 Sep. 10, 2007 Page 144 of 528 REJ09B0216-0300

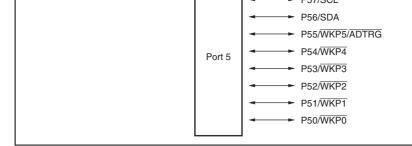


Figure 9.4 Port 5 Pin Configuration

Port 5 has the following registers.

- Port mode register 5 (PMR5)
- Port control register 5 (PCR5)
- Port data register 5 (PDR5)
- Port pull-up control register 5 (PUCR5)

				0: General I/O port
				1: WKP5/ADTRG input pin
4	WKP4	0	R/W	This bit selects the function of pin P54/WKP4.
				0: General I/O port
				1: WKP4 input pin
3	WKP3	0	R/W	This bit selects the function of pin P53/ $\overline{WKP3}$.
				0: General I/O port
				1: WKP3 input pin
2	WKP2	0	R/W	This bit selects the function of pin P52/WKP2.
				0: General I/O port
				1: WKP2 input pin
1	WKP1	0	R/W	This bit selects the function of pin P51/WKP1.
				0: General I/O port
				1: WKP1 input pin
0	WKP0	0	R/W	This bit selects the function of pin P50/WKP0.
				0: General I/O port
_				1: WKP0 input pin

Rev. 3.00 Sep. 10, 2007 Page 146 of 528 REJ09B0216-0300

3	PCR53	0	W
2	PCR52	0	W
1	PCR51	0	W
0	PCR50	0	W

9.4.3 Port Data Register 5 (PDR5)

PDR5 is a general I/O port data register of port 5.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	P57	0	R/W	Stores output data for port 5 pins.
6	P56	0	R/W	If PDR5 is read while PCR5 bits are set to 1, th
5	P55	0	R/W	stored in PDR5 are read. If PDR5 is read while are cleared to 0, the pin states are read regard
4	P54	0	R/W	value stored in PDR5.
3	P53	0	R/W	
2	P52	0	R/W	
1	P51	0	R/W	
0	P50	0	R/W	

RENESAS

3	PUCR53	0	R/W	these bits are cleared to 0.
2	PUCR52	0	R/W	
1	PUCR51	0	R/W	
0	PUCR50	0	R/W	

9.4.5 Pin Functions

The correspondence between the register specification and the port functions is shown be

P57/SCL pin

Register	ICCR1	PCR5	
Bit Name	ICE	PCR57	Pin Function
Setting Value	0	0	P57 input pin
		1	P57 output pin
	1	х	SCL I/O pin

[Legend] x: Don't care.

SCL performs the NMOS open-drain output, that enables a direct bus drive.

Rev. 3.00 Sep. 10, 2007 Page 148 of 528 REJ09B0216-0300

P55/WKP5/ADTRG pin

Register	PMR5	PCR5	
Bit Name	WKP5	PCR55	Pin Function
Setting Value	0	0	P55 input pin
		1	P55 output pin
	1	х	WKP5/ADTRG input pin

[Legend] x: Don't care.

P54/WKP4 pin

Register	PMR5	PCR5	
Bit Name	WKP4	PCR54	Pin Function
Setting Value	0	0	P54 input pin
		1	P54 output pin
	1	х	WKP4 input pin

[Legend] x: Don't care.

RENESAS

Register	PMR5	PCR5	
Bit Name	WKP2	PCR52	Pin Function
Setting Value	0	0	P52 input pin
		1	P52 output pin
	1	х	WKP2 input pin

P51/WKP1 pin

Register	PMR5	PCR5	
Bit Name	WKP1	PCR51	Pin Function
Setting Value	0	0	P51 input pin
		1	P51 output pin
	1	х	WKP1 input pin

[Legend] x: Don't care.

P50/WKP0 pin

PMR5	PCR5	
WKP0	PCR50	Pin Function
0	0	P50 input pin
	1	P50 output pin
1	х	WKP0 input pin
	WKP0	WKP0 PCR50 0 0 1 1

[Legend] x: Don't care.

Rev. 3.00 Sep. 10, 2007 Page 150 of 528 REJ09B0216-0300

Figure 9.5 Port 6 Pin Configuration

Port 6 has the following registers.

- Port control register 6 (PCR6)
- Port data register 6 (PDR6)

9.5.1 Port Control Register 6 (PCR6)

PCR6 selects inputs/outputs in bit units for pins to be used as general I/O ports of port 6

		Initial		
Bit	Bit Name	Value	R/W	Description
7	PCR67	0	W	When each of the port 6 pins P67 to P60 function
6	PCR66	0	W	general I/O port, setting a PCR6 bit to 1 makes
5	PCR65	0	W	corresponding pin an output port, while clearing 0 makes the pin an input port.
4	PCR64	0	W	
3	PCR63	0	W	
2	PCR62	0	W	
1	PCR61	0	W	
0	PCR60	0	W	

RENESAS

3	P63	0	R/W	
2	P62	0	R/W	
1	P61	0	R/W	
0	P60	0	R/W	

9.5.3 Pin Functions

The correspondence between the register specification and the port functions is shown be

P67/FTIOD1 pin

Register	TOER	TFCR	TPMR	TIORC1	PCR6	
Bit Name	ED1	CMD1 and CMD0	PWMD1	IOD2 to IOD0	PCR67	Pin Function
Setting Value	1	00	0	000 or	0	P67 input/FTIOD1 inp
				1xx	1	P67 output pin
	0	00	0	001 or 01x	x	FTIOD1 output pin
			1	ххх	_	
		Other than 00	х	ххх	_	

[Legend] x: Don't care.

Rev. 3.00 Sep. 10, 2007 Page 152 of 528 REJ09B0216-0300

Other than	Х	XXX
00		

P65/FTIOB1 pin

Register	TOER	TFCR	TPMR	TIORA1	PCR6	
Bit Name	EB1	CMD1 to CMD0	PWMB1	IOB2 to IOB0	PCR65	Pin Function
Setting Value	1	00	0	000 or	0	P65 input/FTIOB1 ir
				1xx	1	P65 output pin
	0	00	0	001 or 01x	x	FTIOB1 output pin
			1	ххх	_	
		Other than 00	х	ххх	_	

[Legend] x: Don't care.

P63/FTIOD0 pin

Register	TOER	TFCR	TPMR	TIORC0	PCR6	
Bit Name	ED0	CMD1 to CMD0	PWMD0	IOD2 to IOD0	PCR63	Pin Function
Setting Value	1	00	0	000 or	0	P63 input/FTIOD0 inp
				1xx	1	P63 output pin
	0	00	0	001 or 01x	х	FTIOD0 output pin
			1	XXX	-	
		Other than 00	х	ххх	-	

[Legend] x: Don't care.

P62/FTIOC0 pin

Register	TOER	TFCR	TPMR	TIORC0	PCR6	
Bit Name	EC0	CMD1 to CMD0	PWMC0	IOC2 to IOC0	PCR62	Pin Function
Setting Value	1	00	0	000 or	0	P62 input/FTIOC0 inp
				1xx	1	P62 output pin
	0	00	0	001 or 01x	x	FTIOC0 output pin
			1	ххх	_	
		Other than 00	x	ххх	_	

[Legend] x: Don't care.

Rev. 3.00 Sep. 10, 2007 Page 154 of 528 REJ09B0216-0300

RENESAS

Other than	Х	XXX
00		

P60/FTIOA0 pin

Register	TOER	TFCR	TFCR	TIORA0	PCR6	
Bit Name	EA0	CMD1 to CMD0	STCLK	IOA2 to IOA0	PCR60	Pin Function
Setting Value	1	хх	х	000 or	0	P60 input/FTIOA0 ir
				1xx	1	P60 output pin
	0	00	0	001 or 01x	x	FTIOA0 output pin

[Legend] x: Don't care.

Figure 9.6 Port 7 Pin Configuration

Port 7 has the following registers.

- Port control register 7 (PCR7)
- Port data register 7 (PDR7)

9.6.1 Port Control Register 7 (PCR7)

PCR7 selects inputs/outputs in bit units for pins to be used as general I/O ports of port 7.

Bit	Bit Name	Initial Value	R/W	Description
7				When each of the port 7 pins P76 to P74 and P7
6	PCR76	0	W	functions as a general I/O port, setting a PCR7 b
5	PCR75	0	W	makes the corresponding pin an output port, whi clearing the bit to 0 makes the pin an input port.
4	PCR74	0	W	Bits 7 and 3 are reserved bits.
3	—		—	
2	PCR72	0	W	
1	PCR71	0	W	
0	PCR70	0	W	

Rev. 3.00 Sep. 10, 2007 Page 156 of 528 REJ09B0216-0300

3	—	1	—	Bits 7 and 3 are reserved bits. These bits are a
2	P72	0	R/W	as 1.
1	P71	0	R/W	
0	P70	0	R/W	

9.6.3 Pin Functions

The correspondence between the register specification and the port functions is shown b

P76/TMOV pin

Register	TCSRV	PCR7	
Bit Name	OS3 to OS0	PCR76	Pin Function
Setting Value	0000	0	P76 input pin
		1	P76 output pin
	Other than the above values	X	TMOV output pin

[Legend] x: Don't care.

P75/TMCIV pin

Register	PCR7	
Bit Name	PCR75	Pin Function
Setting Value	0	P75 input/TMCIV input pin
	1	P75 output/TMCIV input pin

CNICEAE	
RENESAS	

Bit Name	TXD2	PCR72	Pin Function
Setting Value	0	0	P72 input pin
		1	P72 output pin
	1	х	TXD_2 output pin

P71/RXD_2 pin

Register	SCR3_2	PCR7	
Bit Name	RE	PCR71	Pin Function
Setting Value	0	0	P71 input pin
		1	P71 output pin
	1	х	RXD_2 input pin

[Legend] x: Don't care.

P70/SCK3_2 pin

Register	SCR3_2	2	SMR2	PCR7	
Bit Name	CKE1	CKE0	COM	PCR70	Pin Function
Setting Value	0	0	0	0	P70 input pin
				1	P70 output pin
	0	0	1	х	SCK3_2 output pin
	0	1	х	х	SCK3_2 output pin
	1	Х	Х	х	SCK3_2 input pin

[Legend] x: Don't care.

Rev. 3.00 Sep. 10, 2007 Page 158 of 528 REJ09B0216-0300

RENESAS

Port 8 has the following registers.

- Port control register 8 (PCR8)
- Port data register 8 (PDR8)

9.7.1 Port Control Register 8 (PCR8)

PCR8 selects inputs/outputs in bit units for pins to be used as general I/O ports of port 8

Bit	Bit Name	Initial Value	R/W	Description
7	PCR87	0	W	When each of the port 8 pins P87 to P85 functi
6	PCR86	0	W	general I/O port, setting a PCR8 bit to 1 makes
5	PCR85	0	W	corresponding pin an output port, while clearing 0 makes the pin an input port.
4 to 0				Reserved

9.7.2 Port Data Register 8 (PDR8)

PDR8 is a general I/O port data register of port 8.

Bit	Bit Name	Initial Value	R/W	Description
7	P87	0	R/W	PDR8 stores output data for port 8 pins.
6	P86	0	R/W	If PDR8 is read while PCR8 bits are set to 1, th
5	P85	0	R/W	stored in PDR8 is read. If PDR8 is read while P are cleared to 0, the pin states are read regard value stored in PDR8.
4 to 0	_	All 1		Reserved
				These bits are always read as 1.

RENESAS

P86 pin

Register	PCR8	
Bit Name	PCR86	Pin Function
Setting Value	0	P86 input pin
	1	P86 output pin

P85 pin

Register	PCR8	
Bit Name	PCR85	Pin Function
Setting Value	0	P85 input pin
	1	P85 output pin

Rev. 3.00 Sep. 10, 2007 Page 160 of 528 REJ09B0216-0300

Figure 9.8 Port B Pin Configuration

Port B has the following register.

• Port data register B (PDRB)

9.8.1 Port Data Register B (PDRB)

PDRB is a general input-only port data register of port B.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	PB7	_	R	The input value of each pin is read by reading t
6	PB6		R	register.
5	PB5		R	However, if a port B pin is designated as an an
4	PB4	_	R	channel by ADCSR in the A/D converter or as a comparison voltage input pin by LVDCR in the
3	PB3		R	voltage detection circuit, the corresponding bit i
2	PB2	_	R	as 0.
1	PB1		R	
0	PB0		R	

RENESAS

PB1/AN1 pin

Register		ADCSR			
Bit Name	SCAN	CH2	CH1	CH0	Pin Fu
Setting Value	0	0	0	1	AN1 ir
	1		0	1	
			1	х	
	Other than	above			PB1 o

[Legend] x: Don't care.

PB2/AN2 pin

		ADCSR		
SCAN	CH2	CH1	CH0	Pin Fu
0	0	1	0	AN2 ir
1		1	x	
Other than	PB2 o			
	0 1		SCAN CH2 CH1 0 0 1 1 1 1	SCAN CH2 CH1 CH0 0 0 1 0 1 1 x

[Legend] x: Don't care.

Rev. 3.00 Sep. 10, 2007 Page 162 of 528 REJ09B0216-0300

Register			ADCSR		
Bit Name	SCAN	CH2	CH1	CH0	Pin F
Setting Value	0	1	0	0	AN4
	1		x	х	
	Other than	above			PB4

PB5/AN5 pin

Register					
Bit Name	SCAN	CH2	CH1	CH0	Pin F
Setting Value	0	1	0	1	AN5
	1		0	1	
			1	х	
	Other than	above			PB5

[Legend] x: Don't care.

RENESAS

PB7/AN7/ExtU pin

Register			ADCSR		LVDCR	
Bit Name	SCAN	CH2	CH1	CH0	VDDII	Pin Fu
Setting Value	0		1		0	AN7 ir
	1					input p
	0				1	AN7 ir
	1					
	Other than	n above			0	PB7 ir
						input p
					1	PB7 ir

[Legend] x: Don't care.

Rev. 3.00 Sep. 10, 2007 Page 164 of 528 REJ09B0216-0300

Figure 9.9 Port C Pin Configuration

Port C has the following registers.

- Port control register C (PCRC)
- Port data register C (PDRC)

9.9.1 Port Control Register C (PCRC)

PCRC selects inputs/outputs in bit units for pins to be used as general I/O ports of port O

Bit	Bit Name	Initial Value	R/W	Description
7 to 2		_		Reserved
1	PCRC1	0	W	When each of the port C pins, PC1 and PC0, fu
0	PCRC0	0	W	an general I/O port, setting a PCRC bit to 1 ma corresponding pin an output port, while clearing 0 makes the pin an input port.

RENESAS

9.9.3 Pin Functions

The correspondence between the register specification and the port functions is shown be

PC1/OSC2/CLKOUT pin

Register		CKCSR	PCRC				
Bit Name	PMRC1	PMRC0	PCRC1	Pin Function			
Setting value	0	0	0	PC1 input pin			
			1	PC1 output pin			
		1	х	Open			
	1	0	х	CLKOUT output pin			
		1	х	OSC2 oscillation pin			

[Legend] x: Don't care.

PC0/OSC1 pin

Register	CKCSR	PCRC					
Bit Name	PMRC0	PCRC0	Pin Function				
Setting value 0		0	PC0 input pin				
		1	PC0 output pin				
	1 x		OSC1 oscillation pin				

[Legend] x: Don't care.

Rev. 3.00 Sep. 10, 2007 Page 166 of 528 REJ09B0216-0300

RENESAS

- Readable/writable counter of seconds, minutes, hours, and day-of-week with BCD c
- Periodic (seconds, minutes, hours, days, and weeks) interrupts
- 8-bit free running counter
- Selection of clock source

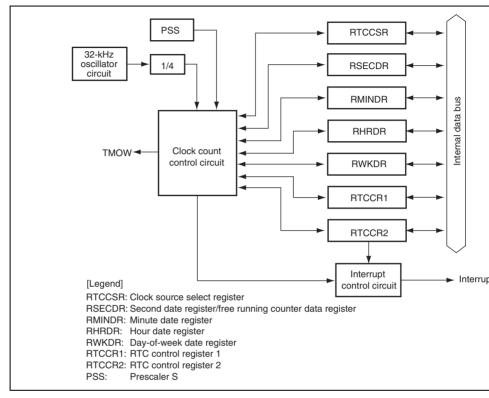


Figure 10.1 Block Diagram of RTC

RENESAS

RTC3000A_000020030300

Rev. 3.00 Sep. 10, 2007 Pag

REJ09

Rev. 3.00 Sep. 10, 2007 Page 168 of 528 REJ09B0216-0300

• Clock source select register (RTCCSR)

10.3.1 Second Data Register/Free Running Counter Data Register (RSECDR)

RSECDR counts the BCD-coded second value. The setting range is decimal 00 to 59. It read register used as a counter, when it operates as a free running counter. For more info on reading seconds, minutes, hours, and day-of-week, see section 10.4.3, Data Reading

		Initial		
Bit	Bit Name	Value	R/W	Description
7	BSY	—	R	RTC Busy
				This bit is set to 1 when the RTC is updating the values of second, minute, hour, and day data registers. When this bit is 0, the values of minute, hour, and day-of-week data registers adopted.
6	SC12	_	R/W	Counting Ten's Position of Seconds
5	SC11	—	R/W	Counts on 0 to 5 for 60-second counting.
4	SC10	—	R/W	
3	SC03		R/W	Counting One's Position of Seconds
2	SC02	_	R/W	Counts on 0 to 9 once per second. When a ca
1	SC01	_	R/W	generated, 1 is added to the ten's position.
0	SC00	—	R/W	

Renesas

				minute, hour, and day-of-week data registers n adopted.
6	MN12		R/W	Counting Ten's Position of Minutes
5	MN11	_	R/W	Counts on 0 to 5 for 60-minute counting.
4	MN10	_	R/W	
3	MN03		R/W	Counting One's Position of Minutes
2	MN02	_	R/W	Counts on 0 to 9 once per minute. When a car
1	MN01		R/W	generated, 1 is added to the ten's position.
0	MN00		R/W	

Rev. 3.00 Sep. 10, 2007 Page 170 of 528 REJ09B0216-0300

data registers. When this bit is 0, the values of
minute, hour, and day-of-week data registers
adopted.

6	_	0	_	Reserved
				This bit is always read as 0.
5	HR11	_	R/W	Counting Ten's Position of Hours
4	HR10	—	R/W	Counts on 0 to 2 for ten's position of hours.
3	HR03	_	R/W	Counting One's Position of Hours
2	HR02	—	R/W	Counts on 0 to 9 once per hour. When a carry
1	HR01	—	R/W	generated, 1 is added to the ten's position.
0	HR00	—	R/W	
		-		

				minute, hour, and day-of-week data registers r adopted.
6 to 3	—	All 0	_	Reserved
				These bits are always read as 0.
2	WK2	_	R/W	Day-of-Week Counting
1	WK1	—	R/W	Day-of-week is indicated with a binary code
0	WK0	—	R/W	000: Sunday
				001: Monday
				010: Tuesday
				011: Wednesday
				100: Thursday
				101: Friday
				110: Saturday
				111: Reserved (setting prohibited)

Rev. 3.00 Sep. 10, 2007 Page 172 of 528 REJ09B0216-0300

				0: RTC operates in 12-hour mode. RHRDR c
				to 11.
				1: RTC operates in 24-hour mode. RHRDR control to 23.
5	PM	_	R/W	a.m./p.m.
				0: Indicates a.m. when RTC is in the 12-hour
				1: Indicates p.m. when RTC is in the 12-hour
4	RST	0	R/W	Reset
				0: Normal operation
				 Resets registers and control circuits except and this bit. Clear this bit to 0 after having to 1.
3	INT	_	R/W	Interrupt Generation Timing
				0: Generates a second, minute, hour, or day- periodic interrupt during RTC busy period.
				 Generates a second, minute, hour, or day- periodic interrupt immediately after comple busy period.
2 to 0		All 0		Reserved
				These bits are always read as 0.

												No	on					
24-hour count	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
12-hour count	0	1	2	3	4	5	6	7	8	9	10	11	0	1	2	3	4	5
PM					0	(Mo	orning)							1 (Afternoon)				
24-hour count	18	19	20	21	22	23	0											
12-hour count	6	7	8	9	10	11	0											
PM		1 (Afternoon)			0													

Figure 10.2 Definition of Time Expression

Rev. 3.00 Sep. 10, 2007 Pag

REJ09

5	FOIE	_	R/W	Free Running Counter Overflow Interrupt Enab
				0: Disables an overflow interrupt
				1: Enables an overflow interrupt
4	WKIE	_	R/W	Week Periodic Interrupt Enable
				0: Disables a week periodic interrupt
				1: Enables a week periodic interrupt
3	DYIE	_	R/W	Day Periodic Interrupt Enable
				0: Disables a day periodic interrupt
				1: Enables a day periodic interrupt
2	HRIE	_	R/W	Hour Periodic Interrupt Enable
				0: Disables an hour periodic interrupt
				1: Enables an hour periodic interrupt
1	MNIE	_	R/W	Minute Periodic Interrupt Enable
				0: Disables a minute periodic interrupt
				1: Enables a minute periodic interrupt
0	SEIE	_	R/W	Second Periodic Interrupt Enable
				0: Disables a second periodic interrupt
				1: Enables a second periodic interrupt

Rev. 3.00 Sep. 10, 2007 Page 174 of 528 REJ09B0216-0300

7	_	0		Reserved
				This bit is always read as 0.
6	RCS6	0	R/W	Clock Output Selection
5	RCS5	0	R/W	Selects a clock output from the TMOW pin wh TMOW in PMR1 to 1.
				00:
				01: φ/8
				10:
				11:
4	_	0	_	Reserved
				This bit is always read as 0.
3	RCS3	1	R/W	Clock Source Selection
2	RCS2	0	R/W	0000:
1	RCS1	0	R/W	0001:
0	RCS0	0	R/W	0010:
				0011: φ/256······ Free running counter ope
				0100:
				0101:
				0110:
				0111:
				1XXX: 32.768 kHzRTC operation

RENESAS

•

Figure 10.3 shows the procedure for the initial setting of the RTC. To set the RTC again, follow this procedure.

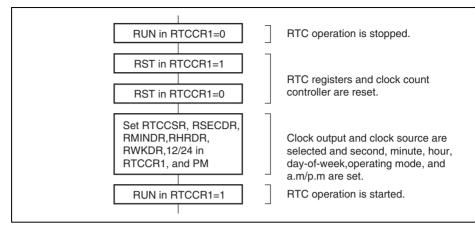


Figure 10.3 Initial Setting Procedure

Rev. 3.00 Sep. 10, 2007 Page 176 of 528 REJ09B0216-0300

- bit is set to 1, the registers are updated, and the BSY bit is cleared to 0.
- 2. Making use of interrupts, read from the second, minute, hour, and day-of week regis the IRRTA flag in IRR1 is set to 1 and the BSY bit is confirmed to be 0.
- 3. Read from the second, minute, hour, and day-of week registers twice in a row, and it no change in the read data, the read data is used.

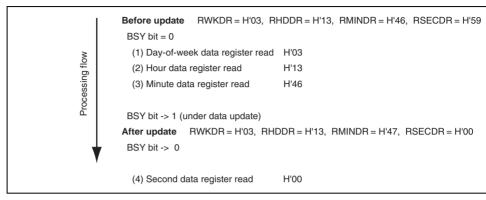


Figure 10.4 Example: Reading of Inaccurate Time Data

Interrupt Name	Interrupt Source	Interrupt Enal
Overflow interrupt	Occurs when the free running counter is overflowed.	FOIE
Week periodic interrupt	Occurs every week when the day-of-week date register value becomes 0.	WKIE
Day periodic interrupt	Occurs every day when the day-of-week date register is counted.	DYIE
Hour periodic interrupt	Occurs every hour when the hour date register is counted.	HRIE
Minute periodic interrupt	Occurs every minute when the minute date register is counted.	MNIE
Second periodic interrupt	Occurs every second when the second date register is counted.	SCIE

Table 10.2 Interrupt Sources

Rev. 3.00 Sep. 10, 2007 Page 178 of 528 REJ09B0216-0300

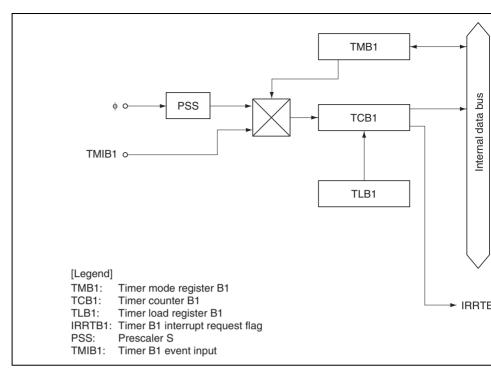


Figure 11.1 Block Diagram of Timer B1

TIM08B0A_000020020200

RENESAS

Rev. 3.00 Sep. 10, 2007 Page 180 of 528 REJ09B0216-0300

		Initial		
Bit	Bit Name	Value	R/W	Description
7	TMB17	0	R/W	Auto-reload function select
				0: Interval timer function selected
				1: Auto-reload function selected
6 to 3	_	All 1	_	Reserved
				These bits are always read as 1.
2	TMB12	0	R/W	Clock select
1	TMB11	0	R/W	000: Internal clock:
0	TMB10	0	R/W	001: Internal clock:
				010: Internal clock:
				011: Internal clock:
				100: Internal clock: φ/64
				101: Internal clock: φ/16
				110: Internal clock: φ/4
				111: External event (TMIB1): rising or falling ed
				Note: * The edge of the external event signal by bit IEG1 in the interrupt edge selec (IEGR1). See section 3.2.1, Interrupt E Select Register 1 (IEGR1), for details. setting TMB12 to TMB10 to 1, IRQ1 in mode register 1 (PMR1) should be set

I MB1 selects the auto-reload function and input clock.

RENESAS

set in TLB1, the same value is loaded into TCB1 as well, and TCB1 starts counting up frovalue. When TCB1 overflows during operation in auto-reload mode, the TLB1 value is 1 into TCB1. Accordingly, overflow periods can be set within the range of 1 to 256 input of TLB1 is allocated to the same address as TCB1. TLB1 is initialized to H'00.

11.4 Operation

11.4.1 Interval Timer Operation

When bit TMB17 in TMB1 is cleared to 0, timer B1 functions as an 8-bit interval timer. It reset, TCB1 is cleared to H'00 and bit TMB17 is cleared to 0, so up-counting and interval resume immediately. The operating clock of timer B1 is selected from seven internal clooutput by prescaler S, or an external clock input at pin TMB1. The selection is made by ITMB12 to TMB10 in TMB1.

After the count value in TMB1 reaches H'FF, the next clock signal input causes timer B1 overflow, setting flag IRRTB1 in IRR2 to 1. If IENTB1 in IENR2 is 1, an interrupt is req the CPU.

At overflow, TCB1 returns to H'00 and starts counting up again. During interval timer op (TMB17 = 0), when a value is set in TLB1, the same value is set in TCB1.

Rev. 3.00 Sep. 10, 2007 Page 182 of 528 REJ09B0216-0300

TCB1.

11.4.3 Event Counter Operation

Timer B1 can operate as an event counter in which TMIB1 is set to an event input pin. E event counting is selected by setting bits TMB12 to TMB10 in TMB1 to 1. TCB1 count rising or falling edge of an external event signal input at pin TMB1.

When timer B1 is used to count external event input, bit IRQ1 in PMR1 should be set to IEN1 in IENR1 should be cleared to 0 to disable IRQ1 interrupt requests.

11.5 Timer B1 Operating Modes

Table 11.2 shows the timer B1 operating modes.

Table 11.2 Timer B1 Operating Modes

Operati	ng Mode	Reset	Active	Sleep	Subactive	Subsleep	S
TCB1	Interval	Reset	Functions	Functions	Halted	Halted	F
	Auto-reload	Reset	Functions	Functions	Halted	Halted	F
TMB1		Reset	Functions	Retained	Retained	Retained	F

RENESAS

Rev. 3.00 Sep. 10, 2007 Page 184 of 528 REJ09B0216-0300

• Choice of seven clock signals is available.

Choice of six internal clock sources ($\phi/128$, $\phi/64$, $\phi/32$, $\phi/16$, $\phi/8$, $\phi/4$) or an external

- Counter can be cleared by compare match A or B, or by an external reset signal. If the stop function is selected, the counter can be halted when cleared.
- Timer output is controlled by two independent compare match signals, enabling puls with an arbitrary duty cycle, PWM output, and other applications.
- Three interrupt sources: compare match A, compare match B, timer overflow
- Counting can be initiated by trigger input at the TRGV pin. The rising edge, falling of both edges of the TRGV input can be selected.

TIM08V0A_000120030300

RENESAS

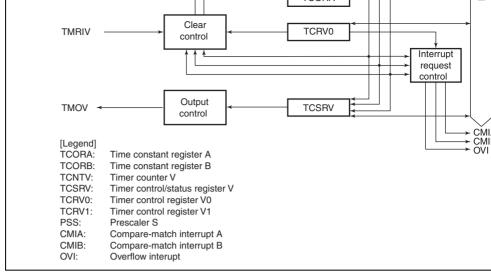


Figure 12.1 Block Diagram of Timer V

Rev. 3.00 Sep. 10, 2007 Page 186 of 528 REJ09B0216-0300

12.3 Register Descriptions

Time V has the following registers.

- Timer counter V (TCNTV)
- Timer constant register A (TCORA)
- Timer constant register B (TCORB)
- Timer control register V0 (TCRV0)
- Timer control/status register V (TCSRV)
- Timer control register V1 (TCRV1)

12.3.1 Timer Counter V (TCNTV)

TCNTV is an 8-bit up-counter. The clock source is selected by bits CKS2 to CKS0 in the control register V0 (TCRV0). The TCNTV value can be read and written by the CPU at TCNTV can be cleared by an external reset input signal, or by compare match A or B. T clearing signal is selected by bits CCLR1 and CCLR0 in TCRV0.

When TCNTV overflows, OVF is set to 1 in timer control/status register V (TCSRV).

TCNTV is initialized to H'00.

and the settings of bits OS3 to OS0 in TCSRV.

TCORA and TCORB are initialized to H'FF.

12.3.3 Timer Control Register V0 (TCRV0)

TCRV0 selects the input clock signals of TCNTV, specifies the clearing conditions of TC and controls each interrupt request.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	CMIEB	0	R/W	Compare Match Interrupt Enable B
				When this bit is set to 1, interrupt request from the bit in TCSRV is enabled.
6	CMIEA	0	R/W	Compare Match Interrupt Enable A
				When this bit is set to 1, interrupt request from the bit in TCSRV is enabled.
5	OVIE	0	R/W	Timer Overflow Interrupt Enable
				When this bit is set to 1, interrupt request from the bit in TCSRV is enabled.
4	CCLR1	0	R/W	Counter Clear 1 and 0
3	CCLR0	0	R/W	These bits specify the clearing conditions of TCN
				00: Clearing is disabled
				01: Cleared by compare match A
				10: Cleared by compare match B
				 Cleared on the rising edge of the TMRIV pin. operation of TCNTV after clearing depends of in TCRV1.

Rev. 3.00 Sep. 10, 2007 Page 188 of 528 REJ09B0216-0300

RENESAS

	Dit i	Ditto	Dit	
CKS2	CKS1	CKS0	ICKS0	Description
0	0	0	_	Clock input prohibited
		1	0	Internal clock: counts on $\phi/4$, falling e
			1	Internal clock: counts on $\phi/8$, falling e
	1	0	0	Internal clock: counts on $\phi/16$, falling
			1	Internal clock: counts on $\phi/32$, falling
		1	0	Internal clock: counts on $\phi/64$, falling
			1	Internal clock: counts on $\phi/128$, fallin
1	0	0		Clock input prohibited
		1		External clock: counts on rising edge
	1	0	_	External clock: counts on falling edge
		1		External clock: counts on rising and f

12.3.4 Timer Control/Status Register V (TCSRV)

TCSRV indicates the status flag and controls outputs by using a compare match.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	CMFB	0	R/W	Compare Match Flag B
				Setting condition:
				When the TCNTV value matches the TCORB v
				Clearing condition:
				After reading CMFB = 1, cleared by writing 0 to

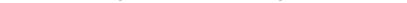
Rev. 3.

				Clearing condition:
				After reading $OVF = 1$, cleared by writing 0 to OV
4	_	1		Reserved
				This bit is always read as 1.
3	OS3	0	R/W	Output Select 3 and 2
2	OS2	0	R/W	These bits select an output method for the TMO the compare match of TCORB and TCNTV.
				00: No change
				01: 0 output
				10: 1 output
				11: Output toggles
1	OS1	0	R/W	Output Select 1 and 0
0	OS0	0	R/W	These bits select an output method for the TMO the compare match of TCORA and TCNTV.
				00: No change
				01: 0 output
				10: 1 output
				11: Output toggles

OS3 and OS2 select the output level for compare match B. OS1 and OS0 select the output for compare match A. The two output levels can be controlled independently. After a reset timer output is 0 until the first compare match.

Rev. 3.00 Sep. 10, 2007 Page 190 of 528 REJ09B0216-0300

		-		
				00: TRGV trigger input is prohibited
				01: Rising edge is selected
				10: Falling edge is selected
				11: Rising and falling edges are both selected
2	TRGE	0	R/W	TCNT starts counting up by the input of the edg selected by TVEG1 and TVEG0.
				0: Disables starting counting-up TCNTV by the the TRGV pin and halting counting-up TCNT TCNTV is cleared by a compare match.
				 Enables starting counting-up TCNTV by the the TRGV pin and halting counting-up TCNT TCNTV is cleared by a compare match.
1		1		Reserved
				This bit is always read as 1.
0	ICKS0	0	R/W	Internal Clock Select 0
				This bit selects clock signals to input to TCNTV combination with CKS2 to CKS0 in TCRV0.
				Refer to table 12.2.


Renesas

will be set. The timing at this time is shown in figure 12.4. An interrupt request is sen CPU when OVIE in TCRV0 is 1.

- 3. TCNTV is constantly compared with TCORA and TCORB. Compare match flag A of (CMFA or CMFB) is set to 1 when TCNTV matches TCORA or TCORB, respectivel compare-match signal is generated in the last state in which the values match. Figure shows the timing. An interrupt request is generated for the CPU when CMIEA or CM TCRV0 is 1.
- 4. When a compare match A or B is generated, the TMOV responds with the output valu selected by bits OS3 to OS0 in TCSRV. Figure 12.6 shows the timing when the output toggled by compare match A.
- 5. When CCLR1 or CCLR0 in TCRV0 is 01 or 10, TCNTV can be cleared by the corres compare match. Figure 12.7 shows the timing.
- When CCLR1 or CCLR0 in TCRV0 is 11, TCNTV can be cleared by the rising edge input of TMRIV pin. A TMRIV input pulse-width of at least 1.5 system clocks is nec Figure 12.8 shows the timing.
- When a counter-clearing source is generated with TRGE in TCRV1 set to 1, the coun halted as soon as TCNTV is cleared. TCNTV resumes counting-up when the edge sel TVEG1 or TVEG0 in TCRV1 is input from the TGRV pin.

Rev. 3.00 Sep. 10, 2007 Page 192 of 528 REJ09B0216-0300

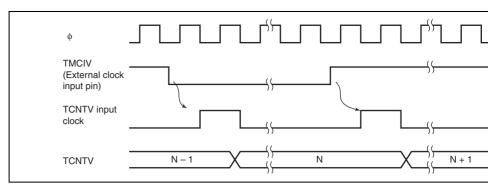


Figure 12.3 Increment Timing with External Clock

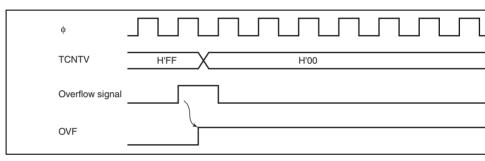


Figure 12.4 OVF Set Timing

Figure 12.5 CMFA and CMFB Set Timing

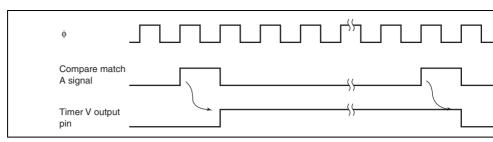


Figure 12.6 TMOV Output Timing

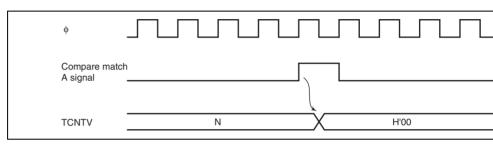


Figure 12.7 Clear Timing by Compare Match

12.5 Timer V Application Examples

12.5.1 Pulse Output with Arbitrary Duty Cycle

Figure 12.9 shows an example of output of pulses with an arbitrary duty cycle.

- 1. Set bits CCLR1 and CCLR0 in TCRV0 so that TCNTV will be cleared by compare a TCORA.
- 2. Set bits OS3 to OS0 in TCSRV so that the output will go to 1 at compare match with and to 0 at compare match with TCORB.
- 3. Set bits CKS2 to CKS0 in TCRV0 and bit ICKS0 in TCRV1 to select the desired clo
- 4. With these settings, a waveform is output without further software intervention, with determined by TCORA and a pulse width determined by TCORB.

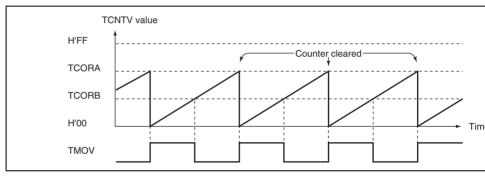


Figure 12.9 Pulse Output Example

- mput.
- 4. Set bits CKS2 to CKS0 in TCRV0 and bit ICKS0 in TCRV1 to select the desired cloc
- After these settings, a pulse waveform will be output without further software interver with a delay determined by TCORA from the TRGV input, and a pulse width determin (TCORB – TCORA).

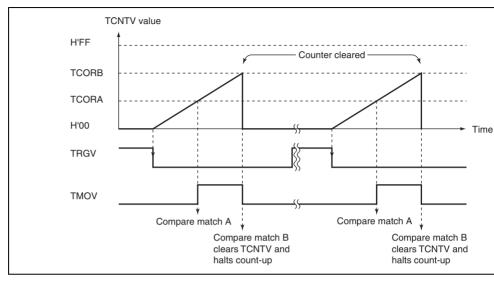
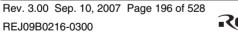



Figure 12.10 Example of Pulse Output Synchronized to TRGV Input

- 3. If compare matches A and B occur simultaneously, any conflict between the output s for compare match A and compare match B is resolved by the following priority: tog > output 1 > output 0.
- 4. Depending on the timing, TCNTV may be incremented by a switch between differer clock sources. When TCNTV is internally clocked, an increment pulse is generated falling edge of an internal clock signal, that is divided system clock (φ). Therefore, a figure 12.3 the switch is from a high clock signal to a low clock signal, the switchov as a falling edge, causing TCNTV to increment. TCNTV can also be incremented by between internal and external clocks.

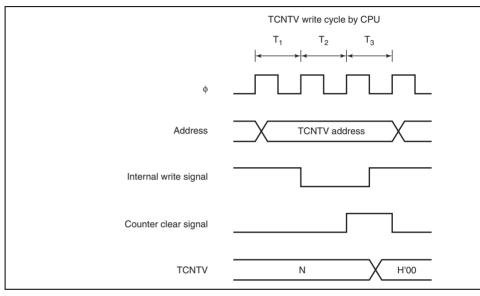


Figure 12.11 Contention between TCNTV Write and Clear

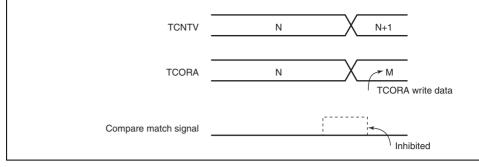


Figure 12.12 Contention between TCORA Write and Compare Match

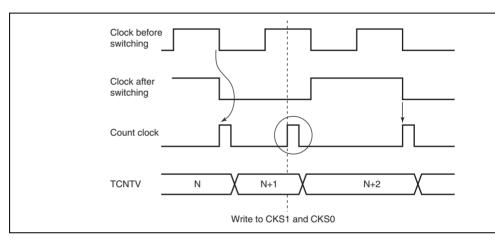
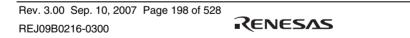



Figure 12.13 Internal Clock Switching and TCNTV Operation

- Independently assignable output compare or input capture functions
- Selection of five counter clock sources: four internal clocks (φ, φ/2, φ/4, and φ/8) and external clock
- Seven selectable operating modes
 - Output compare function
 - Selection of 0 output, 1 output, or toggle output
 - Input capture function
 - Rising edge, falling edge, or both edges
 - Synchronous operation

Timer counters_0 and _1 (TCNT_0 and TCNT_1) can be written simultaneously Simultaneous clearing by compare match or input capture is possible.

- PWM mode

Up to six-phase PWM output can be provided with desired duty ratio.

- Reset synchronous PWM mode

Three-phase PWM output for normal and counter phases

- Complementary PWM mode

Three-phase PWM output for non-overlapped normal and counter phases The A/D conversion start trigger can be set for PWM cycles.

- Buffer operation

The input capture register can be consisted of double buffers.

The output compare register can automatically be modified.

- High-speed access by the internal 16-bit bus
 - 16-bit TCNT and GR registers can be accessed in high speed by a 16-bit bus inte
- Any initial timer output value can be set
- Output of the timer is disabled by external trigger

TIM08Z0A_000120030300

Renesas

capillie regisie	13)		
Buffer register		GRC_0, GRD_0	GRC_1, GRD_1
I/O pins		FTIOA0, FTIOB0, FTIOC0, FTIOD0	FTIOA1, FTIOB1, FTIOC FTIOD1
Counter clearing function		Compare match/input capture of GRA_0, GRB_0, GRC_0, or GRD_0	Compare match/input cap GRA_1, GRB_1, GRC_1, GRD_1
Compare	0 output	Yes	Yes
match output	1 output	Yes	Yes
	output	Yes	Yes
Input capture fu	unction	Yes	Yes
Synchronous o	peration	Yes	Yes
PWM mode		Yes	Yes
Reset synchror mode	nous PWM	Yes	Yes
Complementary PWM mode		Yes	Yes
Buffer function		Yes	Yes
Interrupt sources			

Rev. 3.00 Sep. 10, 2007 Page 200 of 528 REJ09B0216-0300

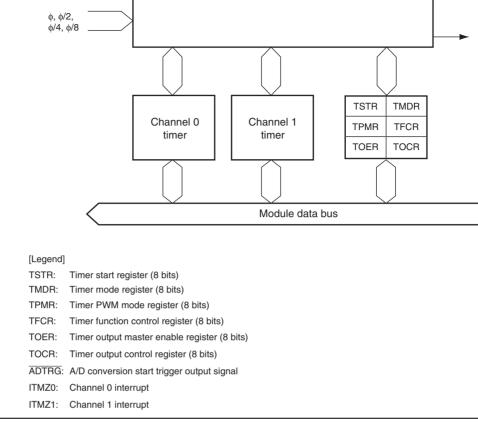


Figure 13.1 Timer Z Block Diagram

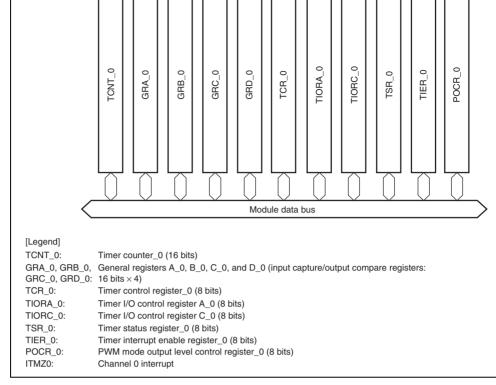


Figure 13.2 Timer Z (Channel 0) Block Diagram

Rev. 3.00 Sep. 10, 2007 Page 202 of 528 REJ09B0216-0300

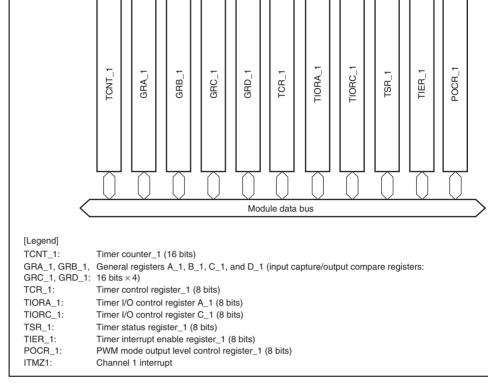


Figure 13.3 Timer Z (Channel 1) Block Diagram

compare B0			input capture input, or PWM o
Input capture/output compare C0	FTIOC0	Input/output	GRC_0 output compare output input capture input, or PWM synchronous output (in reset synchronous PWM and compl PWM modes)
Input capture/output compare D0	FTIOD0	Input/output	GRD_0 output compare output input capture input, or PWM o
Input capture/output compare A1	FTIOA1	Input/output	GRA_1 output compare output input capture input, or PWM o reset synchronous PWM and complementary PWM modes)
Input capture/output compare B1	FTIOB1	Input/output	GRB_1 output compare outpu input capture input, or PWM o
Input capture/output compare C1	FTIOC1	Input/output	GRC_1 output compare output input capture input, or PWM o
Input capture/output compare D1	FTIOD1	Input/output	GRD_1 output compare output input capture input, or PWM o

Rev. 3.00 Sep. 10, 2007 Page 204 of 528 REJ09B0216-0300

- Timer output control register (TOCR)

Channel 0

- Timer control register_0 (TCR_0)
- Timer I/O control register A_0 (TIORA_0)
- Timer I/O control register C_0 (TIORC_0)
- Timer status register_0 (TSR_0)
- Timer interrupt enable register_0 (TIER_0)
- PWM mode output level control register_0 (POCR_0)
- Timer counter_0 (TCNT_0)
- General register A_0 (GRA_0)
- General register B_0 (GRB_0)
- General register C_0 (GRC_0)
- General register D_0 (GRD_0)

Channel 1

- Timer control register_1 (TCR_1)
- Timer I/O control register A_1 (TIORA_1)
- Timer I/O control register C_1 (TIORC_1)
- Timer status register_1 (TSR_1)
- Timer interrupt enable register_1 (TIER_1)
- PWM mode output level control register_1 (POCR_1)
- Timer counter_1 (TCNT_1)
- General register A_1 (GRA_1)
- General register B_1 (GRB_1)

1	STR1	0	R/W	Channel 1 Counter Start	
				0: TCNT_1 halts counting	
				1: TCNT_1 starts counting	
0	STR0	0	R/W	Channel 0 Counter Start	
				0: TCNT_0 halts counting	
				1: TCNT_0 starts counting	
-					

13.3.2 Timer Mode Register (TMDR)

TMDR selects buffer operation settings and synchronized operation.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	BFD1	0	R/W	Buffer Operation D1
				0: GRD_1 operates normally
				1: GRB_1 and GRD_1 are used together for buff operation
6	BFC1	0	R/W	Buffer Operation C1
				0: GRC_1 operates normally
				1: GRA_1 and GRD_1 are used together for buff operation
5	BFD0	0	R/W	Buffer Operation D0
				0: GRD_0 operates normally
				1: GRB_0 and GRD_0 are used together for buff operation

Rev. 3.00 Sep. 10, 2007 Page 206 of 528 REJ09B0216-0300

RENESAS

counter 1: TCNT_1 and TCNT_0 are synchronized TCNT_1 and TCNT_0 can be pre-set or clear synchronously

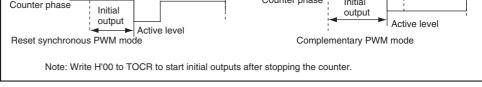
13.3.3 Timer PWM Mode Register (TPMR)

TPMR sets the pin to enter PWM mode.

Dir	Dit Name	Initial	D 44	Description
Bit	Bit Name	Value	R/W	Description
7	—	1		Reserved
				This bit is always read as 1, and cannot be mo
6	PWMD1	0	R/W	PWM Mode D1
				0: FTIOD1 operates normally
				1: FTIOD1 operates in PWM mode
5	PWMC1	0	R/W	PWM Mode C1
				0: FTIOC1 operates normally
				1: FTIOC1 operates in PWM mode
4	PWMB1	0	R/W	PWM Mode B1
				0: FTIOB1 operates normally
				1: FTIOB1 operates in PWM mode
3		1		Reserved
				This bit is always read as 1, and cannot be mo

RENESAS

13.3.4 Timer Function Control Register (TFCR)


Bit	Bit Name	Initial Value	R/W	Description
7	_	1		Reserved
				This bit is always read as 1.
6	STCLK	0	R/W	External Clock Input Select
				0: External clock input is disabled
				1: External clock input is enabled
5	ADEG	0	R/W	A/D Trigger Edge Select
				A/D module should be set to start an A/D conver the external trigger
				0: A/D trigger at the crest in complementary PW
				1: A/D trigger at the trough in complementary PV
4	ADTRG	0	R/W	External Trigger Disable
				0: A/D trigger for PWM cycles is disabled in complementary PWM mode
				1: A/D trigger for PWM cycles is enabled in complementary PWM mode

TFCR selects the settings and output levels for each operating mode.

Rev. 3.00 Sep. 10, 2007 Page 208 of 528 REJ09B0216-0300

				0: Initial output is high and the active level is low
				1: Initial output is low and the active level is hig
				Figure 13.4 shows an example of outputs in res synchronous PWM mode and complementary P mode when OLS1 = 0 and OLS0 = 0.
1	CMD1	0	R/W	Combination Mode 1 and 0
0	CMD0	0	R/W	00: Channel 0 and channel 1 operate normally
				01: Channel 0 and channel 1 are used together operate in reset synchronous PWM mode
				 Channel 0 and channel 1 are used together operate in complementary PWM mode (tran the trough)
				 Channel 0 and channel 1 are used together operate in complementary PWM mode (tran the crest)
				Note: When reset synchronous PWM mode or complementary PWM mode is selected b bits, this setting has the priority to the set PWM mode by each bit in TPMR. Stop T and TCNT_1 before making settings for r synchronous PWM mode or complement mode.

Figure 13.4 Example of Outputs in Reset Synchronous PWM Mode and Complementary PWM Mode

13.3.5 Timer Output Master Enable Register (TOER)

TOER enables/disables the outputs for channel 0 and channel 1. When $\overline{WKP4}$ is selected inputs, if a low level signal is input to $\overline{WKP4}$, the bits in TOER are set to 1 to disable the for timer Z.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	ED1	1	R/W	Master Enable D1
				0: FTIOD1 pin output is enabled according to the TFCR, and TIORC_1 settings
				 FTIOD1 pin output is disabled regardless of th TFCR, and TIORC_1 settings (FTIOD1 pin is as an I/O port).
6	EC1	1	R/W	Master Enable C1
				0: FTIOC1 pin output is enabled according to the TFCR, and TIORC_1 settings
				 FTIOC1 pin output is disabled regardless of th TFCR, and TIORC_1 settings (FTIOC1 pin is as an I/O port).

Rev. 3.00 Sep. 10, 2007 Page 210 of 528 REJ09B0216-0300

RENESAS

				 FTIOA1 pin output is disabled regardless of t TFCR, and TIORA_1 settings (FTIOA1 pin is as an I/O port).
3	ED0	1	R/W	Master Enable D0
				0: FTIOD0 pin output is enabled according to th TFCR, and TIORC_0 settings
				 FTIOD0 pin output is disabled regardless of TFCR, and TIORC_0 settings (FTIOD0 pin is as an I/O port).
2	EC0	1	R/W	Master Enable C0
				0: FTIOC0 pin output is enabled according to the TFCR, and TIORC_0 settings
				 FTIOC0 pin output is disabled regardless of TFCR, and TIORC_0 settings (FTIOC0 pin is as an I/O port).
1	EB0	1	R/W	Master Enable B0
				0: FTIOB0 pin output is enabled according to th TFCR, and TIORA_0 settings
				 FTIOB0 pin output is disabled regardless of I TFCR, and TIORA_0 settings (FTIOB0 pin is as an I/O port).
0	EA0	1	R/W	Master Enable A0
				0: FTIOA0 pin output is enabled according to th TFCR, and TIORA_0 settings
				 FTIOA0 pin output is disabled regardless of 1 TFCR, and TIORA_0 settings (FTIOA0 pin is as an I/O port).

Renesas

6	TOC1	0	R/W	Output Level Select C1
				0: 0 output at the FTIOC1 pin*
				1: 1 output at the FTIOC1 pin*
5	TOB1	0	R/W	Output Level Select B1
				0: 0 output at the FTIOB1 pin*
				1: 1 output at the FTIOB1 pin*
4	TOA1	0	R/W	Output Level Select A1
				0: 0 output at the FTIOA1 pin*
				1: 1 output at the FTIOA1 pin*
3	TOD0	0	R/W	Output Level Select D0
				0: 0 output at the FTIOD0 pin*
				1: 1 output at the FTIOD0 pin*
2	TOC0	0	R/W	Output Level Select C0
				0: 0 output at the FTIOC0 pin*
				1: 1 output at the FTIOC0 pin*
1	TOB0	0	R/W	Output Level Select B0
				0: 0 output at the FTIOB0 pin*
				1: 1 output at the FTIOB0 pin*
0	TOA0	0	R/W	Output Level Select A0
				0: 0 output at the FTIOA0 pin*
				1: 1 output at the FTIOA0 pin*

Note: * The change of the setting is immediately reflected in the output value.

Rev. 3.00 Sep. 10, 2007 Page 212 of 528 REJ09B0216-0300

RENESAS

bit units; they must always be accessed as a 16-bit unit. TCNT is initialized to H'0000.

13.3.8 General Registers A, B, C, and D (GRA, GRB, GRC, and GRD)

GR are 16-bit registers. Timer Z has eight general registers (GR), four for each channel. registers are dual function 16-bit readable/writable registers, functioning as either output or input capture registers. Functions can be switched by TIORA and TIORC.

The values in GR and TCNT are constantly compared with each other when the GR regi used as output compare registers. When the both values match, the IMFA to IMFD flags are set to 1. Compare match outputs can be selected by TIORA and TIORC.

When the GR registers are used as input capture registers, the TCNT value is stored after external signals. At this point, IMFA to IMFD flags in the corresponding TSR are set to Detection edges for input capture signals can be selected by TIORA and TIORC.

When PWM mode, complementary PWM mode, or reset synchronous PWM mode is se values in TIORA and TIORC are ignored. Upon reset, the GR registers are set as output registers (no output) and initialized to H'FFFF. The GR registers cannot be accessed in 8 they must always be accessed as a 16-bit unit.

				ouptaro
				010: Clears TCNT by GRB compare match/inpu capture*1
				011: Synchronization clear; Clears TCNT in syn with counter clearing of the other channel's
				100: Disables TCNT clearing
				101: Clears TCNT by GRC compare match/inpu capture*1
				110: Clears TCNT by GRD compare match/inpu capture* ¹
				111: Synchronization clear; Clears TCNT in syn with counter clearing of the other channel's
4	CKEG1	0	R/W	Clock Edge 1 and 0
3	CKEG0	0	R/W	00: Count at rising edge
				01: Count at falling edge
				1X: Count at both edges
2	TPSC2	0	R/W	Time Prescaler 2 to 0
1	TPSC1	0	R/W	000: Internal clock: count by ϕ
0	TPSC0	0	R/W	001: Internal clock: count by $\phi/2$
				010: Internal clock: count by $\phi/4$
				011: Internal clock: count by \phi/8
				1XX: External clock: count by FTIOA0 (TCLK) p
Notes	: 1. When G	R func	tions as an o	utput compare register, TCNT is cleared by compa

Notes: 1. When GR functions as an output compare register, TCNT is cleared by compa When GR functions as input capture, TCNT is cleared by input capture.

2. Synchronous operation is set by TMDR.

3. X: Don't care

Rev. 3.00 Sep. 10, 2007 Page 214 of 528 REJ09B0216-0300

RENESAS

		Initial		
Bit	Bit Name	value	R/W	Description
7		1	_	Reserved
				This bit is always read as 1.
6	IOB2	0	R/W	I/O Control B2 to B0
5	IOB1	0	R/W	GRB is an output compare register:
4	IOB0	0	R/W	000: Disables pin output by compare match
				001: 0 output by GRB compare match
				010: 1 output by GRB compare match
				011: Toggle output by GRB compare match
				GRB is an input capture register:
				100: Input capture to GRB at the rising edge
				101: Input capture to GRB at the falling edge
				11X: Input capture to GRB at both rising and fa
3		1		Reserved
				This bit is always read as 1.

RENESAS

[Legend] X: Don't care.

TIORC: TIORC selects whether GRC or GRD is used as an output compare register or a capture register. When an output compare register is selected, the output setting is selected an input capture register is selected, an input edge of an input capture signal is selected. The also selects the function of FTIOC or FTIOD pin.

		Initial		
Bit	Bit Name	value	R/W	Description
7	_	1	_	Reserved
				This bit is always read as 1.
6	IOD2	0	R/W	I/O Control D2 to D0
5	IOD1	0	R/W	GRD is an output compare register:
4	IOD0	0	R/W	000: Disables pin output by compare match
				001: 0 output by GRD compare match
				010: 1 output by GRD compare match
				011: Toggle output by GRD compare match
				GRD is an input capture register:
				100: Input capture to GRD at the rising edge
				101: Input capture to GRD at the falling edge
				11X: Input capture to GRD at both rising and fall edges
3		1		Reserved
				This bit is always read as 1.

Rev. 3.00 Sep. 10, 2007 Page 216 of 528 REJ09B0216-0300

101: Input capture to GRC at the falling edge

11X: Input capture to GRC at both rising and fa edges

[Legend] X: Don't care.

RENESAS

				mood blo are amayo read ao m
5	UDF*	0	R/W	Underflow Flag
				[Setting condition]
				 When TCNT_1 underflows
				[Clearing condition]
				• When 0 is written to UDF after reading UDF
4	OVF	0	R/W	Overflow Flag
				[Setting condition]
				When the TCNT value underflows
				[Clearing condition]
				• When 0 is written to OVF after reading OVF
3	IMFD	0	R/W	Input Capture/Compare Match Flag D
				[Setting conditions]
				• When TCNT = GRD and GRD is functioning compare register
				 When TCNT value is transferred to GRD by i capture signal and GRD is functioning as inp capture register
				[Clearing condition]
				When 0 is written to IMFD after reading IMFI

Rev. 3.00 Sep. 10, 2007 Page 218 of 528 REJ09B0216-0300

				 When 0 is written to IMFC after reading IMI
1	IMFB	0	R/W	Input Capture/Compare Match Flag B
				[Setting conditions]
				 When TCNT = GRB and GRB is functioning compare register
				 When TCNT value is transferred to GRB by capture signal and GRB is functioning as in capture register
				[Clearing condition]
				When 0 is written to IMFB after reading IMF
0	IMFA	0	R/W	Input Capture/Compare Match Flag A
				[Setting conditions]
				 When TCNT = GRA and GRA is functioning compare register
				 When TCNT value is transferred to GRA by capture signal and GRA is functioning as in capture register
				[Clearing condition]
				• When 0 is written to IMFA after reading IMF
Note:	Bit 5 is not	the UDF	flag in TSR	_0. It is a reserved bit. It is always read as 1.

Note: Bit 5 is not the UDF flag in TSR_0. It is a reserved bit. It is always read as 1.

RENESAS

				0: Interrupt requests (OVI) by OVF or UDF flag a disabled
				1: Interrupt requests (OVI) by OVF or UDF flag a enabled
3	IMIED	0	R/W	Input Capture/Compare Match Interrupt Enable
				0: Interrupt requests (IMID) by IMFD flag are dis
				1: Interrupt requests (IMID) by IMFD flag are ena
2	IMIEC	0	R/W	Input Capture/Compare Match Interrupt Enable
				0: Interrupt requests (IMIC) by IMFC flag are dis
				1: Interrupt requests (IMIC) by IMFC flag are ena
1	IMIEB	0	R/W	Input Capture/Compare Match Interrupt Enable
				0: Interrupt requests (IMIB) by IMFB flag are disa
				1: Interrupt requests (IMIB) by IMFB flag are ena
0	IMIEA	0	R/W	Input Capture/Compare Match Interrupt Enable
				0: Interrupt requests (IMIA) by IMFA flag are disa
				1: Interrupt requests (IMIA) by IMFA flag are ena

Rev. 3.00 Sep. 10, 2007 Page 220 of 528 REJ09B0216-0300

				0: The output level of FTIOD is low-active
				1: The output level of FTIOD is high-active
1	POLC	0	R/W	PWM Mode Output Level Control C
				0: The output level of FTIOC is low-active
				1: The output level of FTIOC is high-active
0	POLB	0	R/W	PWM Mode Output Level Control B
				0: The output level of FTIOB is low-active
				1: The output level of FTIOB is high-active

Renesas

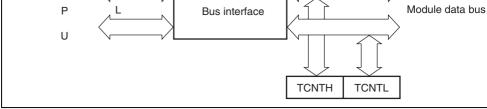


Figure 13.5 Accessing Operation of 16-Bit Register (between CPU and TCNT (1

2. 8-bit register

Registers other than TCNT and GR are 8-bit registers that are connected internally with CPU in an 8-bit width. Figure 13.6 shows an example of accessing the 8-bit registers.

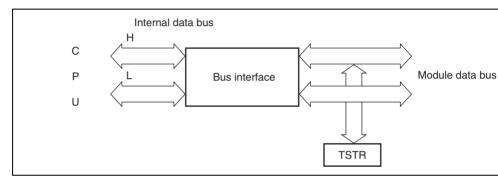


Figure 13.6 Accessing Operation of 8-Bit Register (between CPU and TSTR (8

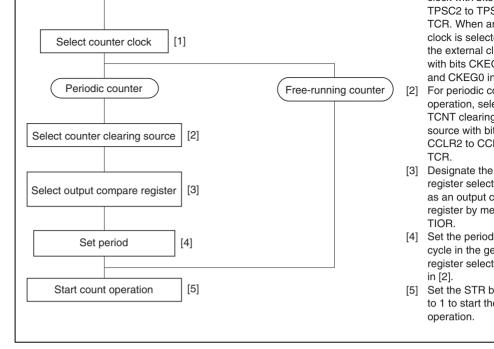


Figure 13.7 Example of Counter Operation Setting Procedure

Renesas

Figure 13.8 Free-Running Counter Operation

When compare match is selected as the TCNT clearing source, the TCNT counter for the channel performs periodic count operation. The GR registers for setting the period are der as output compare registers, and counter clearing by compare match is selected by means CCLR1 and CCLR0 in TCR. After the settings have been made, TCNT starts an increme operation as a periodic counter when the corresponding bit in TSTR is set to 1. When the value matches the value in GR, the IMFA, IMFB, IMFC, or IMFD flag in TSR is set to 1 TCNT is cleared to H'0000.

If the value of the corresponding IMIEA, IMIEB, IMIEC, or IMIED bit in TIER is 1 at the timer Z requests an interrupt. After a compare match, TCNT starts an increment opera again from H'0000.

Figure 13.9 illustrates periodic counter operation.

Rev. 3.00 Sep. 10, 2007 Page 224 of 528 REJ09B0216-0300

Figure 13.9 Periodic Counter Operation

- 2. TCNT count timing
 - A. Internal clock operation

A system clock (ϕ) or three types of clocks ($\phi/2$, $\phi/4$, or $\phi/8$) that divides the syst can be selected by bits TPSC2 to TPSC0 in TCR.

Figure 13.10 illustrates this timing.

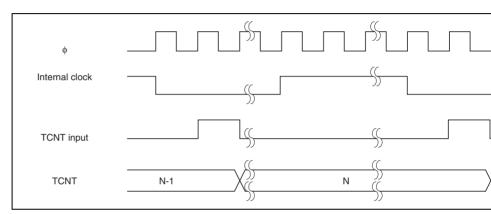


Figure 13.10 Count Timing at Internal Clock Operation

RENESAS

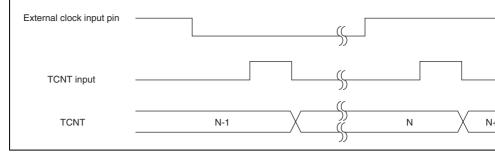


Figure 13.11 Count Timing at External Clock Operation (Both Edges Detect

Rev. 3.00 Sep. 10, 2007 Page 226 of 528 REJ09B0216-0300

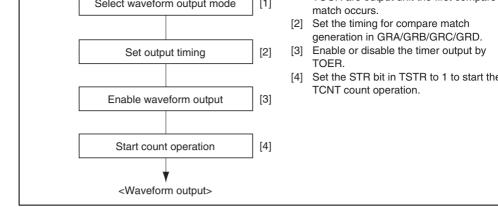


Figure 13.12 Example of Setting Procedure for Waveform Output by Compare

1. Examples of waveform output operation

Figure 13.13 shows an example of 0 output/1 output.

In this example, TCNT has been designated as a free-running counter, and settings h made such that 0 is output by compare match A, and 1 is output by compare match E the set level and the pin level coincide, the pin level does not change.

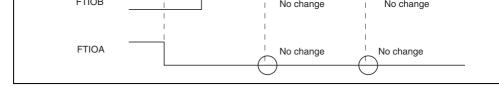


Figure 13.13 Example of 0 Output/1 Output Operation

Figure 13.14 shows an example of toggle output.

In this example, TCNT has been designated as a periodic counter (with counter clearic compare match B), and settings have been made such that the output is toggled by box compare match A and compare match B.

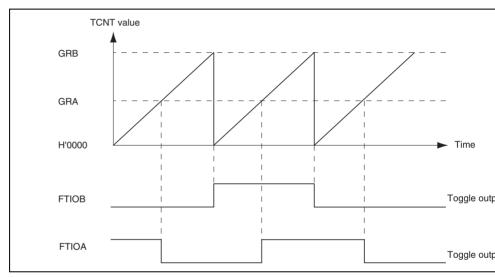
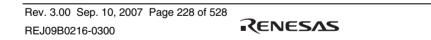



Figure 13.14 Example of Toggle Output Operation

TCNT input	
TCNT	N N+1
GR	Ν
Compare match signal	
FTIOA to FTIOD	X

Figure 13.15 Output Compare Timing

13.4.3 Input Capture Function

The TCNT value can be transferred to GR on detection of the input edge of the input capture/output compare pin (FTIOA, FTIOB, FTIOC, or FTIOD). Rising edge, falling e both edges can be selected as the detected edge. When the input capture function is used width or period can be measured.

Figure 13.16 shows an example of the input capture operation setting procedure.

Figure 13.16 Example of Input Capture Operation Setting Procedure

Rev. 3.00 Sep. 10, 2007 Page 230 of 528 REJ09B0216-0300

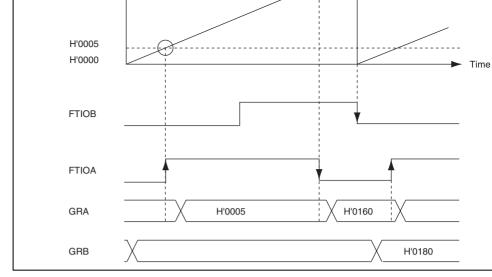


Figure 13.17 Example of Input Capture Operation

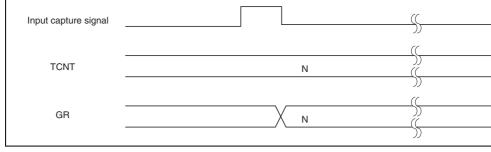


Figure 13.18 Input Capture Signal Timing

Rev. 3.00 Sep. 10, 2007 Page 232 of 528 REJ09B0216-0300

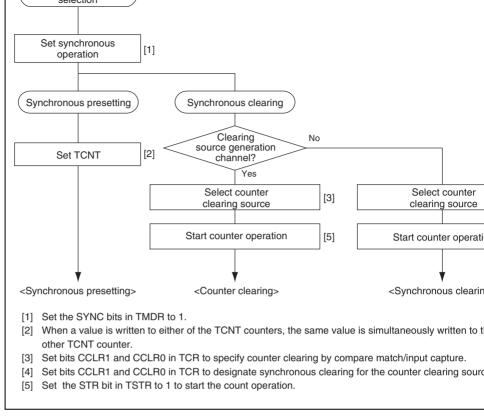


Figure 13.19 Example of Synchronous Operation Setting Procedure

Renesas

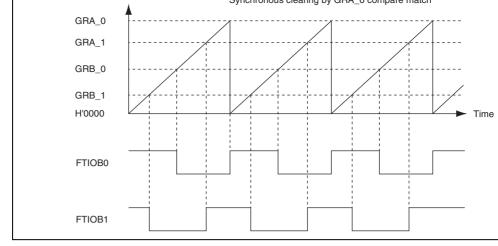
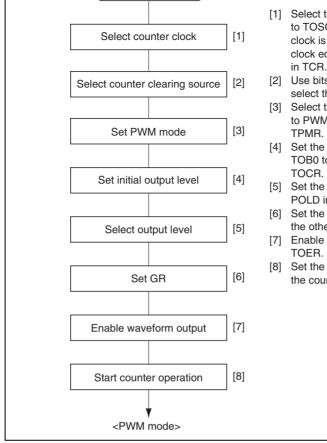


Figure 13.20 Example of Synchronous Operation

13.4.5 PWM Mode


In PWM mode, PWM waveforms are output from the FTIOB, FTIOC, and FTIOD output with GRA as a cycle register and GRB, GRC, and GRD as duty registers. The initial output of the corresponding pin depends on the setting values of TOCR and POCR. Table 13.3 sexample of the initial output level of the FTIOB0 pin.

The output level is determined by the POLB to POLD bits corresponding to POCR. Whe is 0, the FTIOB output pin is set to 0 by compare match B and set to 1 by compare match When POLB is 1, the FTIOB output pin is set to 1 by compare match B and cleared to 0 b compare match A. In PWM mode, maximum 6-phase PWM outputs are possible.

Figure 13.21 shows an example of the PWM mode setting procedure.

Rev. 3.00 Sep. 10, 2007 Page 234 of 528 REJ09B0216-0300

- Select the counter clock with bits TPSC2 to TOSC0 in TCR. When an external clock is selected, select the external clock edge with bits CKEG1 and CKEG0 in TCR.
- [2] Use bits CCLR1 and CCLR0 in TCR to select the counter clearing source.
- [3] Select the PWM mode with bits PWMB0 to PWMD0 and PWMB1 to PWMD1 in TPMR.
- [4] Set the initial output value with bits TOB0 to TOD0 and TOB1 to TOD1 in TOCR.
- [5] Set the output level with bits POLB to POLD in POCR.
- [6] Set the cycle in GRA, and set the duty in the other GR.
- [7] Enable or disable the timer output by TOER.
- [8] Set the STR bit in TSTR to 1 and start the counter operation.

Figure 13.21 Example of PWM Mode Setting Procedure

Renesas

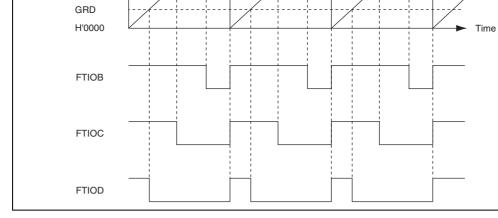
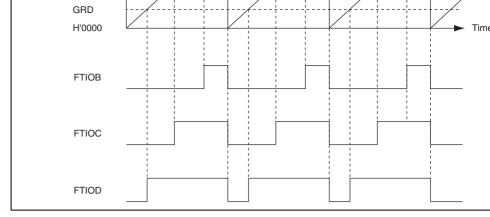
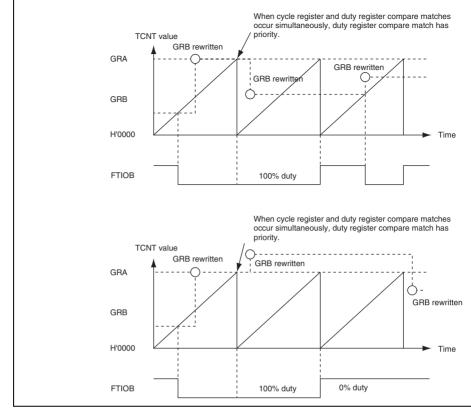
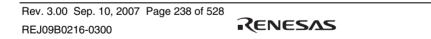
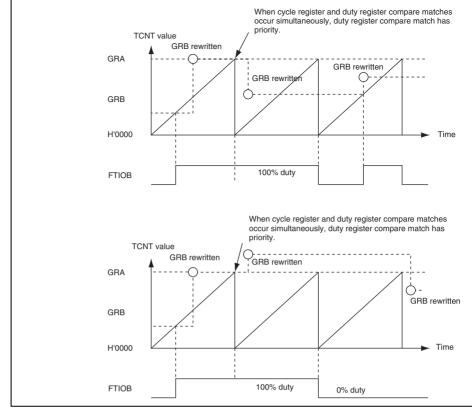


Figure 13.22 Example of PWM Mode Operation (1)

Rev. 3.00 Sep. 10, 2007 Page 236 of 528 REJ09B0216-0300


Figure 13.23 Example of PWM Mode Operation (2)


Figures 13.24 (when TOB, TOC, and TOD = 0, POLB, POLC, and POLD = 0) and 13.2 TOB, TOC, and TOD = 0, POLB, POLC, and POLD = 1) show examples of the output waveforms with duty cycles of 0% and 100% in PWM mode.

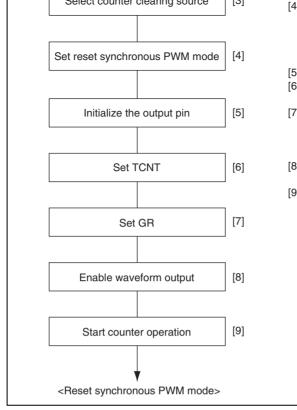

Channel	Pin Name	Input/Output	Pin Function
0	FTIOC0	Output	Toggle output in synchronous with PWM cycle
0	FTIOB0	Output	PWM output 1
0	FTIOD0	Output	PWM output 1 (counter-phase waveform of P output 1)
1	FTIOA1	Output	PWM output 2
1	FTIOC1	Output	PWM output 2 (counter-phase waveform of P output 2)
1	FTIOB1	Output	PWM output 3
1	FTIOD1	Output	PWM output 3 (counter-phase waveform of P output 3)

Table 13.5 Register Settings in Reset Synchronous PWM Mode

Register	Description
TCNT_0	Initial setting of H'0000
TCNT_1	Not used (independently operates)
GRA_0	Sets counter cycle of TCNT_0
GRB_0	Set a changing point of the PWM waveform output from pins FTIOB0 an FTIOD0.
GRA_1	Set a changing point of the PWM waveform output from pins FTIOA1 an FTIOC1.
GRB_1	Set a changing point of the PWM waveform output from pins FTIOB1 an FTIOD1.

Rev. 3.00 Sep. 10, 2007 Page 240 of 528 REJ09B0216-0300

- [4] Select the reset synchronous PWM m with bits CMD1 and CMD0 in TFCR. FTIOB0 to FTIOD0 and FTIOA1 to FTIOD1 become PWM output pins automatically.
- [5] Set H'00 to TOCR.
- [6] Set TCNT_0 as H'0000. TCNT1 does need to be set.
- [7] GRA_0 is a cycle register. Set a cycle GRA_0. Set the changing point timing the PWM output waveform for GRB_0 GRA_1, and GRB_1.
- [8] Enable or disable the timer output by TOER.
- [9] Set the STR bit in TSTR to 1 and star counter operation.

Figure 13.26 Example of Reset Synchronous PWM Mode Setting Procedu

RENESAS Rev.

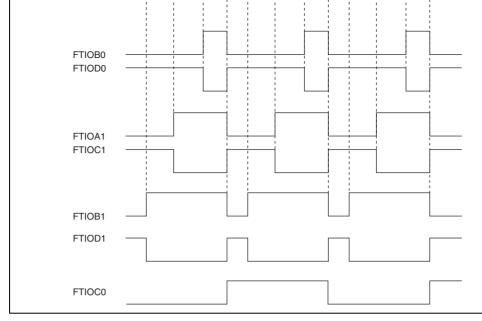
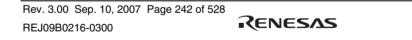



Figure 13.27 Example of Reset Synchronous PWM Mode Operation (OLS0 = OI

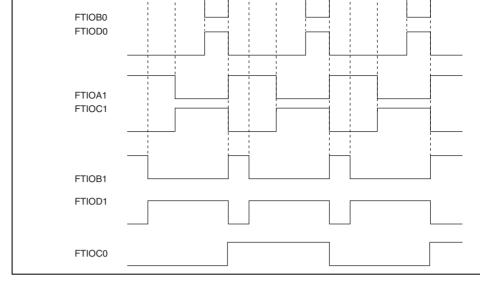


Figure 13.28 Example of Reset Synchronous PWM Mode Operation (OLS0 = O

In reset synchronous PWM mode, TCNT_0 and TCNT_1 perform increment and indeper operations, respectively. However, GRA_1 and GRB_1 are separated from TCNT_1. We compare match occurs between TCNT_0 and GRA_0, a counter is cleared and an increment operation is restarted from H'0000.

The PWM pin outputs 0 or 1 whenever a compare match between GRB_0, GRA_1, GR TCNT_0 or counter clearing occur.

For details on operations when reset synchronous PWM mode and buffer operation are simultaneously set, refer to section 13.4.8, Buffer Operation.

Renesas

0 FTIOB0 Output PWM output 1 0 FTIOD0 Output PWM output 1 (counter-phase waveform no overlapped with PWM output 1) 1 FTIOA1 Output PWM output 2 1 FTIOC1 Output PWM output 2 (counter-phase waveform no overlapped with PWM output 2) 1 FTIOE1 Output PWM output 2 (counter-phase waveform no overlapped with PWM output 2) 1 FTIOB1 Output PWM output 3	Channel	Pin Name	Input/Output	Pin Function
0 FTIOD0 Output PWM output 1 (counter-phase waveform no overlapped with PWM output 1) 1 FTIOA1 Output PWM output 2 1 FTIOC1 Output PWM output 2 (counter-phase waveform no overlapped with PWM output 2) 1 FTIOB1 Output PWM output 3 1 FTIOD1 Output PWM output 3 (counter-phase waveform no overlapped with PWM output 3)	0	FTIOC0	Output	Toggle output in synchronous with PWM cycle
Image: State of the state o	0	FTIOB0	Output	PWM output 1
1 FTIOC1 Output PWM output 2 (counter-phase waveform no overlapped with PWM output 2) 1 FTIOB1 Output PWM output 3 1 FTIOD1 Output PWM output 3 (counter-phase waveform no overlapped with P	0	FTIOD0	Output	PWM output 1 (counter-phase waveform non- overlapped with PWM output 1)
overlapped with PWM output 2) 1 FTIOB1 Output PWM output 3 1 FTIOD1 Output PWM output 3 (counter-phase waveform not counter-phase waveform not counter-phas	1	FTIOA1	Output	PWM output 2
1 FTIOD1 Output PWM output 3 (counter-phase waveform not phase waveform	1	FTIOC1	Output	PWM output 2 (counter-phase waveform non- overlapped with PWM output 2)
	1	FTIOB1	Output	PWM output 3
	1	FTIOD1	Output	PWM output 3 (counter-phase waveform non- overlapped with PWM output 3)

 Table 13.6
 Output Pins in Complementary PWM Mode

Table 13.7 Register Settings in Complementary PWM Mode

Register	Description
TCNT_0	Initial setting of non-overlapped periods (non-overlapped periods are diff with TCNT_1)
TCNT_1	Initial setting of H'0000
GRA_0	Sets (upper limit value – 1) of TCNT_0
GRB_0	Set a changing point of the PWM waveform output from pins FTIOB0 an FTIOD0.
GRA_1	Set a changing point of the PWM waveform output from pins FTIOA1 an FTIOC1.
GRB_1	Set a changing point of the PWM waveform output from pins FTIOB1 an FTIOD1.

Rev. 3.00 Sep. 10, 2007 Page 244 of 528 REJ09B0216-0300

RENESAS

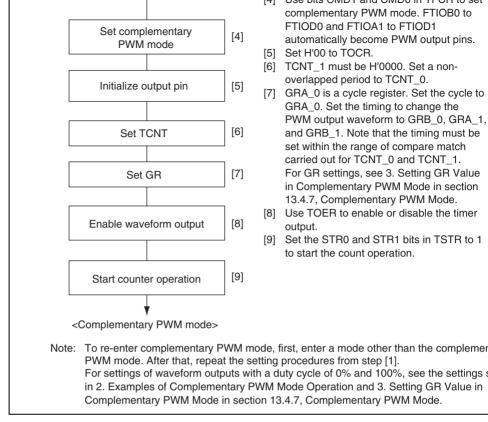


Figure 13.29 Example of Complementary PWM Mode Setting Procedure

RENESAS

Figure 13.30 Canceling Procedure of Complementary PWM Mode

Rev. 3.00 Sep. 10, 2007 Page 246 of 528 REJ09B0216-0300

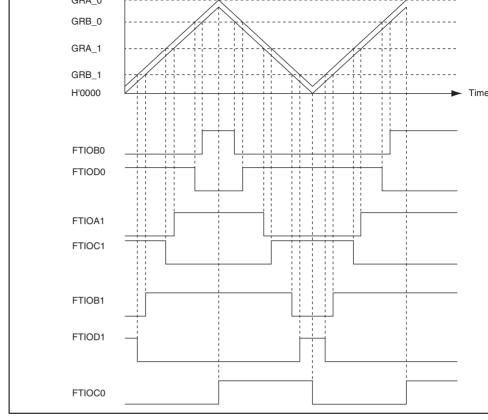
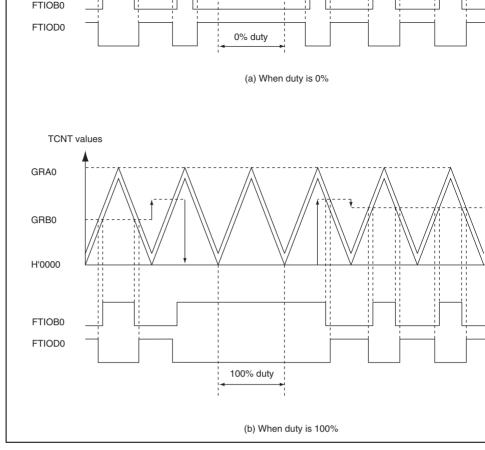
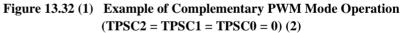
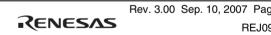


Figure 13.31 Example of Complementary PWM Mode Operation (1)


Rev. 3.00 Sep. 10, 2007 Pag RENESAS


REJ09


cycle waveform output, see 3.C., Outputting a waveform with a duty cycle of 0% and section 13.4.7, Complementary PWM Mode.

Rev. 3.00 Sep. 10, 2007 Page 248 of 528 REJ09B0216-0300

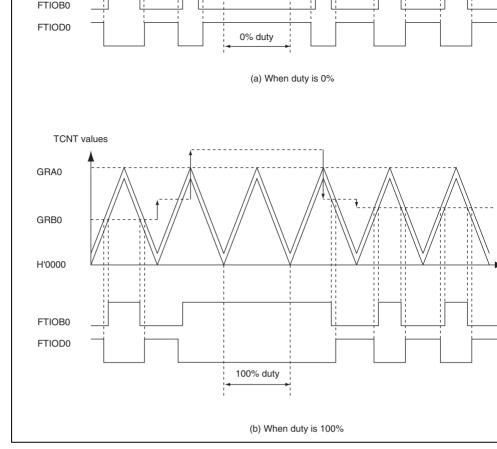
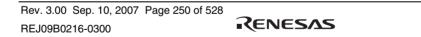



Figure 13.32 (2) Example of Complementary PWM Mode Operation (TPSC2 = TPSC1 = TPSC0 \neq 0) (3)

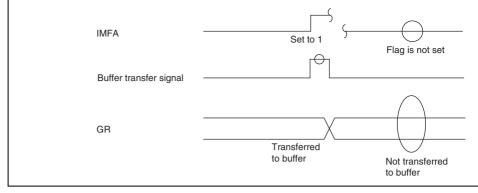


Figure 13.33 Timing of Overshooting

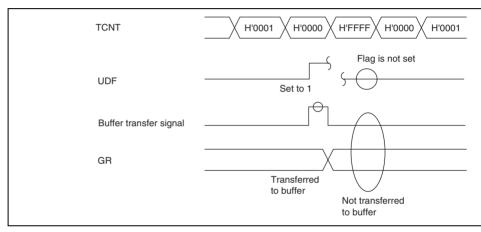


Figure 13.34 Timing of Undershooting

H'FFFC or less. When TPSC2 = TPSC1 = TPSC0 = 0, the GRA_0 value can b H'FFFF or less.

- b. H'0000 to T 1 (T: Initial value of TCNT0) must not be set for the initial value
- c. $GRA_0 (T 1)$ or more must not be set for the initial value.
- d. When using buffer operation, the same values must be set in the buffer register corresponding general registers.
- B. Modifying the setting value
 - a. Writing to GR directly must be performed while the TCNT_1 and TCNT_0 vas should satisfy the following expression: $H'0000 \le TCNT_1 < \text{previous GR value} < TCNT_0 \le GRA_0$. Otherwise, a waveform is not output correctly. For details on outputting a waveform with a duty cycle of 0% and 10 C., Outputting a waveform with a duty cycle of 0% and 100%.
 - b. Do not write the following values to GR directly. When writing the values, a v is not output correctly.

 $H'0000 \le GR \le T - 1$ and $GRA_0 - (T - 1) \le GR < GRA_0$ when TPSC2 = TTPSC0 = 0

H'0000 < GR \leq T – 1 and GRA_0 – (T – 1) \leq GR < GRA_0 + 1 when TPSC2 = TPSC0 = 0

- c. Do not change settings of GRA_0 during operation.
- C. Outputting a waveform with a duty cycle of 0% and 100%
 - a. Buffer operation is not used and TPSC2 = TPSC1 = TPSC0 = 0

Write H'0000 or a value equal to or more than the GRA_0 value to GR directly timing shown below.

- To output a 0%-duty cycle waveform, write a value equal to or more than the 0 value while H'0000 ≤ TCNT_1 < previous GR value
- To output a 100%-duty cycle waveform, write H'0000 while previous GR valu TCNT_0 ≤ GRA_0

Rev. 3.00 Sep. 10, 2007 Page 252 of 528 REJ09B0216-0300

RENESAS

- To output a 0%-duty cycle waveform, write a value equal to or more than the value to the buffer register
- To output a 100%-duty cycle waveform, write H'0000 to the buffer register For details on buffer operation, see section 13.4.8, Buffer Operation.
- c. Buffer operation is not used and other than TPSC2 = TPSC1 = TPSC0 = 0 Write a value which satisfies GRA_0 + 1 < GR < H'FFFF to GR directly at the shown below.
- To output a 0%-duty cycle waveform, write the value while H'0000 ≤ TCNT previous GR value
- To output a 100%-duty cycle waveform, write the value while previous GR v TCNT_0 \leq GRA_0

To change duty cycles while a waveform with a duty cycle of 0% and 100% is output, the following procedure must be followed.

- To change duty cycles while a 0%-duty cycle waveform is being output, writ while H'0000 ≤ TCNT_1 < previous GR value
- To change duty cycles while a 100%-duty cycle waveform is being output, w while previous GR value< TCNT_0 ≤ GRA_0

Note that changing from a 0%-duty cycle waveform to a 100%-duty cycle wa and vice versa is not possible.

d. Buffer operation is used and other than TPSC2 = TPSC1 = TPSC0 = 0

Write a value which satisfies $GRA_0 + 1 < GR < H'FFFF$ to the buffer registres waveform with a duty cycle of 0% can be output. However, a waveform with cycle of 100% cannot be output using the buffer operation. Also, the buffer of cannot be used to change duty cycles while a waveform with a duty cycle of being output. For details on buffer operation, see section 13.4.8, Buffer Operation of the section 13.4.8 and the section of the sect

Renesas

GRA	GRC
GRB	GRD

1. When GR is an output compare register

When a compare match occurs, the value in the buffer register of the corresponding cl transferred to the general register.

This operation is illustrated in figure 13.35.

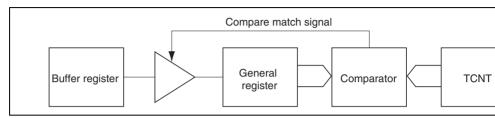
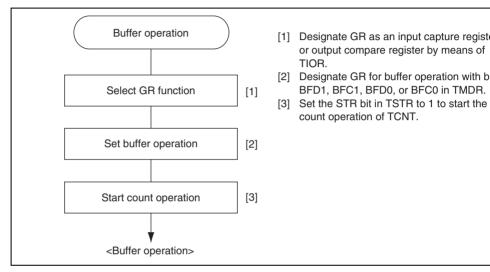


Figure 13.35 Compare Match Buffer Operation

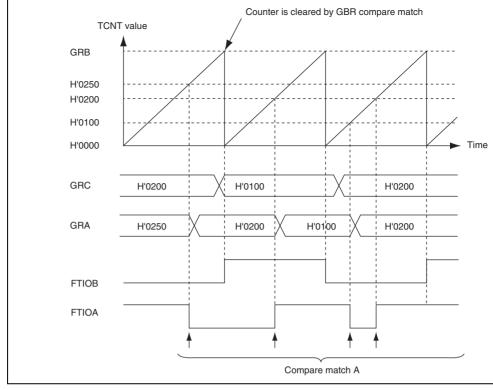
2. When GR is an input capture register

When an input capture occurs, the value in TCNT is transferred to the general register value previously stored in the general register is transferred to the buffer register. This operation is illustrated in figure 13.36.

Rev. 3.00 Sep. 10, 2007 Page 254 of 528 REJ09B0216-0300


transferred to the general register in the following timing:

- A. When TCNT_0 and GRA_0 are compared and their contents match
- B. When TCNT_1 underflows
- 4. Reset Synchronous PWM Mode


The value of the buffer register is transferred from compare match A0 to the general

5. Example of Buffer Operation Setting Procedure

Figure 13.37 shows an example of the buffer operation setting procedure.

Figure 13.38 Example of Buffer Operation (1) (Buffer Operation for Output Compare Register)

Rev. 3.00 Sep. 10, 2007 Page 256 of 528 REJ09B0216-0300

GRC	N	
GRA	n X N	
		_

Figure 13.39 Example of Compare Match Timing for Buffer Operation

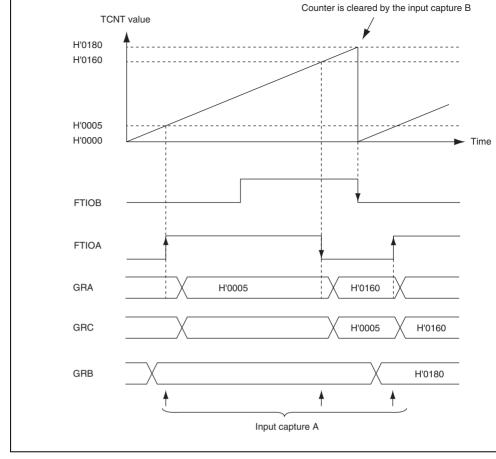
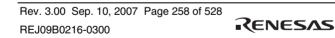



Figure 13.40 Example of Buffer Operation (2) (Buffer Operation for Input Capture Register)

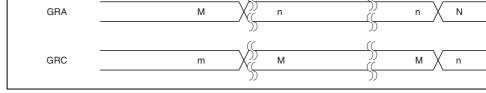


Figure 13.41 Input Capture Timing of Buffer Operation

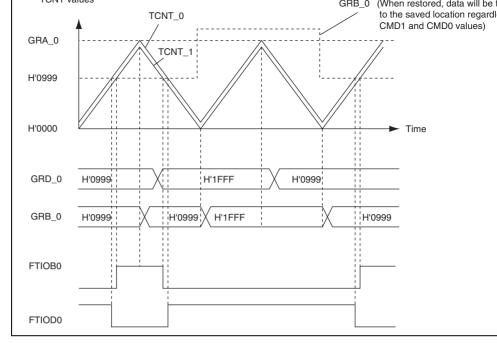


Figure 13.42 Buffer Operation (3) (Buffer Operation in Complementary PWM Mode CMD1 = CMD0 = 1)

Rev. 3.00 Sep. 10, 2007 Page 260 of 528 REJ09B0216-0300

RENESAS

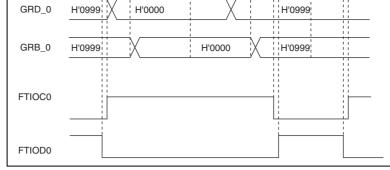


Figure 13.43 Buffer Operation (4) (Buffer Operation in Complementary PWM Mode CMD1 = CMD0 = 1)

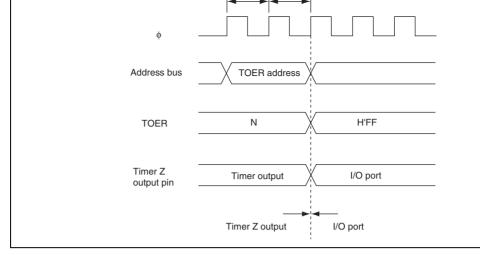
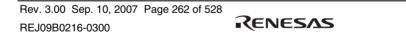



Figure 13.44 Example of Output Disable Timing of Timer Z by Writing to TO

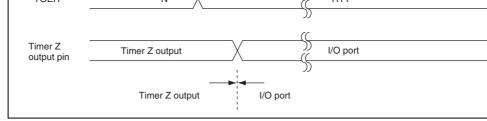


Figure 13.45 Example of Output Disable Timing of Timer Z by External Tri

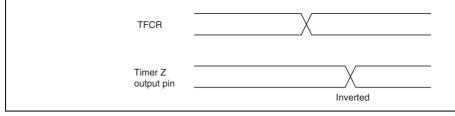


Figure 13.46 Example of Output Inverse Timing of Timer Z by Writing to TH

4. Output Inverse Timing by POCR: The output level can be inverted by inverting the P POLC, and POLB bits in POCR in PWM mode. Figure 13.47 shows the timing.

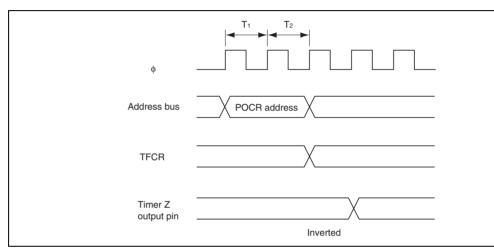
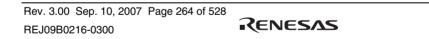



Figure 13.47 Example of Output Inverse Timing of Timer Z by Writing to PC

when the TCNT and GR matches, the compare match signal will not be generated up TCNT input clock is generated. Figure 13.48 shows the timing to set the IMF flag.

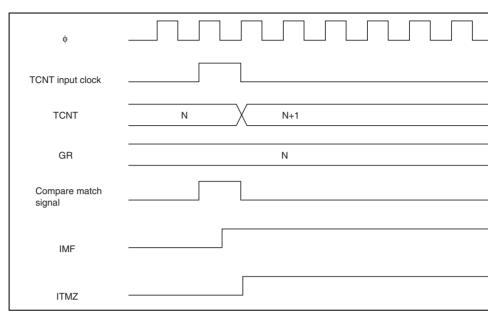


Figure 13.48 IMF Flag Set Timing when Compare Match Occurs

TCNT	N	
GR		Ν
ITMZ		

Figure 13.49 IMF Flag Set Timing at Input Capture

3. Overflow Flag (OVF) Set Timing: The overflow flag is set to 1 when the TCNT over Figure 13.50 shows the timing.

φ	
TCNT	H'FFFF H'0000
Overflow signal	
OVF	
ITMZ	

Figure 13.50 OVF Flag Set Timing

(internal write signal)		
IMF, OVF	 1	
ITMZ]

Figure 13.51 Status Flag Clearing Timing

	TCNT address	
WTCNT (internal write signal)		
Counter clear signal		
TCNT	N H'0000	
	CI	learing

Figure 13.52 Contention between TCNT Write and Clear Operations

2. Contention between TCNT Write and Increment Operations: If increment is done in T a TCNT write cycle, TCNT writing has priority. Figure 13.53 shows the timing in this

Rev. 3.00 Sep. 10, 2007 Page 268 of 528 REJ09B0216-0300

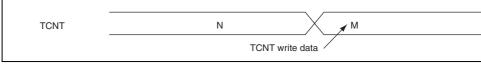


Figure 13.53 Contention between TCNT Write and Increment Operation

3. Contention between GR Write and Compare Match: If a compare match occurs in the of a GR write cycle, GR write has priority and the compare match signal is disabled. 13.54 shows the timing in this case.

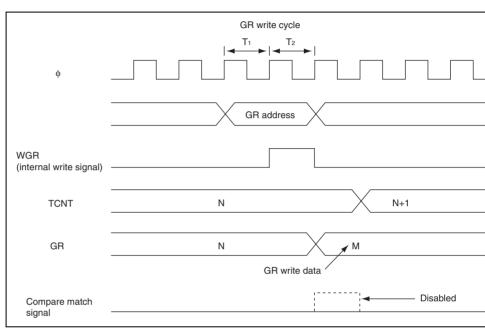


Figure 13.54 Contention between GR Write and Compare Match

Rev. 3.00 Sep. 10, 2007 Pag

REJ09

WTCNT (internal write signal)	
TCNT input clock	
Overflow signal	
TCNT	H'FFFF M
	TCNT write data
OVF	

Figure 13.55 Contention between TCNT Write and Overflow

Rev. 3.00 Sep. 10, 2007 Page 270 of 528 REJ09B0216-0300

Internal read signal		
Input capture signal		
GR	х М	
Internal data bus	x	

Figure 13.56 Contention between GR Read and Input Capture

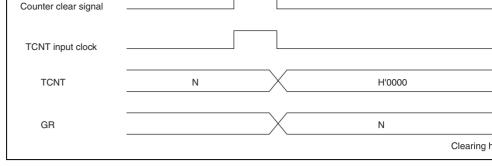


Figure 13.57 Contention between Count Clearing and Increment Operation by Input Capture

Rev. 3.00 Sep. 10, 2007 Page 272 of 528 REJ09B0216-0300

WGR (internal write signal)	
Input capture signal	
Signal	
TCNT	N
GR	M 🔪
	GR write data

Figure 13.58 Contention between GR Write and Input Capture

- Notes on Setting Reset Synchronous PWM Mode/Complementary PWM Mode: Wh CMD1 and CMD0 in TFCR are set, note the following:
 - A. Write bits CMD1 and CMD0 while TCNT_1 and TCNT_0 are halted.
 - B. Changing the settings of reset synchronous PWM mode to complementary PWM vice versa is disabled. Set reset synchronous PWM mode or complementary PW after the normal operation (bits CMD1 and CMD0 are cleared to 0) has been set.

is to be written to while compare match is operating, stop the counter once before acc TOCR, read the port 6 state to reflect the values of FTIOA0 to FTIOD0 and FTIOA1 FTIOD1 output, to TOA0 to TOD0 and TOA1 to TOD1, and then restart the counter. 13.59 shows an example when the compare match and the bit manipulation instruction TOCR occur at the same timing.

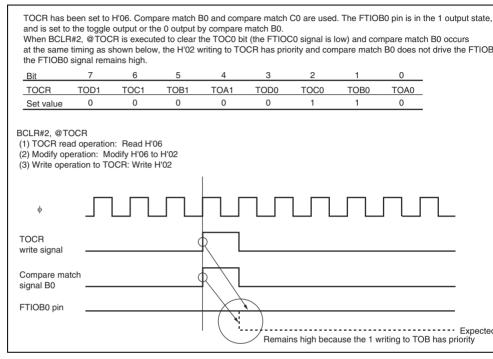


Figure 13.59 When Compare Match and Bit Manipulation Instruction to TO Occur at the Same Timing

Rev. 3.00 Sep. 10, 2007 Page 274 of 528 REJ09B0216-0300

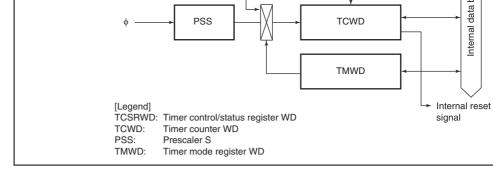


Figure 14.1 Block Diagram of Watchdog Timer

14.1 Features

• Selectable from nine counter input clocks.

Eight clock sources ($\phi/64$, $\phi/128$, $\phi/256$, $\phi/512$, $\phi/1024$, $\phi/2048$, $\phi/4096$, and $\phi/8192$) WDT dedicated internal oscillator can be selected as the timer-counter clock. When dedicated internal oscillator is selected, it can operate as the watchdog timer in any of mode.

- Reset signal generated on counter overflow An overflow period of 1 to 256 times the selected clock can be set.
- The watchdog timer is enabled in the initial state. It starts operating after the reset state is canceled.

WDT0110A_000020030700

Renesas

watchdog timer operation and indicates the operating state. TCSRWD also controls the the MOV instruction. The bit manipulation instruction cannot be used to change the setting

		Initial		
Bit	Bit Name	Value	R/W	Description
7	B6WI	1	R/W	Bit 6 Write Inhibit
				The TCWE bit can be written only when the write the B6WI bit is 0.
				This bit is always read as 1.
6	TCWE	0	R/W	Timer Counter WD Write Enable
				TCWD can be written when the TCWE bit is set
				When writing data to this bit, the value for bit 7 n
5	B4WI	1	R/W	Bit 4 Write Inhibit
				The TCSRWE bit can be written only when the v value of the B4WI bit is 0. This bit is always read
4	TCSRWE	0	R/W	Timer Control/Status Register WD Write Enable
				The WDON and WRST bits can be written when TCSRWE bit is set to 1.
				When writing data to this bit, the value for bit 5 n
3	B2WI	1	R/W	Bit 2 Write Inhibit
				This bit can be written to the WDON bit only whe write value of the B2WI bit is 0.
				This bit is always read as 1.

Rev. 3.00 Sep. 10, 2007 Page 276 of 528 REJ09B0216-0300

				 [Clearing condition] When 0 is written to the WDON bit and 0 is the B2WI bit while the TCSRWE bit = 1
1	B0WI	1	R/W	Bit 0 Write Inhibit
				This bit can be written to the WRST bit only wh write value of the B0WI bit is 0. This bit is alway 1.
0	WRST	0	R/W	Watchdog Timer Reset
				[Setting condition]
				 When TCWD overflows and an internal rese generated
				[Clearing conditions]
				Reset by the RES pin
				• When 0 is written to the WRST bit and 0 is the B0WI bit while the TCSRWE bit = 1

Bit	Bit Name	Value	R/W	Description
7 to 4		All 1		Reserved
				These bits are always read as 1.
3	CKS3	1	R/W	Clock Select 3 to 0
2	CKS2	1	R/W	Select the clock to be input to TCWD.
1	CKS1	1	R/W	1000: Internal clock: counts on \u00f6/64
0	CKS0	1	R/W	1001: Internal clock: counts on \u00e6/128
				1010: Internal clock: counts on \u00e6/256
				1011: Internal clock: counts on \u00e4/512
				1100: Internal clock: counts on $\phi/1024$
				1101: Internal clock: counts on \u00e6/2048
				1110: Internal clock: counts on \u00e6/4096
				1111: Internal clock: counts on ϕ 8192
				0XXX: WDT dedicated internal oscillator
				For the overflow periods of the WDT dedicated in oscillator, see section 22, Electrical Characterist

[Legend]X: Don't care.

Rev. 3.00 Sep. 10, 2007 Page 278 of 528 REJ09B0216-0300

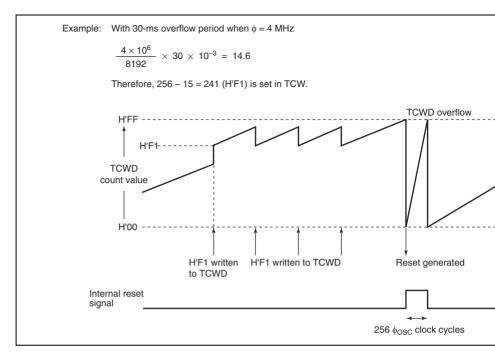
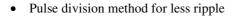



Figure 14.2 Watchdog Timer Operation Example

Rev. 3.00 Sep. 10, 2007 Page 280 of 528 REJ09B0216-0300

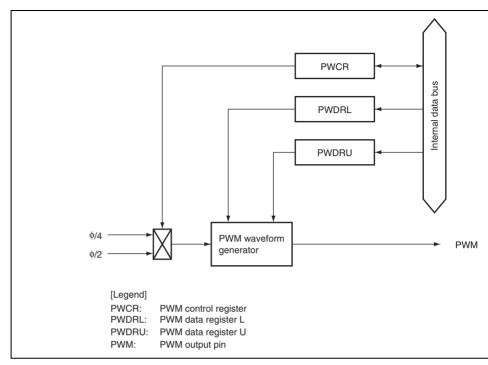


Figure 15.1 Block Diagram of 14-Bit PWM

PWM1400A_000120030300

RENESAS

Rev. 3.00 Sep. 10, 2007 Page 282 of 528 REJ09B0216-0300

PWCR selects the conversion period.

Bit Name	Initial Value	R/W	Description
	All 1		Reserved
			These bits are always read as 1, and cannot be
PWCR0	0	R/W	Clock Select
			0: The input clock is $\phi/2$ (t $\phi = 2/\phi$)
			 The conversion period is 16384/\u00f3, with a modulation width of 1/\u00f3
			1: The input clock is $\phi/4$ (t $\phi = 4/\phi$)
			 — The conversion period is 32768/φ, with a modulation width of 2/φ
	_	Bit Name Value All 1 PWCR0 0	Bit NameValueR/WAll 1PWCR00R/W

[Legend]

to: Period of PWM clock input

15.3.2 PWM Data Registers U and L (PWDRU, PWDRL)

PWDRU and PWDRL indicate high level width in one PWM waveform cycle. PWDRU PWDRL are 14-bit write-only registers, with the upper 6 bits assigned to PWDRU and t bits to PWDRL. When read, all bits are always read as 1.

Both PWDRU and PWDRL are accessible only in bytes. Note that the operation is not a if word access is performed. When 14-bit data is written in PWDRU and PWDRL, the orac latched in the PWM waveform generator and the PWM waveform generation data is When writing the 14-bit data, the order is as follows: PWDRL to PWDRU.

PWDRU and PWDRL are initialized to H'C000.

RENESAS

uata is updated in synchronization with internal signals.

One conversion period consists of 64 pulses, as shown in figure 15.2. The total high-leve during this period (T_{μ}) corresponds to the data in PWDRU and PWDRL. This relation ca expressed as follows:

 $T_{_{H}}$ = (data value in PWDRU and PWDRL + 64) \times tq/2

where t ϕ is the period of PWM clock input: $2/\phi$ (bit PWCR0 = 0) or $4/\phi$ (bit PWCR0 = 1) If the data value in PWDRU and PWDRL is from H'FFC0 to H'FFFF, the PWM output s When the data value is H'C000, T_{μ} is calculated as follows:

 $T_{\mu} = 64 \times t\phi/2 = 32 t\phi$

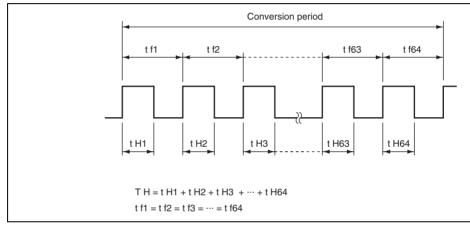


Figure 15.2 Waveform Output by 14-Bit PWM

explanations are not given in this section.

16.1 Features

- Choice of asynchronous or clock synchronous serial communication mode
- Full-duplex communication capability

The transmitter and receiver are mutually independent, enabling transmission and rebe executed simultaneously.

Double-buffering is used in both the transmitter and the receiver, enabling continuou transmission and continuous reception of serial data.

- On-chip baud rate generator allows any bit rate to be selected
- External clock or on-chip baud rate generator can be selected as a transfer clock sour
- Six interrupt sources

Transmit-end, transmit-data-empty, receive-data-full, overrun error, framing error, a error.

Asynchronous mode

- Data length: 7 or 8 bits
- Stop bit length: 1 or 2 bits
- Parity: Even, odd, or none
- Receive error detection: Parity, overrun, and framing errors
- Break detection: Break can be detected by reading the RxD pin level directly in the of framing error

SCI0011A_000020020200

Renesas

			TDR	H'FFAB
			SSR	H'FFAC
			RDR	H'FFAD
			RSR	
			TSR	_
Channel 2	SCI3_2	SCK3_2 RXD_2 TXD_2	SMR_2	H'F740
			BRR_2	H'F741
			SCR3_2	H'F742
			TDR_2	H'F743
			SSR_2	H'F744
			RDR_2	H'F745
			RSR_2	
			TSR_2	

Note: * The channel 1 of the SCI3 is used in on-board programming mode by boot mo

Rev. 3.00 Sep. 10, 2007 Page 286 of 528 REJ09B0216-0300

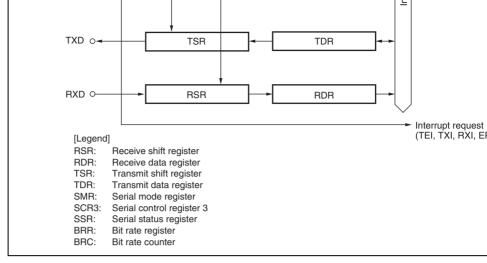


Figure 16.1 Block Diagram of SCI3

Rev. 3.00 Sep. 10, 2007 Page 288 of 528 REJ09B0216-0300

- Serial status register (SSR)
- Bit rate register (BRR)

16.3.1 Receive Shift Register (RSR)

RSR is a shift register that is used to receive serial data input from the RxD pin and comparallel data. When one frame of data has been received, it is transferred to RDR automarks RSR cannot be directly accessed by the CPU.

16.3.2 Receive Data Register (RDR)

RDR is an 8-bit register that stores received data. When the SCI3 has received one fram data, it transfers the received serial data from RSR to RDR, where it is stored. After this receive-enabled. As RSR and RDR function as a double buffer in this way, continuous r operations are possible. After confirming that the RDRF bit in SSR is set to 1, read RDF once. RDR cannot be written to by the CPU. RDR is initialized to H'00.

16.3.3 Transmit Shift Register (TSR)

TSR is a shift register that transmits serial data. To perform serial data transmission, the transfers transmit data from TDR to TSR automatically, then sends the data that starts fr LSB to the TXD pin. TSR cannot be directly accessed by the CPU.

16.3.5 Serial Mode Register (SMR)

SMR is used to set the SCI3's serial transfer format and select the baud rate generator closource.

Bit	Bit Name	Initial Value	R/W	Description	
7	СОМ	0	R/W	Communication Mode	
				0: Asynchronous mode	
				1: Clock synchronous mode	
6	CHR	0	R/W	Character Length (enabled only in asynchronous	
				0: Selects 8 bits as the data length.	
				1: Selects 7 bits as the data length.	
5	PE	0	R/W	Parity Enable (enabled only in asynchronous mo	
				When this bit is set to 1, the parity bit is added to data before transmission, and the parity bit is ch reception.	
4	РМ	0	R/W	Parity Mode (enabled only when the PE bit is 1 i asynchronous mode)	
				0: Selects even parity.	
				1: Selects odd parity.	

Rev. 3.00 Sep. 10, 2007 Page 290 of 528 REJ09B0216-0300

				When this bit is set to 1, the multiprocessor communication function is enabled. The PE bit bit settings are invalid in multiprocessor mode. synchronous mode, clear this bit to 0.
1	CKS1	0	R/W	Clock Select 0 and 1
0	CKS0	0	R/W	These bits select the clock source for the baud generator.
				00: φ clock (n = 0)
				01: φ/4 clock (n = 1)
				10: φ/16 clock (n = 2)
				11: φ/64 clock (n = 3)
				For the relationship between the bit rate register and the baud rate, see section 16.3.8, Bit Rate (BRR). n is the decimal representation of the var BRR (see section 16.3.8, Bit Rate Register (BR

6	RIE	0	R/W	Receive Interrupt Enable
				When this bit is set to 1, RXI and ERI interrupt reare enabled.
5	TE	0	R/W	Transmit Enable
				When this bit s set to 1, transmission is enabled.
4	RE	0	R/W	Receive Enable
				When this bit is set to 1, reception is enabled.
3	MPIE	0	R/W	Multiprocessor Interrupt Enable (enabled only w MP bit in SMR is 1 in asynchronous mode)
				When this bit is set to 1, receive data in which th multiprocessor bit is 0 is skipped, and setting of RDRF, FER, and OER status flags in SSR is dis On receiving data in which the multiprocessor bi bit is automatically cleared and normal reception resumed. For details, refer to section 16.6, Multi Communication Function.
2	TEIE	0	R/W	Transmit End Interrupt Enable
				When this bit is set to 1, TEI interrupt request is

Rev. 3.00 Sep. 10, 2007 Page 292 of 528 REJ09B0216-0300

Inputs a clock with a frequency 16 times the from the SCK3 pin.

11:Reserved

• Clock synchronous mode

00: On-chip clock (SCK3 pin functions as clock

- 01: Reserved
- 10: External clock (SCK3 pin functions as clock
- 11: Reserved

Renesas

				 When the TE bit in SCR3 is 0
				When data is transferred from TDR to TSR
				[Clearing conditions]
				When 0 is written to TDRE after reading TDF
				When the transmit data is written to TDR
6	RDRF	0	R/W	Receive Data Register Full
				Indicates that the received data is stored in RDF
				[Setting condition]
				 When serial reception ends normally and rec is transferred from RSR to RDR
				[Clearing conditions]
				When 0 is written to RDRF after reading RDI
				When data is read from RDR
5	OER	0	R/W	Overrun Error
				[Setting condition]
				When an overrun error occurs in reception
				[Clearing condition]
				When 0 is written to OER after reading OER
4	FER	0	R/W	Framing Error
				[Setting condition]
				When a framing error occurs in reception
				[Clearing condition]
				• When 0 is written to FER after reading FER :

Rev. 3.00 Sep. 10, 2007 Page 294 of 528 REJ09B0216-0300

RENESAS

				• When TDRE = 1 at transmission of the last frame serial transmit character
				[Clearing conditions]
				• When 0 is written to TDRE after reading TD
				• When the transmit data is written to TDR
1	MPBR	0	R	Multiprocessor Bit Receive
				MPBR stores the multiprocessor bit in the receir character data. When the RE bit in SCR3 is cle its state is retained.
0	MPBT	0	R/W	Multiprocessor Bit Transfer
				MPBT stores the multiprocessor bit to be added transmit character data.

[Asynchronous Mode]

$$\mathsf{N} = \frac{\phi}{64 \times 2^{2\mathsf{n}-1} \times \mathsf{B}} \times 10^6 - 1$$

$$\text{Error (\%)} = \left\{ \frac{\phi \times 10^6}{(N+1) \times B \times 64 \times 2^{2n-1}} - 1 \right\} \times 100$$

[Clock Synchronous Mode]

$$\mathsf{N} = \frac{\phi}{8 \times 2^{2\mathsf{n}-1} \times \mathsf{B}} \times 10^6 - 1$$

[Legend]

- B: Bit rate (bit/s)
- N: BRR setting for baud rate generator ($0 \le N \le 255$)
- φ: Operating frequency (MHz)
- n: CSK1 and CSK0 settings in SMR $(0 \le n \le 3)$

Rev. 3.00 Sep. 10, 2007 Page 296 of 528 REJ09B0216-0300

1200	0	51	0.16	0	54	-0.70	0	63	0.00	0	77
2400	0	25	0.16	0	26	1.14	0	31	0.00	0	38
4800	0	12	0.16	0	13	-2.48	0	15	0.00	0	19
9600	0	6	-6.99	0	6	-2.48	0	7	0.00	0	9
19200	0	2	8.51	0	2	13.78	0	3	0.00	0	4
31250	0	1	0.00	0	1	4.86	0	1	22.88	0	2
38400	0	1	-18.62	0	1	-14.67	0	1	0.00		

					Operating Frequency ∳ (MHz)							
	3.6864				4			4.91				
Bit Rate (bits/s)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	
110	2	64	0.70	2	70	0.03	2	86	0.31	2	8	
150	1	191	0.00	1	207	0.16	1	255	0.00	2	6	
300	1	95	0.00	1	103	0.16	1	127	0.00	1	1:	
600	0	191	0.00	0	207	0.16	0	255	0.00	1	64	
1200	0	95	0.00	0	103	0.16	0	127	0.00	0	1:	
2400	0	47	0.00	0	51	0.16	0	63	0.00	0	64	
4800	0	23	0.00	0	25	0.16	0	31	0.00	0	3	
9600	0	11	0.00	0	12	0.16	0	15	0.00	0	1	
19200	0	5	0.00	0	6	-6.99	0	7	0.00	0	7	
31250		_	_	0	3	0.00	0	4	-1.70	0	4	
38400	0	2	0.00	0	2	8.51	0	3	0.00	0	3	
[]												

---: A setting is available but error occurs

RENESAS

1200	0	155	0.16	0	159	0.00	0	191
2400	0	77	0.16	0	79	0.00	0	95
4800	0	38	0.16	0	39	0.00	0	47
9600	0	19	-2.34	0	19	0.00	0	23
19200	0	9	-2.34	0	9	0.00	0	11
31250	0	5	0.00	0	5	2.40	0	6
38400	0	4	-2.34	0	4	0.00	0	5

					Operat	ting Free	quen	су ф (МН	lz)		
		8			9.8304			10			1
Bit Rate (bit/s)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N
110	2	141	0.03	2	174	-0.26	2	177	-0.25	2	212
150	2	103	0.16	2	127	0.00	2	129	0.16	2	15
300	1	207	0.16	1	255	0.00	2	64	0.16	2	77
600	1	103	0.16	1	127	0.00	1	129	0.16	1	15
1200	0	207	0.16	0	255	0.00	1	64	0.16	1	77
2400	0	103	0.16	0	127	0.00	0	129	0.16	0	15
4800	0	51	0.16	0	63	0.00	0	64	0.16	0	77
9600	0	25	0.16	0	31	0.00	0	32	-1.36	0	38
19200	0	12	0.16	0	15	0.00	0	15	1.73	0	19
31250	0	7	0.00	0	9	-1.70	0	9	0.00	0	11
38400	0	6	-6.99	0	7	0.00	0	7	1.73	0	9

--: A setting is available but error occurs.

Rev. 3.00 Sep. 10, 2007 Page 298 of 528 REJ09B0216-0300

RENESAS

1	200	1	79	0.00	1	90	0.16	1	95	0.00	1	1(
2	2400	0	159	0.00	0	181	0.16	0	191	0.00	0	2
4	800	0	79	0.00	0	90	0.16	0	95	0.00	0	1(
g	600	0	39	0.00	0	45	-0.93	0	47	0.00	0	5
1	9200	0	19	0.00	0	22	-0.93	0	23	0.00	0	2
З	31250	0	11	2.40	0	13	0.00	0	14	-1.70	0	1
З	8400	0	9	0.00	_	_	_	0	11	0.00	0	12

		Ор	erating Fr	equency	/ φ (MHz)	
		18			20	
Bit Rate (bit/s)	n	N	Error (%)	n	N	Error (%)
110	3	79	-0.12	3	88	-0.25
150	2	233	0.16	3	64	0.16
300	2	116	0.16	2	129	0.16
600	1	233	0.16	2	64	0.16
1200	1	116	0.16	1	129	0.16
2400	0	233	0.16	1	64	0.16
4800	0	116	0.16	0	129	0.16
9600	0	58	-0.96	0	64	0.16
19200	0	28	1.02	0	32	-1.36
31250	0	17	0.00	0	19	0.00
38400	0	14	-2.34	0	15	1.73
ri 13						

-: A setting is available but error occurs.

RENESAS

4.9152	153600	0	0	14.7456 460800 0
5	156250	0	0	16 500000 0
6	187500	0	0	17.2032 537600 0
6.144	192000	0	0	18 562500 0
7.3728	230400	0	0	20 625000 0

Rev. 3.00 Sep. 10, 2007 Page 300 of 528 REJ09B0216-0300

5k	0	99	0	199	1	99	1	124	1
10k	0	49	0	99	0	199	0	249	1
25k	0	19	0	39	0	79	0	99	0
50k	0	9	0	19	0	39	0	49	0
100k	0	4	0	9	0	19	0	24	0
250k	0	1	0	3	0	7	0	9	0
500k	0	0*	0	1	0	3	0	4	0
1M			0	0*	0	1		_	0
2M					0	0*		_	0
2.5M							0	0*	-
4M									0

Blank: No setting is available.

-: A setting is available but error occurs.

*: Continuous transfer is not possible.

5k	1	224	1	249
10k	1	112	1	124
25k	0	179	0	199
50k	0	89	0	99
100k	0	44	0	49
250k	0	17	0	19
500k	0	8	0	9
1M	0	4	0	4
2M	_	_	_	_
2.5M	_	_	0	1
4M	_			_

Blank: No setting is available.

-: A setting is available but error occurs.

*: Continuous transfer is not possible.

Rev. 3.00 Sep. 10, 2007 Page 302 of 528 REJ09B0216-0300

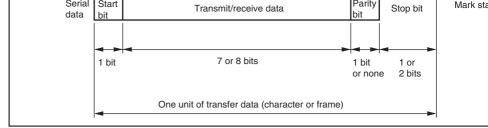


Figure 16.2 Data Format in Asynchronous Communication

16.4.1 Clock

Either an internal clock generated by the on-chip baud rate generator or an external cloc the SCK3 pin can be selected as the SCI3's serial clock, according to the setting of the CSMR and the CKE0 and CKE1 bits in SCR3. When an external clock is input at the SCI clock frequency should be 16 times the bit rate used.

When the SCI3 is operated on an internal clock, the clock can be output from the SCK3 frequency of the clock output in this case is equal to the bit rate, and the phase is such the rising edge of the clock is in the middle of the transmit data, as shown in figure 16.3.

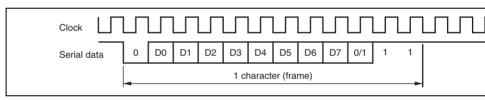
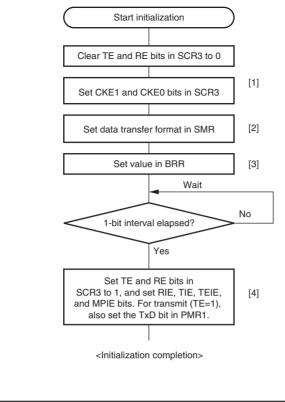



Figure 16.3 Relationship between Output Clock and Transfer Data Phas (Asynchronous Mode) (Example with 8-Bit Data, Parity, Two Stop Bits)

RENESAS

 Set the clock selection in SCR3.
 Be sure to clear bits RIE, TIE, TEIE, and MPIE, and bits TE and RE, to 0.

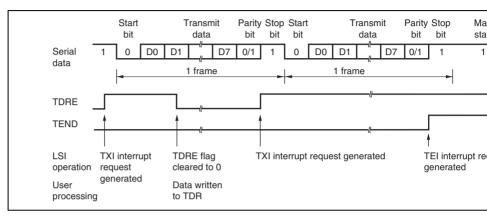
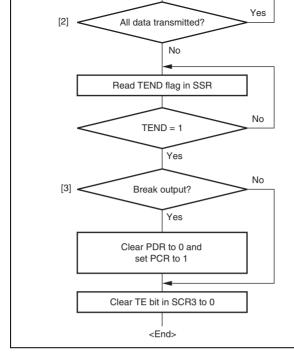
When the clock output is selected in asynchronous mode, clock is output immediately after CKE1 and CKE0 settings are made. When the clock output is selected at reception in clocked synchronous mode, clock is output immediately after CKE1, CKE0, and RE are set to 1.

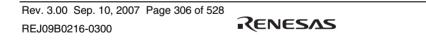
- [2] Set the data transfer format in SMR.
- [3] Write a value corresponding to the bit rate to BRR. Not necessary if an external clock is used.
- [4] Wait at least one bit interval, then set the TE bit or RE bit in SCR3 to 1. RE settings enable the RXD pin to be used. For transmission, set the TXD bit in PMR1 to 1 to enable the TXD output pin to be used. Also set the RIE, TIE, TEIE, and MPIE bits, depending on whether interrupts are required. In asynchronous mode, the bits are marked at transmission and idled at reception to wait for the start bit.

Figure 16.4 Sample SCI3 Initialization Flowchart

Rev. 3.00 Sep. 10, 2007 Page 304 of 528 REJ09B0216-0300

- 3. The SCI3 checks the TDRE flag at the timing for sending the stop bit.
- 4. If the TDRE flag is 0, the data is transferred from TDR to TSR, the stop bit is sent, a serial transmission of the next frame is started.
- 5. If the TDRE flag is 1, the TEND flag in SSR is set to 1, the stop bit is sent, and then state" is entered, in which 1 is output. If the TEIE bit in SCR3 is set to 1 at this time, interrupt request is generated.
- 6. Figure 16.6 shows a sample flowchart for transmission in asynchronous mode.


Figure 16.5 Example of SCI3 Transmission in Asynchronous Mode (8-Bit Data, Parity, One Stop Bit)

and PDR to 0, clear TxD in PMR1 to 0, then clear the TE bit in SCR3 to 0.

- RDR. If the RIE bit in SCR3 is set to 1 at this time, an ERI interrupt request is gener
- 4. If a framing error is detected (when the stop bit is 0), the FER bit in SSR is set to 1 a data is transferred to RDR. If the RIE bit in SCR3 is set to 1 at this time, an ERI interequest is generated.
- 5. If reception is completed successfully, the RDRF bit in SSR is set to 1, and receive of transferred to RDR. If the RIE bit in SCR3 is set to 1 at this time, an RXI interrupt regenerated. Continuous reception is possible because the RXI interrupt routine reads to data transferred to RDR before reception of the next receive data has been completed.

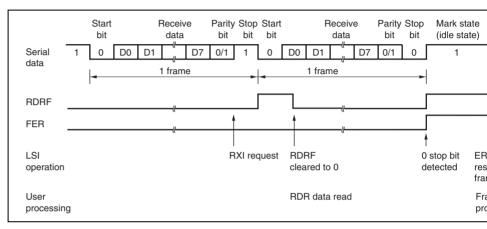
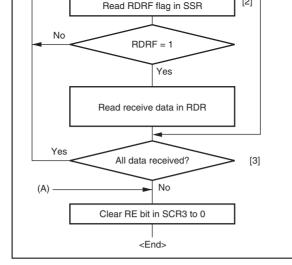


Figure 16.7 Example of SCI3 Reception in Asynchronous Mode (8-Bit Data, Parity, One Stop Bit)


RENESAS

1	1	1	1	Lost	Overrun error + frami parity error
0	0	1	1	Transferred to RDR	Framing error + parity
1	1	0	1	Lost	Overrun error + parity
1	1	1	0	Lost	Overrun error + frami
0	0	0	1	Transferred to RDR	Parity error
0	0	1	0	Transferred to RDR	Framing error

Note: * The RDRF flag retains the state it had before data reception.

Rev. 3.00 Sep. 10, 2007 Page 308 of 528 REJ09B0216-0300

the error. After performing the appropriate error processing, e that the OER, PER, and FER fl all cleared to 0. Reception can resumed if any of these flags a 1. In the case of a framing error break can be detected by readi value of the input port correspond the RxD pin.

Figure 16.8 Sample Serial Reception Data Flowchart (Asynchronous Mode

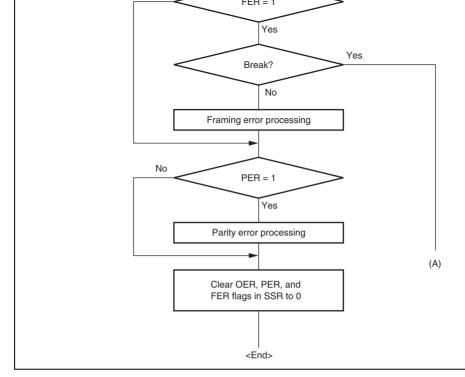
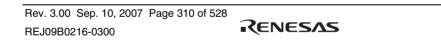



Figure 16.8 Sample Serial Reception Data Flowchart (Asynchronous Mode)

have a double-buffered structure, so data can be read or written during transmission or r enabling continuous data transfer.

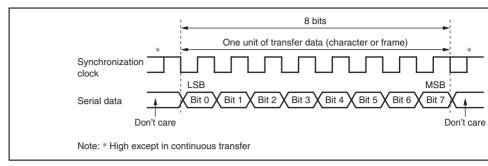


Figure 16.9 Data Format in Clock Synchronous Communication

16.5.1 Clock

Either an internal clock generated by the on-chip baud rate generator or an external synchronization clock input at the SCK3 pin can be selected, according to the setting of bit in SMR and CKE0 and CKE1 bits in SCR3. When the SCI3 is operated on an internative synchronization clock is output from the SCK3 pin. Eight synchronization clock pul output in the transfer of one character, and when no transfer is performed the clock is find

16.5.2 SCI3 Initialization

Before transmitting and receiving data, the SCI3 should be initialized as described in a s flowchart in figure 16.4.

RENESAS

- has been specified. Serial data is transmitted sequentially from the LSB (bit 0), from t pin.
- 4. The SCI3 checks the TDRE flag at the timing for sending the MSB (bit 7).
- 5. If the TDRE flag is cleared to 0, data is transferred from TDR to TSR, and serial trans of the next frame is started.
- 6. If the TDRE flag is set to 1, the TEND flag in SSR is set to 1, and the TDRE flag mathematicate of the last bit. If the TEIE bit in SCR3 is set to 1 at this time, a TEI in request is generated.
- 7. The SCK3 pin is fixed high at the end of transmission.

Figure 16.11 shows a sample flow chart for serial data transmission. Even if the TDRE fl cleared to 0, transmission will not start while a receive error flag (OER, FER, or PER) is Make sure that the receive error flags are cleared to 0 before starting transmission.

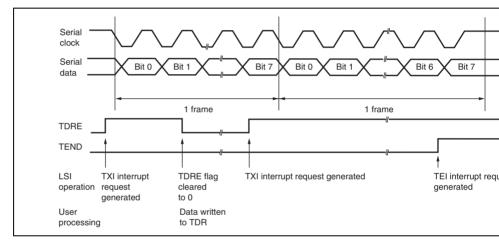


Figure 16.10 Example of SCI3 Transmission in Clock Synchronous Mode

Rev. 3.00 Sep. 10, 2007 Page 312 of 528 REJ09B0216-0300

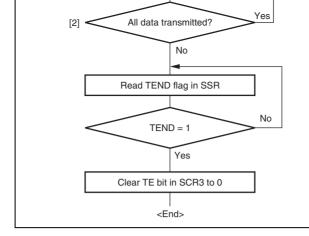


Figure 16.11 Sample Serial Transmission Flowchart (Clock Synchronous M

- RDRF flag remains to be set to 1.
- 4. If reception is completed successfully, the RDRF bit in SSR is set to 1, and receive dat transferred to RDR. If the RIE bit in SCR3 is set to 1 at this time, an RXI interrupt received generated.

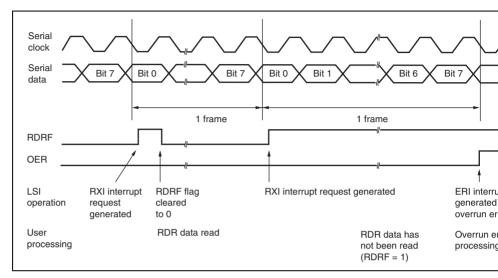
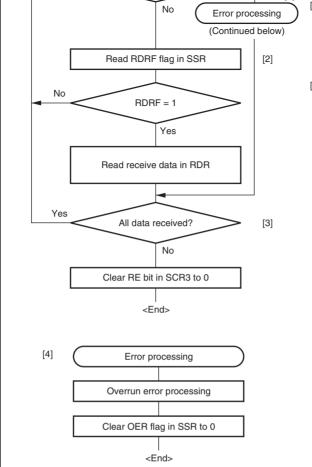



Figure 16.12 Example of SCI3 Reception in Clock Synchronous Mode

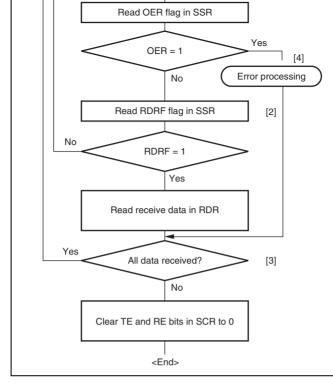

- [3] To continue serial reception, before MSB (bit 7) of the current frame is reading the RDRF flag and reading should be finished. When data is re RDR, the RDRF flag is automaticall cleared to 0.
- [4] If an overrun error occurs, read the flag in SSR, and after performing the appropriate error processing, clear t flag to 0. Reception cannot be resu the OER flag is set to 1.

Figure 16.13 Sample Serial Reception Flowchart (Clock Synchronous Mod

Rev. 3.00 Sep. 10, 2007 Page 316 of 528 REJ09B0216-0300

reading the RDRF flag, reading Also, before the MSB (bit 7) of current frame is transmitted, re from the TDRE flag to confirm writing is possible. Then write TDR.

When data is written to TDR, ti TDRE flag is automatically clea 0. When data is read from RDF RDRF flag is automatically clea 0.

[4] If an overrun error occurs, read OER flag in SSR, and after performing the appropriate error processing, clear the OER flag Transmission/reception cannot resumed if the OER flag is set For overrun error processing, s figure 16.13.

Figure 16.14 Sample Flowchart of Simultaneous Serial Transmit and Receive Op (Clock Synchronous Mode)

Renesas

communication using the multiprocessor format. The transmitting station first sends the I of the receiving station with which it wants to perform serial communication as data with multiprocessor bit added. It then sends transmit data as data with a 0 multiprocessor bit ad with a 1 multiprocessor bit is received, the receiving station compares that dat own ID. The station whose ID matches then receives the data sent next. Stations whose II match continue to skip data until data with a 1 multiprocessor bit is again received.

The SCI3 uses the MPIE bit in SCR3 to implement this function. When the MPIE bit is s transfer of receive data from RSR to RDR, error flag detection, and setting the SSR status RDRF, FER, and OER, to 1, are inhibited until data with a 1 multiprocessor bit is received reception of a receive character with a 1 multiprocessor bit, the MPBR bit in SSR is set to the MPIE bit is automatically cleared, thus normal reception is resumed. If the RIE bit in set to 1 at this time, an RXI interrupt is generated.

When the multiprocessor format is selected, the parity bit setting is rendered invalid. All settings are the same as those in normal asynchronous mode. The clock used for multiprocommunication is the same as that in normal asynchronous mode.

Rev. 3.00 Sep. 10, 2007 Page 318 of 528 REJ09B0216-0300

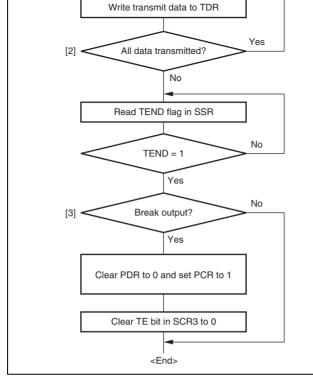
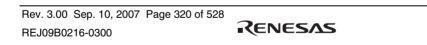
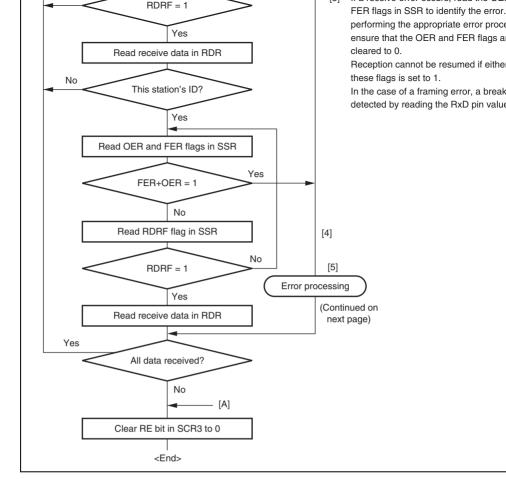


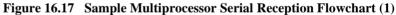
Figure 16.15 Example of Inter-Processor Communication Using Multiprocessor (Transmission of Data H'AA to Receiving Station A)

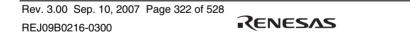
16.6.1 Multiprocessor Serial Data Transmission


Figure 16.16 shows a sample flowchart for multiprocessor serial data transmission. For a transmission cycle, set the MPBT bit in SSR to 1 before transmission. For a data transm cycle, clear the MPBT bit in SSR to 0 before transmission. All other SCI3 operations are as those in asynchronous mode.

transmission, set the port PCR to 1, clear PDR to 0, then clear the TE bit in SCR3 to 0.


Figure 16.16 Sample Multiprocessor Serial Transmission Flowchart





Rev. 3.00 Sep. 10, 2007 Pag

REJ09

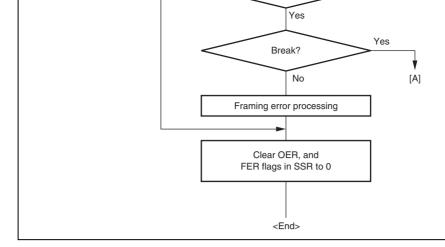


Figure 16.17 Sample Multiprocessor Serial Reception Flowchart (2)

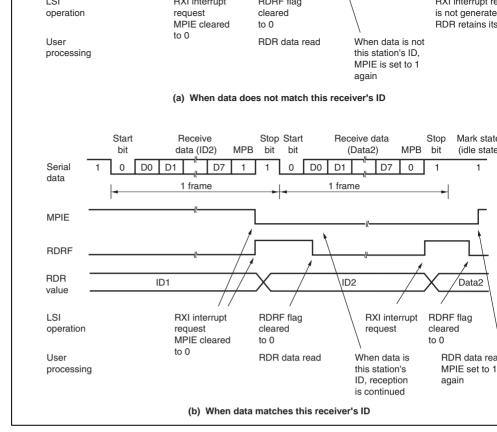


Figure 16.18 Example of SCI3 Reception Using Multiprocessor Format (Example with 8-Bit Data, Multiprocessor Bit, One Stop Bit)

Rev. 3.00 Sep. 10, 2007 Page 324 of 528 REJ09B0216-0300

RENESAS

Transmission End	TEI	Setting TEND in SSR
Receive Error	ERI	Setting OER, FER, and PER in SSR

The initial value of the TDRE flag in SSR is 1. Thus, when the TIE bit in SCR3 is set to transferring the transmit data to TDR, a TXI interrupt request is generated even if the trais not ready. The initial value of the TEND flag in SSR is 1. Thus, when the TEIE bit in set to 1 before transferring the transmit data to TDR, a TEI interrupt request is generated the transmit data has not been sent. It is possible to make use of the most of these interrupt requests efficiently by transferring the transmit data to TDR in the interrupt routine. To generation of these interrupt requests (TXI and TEI), set the enable bits (TIE and TEIE) correspond to these interrupt requests to 1, after transferring the transmit data to TDR.

When the TXD or TXD2 bit in PMR1 is 1, the TxD pin is used as an I/O port whose dire (input or output) and level are determined by PCR and PDR. This can be used to set the T to mark state (high level) or send a break during serial data transmission. To maintain the communication line at mark state until TE is set to 1, set both PCR and PDR to 1, and the TXD bit to 1. At this point, the TxD pin becomes an I/O port, and 1 is output from the TxT o send a break during serial transmission, first set PCR to 1 and clear PDR to 0, and the TXD bit to 1. At this point, the TxD pin becomes an I/O port regardless of the current transmission state, and 0 is output from the TxD pin.

16.8.3 Receive Error Flags and Transmit Operations (Clock Synchronous Mode

Transmission cannot be started when a receive error flag (OER, PER, or FER) is set to 1, the TDRE flag is cleared to 0. Be sure to clear the receive error flags to 0 before starting transmission. Note also that receive error flags cannot be cleared to 0 even if the RE bit is to 0.

Rev. 3.00 Sep. 10, 2007 Page 326 of 528 REJ09B0216-0300

... Formula (1)

[Legend]

- N: Ratio of bit rate to clock (N = 16)
- D: Clock duty (D = 0.5 to 1.0)
- L: Frame length (L = 9 to 12)
- F: Absolute value of clock rate deviation

Assuming values of F (absolute value of clock rate deviation) = 0 and D (clock duty) = (1), the reception margin can be given by the formula.

 $M = \{0.5 - 1/(2 \times 16)\} \times 100 \ [\%] = 46.875\%$

However, this is only the computed value, and a margin of 20% to 30% should be allow system design.

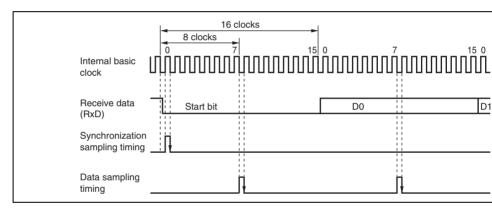


Figure 16.19 Receive Data Sampling Timing in Asynchronous Mode

RENESAS

Rev. 3.00 Sep. 10, 2007 Page 328 of 528 REJ09B0216-0300

- Selection of I²C format or clock synchronous serial format
- Continuous transmission/reception

Since the shift register, transmit data register, and receive data register are independe each other, the continuous transmission/reception can be performed.

I²C bus format

- Start and stop conditions generated automatically in master mode
- Selection of acknowledge output levels when receiving
- Automatic loading of acknowledge bit when transmitting
- Bit synchronization/wait function

In master mode, the state of SCL is monitored per bit, and the timing is synchronized automatically.

If transmission/reception is not yet possible, set the SCL to low until preparations are completed.

• Six interrupt sources

Transmit data empty (including slave-address match), transmit end, receive data full slave-address match), arbitration lost, NACK detection, and stop condition detection

• Direct bus drive

Two pins, SCL and SDA pins, function as NMOS open-drain outputs when the bus of function is selected.

Clock synchronous format

• Four interrupt sources

Transmit-data-empty, transmit-end, receive-data-full, and overrun error

IFIIC10A_000020020200

RENESAS

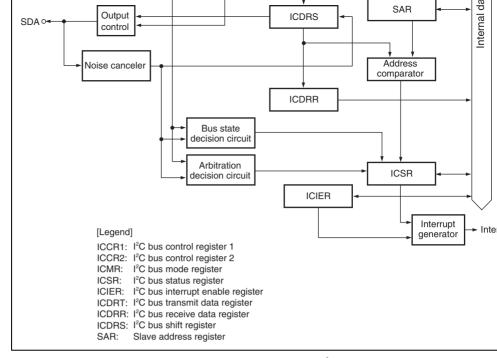


Figure 17.1 Block Diagram of I²C Bus Interface 2

Rev. 3.00 Sep. 10, 2007 Page 330 of 528 REJ09B0216-0300

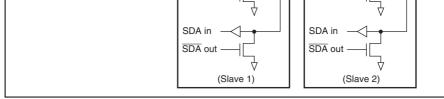


Figure 17.2 External Circuit Connections of I/O Pins

17.2 Input/Output Pins

Table 17.1 summarizes the input/output pins used by the I²C bus interface 2.

Table 17.1I²C Bus Interface Pins

Name	Abbreviation	I/O	Function
Serial clock	SCL	I/O	IIC serial clock input/output
Serial data	SDA	I/O	IIC serial data input/output

- I²C bus transmit data register (ICDRT)
- I²C bus receive data register (ICDRR)
- I²C bus shift register (ICDRS)

17.3.1 I²C Bus Control Register 1 (ICCR1)

ICCR1 enables or disables the I²C bus interface 2, controls transmission or reception, and master or slave mode, transmission or reception, and transfer clock frequency in master n

Bit	Bit Name	Initial Value	R/W	Description
7	ICE	0	R/W	I ² C Bus Interface Enable
				0: This module is halted. (SCL and SDA pins are port function.)
				1: This bit is enabled for transfer operations. (SC SDA pins are bus drive state.)
6	RCVD	0	R/W	Reception Disable
				This bit enables or disables the next operation w is 0 and ICDRR is read.
				0: Enables next reception
				1: Disables next reception

Rev. 3.00 Sep. 10, 2007 Page 332 of 528 REJ09B0216-0300

				occurs in master mode with the clock synchron format, MST is cleared to 0 and slave receive r entered.
				Operating modes are described below accordir and TRS combination. When clock synchronou format is selected and MST is 1, clock is output
				00: Slave receive mode
				01: Slave transmit mode
				10: Master receive mode
				11: Master transmit mode
3	CKS3	0	R/W	Transfer Clock Select 3 to 0
2	CKS2	0	R/W	These bits should be set according to the nece
1	CKS1	0	R/W	transfer rate (see table 17.2) in master mode. In mode, these bits are used for reservation of the
0	CKS0	0	R/W	time in transmit mode. The time is 10 t_{cyc} when and 20 t_{cyc} when CKS3 = 1.

Renesas

		1	0	¢/112	44.6 kHz	71.4 kHz	89.3 kHz	143 kHz	1
_			1	φ/128	39.1 kHz	62.5 kHz	78.1 kHz	125 kHz	1
1	0	0	0	φ / 56	89.3 kHz	143 kHz	179 kHz	286 kHz	3
			1	φ/ 8 0	62.5 kHz	100 kHz	125 kHz	200 kHz	2
		1	0	φ/96	52.1 kHz	83.3 kHz	104 kHz	167 kHz	2
			1	φ/128	39.1 kHz	62.5 kHz	78.1 kHz	125 kHz	1
	1	0	0	φ /16 0	31.3 kHz	50.0 kHz	62.5 kHz	100 kHz	1:
			1	ф/200	25.0 kHz	40.0 kHz	50.0 kHz	80.0 kHz	1
		1	0	ф/224	22.3 kHz	35.7 kHz	44.6 kHz	71.4 kHz	8
			1	ф/256	19.5 kHz	31.3 kHz	39.1 kHz	62.5 kHz	7

Rev. 3.00 Sep. 10, 2007 Page 334 of 528 REJ09B0216-0300

				this bit has no meaning. With the I ² C bus forma set to 1 when the SDA level changes from high under the condition of SCL = high, assuming th condition has been issued. This bit is cleared to the SDA level changes from low to high under t condition of SCL = high, assuming that the stop has been issued. Write 1 to BBSY and 0 to SCI a start condition. Follow this procedure when al transmitting a start condition. Write 0 in BBSY a SCP to issue a stop condition. To issue start/sto conditions, use the MOV instruction.
6	SCP	1	W	Start/Stop Issue Condition Disable
				The SCP bit controls the issue of start/stop con master mode.
				To issue a start condition, write 1 in BBSY and A retransmit start condition is issued in the sam issue a stop condition, write 0 in BBSY and 0 in This bit is always read as 1. If 1 is written, the c stored.
5	SDAO	1	R/W	SDA Output Value Control
				This bit is used with SDAOP when modifying ou of SDA. This bit should not be manipulated duri transfer.
				0: When reading, SDA pin outputs low.
				When writing, SDA pin is changed to output
				1: When reading, SDA pin outputs high.
				When writing, SDA pin is changed to output (outputs high by external pull-up resistance).

RENESAS

				This bit is always read as 1, and cannot be modi
1 IIC	IICRST	0	R/W	IIC Control Part Reset
				This bit resets the control part except for I ² C regit this bit is set to 1 when hang-up occurs because communication failure during I ² C operation, I ² C c part can be reset without setting ports and initialit registers.
0	_	1	_	Reserved
				This bit is always read as 1, and cannot be modi

17.3.3 I²C Bus Mode Register (ICMR)

ICMR selects whether the MSB or LSB is transferred first, performs master mode wait co and selects the transfer bit count.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	MLS	0	R/W	MSB-First/LSB-First Select
				0: MSB-first
				1: LSB-first
				Set this bit to 0 when the l^2C bus format is used.

Rev. 3.00 Sep. 10, 2007 Page 336 of 528 REJ09B0216-0300

5, 4	—	All 1		Reserved
				These bits are always read as 1, and cannot be
3	BCWP	1	R/W	BC Write Protect
				This bit controls the BC2 to BC0 modifications. modifying BC2 to BC0, this bit should be cleare use the MOV instruction. In clock synchronous mode, BC should not be modified.
				0: When writing, values of BC2 to BC0 are set.
				1: When reading, 1 is always read.
				When writing, settings of BC2 to BC0 are inv
-				

synchronous seria modified.	I format, these bits should not
I ² C Bus Format	Clock Synchronous Serial
000: 9 bits	000: 8 bits
001: 2 bits	001: 1 bits
010: 3 bits	010: 2 bits
011: 4 bits	011: 3 bits
100: 5 bits	100: 4 bits
101: 6 bits	101: 5 bits
110: 7 bits	110: 6 bits
 111: 8 bits	111: 7 bits

17.3.4 I²C Bus Interrupt Enable Register (ICIER)

ICIER enables or disables interrupt sources and acknowledge bits, sets acknowledge bits transferred, and confirms acknowledge bits to be received.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	TIE	0	R/W	Transmit Interrupt Enable
				When the TDRE bit in ICSR is set to 1, this bit end disables the transmit data empty interrupt (TXI).
				0: Transmit data empty interrupt request (TXI) is
				1: Transmit data empty interrupt request (TXI) is

Rev. 3.00 Sep. 10, 2007 Page 338 of 528 REJ09B0216-0300

				request (RXI) and the overrun error interrupt re (ERI) with the clock synchronous format, when data is transferred from ICDRS to ICDRR and t bit in ICSR is set to 1. RXI can be canceled by the RDRF or RIE bit to 0.
				0: Receive data full interrupt request (RXI) and error interrupt request (ERI) with the clock synchronous format are disabled.
				 Receive data full interrupt request (RXI) and error interrupt request (ERI) with the clock synchronous format are enabled.
4	NAKIE	0	R/W	NACK Receive Interrupt Enable
				This bit enables or disables the NACK receive request (NAKI) and the overrun error (setting o bit in ICSR) interrupt request (ERI) with the clor synchronous format, when the NACKF and AL ICSR are set to 1. NAKI can be canceled by cle NACKF, OVE, or NAKIE bit to 0.
				0: NACK receive interrupt request (NAKI) is dis
				1: NACK receive interrupt request (NAKI) is en
3	STIE	0	R/W	Stop Condition Detection Interrupt Enable
				0: Stop condition detection interrupt request (S disabled.
				1: Stop condition detection interrupt request (S enabled.

Renesas

				0: Receive acknowledge = 0
				1: Receive acknowledge = 1
0	ACKBT	0	R/W	Transmit Acknowledge
				In receive mode, this bit specifies the bit to be se acknowledge timing.
				0: 0 is sent at the acknowledge timing.
				1: 1 is sent at the acknowledge timing.

17.3.5 I²C Bus Status Register (ICSR)

ICSR performs confirmation of interrupt request flags and status.

Bit	Bit Name	Initial Value	R/W	Description
7	TDRE	0	R/W	Transmit Data Register Empty
				[Setting conditions]
				 When data is transferred from ICDRT to ICD ICDRT becomes empty
				When TRS is set
				When a start condition (including re-transfer) been issued
				When transmit mode is entered from receive slave mode
				[Clearing conditions]
				• When 0 is written in TDRE after reading TDF
				• When data is written to ICDRT with an instru
Rev. 3.0	0 Sep. 10, 20	07 Page 340	of 528	

Rev. 3.00 Sep. 10, 2007 Page 340 of 528 REJ09B0216-0300

				When data is written to ICDRT with an instr	
5	RDRF	0	R/W	Receive Data Register Full	
				[Setting condition]	
				When a receive data is transferred from ICE ICDRR	
				[Clearing conditions]	
				When 0 is written in RDRF after reading RD	
				When ICDRR is read with an instruction	
4	NACKF	0	R/W	No Acknowledge Detection Flag	
				[Setting condition]	
				• When no acknowledge is detected from the	
				device in transmission while the ACKE bit in	
				1	
				[Clearing condition]	
				When 0 is written in NACKF after reading N	

				 The first byte in the slave address matche address set in the SAR [Clearing condition]
				 When 0 is written in STOP after reading STC
2	AL/OVE	0	R/W	Arbitration Lost Flag/Overrun Error Flag
				This flag indicates that arbitration was lost in ma mode with the l^2C bus format and that the final b been received while RDRF = 1 with the clock synchronous format.
				When two or more master devices attempt to se bus at nearly the same time, if the l ² C bus interfa detects data differing from the data it sent, it sets to indicate that the bus has been taken by anoth master.
				[Setting conditions]
				 If the internal SDA and SDA pin disagree at t SCL in master transmit mode
				 When the SDA pin outputs high in master more a start condition is detected
				• When the final bit is received with the clock synchronous format while RDRF = 1
				[Clearing condition]
				When 0 is written in AL/OVE after reading AL

Rev. 3.00 Sep. 10, 2007 Page 342 of 528 REJ09B0216-0300

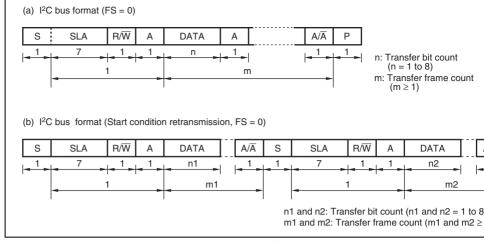
				[Clearing condition]
				When 0 is written in AAS after reading AAS
0	ADZ	0	R/W	General Call Address Recognition Flag
				This bit is valid in I^2C bus format slave receive r
				[Setting condition]
				When the general call address is detected i receive mode
				[Clearing condition]
				• When 0 is written in ADZ after reading ADZ

17.3.6 Slave Address Register (SAR)

SAR selects the communication format and sets the slave address. When the chip is in s with the I^2C bus format, if the upper 7 bits of SAR match the upper 7 bits of the first fra received after a start condition, the chip operates as the slave device.

Bit	Bit Name	Initial Value	R/W	Description
7 to 1	SVA6 to	All 0	R/W	Slave Address 6 to 0
	SVA0			These bits set a unique address in bits SVA6 to differing form the addresses of other slave devi connected to the I ² C bus.
0	FS	0	R/W	Format Select
				0: I ² C bus format is selected.
				1: Clock synchronous serial format is selected.

RENESAS


ICDRR is an 8-bit register that stores the receive data. When data of one byte is received, transfers the receive data from ICDRS to ICDRR and the next data can be received. ICDI receive-only register, therefore the CPU cannot write to this register. The initial value of is H'FF.

17.3.9 I²C Bus Shift Register (ICDRS)

ICDRS is a register that is used to transfer/receive data. In transmission, data is transferred ICDRT to ICDRS and the data is sent from the SDA pin. In reception, data is transferred ICDRS to ICDRR after data of one byte is received. This register cannot be read directly CPU.

Rev. 3.00 Sep. 10, 2007 Page 344 of 528 REJ09B0216-0300

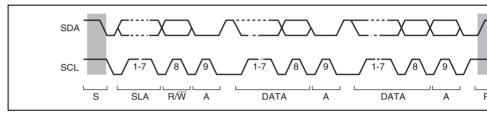


Figure 17.4 I²C Bus Timing

In master transmit mode, the master device outputs the transmit clock and transmit data, a slave device returns an acknowledge signal. For master transmit mode operation timing, r figures 17.5 and 17.6. The transmission procedure and operations in master transmit mod described below.

- 1. Set the ICE bit in ICCR1 to 1. Set the MLS and WAIT bits in ICMR and the CKS3 to bits in ICCR1 to 1. (Initial setting)
- 2. Read the BBSY flag in ICCR2 to confirm that the bus is free. Set the MST and TRS & ICCR1 to select master transmit mode. Then, write 1 to BBSY and 0 to SCP using M instruction. (Start condition issued) This generates the start condition.
- 3. After confirming that TDRE in ICSR has been set, write the transmit data (the first by show the slave address and R/\overline{W}) to ICDRT. At this time, TDRE is automatically clear and data is transferred from ICDRT to ICDRS. TDRE is set again.
- 4. When transmission of one byte data is completed while TDRE is 1, TEND in ICSR is at the rise of the 9th transmit clock pulse. Read the ACKBR bit in ICIER, and confirm slave device has been selected. Then, write second byte data to ICDRT. When ACKB the slave device has not been acknowledged, so issue the stop condition. To issue the condition, write 0 to BBSY and SCP using MOV instruction. SCL is fixed low until the transmit data is prepared or the stop condition is issued.
- 5. The transmit data after the second byte is written to ICDRT every time TDRE is set.
- 6. Write the number of bytes to be transmitted to ICDRT. Wait until TEND is set (the er byte data transmission) while TDRE is 1, or wait for NACK (NACKF in ICSR = 1) fr receive device while ACKE in ICIER is 1. Then, issue the stop condition to clear TEN NACKF.
- 7. When the STOP bit in ICSR is set to 1, the operation returns to the slave receive mode

Rev. 3.00 Sep. 10, 2007 Page 346 of 528 REJ09B0216-0300

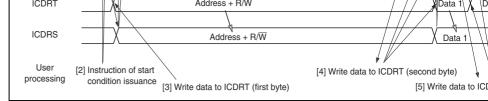


Figure 17.5 Master Transmit Mode Operation Timing (1)

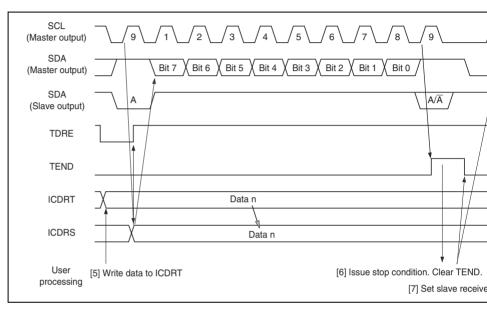


Figure 17.6 Master Transmit Mode Operation Timing (2)

- level specified by ACKBT in ICIER to SDA, at the 9th receive clock pulse.
- 3. After the reception of first frame data is completed, the RDRF bit in ICST is set to 1 a of 9th receive clock pulse. At this time, the receive data is read by reading ICDRR, ar is cleared to 0.
- 4. The continuous reception is performed by reading ICDRR every time RDRF is set. If receive clock pulse falls after reading ICDRR by the other processing while RDRF is fixed low until ICDRR is read.
- 5. If next frame is the last receive data, set the RCVD bit in ICCR1 to 1 before reading I This enables the issuance of the stop condition after the next reception.
- 6. When the RDRF bit is set to 1 at rise of the 9th receive clock pulse, issue the stage co
- 7. When the STOP bit in ICSR is set to 1, read ICDRR. Then clear the RCVD bit to 0.
- 8. The operation returns to the slave receive mode.

Rev. 3.00 Sep. 10, 2007 Page 348 of 528 REJ09B0216-0300

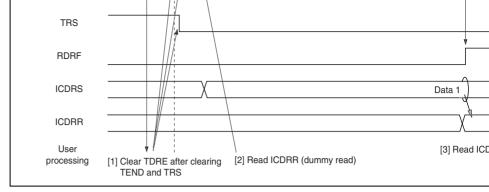


Figure 17.7 Master Receive Mode Operation Timing (1)

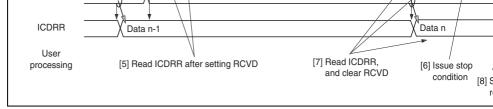


Figure 17.8 Master Receive Mode Operation Timing (2)

17.4.4 Slave Transmit Operation

In slave transmit mode, the slave device outputs the transmit data, while the master device the receive clock and returns an acknowledge signal. For slave transmit mode operation refer to figures 17.9 and 17.10.

The transmission procedure and operations in slave transmit mode are described below.

- Set the ICE bit in ICCR1 to 1. Set the MLS and WAIT bits in ICMR and the CKS3 to bits in ICCR1 to 1. (Initial setting) Set the MST and TRS bits in ICCR1 to select slave mode, and wait until the slave address matches.
- 2. When the slave address matches in the first frame following detection of the start cont the slave device outputs the level specified by ACKBT in ICIER to SDA, at the rise of clock pulse. At this time, if the 8th bit data (R/\overline{W}) is 1, the TRS and ICSR bits in ICC set to 1, and the mode changes to slave transmit mode automatically. The continuous transmission is performed by writing transmit data to ICDRT every time TDRE is set.
- 3. If TDRE is set after writing last transmit data to ICDRT, wait until TEND in ICSR is with TDRE = 1. When TEND is set, clear TEND.
- 4. Clear TRS for the end processing, and read ICDRR (dummy read). SCL is free.
- 5. Clear TDRE.

Rev. 3.00 Sep. 10, 2007 Page 350 of 528 REJ09B0216-0300

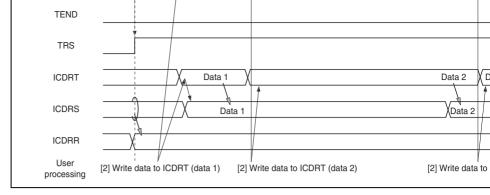


Figure 17.9 Slave Transmit Mode Operation Timing (1)

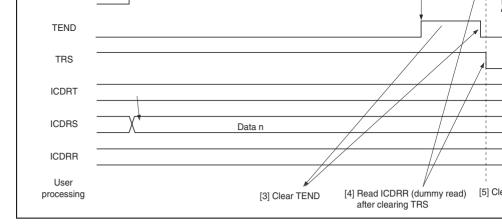


Figure 17.10 Slave Transmit Mode Operation Timing (2)

17.4.5 Slave Receive Operation

In slave receive mode, the master device outputs the transmit clock and transmit data, and slave device returns an acknowledge signal. For slave receive mode operation timing, refigures 17.11 and 17.12. The reception procedure and operations in slave receive mode as described below.

- Set the ICE bit in ICCR1 to 1. Set the MLS and WAIT bits in ICMR and the CKS3 to bits in ICCR1 to 1. (Initial setting) Set the MST and TRS bits in ICCR1 to select slave mode, and wait until the slave address matches.
- 2. When the slave address matches in the first frame following detection of the start con the slave device outputs the level specified by ACKBT in ICIER to SDA, at the rise of clock pulse. At the same time, RDRF in ICSR is set to read ICDRR (dummy read). (S read data show the slave address and R/\overline{W} , it is not used.)

Rev. 3.00 Sep. 10, 2007 Page 352 of 528 REJ09B0216-0300

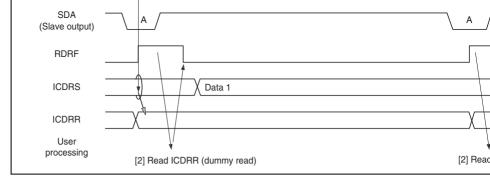


Figure 17.11 Slave Receive Mode Operation Timing (1)

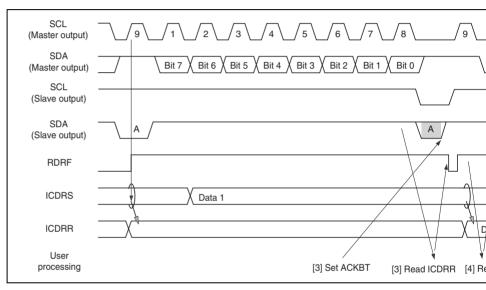


Figure 17.12 Slave Receive Mode Operation Timing (2)

Rev. 3.00

Rev. 3.00 Sep. 10, 2007 Pag

REJ09

MSB first or LSB first. The output level of SDA can be changed during the transfer wait, SDAO bit in ICCR2.

SCL	
SDA	Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

Figure 17.13 Clock Synchronous Serial Transfer Format

Rev. 3.00 Sep. 10, 2007 Page 354 of 528 REJ09B0216-0300

transferred from ICDRT to ICDRS, and TDRE is set automatically. The continuous transmission is performed by writing data to ICDRT every time TDRE is set. When from transmit mode to receive mode, clear TRS while TDRE is 1.

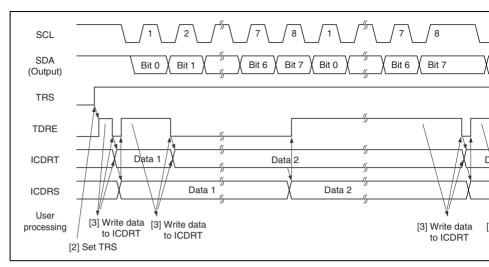


Figure 17.14 Transmit Mode Operation Timing

- continually output. The continuous reception is performed by reading ICDRR every ti RDRF is set. When the 8th clock is risen while RDRF is 1, the overrun is detected and AL/OVE in ICSR is set. At this time, the previous reception data is retained in ICDRI
- 4. To stop receiving when MST = 1, set RCVD in ICCR1 to 1, then read ICDRR. Then, fixed high after receiving the next byte data.

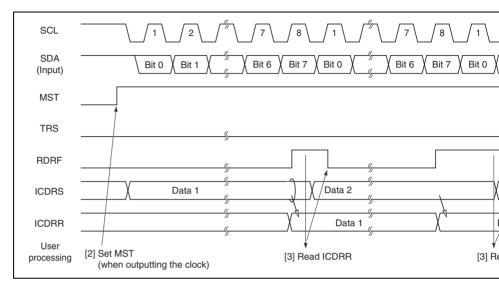


Figure 17.15 Receive Mode Operation Timing

Rev. 3.00 Sep. 10, 2007 Page 356 of 528 REJ09B0216-0300

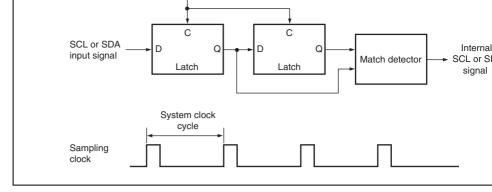
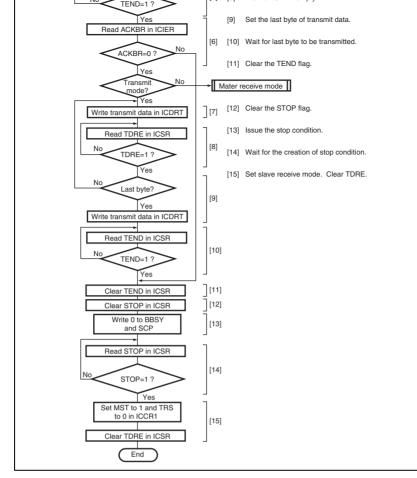
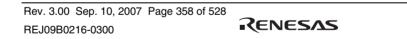



Figure 17.16 Block Diagram of Noise Filter


17.4.8 Example of Use

Flowcharts in respective modes that use the I²C bus interface are shown in figures 17.17

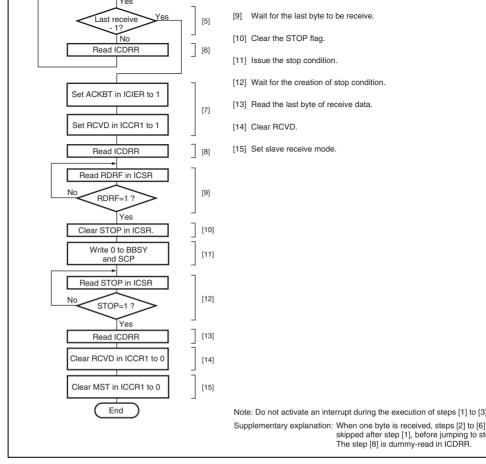


Figure 17.18 Sample Flowchart for Master Receive Mode

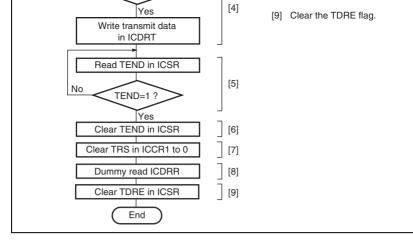
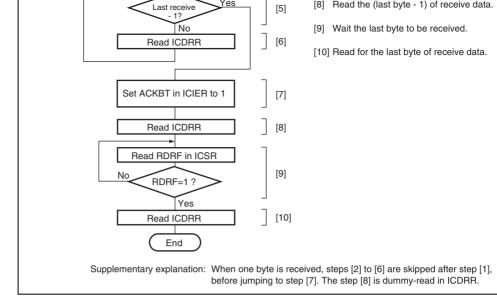
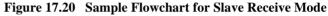
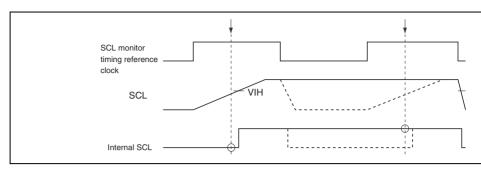
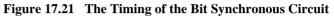




Figure 17.19 Sample Flowchart for Slave Transmit Mode

Rev. 3.00 Sep. 10, 2007 Page 360 of 528 REJ09B0216-0300


Transmit End	TEI	(TEND=1) • (TEIE=1)	0	0
Receive Data Full	RXI	(RDRF=1) • (RIE=1)	0	0
STOP Recognition	STPI	(STOP=1) • (STIE=1)	0	x
NACK Receive	NAKI	{(NACKF=1)+(AL=1)} • (NAKIE=1)	0	x
Arbitration Lost/Overrun Error	_		0	0


When interrupt conditions described in table 17.3 are 1 and the I bit in CCR is 0, the CPU executes an interrupt exception processing. Interrupt sources should be cleared in the exc processing. TDRE and TEND are automatically cleared to 0 by writing the transmit data ICDRT. RDRF are automatically cleared to 0 by reading ICDRR. TDRE is set to 1 again same time when transmit data is written to ICDRT. When TDRE is cleared to 0, then an e data of one byte may be transmitted.

Rev. 3.00 Sep. 10, 2007 Page 362 of 528 REJ09B0216-0300

Figure 17.21 shows the timing of the bit synchronous circuit and table 17.4 shows the tim SCL output changes from low to Hi-Z then SCL is monitored.

Table 17.4	Time for	Monitoring	SCL
-------------------	----------	------------	-----

CKS3	CKS2	Time for Monitoring SCL	
0	0	7.5 tcyc	
	1	19.5 tcyc	
1	0	17.5 tcyc	
	1	41.5 tcyc	

RENESAS

- Circuit, by the load of the SCL bus (load capacitance of pun-up resistance)
- 2. When the bit synchronous circuit is activated by extending the low period of eighth as clocks, that is driven by the slave device

17.7.2 WAIT Setting in I²C Bus Mode Register (ICMR)

If the WAIT bit is set to 1, and the SCL signal is driven low for two or more transfer cloc slave device at the eighth and ninth clocks, the high period of ninth clock may be shorten avoid this, set the WAIT bit in ICMR to 0.

Rev. 3.00 Sep. 10, 2007 Page 364 of 528 REJ09B0216-0300

(2) Restriction on Use of Bit Manipulation Instructions to Set MST and TRS

When master transmission is selected by consecutively manipulating the MST and TRS multi-master usage, an arbitration loss during execution of the bit-manipulation instruct. TRS leads to the contradictory situation where AL in ICSR is 1 in master transmit mode 1, TRS = 1).

Ways to avoid this effect are listed below.

- Use the MOV instruction to set MST and TRS in multi-master usage.
- When arbitration is lost, confirm that MST = 0 and TRS = 0. If the setting of MST = TRS = 0 is not confirmed, set MST = 0 and TRS = 0 again.

17.7.4 Continuous Data Reception in Master Receive Mode

In master receive mode, when SCL is fixed low on the falling edge of the 8th clock while RDRF bit is set to 1 and ICDRR is read around the falling edge of the 8th clock, the clock fixed low in the 8th clock of the next round of data reception. The SCL is then released fixed state without reading ICDRR and the 9th clock is output. As a result, some receive lost.

Ways to avoid this phenomenon are listed below.

- Read ICDRR in master receive mode before the rising edge of the 8th clock.
- Set RCVD to 1 in master receive mode and perform communication in units of one b

Renesas

Rev. 3.00 Sep. 10, 2007 Page 366 of 528 REJ09B0216-0300

- Conversion time: at least 3.5 µs per channel (at 20-MHz operation)
- Two operating modes
 - Single mode: Single-channel A/D conversion
 - Scan mode: Continuous A/D conversion on 1 to 4 channels
- Four data registers
 - Conversion results are held in a data register for each channel
- Sample-and-hold function
- Two conversion start methods
 - Software
 - External trigger signal
- Interrupt request
 - An A/D conversion end interrupt request (ADI) can be generated

ADCMS32A_000020020200

RENESAS

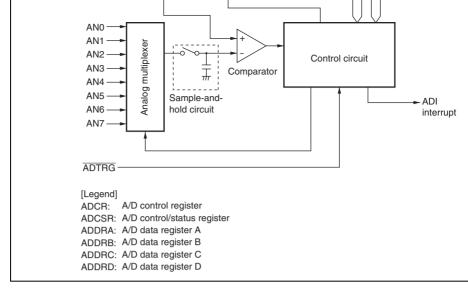


Figure 18.1 Block Diagram of A/D Converter

Rev. 3.00 Sep. 10, 2007 Page 368 of 528 REJ09B0216-0300

Analog input pin 0	AN0	Input	Group 0 analog input
Analog input pin 1	AN1	Input	_
Analog input pin 2	AN2	Input	_
Analog input pin 3	AN3	Input	_
Analog input pin 4	AN4	Input	Group 1 analog input
Analog input pin 5	AN5	Input	_
Analog input pin 6	AN6	Input	_
Analog input pin 7	AN7	Input	_
A/D external trigger input pin	ADTRG	Input	External trigger input for A/D conversion

Renesas

18.3.1 A/D Data Registers A to D (ADDRA to ADDRD)

There are four 16-bit read-only ADDR registers; ADDRA to ADDRD, used to store the r A/D conversion. The ADDR registers, which store a conversion result for each analog in channel, are shown in table 18.2.

The converted 10-bit data is stored in bits 15 to 6. The lower 6 bits are always read as 0.

The data bus width between the CPU and the A/D converter is 8 bits. The upper byte can directly from the CPU, however the lower byte should be read via a temporary register. T temporary register contents are transferred from the ADDR when the upper byte data is r When reading ADDR, read the upper byte first then the lower one, or read in word units. ADDR is initialized to H'0000.

Table 18.2 Analog Input Channels and Corresponding ADDR Registers

Analog Input Channel		
Group 0	Group 1	A/D Data Register to Be Stored Results of A/D Conversi
AN0	AN4	ADDRA
AN1	AN5	ADDRB
AN2	AN6	ADDRC
AN3	AN7	ADDRD

Analog Input Channel

Rev. 3.00 Sep. 10, 2007 Page 370 of 528 REJ09B0216-0300

				selected in scan mode
				[Clearing condition]
				• When 0 is written after reading ADF = 1
6	ADIE	0	R/W	A/D Interrupt Enable
				A/D conversion end interrupt request (ADI) is er ADF when this bit is set to 1
5	ADST	0	R/W	A/D Start
				Setting this bit to 1 starts A/D conversion. In sin this bit is cleared to 0 automatically when conver the specified channel is complete. In scan mode conversion continues sequentially on the specifi channels until this bit is cleared to 0 by software a transition to standby mode.
4	SCAN	0	R/W	Scan Mode
				Selects single mode or scan mode as the A/D c operating mode.
				0: Single mode
				1: Scan mode
3	CKS	0	R/W	Clock Select
				Selects the A/D conversions time.
				0: Conversion time = 134 states (max.)
				1: Conversion time = 70 states (max.)
				Clear the ADST bit to 0 before switching the con time.

Renesas

101: AN5	101: AN4 and AN5
110: AN6	110: AN4 to AN6
111: AN7	111: AN4 to AN7

18.3.3 A/D Control Register (ADCR)

ADCR enables A/D conversion started by an external trigger signal.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	TRGE	0	R/W	Trigger Enable
				A/D conversion is started at the falling edge and edge of the external trigger signal (ADTRG) when set to 1.
				The selection between the falling edge and rising the external trigger pin (\overline{ADTRG}) conforms to the bit in the interrupt edge select register 2 (IEGR2)
6 to 1	_	All 1	_	Reserved
				These bits are always read as 1.
0	_	0	R/W	Reserved
				Do not set this bit to 1, though the bit is readable/

Rev. 3.00 Sep. 10, 2007 Page 372 of 528 REJ09B0216-0300

channel as follows:

- 1. A/D conversion is started when the ADST bit in ADCSR is set to 1, according to sol external trigger input.
- 2. When A/D conversion is completed, the result is transferred to the corresponding A/ register of the channel.
- 3. On completion of conversion, the ADF bit in ADCSR is set to 1. If the ADIE bit is s this time, an ADI interrupt request is generated.
- 4. The ADST bit remains set to 1 during A/D conversion. When A/D conversion ends, bit is automatically cleared to 0 and the A/D converter enters the wait state.

18.4.2 Scan Mode

In scan mode, A/D conversion is performed sequentially for the analog input of the spec channels (four channels maximum) as follows:

- 1. When the ADST bit in ADCSR is set to 1 by software or external trigger input, A/D conversion starts on the first channel in the group (AN0 when CH2 = 0, AN4 whe
- 2. When A/D conversion for each channel is completed, the result is sequentially transit the A/D data register corresponding to each channel.
- 3. When conversion of all the selected channels is completed, the ADF flag in ADCSR If the ADIE bit is set to 1 at this time, an ADI interrupt requested is generated. A/D o starts again on the first channel in the group.
- 4. The ADST bit is not automatically cleared to 0. Steps [2] and [3] are repeated as lon. ADST bit remains set to 1. When the ADST bit is cleared to 0, A/D conversion stops

Renesas

In scan mode, the values given in table 18.3 apply to the first conversion time. In the second subsequent conversions, the conversion time is 128 states (fixed) when CKS = 0 and 66 s (fixed) when CKS = 1.

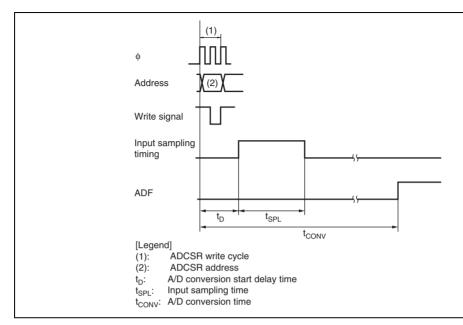


Figure 18.2 A/D Conversion Timing

Rev. 3.00 Sep. 10, 2007 Page 374 of 528 REJ09B0216-0300

10.4.4 External ringger input rinning

A/D conversion can also be started by an external trigger input. When the TRGE bit in Δ set to 1, external trigger input is enabled at the $\overline{\text{ADTRG}}$ pin. A falling edge at the $\overline{\text{ADTR}}$ pin sets the ADST bit in ADCSR to 1, starting A/D conversion. Other operations, in bot and scan modes, are the same as when the bit ADST has been set to 1 by software. Figure shows the timing.

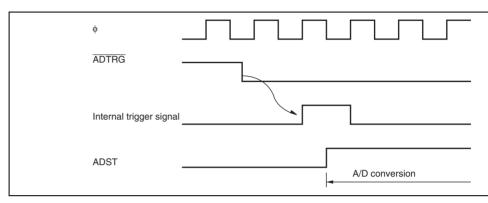


Figure 18.3 External Trigger Input Timing

when the digital output changes from the minimum voltage value 0000000000 to 000 (see figure 18.5).

• Full-scale error

The deviation of the analog input voltage value from the ideal A/D conversion charac when the digital output changes from 1111111110 to 111111111 (see figure 18.5).

• Nonlinearity error

The deviation from the ideal A/D conversion characteristic as the voltage changes fro full scale. This does not include the offset error, full-scale error, or quantization error.

• Absolute accuracy

The deviation between the digital value and the analog input value. Includes offset errors are error, quantization error, and nonlinearity error.

Rev. 3.00 Sep. 10, 2007 Page 376 of 528 REJ09B0216-0300

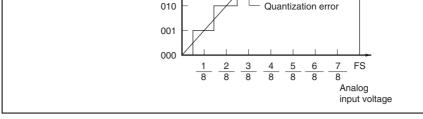


Figure 18.4 A/D Conversion Accuracy Definitions (1)

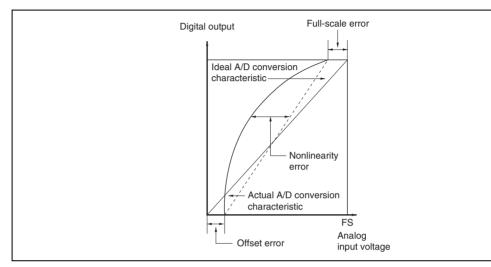
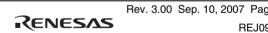



Figure 18.5 A/D Conversion Accuracy Definitions (2)

REJ09

filter effect is obtained in this case, it may not be possible to follow an analog signal with differential coefficient (e.g., $5 \text{ mV/}\mu\text{s}$ or greater) (see figure 18.6). When converting a hig analog signal or converting in scan mode, a low-impedance buffer should be inserted.

18.6.2 Influences on Absolute Accuracy

Adding capacitance results in coupling with GND, and therefore noise in GND may adve affect absolute accuracy. Be sure to make the connection to an electrically stable GND.

Care is also required to ensure that filter circuits do not interfere with digital signals or ac antennas on the mounting board.

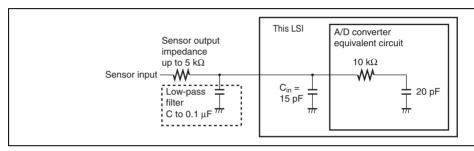
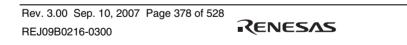



Figure 18.6 Analog Input Circuit Example

detection) and LVDR (reset by low voltage detection) circuits.

This circuit is used to prevent abnormal operation (program runaway) from occurring du power supply voltage fall and to recreate the state before the power supply voltage fall v power supply voltage rises again.

Even if the power supply voltage falls, the unstable state when the power supply voltage below the guaranteed operating voltage can be removed by entering standby mode wher exceeding the guaranteed operating voltage and during normal operation. Thus, system s can be improved. If the power supply voltage falls more, the reset state is automatically the power supply voltage rises again, the reset state is held for a specified period, then ar is automatically entered.

Figure 19.2 is a block diagram of the power-on reset circuit and the low-voltage detection

LVI0000A_000020030300

RENESAS

6

LVDI: Monitors the power-supply voltage, and generates an interrupt when the voltage below or rises above respective given values.

Two detection levels for reset generation voltage are available: when only the LVDR used, or when the LVDI and LVDR circuits are both used.

Reset source decision

The source of a reset can be decided by reading the reset source decision register in the exception handler.

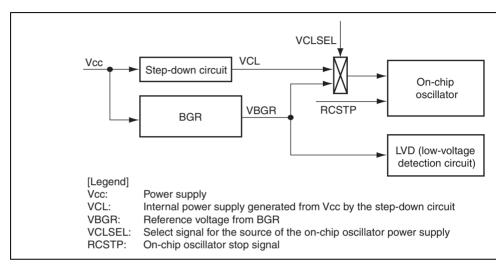


Figure 19.1 Block Diagram around BGR

Rev. 3.00 Sep. 10, 2007 Page 380 of 528 REJ09B0216-0300

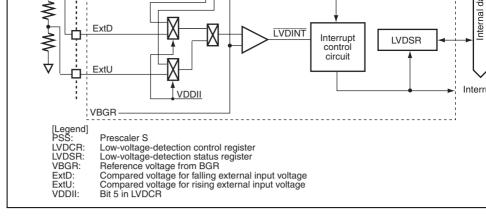


Figure 19.2 Block Diagram of Power-On Reset Circuit and Low-Voltage Detection

LVDCR selects the compared voltage of the LVDI circuit, sets the detection levels for the circuit, enables or disables the LVDR circuit, and enables or disables generation of an int when the power-supply voltage rises above or falls below the respective levels.

Table 19.1 shows the relationship between the LVDCR settings and functions to be select LVDCR should be set according to table 19.1.

		Initial		
Bit	Bit Name	Value	R/W	Description
7, 6	—	All 1		Reserved
				These bits are always read as 1 and cannot be r
5	VDDII	1 * ¹	R/W	LVDR External Compared Voltage Input Inhibit
				0: Use external voltage as LVDI compared voltage
				1: Use internal voltage as LVDI compared voltag
4	_	1		Reserved
				This bit is always read as 1 and cannot be modif
3	LVDSEL*2	1	R/W	LVDR Detection Level Select
				0: Reset detection voltage is 2.3 V (Typ.)
				1: Reset detection voltage is 3.6 V (Typ.)
				When the falling or rising voltage detection interr used, the reset detection voltage of 2.3 V (Typ.) be used. When only a reset detection interrupt is reset detection voltage of 3.6 V (Typ.) should be
2	_	1		Reserved
				This bit is always read as 1 and cannot be modif

Rev. 3.00 Sep. 10, 2007 Page 382 of 528 REJ09B0216-0300

0) and the reset detection voltage is 2.3 V (typ.).

	LVDCR	Settings			Sel	ect Functions	
VDDII	LVDSEL	LVDDE	LVDUE	Power-On Reset	LVDR	Low-Voltage- Detection Fall Interrupt	Lov Det Inte
*	1	0	0			—	
*	0	1	0		\checkmark		
*	0	1	1				\checkmark

Table 19.1 LVDCR Settings and Select Functions

Note: * Set these bits if necessary.

Renesas

				[Setting condition]
				 When the power-supply voltage falls below V (Typ. = 3.7 V)
				[Clearing condition]
				• When writing 0 to this bit after reading it as 1
0	LVDUF	0*	R/W	LVD Power-Supply Voltage Rise Flag
				[Setting condition]
				 When the power supply voltage falls below V while the LVDUE bit in LVDCR is set to 1 and rises above Vint (U) (Typ. = 4.0 V) before fall below Vreset1 (Typ. = 2.3 V)
				[Clearing condition]
				• When writing 0 to this bit after reading it as 1
Note:	* Initialize	ed by an l	_VDR.	

Rev. 3.00 Sep. 10, 2007 Page 384 of 528 REJ09B0216-0300

				[Setting conditions]
				When a power-on reset has occurred
				When an LVDR has occurred
				[Clearing condition]
				When writing 0
0	WRST	*2	R/W	WDT Reset Detection
				[Setting condition]
				When a reset by the WDT has occurred
				[Clearing conditions]
				When a power-on reset has occurred
				When an LVDR has occurred
				• When an reset signal input on the external
				asserted
				When writing 0
Notoc	1 Tho initi	ما يتماييم ط	ananda ar	a the condition when the PPST bit is get or cleared

Notes: 1. The initial value depends on the condition when the PRST bit is set or cleared

2. The initial value depends on the condition when the WRST bit is set or cleare

noise filter circuit which removes noise with less than 400 ns (Typ.) is included to preven incorrect operation of this LSI caused by noise on the $\overline{\text{RES}}$ signal.

To achieve stable operation of this LSI, the power supply needs to rise to its full level and within the specified time. The maximum time required for the power supply to rise and so (t_{PWON}) is determined by the oscillation frequency (f_{OSC}) and capacitance which is connected pin $(C_{\overline{RES}})$. Where t_{PWON} is assumed to be the time required to reach 90 % of the full level power supply, the power supply circuit should be designed to satisfy the following formula to the followi

$$\begin{split} t_{_{PWON}} \ (ms) &\leq 90 \times C_{\overline{\text{RES}}} \ (\mu F) + 162/f_{_{OSC}} \ (MHz) \\ (t_{_{PWON}} &\leq 3000 \ ms, \ C_{\overline{\text{RES}}} \geq 0.22 \ \mu F, \ \text{and} \ f_{_{OSC}} = 10 \ \text{in} \ 2\text{-MHz} \ \text{to} \ 10\text{-MHz} \ \text{operation} \end{split}$$

Note that the power supply voltage (Vcc) must fall below Vpor = 100 mV to remove cha $\overline{\text{RES}}$ pin. After that, it can be risen. To remove charge on the $\overline{\text{RES}}$ pin, it is recommended diode should be placed to Vcc. If the power supply voltage (Vcc) rises from the point abo a power-on reset may not occur.

Rev. 3.00 Sep. 10, 2007 Page 386 of 528 REJ09B0216-0300

Figure 19.3 Operational Timing of Power-On Reset Circuit

19.3.2 Low-Voltage Detection Circuit

LVDR (Reset by Low Voltage Detection) Circuit:

Figure 19.4 shows the timing of the operation of the LVDR circuit. The LVDR circuit is enabled during the LSI's operation.

When the power-supply voltage falls below the Vreset voltage (the value selected by the bit: Typ. = 2.3 V or 3.6 V), the LVDR circuit clears the $\overline{\text{LVDRES}}$ signal to 0, and resets S. The low-voltage detection reset state remains in place until a power-on reset is generat the power-supply voltage rises above the Vreset voltage (Typ. = 3.6 V) regardless of LV setting) again, the LVDR circuit sets the $\overline{\text{LVDRES}}$ signal to 1 and prescaler S starts cour. When 131,072 clock (ϕ) cycles have been counted, the internal reset signal is released. I case, the LVDSEL bit in LVDCR is initialized (the Vreset voltage: Typ. = 3.6 V) though VDDII bit is not initialized.

If the power supply voltage (Vcc) falls below Vpor = 100 mV, a power-on reset occurs.

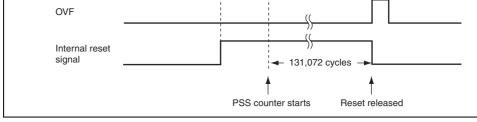


Figure 19.4 Operating Timing of LVDR Circuit

Rev. 3.00 Sep. 10, 2007 Page 388 of 528 REJ09B0216-0300

IRQ0 interrupt request is generated. In this case, the necessary data must be saved in the EEPROM and a transition to standby mode or subsleep mode must be made. Until this p is completed, the power supply voltage must be higher than the lower limit of the guarant operating voltage.

When the power-supply voltage does not fall below the Vreset1 (Typ. = 2.3 V) voltage a above the Vint (U) (Typ. = 4.0 V) voltage, the LVDI circuit sets the LVDINT signal to LVDUE bit is 1 at this time, the LVDUF bit in LVDSR is set to 1 and an IRQ0 interrupt simultaneously generated.

If the power supply voltage (Vcc) falls below the Vreset1 (Typ. = 2.3 V) voltage, this LS low voltage detection reset operation (when LVDRE = 1).

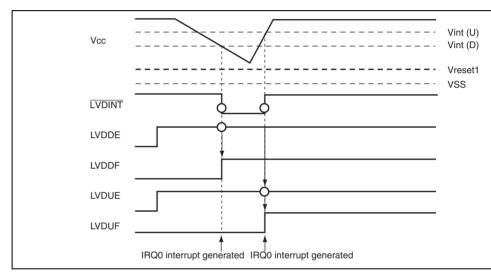


Figure 19.5 Operational Timing of LVDI Circuit

When the external comparison voltage of ExtD pin falls below the Vexd (D) (Typ. = 1.15 voltage, the LVDI clears the $\overline{\text{LVDINT}}$ signal to 0 and sets the LVDDF bit in LVDSR to 1 LVDDE bit is 1 at this time, an IRQ0 interrupt request is generated. In this case, the nece data must be saved in the external EEPROM, and a transition to standby mode or subslee must be made. Until this processing is completed, the power supply voltage must be high the lower limit of the guaranteed operating voltage.

When the power-supply voltage does not fall below the Vreset1 (Typ. = 2.3 V) voltage at input voltage of the ExtU pin rises above Vexd (Typ. = 1.15 V) voltage, the LVDI circuit LVDINT signal to 1. If the LVDUE bit is 1 at this time, the LVDUF bit in LVDSR is set an IRQ0 interrupt request is generated.

If the power supply voltage falls below the Vreset1 (Typ. = 2.3 V) voltage, this LSI enter voltage detection reset operation. When the voltages input on the ExtU and ExtD pins are the compared voltage, ensure to use the LVDR (reset detection voltage: Typ. = 2.3 V) cir

Rev. 3.00 Sep. 10, 2007 Page 390 of 528 REJ09B0216-0300

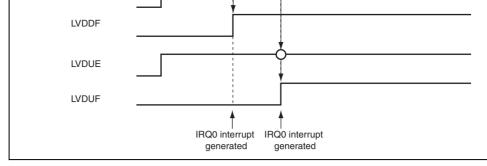


Figure 19.6 Operational Timing of LVDI Circuit (When Compared Voltage is through ExtU and ExtD Pins)

PRST	WRST	Reset Source
1	0	Power-on reset or LVDR occurred
0	0	Reset signal input on external reset pin
0	1	WDT reset occurred

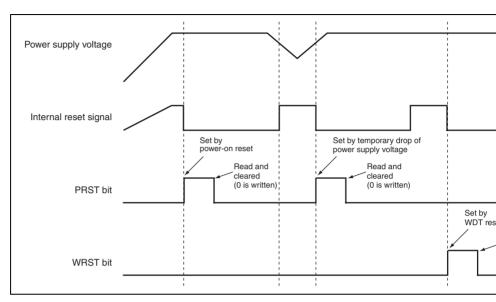


Figure 19.7 Timing of Setting Bits in Reset Source Decision Register

Rev. 3.00 Sep. 10, 2007 Page 392 of 528 REJ09B0216-0300

RENESAS

Connect the external power supply to the V_{cc} pin, and connect a capacitor of approximate between V_{cL} and V_{ss} , as shown in figure 20.1. The internal step-down circuit is made effect simply by adding this external circuit. In the external circuit interface, the external power voltage connected to V_{cc} and the GND potential connected to V_{ss} are the reference levels example, for port input/output levels, the V_{cc} level is the reference for the high level, and level is that for the low level. The A/D converter analog power supply is not affected by internal step-down circuit.

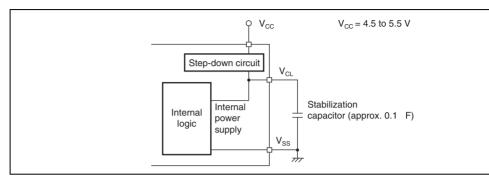


Figure 20.1 Power Supply Connection of 5.0-V-Specification Microcontrol

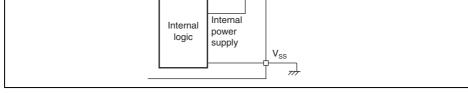


Figure 20.2 Power Supply Connection of 3.3-V-Specification Microcontrolle

Rev. 3.00 Sep. 10, 2007 Page 394 of 528 REJ09B0216-0300

- Registers are listed from the lower allocation addresses.
- The symbol in the register-name column represents a reserved address or range or addresses.

Do not attempt to access reserved addresses.

- When the register address is 16-bit wide, the address of the upper byte is given in the
- Registers are classified by functional modules.
- The data bus width is indicated.
- The number of access states is indicated.
- 2. Register bits
- Bit configurations of the registers are described in the same order as the register add
- Reserved bits are indicated by in the bit name column.
- When registers consist of 16 bits, bits are described from the MSB side.
- 3. Register states in each operating mode
- Register states are described in the same order as the register addresses.
- The register states described here are for the basic operating modes. If there is a spec for an on-chip peripheral module, refer to the section on that on-chip peripheral mod

—	—	—	H'F000	_	
			to		
			H'F6FF		
Timer control register_0	TCR_0	8	H'F700	Timer Z	8
Timer I/O control register A_0	TIORA_0	8	H'F701	Timer Z	8
Timer I/O control register C_0	TIORC_0	8	H'F702	Timer Z	8
Timer status register_0	TSR_0	8	H'F703	Timer Z	8
Timer interrupt enable register_0	TIER_0	8	H'F704	Timer Z	8
PWM mode output level control register_0	POCR_0	8	H'F705	Timer Z	8
Timer counter_0	TCNT_0	16	H'F706	Timer Z	16
General register A_0	GRA_0	16	H'F708	Timer Z	16
General register B_0	GRB_0	16	H'F70A	Timer Z	16
General register C_0	GRC_0	16	H'F70C	Timer Z	16
General register D_0	GRD_0	16	H'F70E	Timer Z	16
Timer control register_1	TCR_1	8	H'F710	Timer Z	8
Timer I/O control register A_1	TIORA_1	8	H'F711	Timer Z	8
Timer I/O control register C_1	TIORC_1	8	H'F712	Timer Z	8
Timer status register_1	TSR_1	8	H'F713	Timer Z	8
Timer interrupt enable register_1	TIER_1	8	H'F714	Timer Z	8
PWM mode output level control register_1	POCR_1	8	H'F715	Timer Z	8
Timer counter_1	TCNT_1	16	H'F716	Timer Z	16
General register A_1	GRA_1	16	H'F718	Timer Z	16
General register B_1	GRB_1	16	H'F71A	Timer Z	16

Rev. 3.00 Sep. 10, 2007 Page 396 of 528 REJ09B0216-0300

RENESAS

roa	ister
ICU	ister

Timer output control register	TOCR	8	H'F725	Timer Z	8
_	_	_	H'F726, H'F727	Timer Z	_
Second data register/free running counter data register	RSECDR	8	H'F728	RTC	8
Minute data register	RMINDR	8	H'F729	RTC	8
Hour data register	RHRDR	8	H'F72A	RTC	8
Day-of-week data register	RWKDR	8	H'F72B	RTC	8
RTC control register 1	RTCCR1	8	H'F72C	RTC	8
RTC control register 2	RTCCR2	8	H'F72D	RTC	8
_	_		H'F72E	RTC	—
Clock source select register	RTCCSR	8	H'F72F	RTC	8
Low-voltage-detection control register	LVDCR	8	H'F730	LVDC*1	8
Low-voltage-detection status register	LVDSR	8	H'F731	LVDC*1	8
Reset source decision register	LVDRF	8	H'F732	LVDC*1	8
_	_	—	H'F733		
Clock control/status register	CKCSR	8	H'F734	CPG	8
RC control register	RCCR	8	H'F735	On-chip oscillator	8
RC trimming data protect register	RCTRMDPR	8	H'F736	On-chip oscillator	8

rransmit data register_2	IDR_2	ō	ПГ/43	30I3_2	ō
Serial status register_2	SSR_2	8	H'F744	SCI3_2	8
Receive data register_2	RDR_2	8	H'F745	SCI3_2	8
_	—	—	H'F746, H'F747	SCI3_2	—
I2C bus control register 1	ICCR1	8	H'F748	IIC2	8
I2C bus control register 2	ICCR2	8	H'F749	IIC2	8
I2C bus mode register	ICMR	8	H'F74A	IIC2	8
I2C bus interrupt enable register	ICIER	8	H'F74B	IIC2	8
I2C status register	ICSR	8	H'F74C	IIC2	8
Slave address register	SAR	8	H'F74D	IIC2	8
I2C bus transmit data register	ICDRT	8	H'F74E	IIC2	8
I2C bus receive data register	ICDRR	8	H'F74F	IIC2	8
_		_	H'F750 to H'F75F		_
Timer mode register B1	TMB1	8	H'F760	Timer B1	8
Timer counter B1	TCB1	8	H'F761	Timer B1	8
Timer load register B1	TLB1	8	H'F761	Timer B1	8
_	_	—	H'F762 to H'FF8F	_	—
Flash memory control register 1	FLMCR1	8	H'FF90	ROM	8
Flash memory control register 2	FLMCR2	8	H'FF91	ROM	8
Flash memory power control register	FLPWCR	8	H'FF92	ROM	8

Rev. 3.00 Sep. 10, 2007 Page 398 of 528 REJ09B0216-0300

RENESAS

rimer control/status register v	ICSRV	o	ΠΓΓΑΙ	rimer v	ō
Time constant register A	TCORA	8	H'FFA2	Timer V	8
Time constant register B	TCORB	8	H'FFA3	Timer V	8
Timer counter V	TCNTV	8	H'FFA4	Timer V	8
Timer control register V1	TCRV1	8	H'FFA5	Timer V	8
_	—		H'FFA6, H'FFA7	—	
Serial mode register	SMR	8	H'FFA8	SCI3	8
Bit rate register	BRR	8	H'FFA9	SCI3	8
Serial control register 3	SCR3	8	H'FFAA	SCI3	8
Transmit data register	TDR	8	H'FFAB	SCI3	8
Serial status register	SSR	8	H'FFAC	SCI3	8
Receive data register	RDR	8	H'FFAD	SCI3	8
_	_	—	H'FFAE, H'FFAF	SCI3	_
A/D data register	ADDRA	16	H'FFB0	A/D converter	8
A/D data register	ADDRB	16	H'FFB2	A/D converter	8
A/D data register	ADDRC	16	H'FFB4	A/D converter	8
A/D data register	ADDRD	16	H'FFB6	A/D converter	8
A/D control/status register	ADCSR	8	H'FFB8	A/D converter	8

			пггрг		_
Timer control/status register WD	TCSRWD	8	H'FFC0	WDT* ¹	8
Timer counter WD	TCWD	8	H'FFC1	WDT* ¹	8
Timer mode register WD	TMWD	8	H'FFC2	WDT* ¹	8
			H'FFC3	WDT* ¹	
		_	H'FFC4		_
			to		
			H'FFC7		
Address break control register	ABRKCR	8	H'FFC8	Address break	8
Address break status register	ABRKSR	8	H'FFC9	Address break	8
Break address register H	BARH	8	H'FFCA	Address break	8
Break address register L	BARL	8	H'FFCB	Address break	8
Break data register H	BDRH	8	H'FFCC	Address break	8
Break data register L	BDRL	8	H'FFCD	Address break	8
_			H'FFCE		
Break address register E*2	BARE	8	H'FFCF	Address break	8
Port pull-up control register 1	PUCR1	8	H'FFD0	I/O port	8
Port pull-up control register 5	PUCR5	8	H'FFD1	I/O port	8
			H'FFD2,	I/O port	_
			H'FFD3		
Port data register 1	PDR1	8	H'FFD4	I/O port	8
Port data register 2	PDR2	8	H'FFD5	I/O port	8
Port data register 3	PDR3	8	H'FFD6	I/O port	8
_			H'FFD7	I/O port	—
Port data register 5	PDR5	8	H'FFD8	I/O port	8

Rev. 3.00 Sep. 10, 2007 Page 400 of 528 REJ09B0216-0300

RENESAS

Port mode register 5PMR58H'FFE1I/O port8Port mode register 3PMR38H'FFE2I/O port8H'FFD3I/O portPort control register 1PCR18H'FFE4I/O port8Port control register 2PCR28H'FFE5I/O port8Port control register 3PCR38H'FFE6I/O port8Port control register 3PCR38H'FFE7I/O port8Port control register 5PCR58H'FFE8I/O port8Port control register 6PCR68H'FFE9I/O port8Port control register 7PCR78H'FFE4I/O port8Port control register 7PCR78H'FFE5I/O port8Port control register 7PCR78H'FFE5I/O port8Port control register 7PCR68H'FFE5I/O port8Port control register 1SYSCR18H'FFE5I/O portSystem control register 1SYSCR28H'FFF1Low power8Interrupt edge select register 1IEGR18H'FF53Interrupt8Interrupt enable register 1IENR18H'FF55Interrupt8Interrupt enable register 2IENR28H'FF55Interrupt8Interrupt flag register 1IRR18H'FF56Interrupt8	Port mode register 1	PMR1	8	H'FFE0	I/O port	8
H'FFD3I/O portPort control register 1PCR18H'FFE4I/O port8Port control register 2PCR28H'FFE5I/O port8Port control register 3PCR38H'FFE6I/O port8H'FFE7I/O port8Port control register 5PCR58H'FFE8I/O port8Port control register 6PCR68H'FFE9I/O port8Port control register 7PCR78H'FFEAI/O port8Port control register 7PCR78H'FFEBI/O port8Port control register 7PCR78H'FFEBI/O port8Port control register 7PCR88H'FFEBI/O port8Port control register 1SYSCR18H'FFEDI/O port8Port control register 1SYSCR18H'FFF1Low power8Interrupt edge select register 1IEGR18H'FFF3Interrupt8Interrupt enable register 1IENR18H'FFF5Interrupt8Interrupt enable register 2IENR28H'FFF5Interrupt8	Port mode register 5	PMR5	8	H'FFE1	I/O port	8
Port control register 1PCR18H'FFE4I/O port8Port control register 2PCR28H'FFE5I/O port8Port control register 3PCR38H'FFE6I/O port8H'FFE7I/O port8Port control register 5PCR58H'FFE8I/O port8Port control register 6PCR68H'FFE9I/O port8Port control register 7PCR78H'FFEAI/O port8Port control register 8PCR88H'FFEBI/O port8Port control register CPCRC8H'FFEDI/O port8H'FFEDI/O port8H'FFEDI/O port8H'FFEDI/O port8H'FFEDI/O port8H'FFEFDI/O port8H'FFEFDI/O port8H'FFEFDI/O port8H'FFEFDI/O port8H'FFEFDI/O port8H'FFFEI/O port8H'FFFEI/O port8H'FFFEI/O port8H'FFFEI/O port8-	Port mode register 3	PMR3	8	H'FFE2	I/O port	8
Port control register 2PCR28H'FFE5I/O port8Port control register 3PCR38H'FFE6I/O port8H'FFE7I/O portPort control register 5PCR58H'FFE8I/O port8Port control register 6PCR68H'FFE9I/O port8Port control register 7PCR78H'FFEAI/O port8Port control register 7PCR78H'FFEBI/O port8Port control register 7PCR78H'FFEBI/O port8H'FFEDI/O port8H'FFEDI/O port8H'FFEDI/O port8H'FFEDI/O port8H'FFEFI/O port8H'FFEFI/O port8H'FFEFI/O portSystem control register 1SYSCR18H'FFF0Low power8Interrupt edge select register 1IEGR18H'FFF3Interrupt8Interrupt enable register 1IENR18H'FFF4Interrupt8Interrupt enable register 2IENR28H'FFF5Interrupt8		_		H'FFD3	I/O port	
Port control register 3PCR38H'FFE6I/O port8H'FFE7I/O portPort control register 5PCR58H'FFE8I/O port8Port control register 6PCR68H'FFE9I/O port8Port control register 7PCR78H'FFEAI/O port8Port control register 7PCR78H'FFEBI/O port8Port control register 8PCR88H'FFEBI/O port8H'FFEDI/O port8H'FFEDI/O port8H'FFEDI/O port8H'FFEDI/O port8H'FFEFI/O port8H'FFEFI/O port8H'FFEFI/O portSystem control register 1SYSCR18H'FFF0Low power8Interrupt edge select register 1IEGR18H'FFF3Interrupt8Interrupt enable register 1IENR18H'FFF4Interrupt8Interrupt enable register 2IENR28H'FFF5Interrupt8	Port control register 1	PCR1	8	H'FFE4	I/O port	8
H'FFE7I/O portPort control register 5PCR58H'FFE8I/O port8Port control register 6PCR68H'FFE9I/O port8Port control register 7PCR78H'FFEAI/O port8Port control register 8PCR88H'FFEBI/O port8H'FFEC,I/O port8H'FFEDI/O port8H'FFEDI/O port8H'FFEDI/O port8H'FFEEI/O port8H'FFEFI/O port8H'FFEFI/O port8H'FFEFI/O port8H'FFEFI/O port8H'FFEFI/O port8H'FFEFI/O port8H'FFEFI/O port8System control register 1SYSCR18H'FFF1Low power8Interrupt edge select register 2IEGR28H'FFF3Interrupt8Interrupt enable register 1IENR18H'FFF5Interrupt8Interrupt enable register 2IENR28H'FFF5Interrupt8	Port control register 2	PCR2	8	H'FFE5	I/O port	8
Port control register 5PCR58H'FFE8I/O port8Port control register 6PCR68H'FFE9I/O port8Port control register 7PCR78H'FFEAI/O port8Port control register 8PCR88H'FFEBI/O port8H'FFEC,I/O port8H'FFEDI/O port8H'FFEDI/O port8H'FFEDI/O port8H'FFEEI/O port8H'FFEFI/O port8H'FFEFI/O port8System control register CPCRC8H'FFF0Low power8System control register 1SYSCR18H'FFF1Low power8Interrupt edge select register 1IEGR18H'FFF2Interrupt8Interrupt edge select register 2IEGR28H'FFF3Interrupt8Interrupt enable register 1IENR18H'FFF4Interrupt8Interrupt enable register 2IENR28H'FFF5Interrupt8	Port control register 3	PCR3	8	H'FFE6	I/O port	8
Port control register 6PCR68H'FFE9I/O port8Port control register 7PCR78H'FFEAI/O port8Port control register 8PCR88H'FFEBI/O port8H'FFEC, I/O port8H'FFED'/O port8Port control register CPCRC8H'FFEEI/O port8H'FFEFI/O port8H'FFEFI/O port8Port control register CPCRC8H'FFEFI/O port8H'FFEFI/O port8System control register 1SYSCR18H'FFF0Low power8System control register 2SYSCR28H'FFF1Low power8Interrupt edge select register 1IEGR18H'FF51Interrupt8Interrupt enable register 1IENR18H'FFF4Interrupt8Interrupt enable register 2IENR28H'FFF5Interrupt8				H'FFE7	I/O port	
Port control register 7PCR78H'FFEAI/O port8Port control register 8PCR88H'FFEBI/O port8H'FFEC, I/O portPort control register CPCRC8H'FFEEI/O port8H'FFEEI/O port8H'FFEEI/O port8H'FFEFI/O port8H'FFEFI/O portSystem control register 1SYSCR18H'FFF0Low power8System control register 2SYSCR28H'FFF1Low power8Interrupt edge select register 1IEGR18H'FFF3Interrupt8Interrupt enable register 1IENR18H'FFF4Interrupt8Interrupt enable register 2IENR28H'FFF5Interrupt8	Port control register 5	PCR5	8	H'FFE8	I/O port	8
Port control register 8PCR88H'FFEBI/O port8H'FFEC, I/O portH'FFEDPort control register CPCRC8H'FFEEI/O port8H'FFEFI/O port8H'FFEFI/O portSystem control register 1SYSCR18H'FFF0Low power8System control register 2SYSCR28H'FFF1Low power8Interrupt edge select register 1IEGR18H'FFF3Interrupt8Interrupt enable register 1IENR18H'FFF4Interrupt8Interrupt enable register 2IENR28H'FFF5Interrupt8	Port control register 6	PCR6	8	H'FFE9	I/O port	8
H'FFEC, H'FFEDI/O port-Port control register CPCRC8H'FFEEI/O port8H'FFEFI/O port-System control register 1SYSCR18H'FFF0Low power8System control register 2SYSCR28H'FFF1Low power8Interrupt edge select register 1IEGR18H'FFF2Interrupt8Interrupt edge select register 1IEGR28H'FFF3Interrupt8Interrupt enable register 1IENR18H'FFF4Interrupt8Interrupt enable register 2IENR28H'FFF5Interrupt8	Port control register 7	PCR7	8	H'FFEA	I/O port	8
H'FFEDPort control register CPCRC8H'FFEEI/O port8H'FFEFI/O portSystem control register 1SYSCR18H'FFF0Low power8System control register 2SYSCR28H'FFF1Low power8Interrupt edge select register 1IEGR18H'FFF2Interrupt8Interrupt enable register 1IENR18H'FFF4Interrupt8Interrupt enable register 2IENR28H'FFF5Interrupt8	Port control register 8	PCR8	8	H'FFEB	I/O port	8
H'FFEFI/O portSystem control register 1SYSCR1 8H'FFF0Low power8System control register 2SYSCR2 8H'FFF1Low power8Interrupt edge select register 1IEGR1 8H'FFF2Interrupt8Interrupt edge select register 2IEGR2 8H'FFF3Interrupt8Interrupt enable register 1IENR1 8H'FFF4Interrupt8Interrupt enable register 2IENR2 8H'FFF5Interrupt8	_	_	_	- ,	I/O port	—
System control register 1SYSCR1 8H'FFF0Low power8System control register 2SYSCR2 8H'FFF1Low power8Interrupt edge select register 1IEGR1 8H'FFF2Interrupt8Interrupt edge select register 2IEGR2 8H'FFF3Interrupt8Interrupt enable register 1IENR1 8H'FFF4Interrupt8Interrupt enable register 2IENR2 8H'FFF5Interrupt8	Port control register C	PCRC	8	H'FFEE	I/O port	8
System control register 2SYSCR28H'FFF1Low power8Interrupt edge select register 1IEGR18H'FFF2Interrupt8Interrupt edge select register 2IEGR28H'FFF3Interrupt8Interrupt enable register 1IENR18H'FFF4Interrupt8Interrupt enable register 2IENR28H'FFF5Interrupt8		_		H'FFEF	I/O port	
Interrupt edge select register 1IEGR18H'FFF2Interrupt8Interrupt edge select register 2IEGR28H'FFF3Interrupt8Interrupt enable register 1IENR18H'FFF4Interrupt8Interrupt enable register 2IENR28H'FFF5Interrupt8	System control register 1	SYSCR1	8	H'FFF0	Low power	8
Interrupt edge select register 2IEGR28H'FFF3Interrupt8Interrupt enable register 1IENR18H'FFF4Interrupt8Interrupt enable register 2IENR28H'FFF5Interrupt8	System control register 2	SYSCR2	8	H'FFF1	Low power	8
Interrupt enable register 1IENR18H'FFF4Interrupt8Interrupt enable register 2IENR28H'FFF5Interrupt8	Interrupt edge select register 1	IEGR1	8	H'FFF2	Interrupt	8
Interrupt enable register 2 IENR2 8 H'FFF5 Interrupt 8	Interrupt edge select register 2	IEGR2	8	H'FFF3	Interrupt	8
	Interrupt enable register 1	IENR1	8	H'FFF4	Interrupt	8
Interrupt flag register 1 IRR1 8 H'FFF6 Interrupt 8	Interrupt enable register 2	IENR2	8	H'FFF5	Interrupt	8
	Interrupt flag register 1	IRR1	8	H'FFF6	Interrupt	8

Notes: 1. WDT: Watchdog timer

2. Only provided for microcontrollers that supports advanced mode.

Rev. 3.00 Sep. 10, 2007 Page 402 of 528 REJ09B0216-0300

TIORC_0	_	IOD2	IOD1	IOD0	—	IOC2	IOC1	IOC0
TSR_0	_	_		OVF	IMFD	IMFC	IMFB	IMFA
TIER_0				OVIE	IMIED	IMIEC	IMIEB	IMIEA
POCR_0						POLD	POLC	POLB
TCNT_0	TCNT0H7	TCNT0H6	TCNT0H5	TCNT0H4	TCNT0H3	TCNT0H2	TCNT0H1	TCNT0H0
	TCNT0L7	TCNT0L6	TCNT0L5	TCNT0L4	TCNT0L3	TCNT0L2	TCNT0L1	TCNT0L0
GRA_0	GRA0H7	GRA0H6	GRA0H5	GRA0H4	GRA0H3	GRA0H2	GRA0H1	GRA0H0
	GRA0L7	GRA0L6	GRA0L5	GRA0L4	GRA0L3	GRA0L2	GRA0L1	GRA0L0
GRB_0	GRB0H7	GRB0H6	GRB0H5	GRB0H4	GRB0H3	GRB0H2	GRB0H1	GRB0H0
	GRB0L7	GRB0L6	GRB0L5	GRB0L4	GRB0L3	GRB0L2	GRB0L1	GRB0L0
GRC_0	GRC0H7	GRC0H6	GRC0H5	GRC0H4	GRC0H3	GRC0H2	GRC0H1	GRC0H0
	GRC0L7	GRC0L6	GRC0L5	GRC0L4	GRC0L3	GRC0L2	GRC0L1	GRC0L0
GRD_0	GRD0H7	GRD0H6	GRD0H5	GRD0H4	GRD0H3	GRD0H2	GRD0H1	GRD0H0
	GRD0L7	GRD0L6	GRD0L5	GRD0L4	GRD0L3	GRD0L2	GRD0L1	GRD0L0
TCR_1	CCLR2	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0
TIORA_1	_	IOB2	IOB1	IOB0	_	IOA2	IOA1	IOA0
TIORC_1	_	IOD2	IOD1	IOD0	_	IOC2	IOC1	IOC0
TSR_1			UDF	OVF	IMFD	IMFC	IMFB	IMFA
TIER_1				OVIE	IMIED	IMIEC	IMIEB	IMIEA
POCR_1						POLD	POLC	POLB
TCNT_1	TCNT1H7	TCNT1H6	TCNT1H5	TCNT1H4	TCNT1H3	TCNT1H2	TCNT1H1	TCNT1H0
	TCNT1L7	TCNT1L6	TCNT1L5	TCNT1L4	TCNT1L3	TCNT1L2	TCNT1L1	TCNT1L0
GRA_1	GRA1H7	GRA1H6	GRA1H5	GRA1H4	GRA1H3	GRA1H2	GRA1H1	GRA1H0
	GRA1L7	GRA1L6	GRA1L5	GRA1L4	GRA1L3	GRA1L2	GRA1L1	GRA1L0

INICH	וסוס	ыот	51 50	DI 00		_		0110
TPMR	_	PWMD1	PWMC1	PWMB1	_	PWMD0	PWMC0	PWMB0
TFCR	_	STCLK	ADEG	ADTRG	OLS1	OLS0	CMD1	CMD0
TOER	ED1	EC1	EB1	EA1	ED0	EC0	EB0	EA0
TOCR	TOD1	TOC1	TOB1	TOA1	TOD0	TOC0	TOB0	TOA0
RSECDR	BSY	SC12	SC11	SC10	SC03	SC02	SC01	SC00
RMINDR	BSY	MN12	MN11	MN10	MN03	MN02	MN01	MN00
RHRDR	BSY		HR11	HR10	HR03	HR02	HR01	HR00
RWKDR	BSY			_	_	WK2	WK1	WK0
RTCCR1	RUN	12/24	РМ	RST	INT	—		_
RTCCR2			FOIE	WKIE	DYIE	HRIE	MNIE	SEIE
RTCCSR		RCS6	RCS5	_	RCS3	RCS2	RCS1	RCS0
LVDCR	_		VDDII	_	LVDSEL*1	_	LVDDE	LVDUE
LVDSR						—	LVDDF	LVDUF
LVDRF				_	_		PRST	WRST
_				_	_		_	_
CKCSR	PMRC1	PMRC0	OSCBAKE	OSCSEL	CKSWIE	CKSWIF	OSCHLT	CKSTA
RCCR	RCSTP	FSEL	VCLSEL	_	_		RCPSC1	RCPSC0
RCTRMDPR	WRI	PRWE	LOCKDW	TRMDRWE	_	_	_	_
RCTRMDR	TRMD7	TRMD6	TRMD5	TRMD4	TRMD3	TRMD2	TRMD1	TRMD0
_	_			_	_	_	_	
SMR_2	СОМ	CHR	PE	PM	STOP	MP	CKS1	CKS0
BRR_2	BRR7	BRR6	BRR5	BRR4	BRR3	BRR2	BRR1	BRR0
SCR3_2	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0

Rev. 3.00 Sep. 10, 2007 Page 404 of 528 REJ09B0216-0300

RENESAS

10011				NAON	0101	ADOVE		ADZ
SAR	SVA6	SVA5	SVA4	SVA3	SVA2	SVA1	SVA0	FS
ICDRT	ICDRT7	ICDRT6	ICDRT5	ICDRT4	ICDRT3	ICDRT2	ICDRT1	ICDRT0
ICDRR	ICDRR7	ICDRR6	ICDRR5	ICDRR4	ICDRR3	ICDRR2	ICDRR1	ICDRR0
_	_	_	_	_	_	_		
TMB1	TMB17	_	_	_	_	TMB12	TMB11	TMB10
TCB1	TCB17	TCB16	TCB15	TCB14	TCB13	TCB12	TCB11	TCB10
TLB1	TLB17	TLB16	TLB15	TLB14	TLB13	TLB12	TLB11	TLB10
_	_	_	_	_	_	_	_	_
FLMCR1	_	SWE	ESU	PSU	EV	PV	E	Р
FLMCR2	FLER	_	_	_	_	_		
FLPWCR	PDWND	_	_	_	_	_	_	_
EBR1*1	EB7	EB6	EB5	EB4	EB3	EB2	EB1	EB0
FENR	FLSHE	_	_	_	_	_	_	_
TCRV0	CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0
TCSRV	CMFB	CMFA	OVF	_	OS3	OS2	OS1	OS0
TCORA	TCORA7	TCORA6	TCORA5	TCORA4	TCORA3	TCORA2	TCORA1	TCORA0
TCORB	TCORB7	TCORB6	TCORB5	TCORB4	TCORB3	TCORB2	TCORB1	TCORB0
TCNTV	TCNTV7	TCNTV6	TCNTV5	TCNTV4	TCNTV3	TCNTV2	TCNTV1	TCNTV0
TCRV1	_			TVEG1	TVEG0	TRGE		ICKS0
	_		_	_	_	_	_	_
SMR	COM	CHR	PE	PM	STOP	MP	CKS1	CKS0
BRR	BRR7	BRR6	BRR5	BRR4	BRR3	BRR2	BRR1	BRR0
SCR3	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0

Rev. 3.00 Sep. 10, 2007 Pag RENESAS

REJ09

ADDITO	AD3		AU1	AD0	AD3		AD0	ADZ
	AD1	AD0	_	_	_	_	_	_
ADDRD	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2
	AD1	AD0	—	—	—	—		_
ADCSR	ADF	ADIE	ADST	SCAN	CKS	CH2	CH1	CH0
ADCR	TRGE	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_
PWDRL	PWDRL7	PWDRL6	PWDRL5	PWDRL4	PWDRL3	PWDRL2	PWDRL1	PWDRL0
PWDRU	_	_	PWDRU5	PWDRU4	PWDRU3	PWDRU2	PWDRU1	PWDRU0
PWCR	_	_	_	_	_	_	_	PWCR0
TCSRWD	B6WI	TCWE	B4WI	TCSRWE	B2WI	WDON	BOWI	WRST
TCWD	TCWD7	TCWD6	TCWD5	TCWD4	TCWD3	TCWD2	TCWD1	TCWD0
TMWD	_	_	_	_	CKS3	CKS2	CKS1	CKS0
_	_	_	_	_	_	_	_	_
ABRKCR	RTINTE	CSEL1	CSEL0	ACMP2	ACMP1	ACMP0	DCMP1	DCMP0
ABRKSR	ABIF	ABIE	_	_		_	_	_
BARH	BARH7	BARH6	BARH5	BARH4	BARH3	BARH2	BARH1	BARH0
BARL	BARL7	BARL6	BARL5	BARL4	BARL3	BARL2	BARL1	BARL0
BDRH	BDRH7	BDRH6	BDRH5	BDRH4	BDRH3	BDRH2	BDRH1	BDRH0
BDRL	BDRL7	BDRL6	BDRL5	BDRL4	BDRL3	BDRL2	BDRL1	BDRL0
BARE* ³	BDRE7	BDRE6	BDRE5	BDRE4	BDRE3	BDRE2	BDRE1	BDRE0
PUCR1	PUCR17	PUCR16	PUCR15	PUCR14	_	PUCR12	PUCR11	PUCR10
PUCR5	_	_	PUCR55	PUCR54	PUCR53	PUCR52	PUCR51	PUCR50
PDR1	P17	P16	P15	P14		P12	P11	P10

Rev. 3.00 Sep. 10, 2007 Page 406 of 528 REJ09B0216-0300

RENESAS

							101	100
PMR1	IRQ3	IRQ2	IRQ1	IRQ0	TXD2	PWM	TXD	TMOW
PMR5	POF57	POF56	WKP5	WKP4	WKP3	WKP2	WKP1	WKP0
PMR3			_	POF24	POF23	_		
PCR1	PCR17	PCR16	PCR15	PCR14		PCR12	PCR11	PCR10
PCR2	_	_	_	PCR24	PCR23	PCR22	PCR21	PCR20
PCR3	PCR37	PCR36	PCR35	PCR34	PCR33	PCR32	PCR31	PCR30
PCR5	PCR57	PCR56	PCR55	PCR54	PCR53	PCR52	PCR51	PCR50
PCR6	PCR67	PCR66	PCR65	PCR64	PCR63	PCR62	PCR61	PCR60
PCR7	_	PCR76	PCR75	PCR74	_	PCR72	PCR71	PCR70
PCR8	PCR87	PCR86	PCR85	_	_	_	_	_
PCRC	_	_	_	_	_	_	PCRC1	PCRC0
SYSCR1	SSBY	STS2	STS1	STS0	NESEL	_	_	_
SYSCR2	SMSEL	LSON	DTON	MA2	MA1	MA0	SA1	SA0
IEGR1	NMIEG	_	_	_	IEG3	IEG2	IEG1	IEG0
IEGR2	_	_	WPEG5	WPEG4	WPEG3	WPEG2	WPEG1	WPEG0
IENR1	IENDT	IENTA	IENWP	_	IEN3	IEN2	IEN1	IEN0
IENR2	_	_	IENTB1	_		_	_	_
IRR1	IRRDT	IRRTA	_	_	IRRI3	IRRI2	IRRI1	IRRI0
IRR2	_	_	IRRTB1	_	_	_	_	—
IWPR	_	_	IWPF5	IWPF4	IWPF3	IWPF2	IWPF1	IWPF0

• H8/36079G, H8/36079L

Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
EBR1	EB7	EB6	EB5	EB4	EB3	EB2	EB1	EB0	

• H8/36078G, H8/36078L, H8/36077G, H8/36077L

Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EBR1	—	EB6	EB5	EB4	EB3	EB2	EB1	EB0

• H8/36074G, H8/36074L

Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EBR1	_	—	—	EB4	EB3	EB2	EB1	EB0

Rev. 3.00 Sep. 10, 2007 Page 408 of 528 REJ09B0216-0300

1001_0	millanzeu					
TCNT_0	Initialized	—	_	—	—	
GRA_0	Initialized		—	—	—	_
GRB_0	Initialized		—	_	—	_
GRC_0	Initialized	_	_	—	—	_
GRD_0	Initialized		_	—	—	_
TCR_1	Initialized	_	_	_	_	_
TIORA_1	Initialized		_	—	—	_
TIORC_1	Initialized		—	_	—	_
TSR_1	Initialized	_	_	_	_	_
TIER_1	Initialized		_	—	—	_
POCR_1	Initialized	_	_	_	_	_
TCNT_1	Initialized		_	—	—	_
GRA_1	Initialized		_	—	—	_
GRB_1	Initialized	_	_	_	_	_
GRC_1	Initialized		_	—	—	_
GRD_1	Initialized	_	_	_	—	_
TSTR	Initialized		_	—	—	_
TMDR	Initialized		_	—	—	_
TPMR	Initialized	_	_	_	_	_
TFCR	Initialized	_		_	_	_
TOER	Initialized	_	_	_	_	_
TOCR	Initialized		_	—	—	_

Renesas

LVDON	milanzeu						
LVDSR	Initialized	—	_		_	—	
LVDRF	_	_	_	—	—	_	
CKCSR	Initialized	_	_	—	—	_	CPG
RCCR	Initialized	—	—	—	—	—	On-cł
RCTRMDPR	Initialized	—	_		_	—	oscilla
RCTRMDR	Initialized	—	—	—	—		
SMR_2	Initialized	—	—	Initialized	Initialized	Initialized	SCI3
BRR_2	Initialized	—	—	Initialized	Initialized	Initialized	
SCR3_2	Initialized	—	—	Initialized	Initialized	Initialized	
TDR_2	Initialized	—	—	Initialized	Initialized	Initialized	
SSR_2	Initialized	—	—	Initialized	Initialized	Initialized	
RDR_2	Initialized	—	—	Initialized	Initialized	Initialized	
ICCR1	Initialized	_	_	—	_	_	IIC2
ICCR2	Initialized	_	_	—	—	_	
ICMR	Initialized	_	_	—	—	_	
ICIER	Initialized	_	—	—	—	—	
ICSR	Initialized	—	—	_	—	—	
SAR	Initialized	—	—	—	—	_	
ICDRT	Initialized	—	—	—	—	—	
ICDRR	Initialized	—	—	_	—	—	
TMB1	Initialized	_	_	_	_	_	Timer
TCB1	Initialized	_	_	_	_	_	_
TLB1	Initialized	_	_	_	_		

Rev. 3.00 Sep. 10, 2007 Page 410 of 528 REJ09B0216-0300

	minanzeu	milanzeu	milanzeu			milaizeu	Тоонд
k	Initialized	Initialized	Initialized	—	—	Initialized	TCORB
t	Initialized	Initialized	Initialized		_	Initialized	TCNTV
t	Initialized	Initialized	Initialized		_	Initialized	TCRV1
d S	Initialized	Initialized	Initialized	_	_	Initialized	SMR
d l	Initialized	Initialized	Initialized	_	_	Initialized	BRR
ł	Initialized	Initialized	Initialized	_	—	Initialized	SCR3
ł	Initialized	Initialized	Initialized	_	_	Initialized	TDR
ł	Initialized	Initialized	Initialized		_	Initialized	SSR
ł	Initialized	Initialized	Initialized	_	—	Initialized	RDR
A b	Initialized	Initialized	Initialized	_	_	Initialized	ADDRA
ł	Initialized	Initialized	Initialized	_	—	Initialized	ADDRB
ł	Initialized	Initialized	Initialized		—	Initialized	ADDRC
ł	Initialized	Initialized	Initialized	_		Initialized	ADDRD
ł	Initialized	Initialized	Initialized	_	—	Initialized	ADCSR
ł	Initialized	Initialized	Initialized	_	—	Initialized	ADCR
1	—	—	—	—	—	Initialized	PWDRL
		—	—		_	Initialized	PWDRU
		—	—		—	Initialized	PWCR
v	—	_	_	_		Initialized	TCSRWD
	_	_	—	_	—	Initialized	TCWD
		_	_			Initialized	TMWD
А	_	_	_	_	_	Initialized	ABRKCR
	_	_	_	_		Initialized	ABRKSR

RENESAS

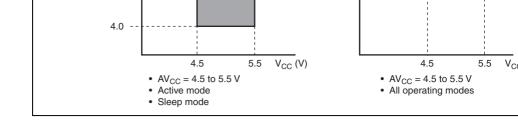
	millanzeu						
PDR2	Initialized	_			_	_	
PDR3	Initialized						
PDR5	Initialized				_	_	
PDR6	Initialized				_		
PDR7	Initialized	_			_	_	
PDR8	Initialized	_	_		_	_	
PDRB	Initialized	_	—	_	—	_	
PDRC	Initialized		—		_	_	
PMR1	Initialized	_	—		_	_	
PMR5	Initialized	_			_		
PMR3	Initialized	_			_		
PCR1	Initialized	_					
PCR2	Initialized	—			_		
PCR3	Initialized				—		
PCR5	Initialized				—		
PCR6	Initialized		_		_	_	
PCR7	Initialized		_		_		
PCR8	Initialized		_		_		
PCRC	Initialized		—		—		
SYSCR1	Initialized		—	—	—		Low p
SYSCR2	Initialized		_	_	—		

Rev. 3.00 Sep. 10, 2007 Page 412 of 528 REJ09B0216-0300

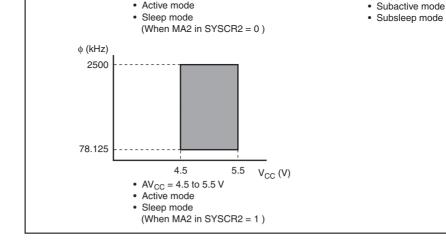
MOTOITI	milializeu						LOW
MSTCR2	Initialized	—	_	_	_	_	

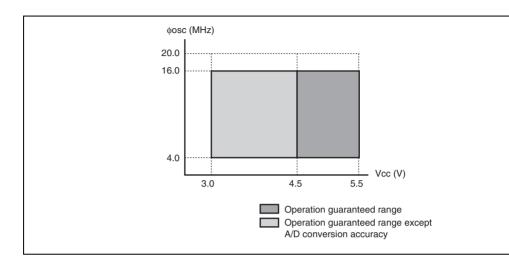
Notes: — is not initialized

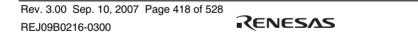
- 1. WDT: Watchdog timer
- 2. The BARE register is only provided for microcontrollers that support advance


Rev. 3.00 Sep. 10, 2007 Page 414 of 528 REJ09B0216-0300

	B and X1	IN			
	Port B	_	–0.3 to AV_{cc} +0.3	V	
	X1	_	–0.3 to 4.3	V	
Operating temperature		T_{opr}	Regular specifications: -20 to +75	°C	
			Wide-range specifications: -40 to +85	°C	
Storage temperate	ure	T_{stg}	-55 to +125	°C	


Notes: * Permanent damage may result if maximum ratings are exceeded. Normal operations should be under the conditions specified in Electrical Characteristics. Exceed values can result in incorrect operation and reduced reliability.


Rev. 3.00 Sep. 10, 2007 Page 416 of 528 REJ09B0216-0300



- V_{CC} = 4.5 to 5.5 V
 Active mode
- Sleep mode

(4) Range of Power Supply Voltage and Oscillation Frequency when Low-Voltage **Detection Circuit is Used**

to FTIOD0, FTIOA1 to FTIOD1, SCK3, SCK3_2, TRGV					
RXD, RXD_2, SCL, SDA, P10 to P12, P14 to P17, P20 to P24, P30 to P37, P50 to P57, P60 to P67, P70 to P72 P74 to P76, P85 to P87, PC0, PC1		$V_{cc} \times 0.7$	_	V _{cc} + 0.3	V
PB0 to PB7	AV_{cc} = 4.5 to 5.5 V	$\mathrm{AV}_{\mathrm{CC}}\!\times 0.7$	_	$AV_{cc} + 0.3$	V
OSC1		$V_{\rm cc} - 0.5$	—	V_{cc} + 0.3	V
RES, NMI, WKP0 to WKP5, IRQ0 to IRQ3, ADTRG, TMIB1, TMRIV, TMCIV, FTIOA0 to FTIOD0, FTIOA1 to FTIOD1, SCK3, SCK3_2, TRGV		-0.3	_	$V_{cc} \times 0.2$	V
	FTIOD1, SCK3, SCK3_2, TRGV RXD, RXD_2, SCL, SDA, P10 to P12, P14 to P17, P20 to P24, P30 to P37, P50 to P57, P60 to P67, P70 to P72 P74 to P76, P85 to P87, PC0, PC1 PB0 to PB7 OSC1 RES, NMI, WKP0 to WKP5, IRQ0 to IRQ3, ADTRG, TMIB1, TMRIV, TMCIV, FTIOA0 to FTIOD0, FTIOA1 to FTIOD1, SCK3,	FTIOD1, SCK3, SCK3_2, TRGV RXD, RXD_2, SCL, SDA, P10 to P12, P14 to P17, P20 to P24, P30 to P37, P50 to P57, P60 to P67, P74 to P76, P85 to P87, PC0, PC1 PB0 to PB7 AV _{cc} = 4.5 to 5.5 V OSC1 RES, NMI, WKP0 to WKP5, IRQ0 to IRQ3, ADTRG, TMIB1, TMRIV, TMCIV, FTIOA0 to FTIOD0, FTIOA1 to FTIOD1, SCK3,	$\begin{array}{c c} \mbox{FTIOD1, SCK3, SCK3_2, TRGV} \\ \hline RXD, RXD_2, & V_{cc} \times 0.7 \\ SCL, SDA, \\ P10 to P12, \\ P14 to P17, \\ P20 to P24, \\ P30 to P37, \\ P50 to P57, \\ P60 to P67, \\ P70 to P72 \\ P74 to P76, \\ P85 to P87, \\ PC0, PC1 \\ \hline PB0 to PB7 & AV_{cc} = 4.5 to 5.5 \ V \ AV_{cc} \times 0.7 \\ \hline OSC1 & V_{cc} - 0.5 \\ \hline \hline RES, NMI, & -0.3 \\ \hline \hline WKP0 to WKP5, \\ IRQ0 to IRQ3, \\ ADTRG, TMIB1, \\ TMRIV, \\ TMCIV, FTIOA0 \\ to FTIOD0, \\ FTIOA1 to \\ FTIOD1, SCK3, \\ \hline \end{array}$	FTIOD1, SCK3, SCK3_2, TRGV RXD, RXD_2, SCL, SDA, P10 to P12, P14 to P17, P20 to P24, P30 to P37, P50 to P57, P60 to P67, P74 to P76, P85 to P87, PC0, PC1 PB0 to PB7 AV _{cc} = 4.5 to 5.5 V AV _{cc} ~ 0.7 OSC1 V _{cc} ~ 0.5 RES, NMI, ON RQ0 to IRQ3, ADTRG, TMIB1, TMCIV, FTIOA0 to FTIOD0, FTIOA1 to FTIOD1, SCK3,	FTIOD1, SCK3, SCK3_2, TRGV V V V V V V CC + 0.3 RXD, RXD_2, SCL, SDA, P10 to P12, P14 to P17, P20 to P24, P30 to P37, P50 to P57, P60 to P67, P70 to P72 P74 to P76, P85 to P87, PC0, PC1 V

Renesas

		PC0, PC1					
		PB0 to PB7	$AV_{cc} = 4.5$ to 5.5 V	/ -0.3	—	$AV_{cc} \times 0.3$	V
		OSC1		-0.3	—	0.5	V
Output high voltage	V _{oh}	P10 to P12, P14 to P17, P20 to P24, P30 to P37,	–I _{он} = 1.5 mA	V _{cc} – 1.0	_	—	V
		P50 to P55, P60 to P67, P70 to P72, P74 to P76, P85 to P87, PC0, PC1	-I _{он} = 0.1 mA	V _{cc} – 0.5	_	_	
		P56, P57	-I _{он} = 0.1 mA	$V_{\rm cc}-2.5$	—	_	V
Output low voltage	V _{ol}	P10 to P12, P14 to P17, P20 to P24, P30 to P37,	I _{oL} = 1.6 mA	_	_	0.6	V
		P50 to P57, P70 to P72, P74 to P76, P85 to P87 PC0, PC1	I _{OL} = 0.4 mA	_	_	0.4	_
		P60 to P67	I _{oL} = 20.0 mA	_		1.5	V
			I _{oL} = 10.0 mA	—	_	1.0	-
			I _{oL} = 1.6 mA	—	—	0.4	-
			I _{oL} = 0.4 mA	_	_	0.4	_
		SCL, SDA	I _{oL} = 6.0 mA	_		0.6	_
			I _{oL} = 3.0 mA	_	_	0.4	

Rev. 3.00 Sep. 10, 2007 Page 420 of 528 REJ09B0216-0300

RENESAS

		SDA					
		P10 to P12, P14 to P17, P20 to P24, P30 to P37, P50 to P57, P60 to P67, P70 to P72, P74 to P76, P85 to P87, PC0, PC1	$V_{IN} = 0.5 V \text{ to}$ ($V_{CC} - 0.5 V$)	_	_	1.0	μΑ
		PB0 to PB7	$V_{_{\rm IN}} = 0.5 \text{ V to} (AV_{_{\rm CC}} - 0.5 \text{ V})$		—	1.0	μA
Pull-up MOS current	$-I_{p}$	P10 to P12, P14 to P17, P50 to P55	$V_{cc} = 5.0 V,$ $V_{iN} = 0.0 V$	50.0	_	300.0	μA
Input capaci- tance	C _{in}	All input pins except power supply pins	f = 4 MHz, $V_{IN} = 0.0 \text{ V},$ $T_a = 25^{\circ}\text{C}$	—	—	15.0	pF
Active mode supply	I _{OPE1}	V _{cc}	Active mode 1 $V_{cc} = 5.0 V$, $f_{osc} = 20 MHz$	_	19.0	28.0	mA
current			Active mode 1 $V_{cc} = 5.0 V$, $f_{osc} = 10 MHz$	_	11.0	_	_
	I _{OPE2}	V _{cc}	Active mode 2 $V_{cc} = 5.0 V$, $f_{osc} = 20 MHz$	_	3.0	5.5	mA
			Active mode 2 $V_{cc} = 5.0 V$, $f_{osc} = 10 MHz$	_	2.5	_	

			$V_{cc} = 5.0 \text{ V},$ $f_{osc} = 10 \text{ MHz}$				
Subactive mode supply current	I _{SUB}	V _{cc}	$V_{cc} = 5.0 V$ 32-kHz crystal resonator $(\phi_{SUB} = \phi_W/2)$	_	95.0	145.0	μA
			$V_{\rm CC} = 5.0 \text{ V}$ 32-kHz crystal resonator $(\phi_{\rm SUB} = \phi_{\rm W}/8)$	_	85.0	_	
Subsleep mode supply current	I _{SUBSP}	V _{cc}	$V_{cc} = 5.0 V$ 32-kHz crystal resonator $(\phi_{SUB} = \phi_W/2)$	_	85.0	140.0	μA
Standby mode supply current	I _{STBY}	V _{cc}	32-kHz crystal resonator not used	_	_	135.0	μA
RAM data retention voltage	V _{RAM}	V _{cc}		2.0	—	_	V

Rev. 3.00 Sep. 10, 2007 Page 422 of 528 REJ09B0216-0300

Subactive mode	V _{cc}	Operates	V _{cc}	Main clock: ceramic or cryst resonator, and o oscillator
Subsleep mode	V _{cc}	Only timers operate	V _{cc}	Subclock: crystal resonato
Standby mode	V _{cc}	CPU and timers both stop	V _{cc}	Main clock: ceramic or cryst resonator, and o oscillator
				Subclock: Pin X1 = V _{ss}

		SCL, and SDA				
		Port 6, SCL, and SDA	-		_	80.0
Permissible output high current (per pin)	-I _{OH}	All output pins	-		_	5.0
Permissible output high current (total)	$ -\Sigma I_{OH} $	All output pins	-	_	—	50.0

Rev. 3.00 Sep. 10, 2007 Page 424 of 528 REJ09B0216-0300

System clock (ι _{cyc}		1		64	ι _{osc}
cycle time			_	_	12.8	μs
Subclock oscillation frequency	f _w	X1, X2	 _	32.768	_	kHz
Watch clock (ϕ_w) cycle time	t _w	X1, X2	_	30.5		μs
Subclock (ϕ_{SUB}) cycle time	t _{subcyc}		 2		8	t _w
Instruction cycle time			2	_	_	t _{cyc} t _{subcyc}
Oscillation stabilization time (crystal resonator)	t _{rc}	OSC1, OSC2	 _	_	10.0	ms
Oscillation stabilization time (ceramic resonator)	t _{rc}	OSC1, OSC2	 _	_	5.0	ms
Oscillation stabilization time (on-chip oscillator)	t _{rc}		 	_	500	μs
Oscillation stabilization time	t _{rcx}	X1, X2			2.0	S
External clock high width	t _{CPH}	OSC1	 20.0	_	_	ns
External clock low width	t _{CPL}	OSC1	20.0	_	_	ns
External clock rise	t _{CPr}	OSC1	 _		10.0	ns
time			 _	_	15.0	
External clock fall	t _{CPf}	OSC1	 		10.0	ns
time			_		15.0	

Rev. 3.00 Sep. 10, 2007 Pag Renesas

REJ09

		TMRIV, TRGV, ADTRG, FTIOA0 to FTIOD0, FTIOA1 to FTIOD1				
Input pin low width	t _{ıL}	NMI, TMIB1,IRQ0 to IRQ3,WKP0 toWKP5,TMCIV,TMRIV,TRGV,ADTRG,FTIOA0 toFTIOD0,FTIOA1 toFTIOD1	2	_	_	t _{cyc} t _{subcyc}

Rev. 3.00 Sep. 10, 2007 Page 426 of 528 REJ09B0216-0300

Vcc = 5.0 V, Ta = 25°C, FSEL = 0, VCLSEL = 0	15.76	16.0	16.24
FSEL = 0, Ta = -20 to +75°C, VCLSEL = 0	15.52	16.0	16.48
FSEL = 0, Ta = -40 to +85°C, VCLSEL = 0	15.36	16.0	16.64
 		4	

- Notes: 1. When an external clock is input, the minimum frequency of the external clock is 4.0 MHz.
 - 2. Determined by MA2 to MA0, SA1, and SA0 in system control register 2 (SYS

SCL and SDA input spike pulse removal time	t _{sp}	_	_	1t _{cyc}	ns
SDA input bus-free time	t _{BUF}	5t _{cyc}	_	_	ns
Start condition input hold time	t _{stah}	3t _{cyc}	_	_	ns
Repeated start condition input setup time	t _{stas}	3t _{cyc}	_	_	ns
Setup time for stop condition input	t _{stos}	3t _{cyc}	_	_	ns
Data-input setup time	t _{sdas}	1t _{cyc} +20	_	_	ns
Data-input hold time	t _{sdah}	0	_	_	ns
Capacitive load of SCL and SDA	C _b	0	_	400	pF
SCL and SDA output fall time	t _{sr}			250	ns

Rev. 3.00 Sep. 10, 2007 Page 428 of 528 REJ09B0216-0300

width	SCKW		••••			Scyc	
Transmit data delay time (clock synchronous)	t _{txd}	TXD	—	—	1	t _{cyc}	I
Receive data setup time (clock synchronous)	t _{RXS}	RXD	50.0	_	—	ns	
Receive data hold time (clock synchronous)	t _{RXH}	RXD	50.0	_	_	ns	

Analog power supply current	Al _{ope}	AV _{cc}	$AV_{cc} = 5.0 V$ $f_{osc} =$ 20 MHz	_	_	2.0	mA
	AI _{STOP1}	AV _{cc}		_	50	_	μA [·] Ι
	$AI_{_{STOP2}}$	AV_{cc}		_	_	5.0	μA [,]
Analog input capacitance	C_{AIN}	AN0 to AN7		_	-	30.0	pF
Permissible signal source impedance	$R_{_{AIN}}$	AN0 to AN7		_	_	5.0	kΩ
Resolution (data length)				10	10	10	bit
Conversion time (single mode)			AV _{cc} = 4.5 to 5.5 V	70	_	_	t _{cyc}
Nonlinearity error			_	_	_	±7.5	LSB
Offset error				—	—	±7.5	LSB
Full-scale error			_	_	_	±7.5	LSB
Quantization error			_	_	_	±0.5	LSB
Absolute accuracy			_	_	_	±8.0	LSB

Rev. 3.00 Sep. 10, 2007 Page 430 of 528 REJ09B0216-0300

- 2. Al_{STOP1} is the current in active and sleep modes while the A/D converter is idle
- 3. Al_{STOP2} is the current at reset and in standby, subactive, and subsleep modes A/D converter is idle.

22.2.5 Watchdog Timer Characteristics

Table 22.7 Watchdog Timer Characteristics

 $V_{cc} = 4.5$ to 5.5 V, $V_{ss} = 0.0$ V, $T_a = -20$ to $+75^{\circ}$ C/-40 to $+85^{\circ}$ C, unless otherwise indication

		Applicable Test	Test		Values		
Item Symbo	Symbol		Condition	Min.	Тур.	Max.	Unit
On-chip oscillator overflow time	t _{ovf}			0.2	0.4	_	S
Note: *		n internal reset illator is selecte	0	after the o	counter c	ounts fror	n 0 to 25

Programming	Wait time after setting SWE bit*1	x		1	_	
	Wait time after setting PSU bit*1	У		50	_	_
	Wait time after setting P bit	z1	$1 \le n \le 6$	28	30	32
	*1*4	z2	$7 \le n \le 1000$	198	200	202
		z3	Additional- programming	8	10	12
	Wait time after clearing P bit*1	α		5	_	_
	Wait time after clearing PSU bit* ¹	β		5	—	
	Wait time after setting PV bit*1	γ		4	_	
	Wait time after dummy write*1	3		2	_	
	Wait time after clearing PV bit*1	η		2	—	_
	Wait time after clearing SWE bit*1	θ		100	_	_
	Maximum programming count * ¹ * ⁴ * ⁵	N		_	_	1000

Rev. 3.00 Sep. 10, 2007 Page 432 of 528 REJ09B0216-0300

		bit*'				
		Wait time after setting EV bit* 1	γ	20	_	_
		Wait time after dummy write*1	3	2	_	_
		Wait time after clearing EV bit*1	η	4	_	_
		Wait time after clearing SWE bit*1	θ	100	—	—
		Maximum erase count $*^{1}*^{6}*^{7}$	Ν	_	_	120
Notes:	1.	Make the time settings in acc	ordance with the progra	m/erase	algorithr	ns.
	2.	The programming time for 12 memory control register 1 (FL				
	3.	The time required to erase or memory control register 1 (FL				
	4.	Programming time maximum maximum programming coun	· F · · · · ·	ime after	P bit se	tting (z)
	5.	Set the maximum programmin and z3 so that it does not exc wait time after setting P bit (z of the programming count (n)	eed the programming til 1, z2) should be change	me maxi	mum val	ue (t _P (n
		Programming count (n)				
		$1 \le n \le 6$ $z1 = 30 \mu$				
	~	$7 \le n \le 1000$ $z^2 = 200$	•			
	6.	Erase time maximum value (t erase count (N)	$r_{e}(max.)) = wait time after$	er E bit se	etting (z)	× maxi
	7.	Set the maximum erase coun not exceed the erase time ma			value of	(z) so t

Renesas

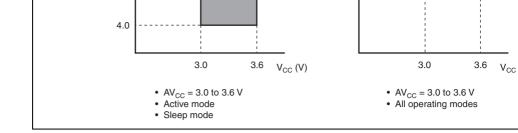
. enage						
Reset detection voltage 1*1	Vreset1	LVDSEL = 0	_	2.3	2.6	
Reset detection voltage 2*2	Vreset2	LVDSEL = 1	3.3	3.6	3.9	
Lower-limit voltage of LVDR operation	$V_{\scriptscriptstyle LVDRmin}$		1.0	_	_	

- Notes: 1. This voltage should be used when the falling and rising voltage detection funct used.
 - 2. Select the low-voltage reset 2 when only the low-voltage detection reset is use

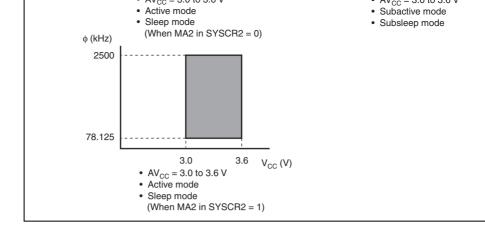
22.2.8 LVDI External Input Voltage Detection Circuit Characteristics

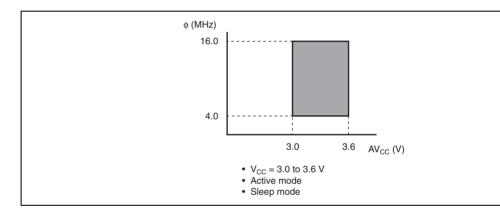
Table 22.10 LVDI External Input Voltage Detection Circuit Characteristics

Vcc = 4.5 to 5.5 V, AVcc = 4.5 to 5.5 V, $V_{ss} = 0.0$ V, $T_a = -20$ to $+75^{\circ}$ C/-40 to $+85^{\circ}$ C


		Test		Values	;
Item	Symbol	Condition	Min.	Тур.	Max.
ExtD/ExtU input detection voltage	Vexd		1.0	1.15	1.30
ExtD/ExtU input voltage range	VextD/VextU	VextD > VextU	-0.3	_	Lower voltage of AV $_{\infty}$ + 0.3 or V $_{\infty}$ + 0.3

Rev. 3.00 Sep. 10, 2007 Page 434 of 528 REJ09B0216-0300


charge of the RES pin is removed completely. In order to remove charge of the pin, it is recommended that the diode be placed in the Vcc side. If the power-voltage (Vcc) rises from the point over 100 mV, a power-on reset may not occ



Rev. 3.00 Sep. 10, 2007 Page 436 of 528 REJ09B0216-0300

(3) Analog Power Supply Voltage and A/D Converter Accuracy Guaranteed Ram

	TMHIV, TMCIV, FTIOA0 to FTIOD0, FTIOA1 to FTIOD1, SCK3, SCK3_2, TRGV				
	RXD, RXD_2, SCL, SDA, P10 to P12, P14 to P17, P20 to P24, P30 to P37, P50 to P57, P60 to P67, P70 to P72 P74 to P76, P85 to P87, PC0, PC1		V _{cc} ×0.8 —	V _{cc} + 0.3	V
	PB0 to PB7	${\rm AV}_{\rm cc}$ = 3.0 to 3.6 V	$AV_{cc} \times 0.8$ —	$AV_{cc} + 0.3$	V
	OSC1		V _{cc} - 0.3 —	V_{cc} + 0.3	V
Input low V _{IL} voltage	RES, NMI, WKP0 to WKP5, IRQ0 to IRQ3, ADTRG, TMIB1, TMRIV, TMCIV, FTIOA0 to FTIOD0, FTIOA1 to FTIOD1, SCK3, SCK3_2, TRGV		-0.3 —	V _{cc} × 0.1	V

Note: Connect the TEST pin to Vss.

Rev. 3.00 Sep. 10, 2007 Page 438 of 528 REJ09B0216-0300

RENESAS

		PC0, PC1					
		PB0 to PB7	AV_{cc} = 3.0 to 3.6 V	-0.3	_	$AV_{cc} \times 0.2$	V
		OSC1		-0.3	_	0.3	V
Output high voltage	V _{oh}	P10 to P12, P14 to P17, P20 to P24, P30 to P37,	–I _{он} = 1.5 mA	V _{cc} - 1.0	_	_	V
	P50 to P55, P60 to P67, P70 to P72, P74 to P76, P85 to P87, PC0, PC1	–l _{οн} = 0.1 mA	V _{cc} – 0.5		_		
		P56, P57	-I _{OH} = 0.1 mA	$V_{\rm cc}-2.0$	—	_	V
Output V _{oL} low voltage	P10 to P12, P14 to P17, P20 to P24, P30 to P37,	I _{oL} = 1.6 mA	_	—	0.6	V	
	P50 to P57, P70 to P72, P74 to P76, P85 to P87 PC0, PC1	I _{oL} = 0.4 mA	_	_	0.4		
		P60 to P67	I _{oL} = 20.0 mA	_	_	1.5	۷
			I _{oL} = 10.0 mA	_		1.0	-
			I _{oL} = 1.6 mA	_		0.4	_
			I _{oL} = 0.4 mA		_	0.4	_
		SCL, SDA	I _{oL} = 6.0 mA	_	_	0.6	_
			I _{oL} = 3.0 mA	—	—	0.4	

Renesas

		SDA					
		P10 to P12, P14 to P17, P20 to P24, P30 to P37, P50 to P57, P60 to P67, P70 to P72, P74 to P76, P85 to P87, PC0, PC1	$V_{\rm IN} = 0.5 V \text{ to}$ ($V_{\rm CC} - 0.5 V$)	_	_	1.0	μA
		PB0 to PB7	$V_{IN} = 0.5 V \text{ to}$ (AV _{cc} - 0.5 V)	_	—	1.0	μA
Pull-up MOS current	- I _p	P10 to P12, P14 to P17, P50 to P55	$V_{cc} = 3.3 V,$ $V_{iN} = 0.0 V$	_	60.0	_	μA
Input capaci- tance	C _{in}	All input pins except power supply pins	f = 4 MHz, $V_{IN} = 0.0 \text{ V},$ $T_a = 25^{\circ}\text{C}$	_	_	15.0	pF
Active mode current	I _{OPE1}	V _{cc}	Active mode 1 $V_{cc} = 3.3 V$, $f_{osc} = 16 MHz$	_	15.0	22.0	mA '
consump- tion			Active mode 1 $V_{cc} = 3.3 V$, $f_{osc} = 10 MHz$	_	11.0	_	, , ,
	I _{OPE2}	V _{cc}	Active mode 2 $V_{cc} = 3.3 V,$ $f_{osc} = 16 MHz$	_	2.8	4.0	mA [,]
			Active mode 2 $V_{cc} = 3.3 V$, $f_{osc} = 10 MHz$	—	2.5	_	*

Rev. 3.00 Sep. 10, 2007 Page 440 of 528 REJ09B0216-0300

RENESAS

			$V_{cc} = 3.3 V,$ $f_{osc} = 10 MHz$				
Subactive mode supply current	I _{SUB}	V _{cc}	$V_{cc} = 3.3 V$ 32-kHz crystal resonator $(\phi_{SUB} = \phi_W/2)$	_	95.0	145.0	μA
			$V_{cc} = 3.3 V$ 32-kHz crystal resonator $(\phi_{SUB} = \phi_W/8)$	_	85.0	_	-
Subsleep mode supply current	I _{SUBSP}	V _{cc}	$V_{cc} = 3.3 V$ 32-kHz crystal resonator $(\phi_{SUB} = \phi_W/2)$	_	85.0	140.0	μΑ
Standby mode supply current	I _{stby}	V _{cc}	32-kHz crystal resonator not used	_	_	135.0	μΑ
RAM data retention voltage	V _{RAM}	V _{cc}		2.0	_	_	V

RENESAS

Subactive mode	V _{cc}	Operates	V _{cc}	Main clock: ceramic or crysta resonator, and or oscillator
Subsleep mode	V _{cc}	Only timers operate	V _{cc}	Subclock: crystal resonator
Standby mode	V _{cc}	CPU and timers both stop	V _{cc}	Main clock: ceramic or crysta resonator, and or oscillator
				Subclock: Pin X1 = V _{ss}

Rev. 3.00 Sep. 10, 2007 Page 442 of 528 REJ09B0216-0300

		SCL, and SDA			
		Port 6, SCL, and SDA	_	—	80.0
Permissible output high current (per pin)	-I _{он}	All output pins	_	_	5.0
Permissible output high current (total)	$ -\Sigma I_{OH} $	All output pins	_	—	50.0

System clock (ι _{cyc}		1		64	l _{osc} *
cycle time			—	_	12.8	μs
Subclock oscillation frequency	f _w	X1, X2	_	32.768	I	kHz
Watch clock (ϕ_w) cycle time	t _w	X1, X2		30.5	_	μs
Subclock (ϕ_{SUB}) cycle time	t _{subcyc}		2	_	8	t _w *
Instruction cycle time			2	_	_	t _{cyc} t _{subcyc}
Oscillation stabilization time (crystal resonator)	t _{rc}	OSC1, OSC2			10.0	ms
Oscillation stabilization time (ceramic resonator)	t _{rc}	OSC1, OSC2	_	_	5.0	ms
Oscillation stabilization time (on-chip oscillator)	t _{rc}				500	μs
Oscillation stabilization time	t _{rcx}	X1, X2	_		2.0	S
External clock high width	t _{CPH}	OSC1	23.8			ns F
External clock low width	t _{CPL}	OSC1	23.8	_	_	ns
External clock rise time	t _{CPr}	OSC1	_	_	15.0	ns
External clock fall time	t _{CPf}	OSC1	_	_	15.0	ns

Rev. 3.00 Sep. 10, 2007 Page 444 of 528 REJ09B0216-0300

RENESAS

		TMCIV, TMRIV, TRGV, ADTRG, FTIOA0 to FTIOD0, FTIOA1 to FTIOD1			
Input pin low width	t _{ı.}	NMI, TMIB1,IRQ0 toIRQ3,WKP0 toWKP5,TMCIV,TMRIV,TRGV,ADTRG,FTIOA0 toFTIOA1 toFTIOD1	2	 _	t _{cyc} t _{subcyc}

Vcc = 3.3 V, Ta = 25°C, FSEL = 0, VCLSEL = 0	15.76	16.00	16.24
FSEL = 0, Ta = -20 to +75°C VCLSEL = 0	15.52	16.0	16.48
FSEL = 0, Ta = -40 to +85°C, VCLSEL = 0	15.36	16.0	16.64

- Notes: 1. When an external clock is input, the minimum frequency of the external clock or is 4.0 MHz.
 - 2. Determined by MA2 to MA0, SA1, and SA0 in system control register 2 (SYSC

Rev. 3.00 Sep. 10, 2007 Page 446 of 528 REJ09B0216-0300

SCL and SDA input spike pulse removal time	t _{sp}	_	_	1t _{cyc}	ns
SDA input bus-free time	t _{BUF}	5t _{cyc}	_	—	ns
Start condition input hold time	t _{stah}	3t _{cyc}	_	_	ns
Repeated start condition input setup time	t _{stas}	3t _{cyc}	_	_	ns
Setup time for stop condition input	t _{stos}	3t _{cyc}	_	_	ns
Data-input setup time	t _{sdas}	1t _{cyc} +20	—	—	ns
Data-input hold time	t _{sdah}	0	_	_	ns
Capacitive load of SCL and SDA	C _b	0	_	400	pF
SCL and SDA output fall time	t _{sr}	—	—	250	ns

width	SCKW		••••			Scyc	
Transmit data delay time (clock synchronous)	t _{TXD}	TXD	—	—	1	t _{cyc}	Fi
Receive data setup time (clock synchronous)	t _{RXS}	RXD	50.0	_	_	ns	
Receive data hold time (clock synchronous)	t _{RXH}	RXD	50.0	_	_	ns	

Rev. 3.00 Sep. 10, 2007 Page 448 of 528 REJ09B0216-0300

Analog power supply current	AI_{OPE}	AV _{cc}	$AV_{cc} = 3.6 V$ $f_{osc} =$ 16 MHz	—	_	2.0	mA
	AI _{STOP1}	AV _{cc}		_	50	_	μA
	$AI_{_{STOP2}}$	AV_{cc}			—	5.0	μA
Analog input capacitance	C _{AIN}	AN0 to AN7		_	_	30.0	pF
Permissible signal source impedance	R _{AIN}	AN0 to AN7		_	_	5.0	kΩ
Resolution (data length)				10	10	10	bit
Conversion time (single mode)			AV _{cc} = 3.0 to 3.6 V	134	_	-	t _{cyc}
Nonlinearity error			_	_	_	±7.5	LSB
Offset error			-	_	—	±7.5	LSB
Full-scale error			_	_	_	±7.5	LSB
Quantization error			-	_	—	±0.5	LSB
Absolute accuracy	_	_		_	_	±8.0	LSB

Notes: 1. Set $AV_{cc} = V_{cc}$ when the A/D converter is not used.

2. Al_{STOP1} is the current in active and sleep modes while the A/D converter is idle

3. Al_{STOP2} is the current at reset and in standby, subactive, and subsleep modes A/D converter is idle.

RENESAS

.....

Note: * Time until an internal reset is generated after the counter counts from 0 to 255 on-chip oscillator is selected

Rev. 3.00 Sep. 10, 2007 Page 450 of 528 REJ09B0216-0300

Programming	Wait time after setting SWE bit*1	х		1	_	_
	Wait time after setting PSU bit*1	у		50	_	_
	Wait time after setting P bit	z1	$1 \le n \le 6$	28	30	32
	* ¹ * ⁴	z2	$7 \le n \le 1000$	198	200	202
		z3	Additional- programming	8	10	12
	Wait time after clearing P bit*1	α		5	_	_
	Wait time after clearing PSU bit*1	β		5	_	_
	Wait time after setting PV bit*1	γ		4	_	_
	Wait time after dummy write*1	3		2	_	_
	Wait time after clearing PV bit*1	η		2	—	_
	Wait time after clearing SWE bit*1	θ		100	_	_
	Maximum programming count *1*4*5	N		_	_	1000

RENESAS

		bit*'					
		Wait time after se bit*1	tting EV	γ	20	—	—
		Wait time after dummy write*1		3	2	—	_
		Wait time after cle bit*1	earing EV	η	4	—	_
		Wait time after cle bit*1	earing SWE	θ	100	—	—
		Maximum erase o	count *1*6*7	Ν	_	_	120
Notes:	1.	Make the time sett	ings in acc	ordance with the p	orogram/erase	e algori	ithms.
	2.	The programming memory control reg		•			
	3.	The time required the memory control reg		•			
	4.	Programming time maximum program			wait time afte	er P bit	setting (z)
	5.	Set the maximum p and z3 so that it do wait time after setti of the programming Programming count	bes not exc ing P bit (z g count (n)	eed the programmed th	ning time may	kimum	value (t _P (m
		$1 \le n \le 6$	z1 = 30 µ	e			
		$7 \le n \le 0$ $7 \le n \le 1000$					
	6.	Erase time maxim			he after E bit s	ettina	(z) × maxir

- 6. Erase time maximum value ($t_e(max.)$) = wait time after E bit setting (z) × maximerase count (N)
- Set the maximum erase count (N) according to the actual set value of (z) so the not exceed the erase time maximum value (t_e(max.)).

Rev. 3.00 Sep. 10, 2007 Page 452 of 528 REJ09B0216-0300

RENESAS

Voltago				
Reset detection voltage 1*	Vreset1	—	2.3	2.6
Lower-limit voltage of LVDR operation	V_{LVDRmin}	1.0	—	
Note: * This voltage should b used.	e used when the fallin	ng and rising volta	age dete	ection fund

22.3.8 LVDI External Input Voltage Detection Circuit Characteristics

Table 22.20 LVDI External Input Voltage Detection Circuit Characteristics

Vcc = 3.0 to 3.6 V, AVcc = 3.0 to 3.6 V, V_{ss} = 0.0 V, T_{a} = -20 to +75°C/-40 to +85°C

		Test		Values	6
Item	Symbol	Condition	Min.	Тур.	Max.
ExtD/ExtU input detection voltage	Vexd		0.95	1.15	1.35
ExtD/ExtU input voltage range	VextD/VextU	VextD > VextU	-0.3	_	Lower voltage of AV $_{\infty}$ + 0.3 o V $_{\infty}$ + 0.3

RENESAS

charge of the RES pin is removed completely. In order to remove charge of the pin, it is recommended that the diode be placed in the Vcc side. If the power-su voltage (Vcc) rises from the point over 100 mV, a power-on reset may not occu

Rev. 3.00 Sep. 10, 2007 Page 454 of 528 REJ09B0216-0300

Figure 22.1 System Clock Input Timing

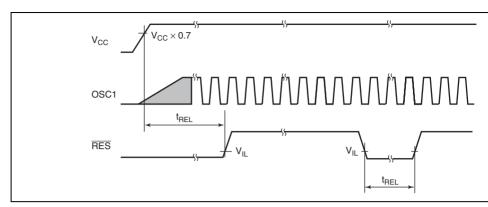


Figure 22.2 RES Low Width Timing

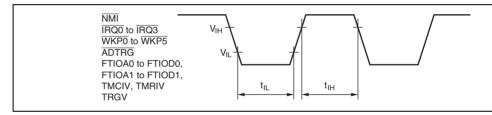


Figure 22.3 Input Timing

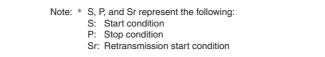


Figure 22.4 I²C Bus Interface Input/Output Timing

Figure 22.5 SCK3 Input Clock Timing

Rev. 3.00 Sep. 10, 2007 Page 456 of 528 REJ09B0216-0300

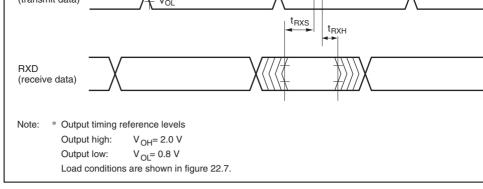


Figure 22.6 SCI Input/Output Timing in Clock Synchronous Mode

Figure 22.7 Output Load Circuit

Rev. 3.00 Sep. 10, 2007 Page 458 of 528 REJ09B0216-0300

ERd	General destination register (address register or 32-bit register)
ERs	General source register (address register or 32-bit register)
ERn	General register (32-bit register)
(EAd)	Destination operand
(EAs)	Source operand
PC	Program counter
SP	Stack pointer
CCR	Condition-code register
Ν	N (negative) flag in CCR
Z	Z (zero) flag in CCR
V	V (overflow) flag in CCR
С	C (carry) flag in CCR
disp	Displacement
\rightarrow	Transfer from the operand on the left to the operand on the right, or trans the state on the left to the state on the right
+	Addition of the operands on both sides
-	Subtraction of the operand on the right from the operand on the left
×	Multiplication of the operands on both sides
÷	Division of the operand on the left by the operand on the right
\wedge	Logical AND of the operands on both sides
\vee	Logical OR of the operands on both sides
\oplus	Logical exclusive OR of the operands on both sides
7	NOT (logical complement)
(), < >	Contents of operand
	neral registers include 8-bit registers (R0H to R7H and R0L to R7L) and 16-bit to R7 and E0 to E7).

RENESAS

Rev. 3.00 Sep. 10, 2007 Page 460 of 528 REJ09B0216-0300

MOV.B @ERs, Rd	В			2					$@ERs\toRd8$	-	—	\updownarrow	€	0
MOV.B @(d:16, ERs), Ro	d B				4				$@(d:16,ERs)\to Rd8$	-	-	\updownarrow	\$	0
MOV.B @(d:24, ERs), Ro	d B				8				$@(d:\!24,ERs)\toRd8$	-	—	\updownarrow	\$	0
MOV.B @ERs+, Rd	В					2			@ ERs → Rd8 ERs32+1 → ERs32	-	—	€	\$	0
MOV.B @aa:8, Rd	В						2		@aa:8 \rightarrow Rd8	-	—	\updownarrow	\$	0
MOV.B @aa:16, Rd	В						4		@aa:16 \rightarrow Rd8	-	—	\updownarrow	\$	0
MOV.B @aa:24, Rd	В						6		@aa:24 \rightarrow Rd8	-	—	\updownarrow	\$	0
MOV.B Rs, @ERd	В			2					$Rs8 \rightarrow @ERd$	-	—	\updownarrow	\$	0
MOV.B Rs, @(d:16, ERd) B				4				$Rs8 \rightarrow @(d:16, ERd)$	-	—	\updownarrow	\$	0
MOV.B Rs, @(d:24, ERd) B				8				$Rs8 \to @(d:24,ERd)$	-	—	\updownarrow	\$	0
MOV.B Rs, @-ERd	В					2			$\begin{array}{l} ERd32-1 \rightarrow ERd32 \\ Rs8 \rightarrow @ ERd \end{array}$	-	-	€	\$	0
MOV.B Rs, @aa:8	В						2		Rs8 \rightarrow @aa:8	-	—	\uparrow	\$	0
MOV.B Rs, @aa:16	В						4		$Rs8 \rightarrow @aa:16$	-	—	\updownarrow	\$	0
MOV.B Rs, @aa:24	В						6		$Rs8 \rightarrow @aa:24$	-	—	↕	\$	0
MOV.W #xx:16, Rd	W	4							#xx:16 → Rd16	-	—	\updownarrow	\$	0
MOV.W Rs, Rd	W		2						$Rs16 \rightarrow Rd16$	-	—	\updownarrow	\$	0
MOV.W @ERs, Rd	W			2					$@ERs \to Rd16$	-	—	\updownarrow	\$	0
MOV.W @(d:16, ERs), R	ld W				4				@(d:16, ERs) → Rd16	-	—	↕	\$	0
MOV.W @(d:24, ERs), R	ld W				8				@(d:24, ERs) → Rd16	-	—	\updownarrow	\$	0
MOV.W @ERs+, Rd	W					2			@ERs → Rd16 ERs32+2 → @ERd32	-	—	€	\$	0
MOV.W @aa:16, Rd	W						4		@aa:16 \rightarrow Rd16	-	—	\updownarrow	\$	0
MOV.W @aa:24, Rd	W						6		@aa:24 \rightarrow Rd16	-	-	\updownarrow	\$	0
MOV.W Rs, @ERd	W			2					$Rs16 \rightarrow @ERd$	-	—	↕	\$	0
MOV.W Rs, @(d:16, ERc	W (b				4				$Rs16 \rightarrow @(d:16, ERd)$	-	—	↕	\$	0
MOV.W Rs, @(d:24, ERc	W (b				8				$Rs16 \to @(d:24, ERd)$	-	—	\updownarrow	\$	0

	10 V.L LII3, LII0	-	2										*	×	0
	MOV.L @ERs, ERd	L		4						$@ERs\toERd32$		—			0
	MOV.L @(d:16, ERs), ERd	L			6					$@(d:16,ERs)\to ERd32$		—			0
	MOV.L @(d:24, ERs), ERd	L			10					$@(d:\!24,ERs)\toERd32$	—	-		\$	0
	MOV.L @ERs+, ERd	L				4				$@ERs\toERd32$	-	-	\$	\$	0
										ERs32+4 \rightarrow ERs32					
	MOV.L @aa:16, ERd	L					6			@aa:16 \rightarrow ERd32	_	-	\$	\$	0
	MOV.L @aa:24, ERd	L					8			@aa:24 \rightarrow ERd32	_	-	\uparrow	\$	0
	MOV.L ERs, @ERd	L		4						$ERs32 \to @ERd$	_	-	\$		0
	MOV.L ERs, @(d:16, ERd)	L			6					$ERs32 \to @(d:16,ERd)$		-			0
	MOV.L ERs, @(d:24, ERd)	L			10					$ERs32 \to @(d:24,ERd)$		—			0
	MOV.L ERs, @-ERd	L				4				$ERd324 \to ERd32$	—	-	\$	1	0
										$ERs32 \rightarrow @ERd$					
	MOV.L ERs, @aa:16	L					6			$ERs32 \to @aa:16$	-	-	\$	\$	0
	MOV.L ERs, @aa:24	L					8			$ERs32 \to @aa:24$	-	-	\$	\$	0
POP	POP.W Rn	W							2	$@SP \to Rn16$	—	-	\$	\$	0
										$SP+2 \rightarrow SP$					
	POP.L ERn	L							4	$@SP\toERn32$	-	-	\$	\$	0
										$SP+4 \rightarrow SP$					
PUSH	PUSH.W Rn	W							2	$SP-2 \rightarrow SP$	-	-	\$	\$	0
										$Rn16 \rightarrow @SP$					
	PUSH.L ERn	L							4	$SP-4 \rightarrow SP$	—	-	\$	\$	0
										$ERn32 \rightarrow @SP$					
MOVFPE	MOVFPE @aa:16, Rd	В					4			Cannot be used in	Ca	anno	ot be	e us	ed in
										this LSI	thi	is LS	SI		
MOVTPE	MOVTPE Rs, @aa:16	В					4			Cannot be used in	Ca	anno	ot be	e us	ed in
										this LSI	this LSI				

Rev. 3.00 Sep. 10, 2007 Page 462 of 528 REJ09B0216-0300

	ADD.L #xx:32, ERd	L	6					ERd32+#xx:32 → ERd32	—	(2)	€	≎	\$
	ADD.L ERs, ERd	L		2				$ERd32+ERs32 \rightarrow$ $ERd32$	—	(2)	\$	\$	\$
ADDX	ADDX.B #xx:8, Rd	В	2					$Rd8+#xx:8 + C \rightarrow Rd8$	_	\$	\$	(3)	\$
	ADDX.B Rs, Rd	В		2				Rd8+Rs8 +C \rightarrow Rd8	_	\$	\$	(3)	\$
ADDS	ADDS.L #1, ERd	L		2				ERd32+1 \rightarrow ERd32	—	—	—	-	-
	ADDS.L #2, ERd	L		2				$ERd32+2 \rightarrow ERd32$	-	—	—	-	-
	ADDS.L #4, ERd	L		2				$ERd32+4 \rightarrow ERd32$	-	—	—	-	-
INC	INC.B Rd	В		2				$Rd8+1 \rightarrow Rd8$	—	—	\updownarrow	\$	\$
	INC.W #1, Rd	W		2				$Rd16+1 \rightarrow Rd16$	—	—	\$	\$	\$
	INC.W #2, Rd	W		2				$Rd16+2 \rightarrow Rd16$	—	—	\$	\$	\$
	INC.L #1, ERd	L		2				$ERd32+1 \rightarrow ERd32$	—	—	\$	\$	\$
	INC.L #2, ERd	L		2				$ERd32+2 \rightarrow ERd32$	-	—	\$	\$	\$
DAA	DAA Rd	В		2				Rd8 decimal adjust \rightarrow Rd8	_	*	\$	\$	*
SUB	SUB.B Rs, Rd	В		2				$Rd8-Rs8 \rightarrow Rd8$	—	€	\$	\$	\$
	SUB.W #xx:16, Rd	W	4					Rd16–#xx:16 \rightarrow Rd16	-	(1)	\$	\$	\$
	SUB.W Rs, Rd	W		2				$Rd16-Rs16 \rightarrow Rd16$	—	(1)	\$	\$	\$
	SUB.L #xx:32, ERd	L	6					ERd32–#xx:32 \rightarrow ERd32	—	(2)	\$	\$	\$
	SUB.L ERs, ERd	L		2				$ERd32{-}ERs32 \rightarrow ERd32$	—	(2)	\$	\$	\$
SUBX	SUBX.B #xx:8, Rd	В	2					$Rd8\text{-}\#xx:8\text{-}C\toRd8$	-	€	\$	(3)	\$
	SUBX.B Rs, Rd	В		2				$Rd8\text{-}Rs8\text{-}C\toRd8$	-	€	\$	(3)	\$
SUBS	SUBS.L #1, ERd	L		2				$ERd32-1 \to ERd32$	—	—	—	—	-
	SUBS.L #2, ERd	L		2				$ERd32-2 \rightarrow ERd32$	—	—	—	—	-
	SUBS.L #4, ERd	L		2				$ERd324 \to ERd32$	-	—	—	-	-
DEC	DEC.B Rd	В		2				$Rd8-1 \rightarrow Rd8$	-	—	\updownarrow	\$	\$
	DEC.W #1, Rd	W		2				$Rd16-1 \rightarrow Rd16$	—	—	\$	\$	\$
	DEC.W #2, Rd	W		2				$Rd16-2 \rightarrow Rd16$	_	—	\$	\$	\$

			\square			 							
	MULXU. W Rs, ERd	W		2				$Rd16 \times Rs16 \rightarrow ERd32$ (unsigned multiplication)	-		-	—	
MULXS	MULXS. B Rs, Rd	В		4				$Rd8 \times Rs8 \rightarrow Rd16$ (signed multiplication)	_	-	\$	≎	
	MULXS. W Rs, ERd	W		4				$Rd16 \times Rs16 \rightarrow ERd32$ (signed multiplication)	—	-	\$	≎	
DIVXU	DIVXU. B Rs, Rd	В		2				Rd16 \div Rs8 \rightarrow Rd16 (RdH: remainder, RdL: quotient) (unsigned division)	_		(6)	(7)	
	DIVXU. W Rs, ERd	W		2				$ERd32 + Rs16 \rightarrow ERd32$ (Ed: remainder, Rd: quotient) (unsigned division)	_	_	(6)	(7)	
DIVXS	DIVXS. B Rs, Rd	В		4				Rd16 ÷ Rs8 → Rd16 (RdH: remainder, RdL: quotient) (signed division)	_		(8)	(7)	
	DIVXS. W Rs, ERd	W		4				$ERd32 + Rs16 \rightarrow ERd32$ (Ed: remainder, Rd: quotient) (signed division)	_		(8)	(7)	
CMP	CMP.B #xx:8, Rd	в	2	\square				Rd8–#xx:8	-	\$	\$	\updownarrow	\$
'	CMP.B Rs, Rd	в		2				Rd8–Rs8	-	\$	€	\updownarrow	\$
	CMP.W #xx:16, Rd	W	4					Rd16-#xx:16	—	(1)	¢	\updownarrow	\updownarrow
	CMP.W Rs, Rd	W		2				Rd16–Rs16	—	(1)	€	\updownarrow	\updownarrow
'	CMP.L #xx:32, ERd	L	6					ERd32-#xx:32	—	(2)	€	\updownarrow	\updownarrow
	CMP.L ERs, ERd	L		2				ERd32–ERs32	—	(2)	€	\updownarrow	\updownarrow

Rev. 3.00 Sep. 10, 2007 Page 464 of 528 REJ09B0216-0300

RENESAS

			L				of ERd32)			Ű	*	
EXTS	EXTS.W Rd	w	2				(<bit 7=""> of Rd16) \rightarrow (<bits 15="" 8="" to=""> of Rd16)</bits></bit>	_	—	\$	\$	0
	EXTS.L ERd	L	2				(<bit 15=""> of ERd32) \rightarrow (<bits 16="" 31="" to=""> of ERd32)</bits></bit>			\$	\$	0

	AND.L #xx:32, ERd	L	6					$ERd32 \land \#xx:32 \rightarrow ERd32$	—	-	\updownarrow	$\hat{\downarrow}$	0
	AND.L ERs, ERd	L		4				$ERd32 \land ERs32 \to ERd32$	—	—	\$	\$	0
OR	OR.B #xx:8, Rd	В	2					$Rd8/#xx:8 \rightarrow Rd8$	—	—	\$	\$	0
	OR.B Rs, Rd	В		2				$Rd8/Rs8 \rightarrow Rd8$	—	—	\$	¢	0
	OR.W #xx:16, Rd	W	4					Rd16⁄#xx:16 → Rd16	—	—	\$	\$	0
	OR.W Rs, Rd	W		2				$Rd16/Rs16 \rightarrow Rd16$	—	—	\$	¢	0
	OR.L #xx:32, ERd	L	6					$ERd32/#xx:32 \rightarrow ERd32$	—	—	\$	¢	0
	OR.L ERs, ERd	L		4				$ERd32/ERs32 \rightarrow ERd32$	—	—	\$	\$	0
XOR	XOR.B #xx:8, Rd	В	2					$Rd8 \oplus \#xx: 8 \rightarrow Rd8$	—	—	\$	\$	0
	XOR.B Rs, Rd	В		2				$Rd8 \oplus Rs8 \to Rd8$	—	—	\$	\$	0
	XOR.W #xx:16, Rd	W	4					$Rd16 \oplus #xx:16 \rightarrow Rd16$	—	—	\$	¢	0
	XOR.W Rs, Rd	W		2				$Rd16 \oplus Rs16 \rightarrow Rd16$	—	—	\$	¢	0
	XOR.L #xx:32, ERd	L	6					$ERd32 \oplus \#xx:32 \to ERd32$	—	—	\$	¢	0
	XOR.L ERs, ERd	L		4				$ERd32 \oplus ERs32 \to ERd32$	—	—	\$	¢	0
NOT	NOT.B Rd	В		2				$\neg \text{ Rd8} \rightarrow \text{ Rd8}$	—	—	\$	€	0
	NOT.W Rd	W		2				\neg Rd16 \rightarrow Rd16	_	—	\$	€	0
	NOT.L ERd	L		2				$\neg \text{Rd32} \rightarrow \text{Rd32}$	_	—	\$	€	0

Rev. 3.00 Sep. 10, 2007 Page 466 of 528 REJ09B0216-0300

	SHAR.W Rd	W	2					_	_	\$ \$	0
	SHAR.L ERd	L	2				MSB LSB	—	—	\$ \$	0
SHLL	SHLL.B Rd	В	2					—	—	\$ \$	0
	SHLL.W Rd	W	2					—	—	\$ \$	0
	SHLL.L ERd	L	2				MSB LSB	—	—	\$ \$	0
SHLR	SHLR.B Rd	в	2					—	—	\$ \$	0
	SHLR.W Rd	w	2				0→+C	—	—	\$ \$	0
	SHLR.L ERd	L	2				MSB LSB	—	—	\$ \$	0
ROTXL	ROTXL.B Rd	В	2					—	—	\$ \$	0
	ROTXL.W Rd	w	2					—	—	\$ \$	0
	ROTXL.L ERd	L	2				MSB 🗕 LSB	—	—	\$ \$	0
ROTXR	ROTXR.B Rd	В	2					—	—	\$ \$	0
	ROTXR.W Rd	w	2					—	—	\$ \$	0
	ROTXR.L ERd	L	2				MSB LSB	—	—	\$ \$	0
ROTL	ROTL.B Rd	В	2					—	—	\$ \$	0
	ROTL.W Rd	W	2					—	—	\$ \$	0
	ROTL.L ERd	L	2				MSB - LSB	—	—	\$ \$	0
ROTR	ROTR.B Rd	В	2					—	—	\$ \$	0
	ROTR.W Rd	w	2					—	—	\$ \$	0
	ROTR.L ERd	L	2				MSB	—	—	\$ \$	0

	BSET Rn, @ERd	В		4				(Rn8 of @ERd) ← 1	_	—	_	_	—
	BSET Rn, @aa:8	В				4		(Rn8 of @aa:8) ← 1	—	-	-	—	—
BCLR	BCLR #xx:3, Rd	В	2					(#xx:3 of Rd8) ← 0	—	-	-	—	—
	BCLR #xx:3, @ERd	В		4				(#xx:3 of @ERd) ← 0	—	-	-	-	—
	BCLR #xx:3, @aa:8	В				4		(#xx:3 of @aa:8) ← 0	-	-	-	-	—
	BCLR Rn, Rd	в	2					(Rn8 of Rd8) ← 0	-	-	-	-	—
	BCLR Rn, @ERd	В		4				(Rn8 of @ERd) $\leftarrow 0$ ·		-	-	-	—
	BCLR Rn, @aa:8	В				4		(Rn8 of @aa:8) ← 0		—	-	—	—
BNOT	BNOT #xx:3, Rd	В	2					(#xx:3 of Rd8) ← ¬ (#xx:3 of Rd8)	—	-	-	-	—
	BNOT #xx:3, @ERd	В		4				(#xx:3 of @ERd) ← ¬ (#xx:3 of @ERd)		-	-	-	—
	BNOT #xx:3, @aa:8	В				4		(#xx:3 of @aa:8) ← ¬ (#xx:3 of @aa:8)		-	-	-	—
	BNOT Rn, Rd	В	2					(Rn8 of Rd8) ← ¬ (Rn8 of Rd8)		-	-	-	—
	BNOT Rn, @ERd	В		4				(Rn8 of @ERd) ← ¬ (Rn8 of @ERd)		-	-	-	—
	BNOT Rn, @aa:8	В				4		(Rn8 of @aa:8) ← ¬ (Rn8 of @aa:8)		-	-	-	—
BTST	BTST #xx:3, Rd	В	2					¬ (#xx:3 of Rd8) → Z	—	—	-	\$	—
	BTST #xx:3, @ERd	В		4				¬ (#xx:3 of @ERd) → Z	—	-	-	\$	—
	BTST #xx:3, @aa:8	В				4		¬ (#xx:3 of @aa:8) → Z	—	-	-	\$	—
	BTST Rn, Rd	В	2					¬ (Rn8 of @Rd8) → Z	—	-	—	\$	—
	BTST Rn, @ERd	В		4				¬ (Rn8 of @ERd) → Z		-	—	\$	—
	BTST Rn, @aa:8	В				4		¬ (Rn8 of @aa:8) → Z	_	-	_	\$	—
BLD	BLD #xx:3, Rd	В	2					(#xx:3 of Rd8) \rightarrow C	_	_	_	_	—

Rev. 3.00 Sep. 10, 2007 Page 468 of 528 REJ09B0216-0300

001	B01 #XX.0, H0			-						0 / (",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
	BST #xx:3, @ERd	В			4					$C \rightarrow (\#xx:3 \text{ of } @ERd24)$	—	—	—	—	—
	BST #xx:3, @aa:8	В						4		$C \rightarrow (\#xx:3 \text{ of } @aa:8)$	—	—	—	—	—
BIST	BIST #xx:3, Rd	В		2						\neg C \rightarrow (#xx:3 of Rd8)	—	—	—	—	—
	BIST #xx:3, @ERd	В			4					\neg C \rightarrow (#xx:3 of @ERd24)	-	-	-	-	—
	BIST #xx:3, @aa:8	#xx:3, @aa:8 B 4		$\neg C \rightarrow (\#xx:3 \text{ of } @aa:8)$	-	—	-	-	-						
BAND	BAND #xx:3, Rd	В		2						$C \land (\#xx:3 \text{ of } Rd8) \rightarrow C$	-	—	-	—	—
	BAND #xx:3, @ERd	В			4					$C_{\wedge}(\texttt{\#xx:3 of @ERd24}) \to C$	—	—	—	—	—
	BAND #xx:3, @aa:8	В						4		$C \land (\#xx:3 \text{ of } @aa:8) \rightarrow C$	—	—	—	—	—
BIAND	BIAND #xx:3, Rd	В		2						$C \land \neg \text{ (#xx:3 of Rd8)} \to C$	—	—	—	—	—
	BIAND #xx:3, @ERd	В			4					$C \land \neg$ (#xx:3 of @ERd24) \rightarrow C	-	—	—	—	—
	BIAND #xx:3, @aa:8	В						4		$C \wedge \neg$ (#xx:3 of @aa:8) $\rightarrow C$	-	—	—	—	—
BOR	BOR #xx:3, Rd	В		2						$C \lor (\#xx:3 \text{ of } Rd8) \rightarrow C$	—	—	—	—	—
	BOR #xx:3, @ERd	В			4					$C{\lor}(\texttt{\#xx:3 of @ERd24}) \rightarrow C$	—	—	—	—	—
	BOR #xx:3, @aa:8	В				4		$C \lor (\#xx:3 \text{ of } @aa:8) \rightarrow C$	—	—	—	—	—		
BIOR	BIOR #xx:3, Rd	В		2						$C \lor \neg \text{ (\#xx:3 of Rd8)} \to C$	—	—	—	—	—
	BIOR #xx:3, @ERd	В			4					$C \lor \neg$ (#xx:3 of @ERd24) \rightarrow C	—	—	—	—	—
	BIOR #xx:3, @aa:8	В						4		$C \lor \neg$ (#xx:3 of @aa:8) $\rightarrow C$	-	—	—	—	—
BXOR	BXOR #xx:3, Rd	В		2						$C {\oplus} (\#xx:3 \text{ of } Rd8) \to C$	—	-	-	-	—
	BXOR #xx:3, @ERd	В			4					$C {\oplus} (\#xx:3 \text{ of } @ ERd24) \to C$	—	—	—	—	—
	BXOR #xx:3, @aa:8	В						4		$C \oplus (\#xx:3 \text{ of } @aa:8) \rightarrow C$	—	—	—	—	—
BIXOR	BIXOR #xx:3, Rd	В		2						$C \oplus \neg (\#xx:3 \text{ of } Rd8) \to C$	—	—	—	—	—
	BIXOR #xx:3, @ERd	В			4					$C \oplus \neg (\#xx:3 \text{ of } @ ERd24) \rightarrow C$	_	_	_	_	-
	BIXOR #xx:3, @aa:8	В						4		$C \oplus \neg (\#xx:3 \text{ of } @aa:8) \rightarrow C$	—	—	—	—	—

BHI d:8	—		\square	2		-	C∨ Z = 0	_		_	—	
BHI d:16	—			4		1		_	_	—	—	
BLS d:8	—			2		1	C∨ Z = 1	—	-	—	—	
BLS d:16	—			4		1		_	-	—	—	
BCC d:8 (BHS d:8)	$\left -\right $			2		1	C = 0	—	—	—	—	
BCC d:16 (BHS d:16)	—			4		1		—	-	—	—	— ·
BCS d:8 (BLO d:8)	—			2		1	C = 1	—	—	—	—	:
BCS d:16 (BLO d:16)	—			4		1		—	$\left -\right $	—	—	
BNE d:8	$\left -\right $			2	1	1	Z = 0	—	-	—	—	_ ·
BNE d:16	$\left -\right $			4	1	1		—	$\left -\right $	—	—	<u> </u>
BEQ d:8	$\left -\right $			2		1	Z = 1	—	—	—	—	<u> </u>
BEQ d:16	—			4		1		—	-	—	_	<u> </u>
BVC d:8	—			2		1	V = 0	—	-	—	—	— ·
BVC d:16	—			4		1		—	-	—	—	
BVS d:8	—			2		1	V = 1	—	-	—	—	_ ·
BVS d:16	—			4		1		—	-	—	—	_ ·
BPL d:8	$\left -\right $			2	1	1	N = 0	—	$\left -\right $	—	—	<u> </u>
BPL d:16	—			4		1		—	_	—	_	— ·
BMI d:8	—			2		1	N = 1	—	-	—	_	<u> </u>
BMI d:16	—			4		1		—	-	—	—	— ·
BGE d:8	—			2		1	N⊕V = 0	—	-	—	—	— ·
BGE d:16	—			4		1		—	$\left -\right $	—	—	
BLT d:8	—			2	1	1	N⊕V = 1	—	-	—	—	[]·
BLT d:16	$\left -\right $			4	1	1		—	$\left -\right $	—	—	<u> </u>
BGT d:8	$\left -\right $			2		1	$Z \vee (N \oplus V) = 0$	—	$\left -\right $	—	—	— ·
BGT d:16	$\left -\right $			4		1		—	—	—	—	<u> </u>
BLE d:8	—			2		1	Z∨ (N⊕V) = 1	—	-	—	—	— ·
BLE d:16	—			4		1		—	$\left -\right $	—	—	<u> </u>

Rev. 3.00 Sep. 10, 2007 Page 470 of 528 REJ09B0216-0300

RENESAS

	Dorra.ito								$PC \leftarrow PC+d:16$					
JSR	JSR @ERn	_		2					$PC \rightarrow @-SP$ $PC \leftarrow ERn$	—	—	-	-	-
	JSR @aa:24	—				4			$PC \rightarrow @-SP$ $PC \leftarrow aa:24$	—	-	-	-	-
	JSR @@aa:8	_					2		$PC \rightarrow @-SP$ $PC \leftarrow @aa:8$	—	—	—	—	-
RTS	RTS	—						2	$PC \leftarrow @SP+$	—	—	—	_	-

RENESAS

											$PC \gets @SP+$					
SLEEP	SLEEP	-									Transition to power- down state	-	-	-	-	-
LDC	LDC #xx:8, CCR	В	2								$#xx:8 \rightarrow CCR$	\$	\$	\$	\$	\$
	LDC Rs, CCR	В		2							$Rs8 \to CCR$	\$	\$	\$	\$	\uparrow
	LDC @ERs, CCR	W			4						$@ERs\toCCR$	\$	\$	\$	\$	\uparrow
	LDC @(d:16, ERs), CCR	W				6					$@(d:16,ERs)\to CCR$	\$	\$	\$	\$	\uparrow
	LDC @(d:24, ERs), CCR	W				10					$@(d{:}24,ERs)\toCCR$	\$	\$	\$	\$	\$
	LDC @ERs+, CCR	W					4				$@ ERs \rightarrow CCR$ ERs32+2 $\rightarrow ERs32$	\$	\$	\$	\$	\$
	LDC @aa:16, CCR	W						6			@aa:16 \rightarrow CCR	\$	\$	\$	\$	\$
	LDC @aa:24, CCR	W						8			@aa:24 \rightarrow CCR	\$	\$	\$	\$	\$
STC	STC CCR, Rd	в		2							$CCR \rightarrow Rd8$	-	-	-	—	—
	STC CCR, @ERd	W			4						$CCR \to @ERd$	-	-	-	—	-
	STC CCR, @(d:16, ERd)	W				6					$\text{CCR} \rightarrow @(\text{d:16, ERd})$	-	-	-	-	-
	STC CCR, @(d:24, ERd)	W				10					$\text{CCR} \rightarrow @(\text{d:24, ERd})$	-	-	-	-	$\left - \right $
	STC CCR, @-ERd	W					4				$\begin{array}{l} ERd32-2 \rightarrow ERd32 \\ CCR \rightarrow @ ERd \end{array}$	-	-	-	-	-
	STC CCR, @aa:16	W						6			$CCR \rightarrow @aa:16$	-	-	-	—	—
	STC CCR, @aa:24	W						8			$CCR \rightarrow @aa:24$	-	-	-	—	—
ANDC	ANDC #xx:8, CCR	В	2								$CCR_{\wedge} \# xx: 8 \to CCR$	\$	\$	\$	\$	\$
ORC	ORC #xx:8, CCR	В	2								$CCR {\lor} \texttt{\#xx:8} \to CCR$	\$	\$	\$	\$	\$
XORC	XORC #xx:8, CCR	В	2								$CCR \oplus \#xx: 8 \to CCR$	\$	\$	\$	\$	\$
NOP	NOP	_								2	$PC \gets PC{+}2$	-	-	-	—	-

Rev. 3.00 Sep. 10, 2007 Page 472 of 528 REJ09B0216-0300

							$\Pi 4L = I \rightarrow \Pi 4L$					
							until R4L=0					
							else next					
EEPMOV. W	—					4	if R4 ≠ 0 then	-	—	—	—	-
							repeat $@R5 \rightarrow @R6$					
							$R5+1 \rightarrow R5$					
							$\text{R6+1} \rightarrow \text{R6}$					
							$R4-1 \rightarrow R4$					
							until R4=0					
							else next					

- Notes: 1. The number of states in cases where the instruction code and its operands at in on-chip memory is shown here. For other cases see appendix A.3, Numbe Execution States.
 - 2. n is the value set in register R4L or R4.
 - (1) Set to 1 when a carry or borrow occurs at bit 11; otherwise cleared to 0.
 - (2) Set to 1 when a carry or borrow occurs at bit 27; otherwise cleared to 0.
 - (3) Retains its previous value when the result is zero; otherwise cleared to 0.
 - (4) Set to 1 when the adjustment produces a carry; otherwise retains its prev
 - (5) The number of states required for execution of an instruction that transfer synchronization with the E clock is variable.
 - (6) Set to 1 when the divisor is negative; otherwise cleared to 0.
 - (7) Set to 1 when the divisor is zero; otherwise cleared to 0.
 - (8) Set to 1 when the quotient is negative; otherwise cleared to 0.

Instruc	Instruction code:		1st byte AH AL	2nd byte BH BL	yyte BL			truction	when I when I	nost sig nost sig	gnifican gnifican	 Instruction when most significant bit of BH Instruction when most significant bit of BH 	ВН ВН
AH AL	0	-	2	e	4	5	9	2	œ	6	A	в	0
0	NOP	Table A.2 (2)	STC	LDC	ORC	XORC	ANDC	LDC	ADD	Q	Table A.2 (2)	Table A.2 (2)	
-	Table A.2 (2)	Table A.2 (2)	Table A.2 Table A.2 Table A.2 (2) (2) (2)	Table A.2 (2)	OR.B	XOR.B	AND.B	Table A.2 (2)	SUB		Table A.2 (2)	Table A.2 (2)	
N													
ю								MOV.B					
4	BRA	BRN	BHI	BLS	BCC	BCS	BNE	BEQ	BVC	BVS	BPL	BMI	BG
ى	MULXU	DIVXU	MULXU	DIVXU	RTS	BSR	RTE	TRAPA	Table A.2 (2)		AML		BS
9	L	ł	i c	-	OR	XOR	AND	BST BIST				MOV	20
7	BSEI	BNOI	BCLH		BOR BIOR	BXOR BIXOR	BAND BIAND	BLD	MOV	Table A.2 ⁻ (2)	Table A.2 (2)	Table A.2 EEPMOV	
ø								ADD					
6								ADDX					
A								CMP					
В								SUBX					
о								OR					
۵								XOR					
ш								AND					

Rev. 3.00 Sep. 10, 2007 Page 474 of 528 REJ09B0216-0300

RENESAS

AH AL	0	۲	2	е	4	2	9	7	8	6	A	В
01	MOV				LDC/STC				SLEEP			
OA	INC											
OB	ADDS					INC		INC	AD	ADDS		
٥F	DAA											
10	SF	SHLL		SHLL					SF	SHAL		SHA
11	HS I	SHLR		SHLR					HS	SHAR		SHA
12	RO'	ROTXL		ROTXL					RC	ROTL		ROT
13	RO ⁻	ROTXR		ROTXR					RC	ROTR		ROT
17	Ň	NOT		NOT		EXTU		EXTU	NE	NEG		NEG
1A	DEC											
1B	SUBS					DEC		DEC	SL	SUB		
1F	DAS											
58	BRA	BRN	BHI	BLS	BCC	BCS	BNE	BEQ	BVC	BVS	BPL	BM
62	MOV	ADD	CMP	SUB	OR	XOR	AND					
ΤA	MOV	ADD	CMP	SUB	OR	XOR	AND					

Instruction code: 1st byte 2nd byte AH AL BH BL

Renesas

Instruction code:	ion cod		1st byte	2nd byte		3rd byte	4th byte	te	Ĺ	- Instruction when	ction w	hen
		AH	H AL	BH E	BL CH	I CL	DH	DL	-	- Instruction when	ction w	hen i
AH ALBH BLCH	0	-	N	m	4	ى	Q	~	ω	σ	٨	m
01406										LDC		N LDC
01 C05	MULXS		MULXS									
01 D05		DIVXS		DIVXS								
01F06					OR	XOR	AND					
7Cr06*1				BTST								
7Cr07*1				BTST	BOR BIOR	BXOR BIXOR	BAND BIAND	BLD				
7Dr06*1	BSET	BNOT	BCLR					BST BIST				
7Dr07*1	BSET	BNOT	BCLR									
7Eaa6*2				BTST								
7Eaa7*2				BTST	BOR BIOR	BXOR BIXOR	BAND BIAND	BLD				
7Faa6*2	BSET	BNOT	BCLR					BST BIST				
7Faa7*2	BSET	BNOT	BCLR									
Notes: 1.	r is the regi aa is the ah	Notes: 1. r is the register designation field. 2 aa is the absolute address field	ation field. ess field									

Rev. 3.00 Sep. 10, 2007 Page 476 of 528 REJ09B0216-0300

RENESAS

BSET #0, @FF00

From table A.4: I = L = 2, J = K = M = N= 0

From table A.3: $S_1 = 2$, $S_L = 2$

Number of states required for execution = $2 \times 2 + 2 \times 2 = 8$

When instruction is fetched from on-chip ROM, branch address is read from on-chip RO on-chip RAM is used for stack area.

JSR @ @ 30 From table A.4: I = 2, J = K = 1, L = M = N = 0From table A.3:

 $S_{I} = S_{J} = S_{K} = 2$

Number of states required for execution = $2 \times 2 + 1 \times 2 + 1 \times 2 = 8$

Note: * Depends on which on-chip peripheral module is accessed. See section 21.1, F Addresses (Address Order).

Rev. 3.00 Sep. 10, 2007 Page 478 of 528 REJ09B0216-0300

ADDS	ADDS #1/2/4, ERd	1	
ADDX	ADDX #xx:8, Rd	1	
	ADDX Rs, Rd	1	
AND	AND.B #xx:8, Rd	1	
	AND.B Rs, Rd	1	
	AND.W #xx:16, Rd	2	
	AND.W Rs, Rd	1	
	AND.L #xx:32, ERd	3	
	AND.L ERs, ERd	2	
ANDC	ANDC #xx:8, CCR	1	
BAND	BAND #xx:3, Rd	1	
	BAND #xx:3, @ERd	2	1
	BAND #xx:3, @aa:8	2	1

BVC d:8 2 BVS d:8 2 BPL d:8 2 BMI d:8 2 BGE d:8 2 BCC BLT d:8 2 BCT BLT d:8 2 BCT BGT d:8 2 BRA d:16(BT d:16) 2 2 BRN d:16(BT d:16) 2 2 BRN d:16(BT d:16) 2 2 BCC d:16(BHS d:16) 2 2 BCC d:16(BLO d:16) 2 2 BCC d:16 2 2 BCS d:16 2 2 BCS d:16 2 2 BCG d:16 2		BEQ d:8	2
BPL d:8 2 BMI d:8 2 BGE d:8 2 BCc BLT d:8 2 BGT d:8 2 BGT d:8 2 BRA d:16(BT d:16) 2 BRN d:16(BF d:16) 2 BH d:16 2 BCC d:16(BF d:16) 2 BCC d:16(BHS d:16) 2 BCC d:16(BHS d:16) 2 BCC d:16(BLO d:16) 2 BCC d:16(BLO d:16) 2 BCC d:16(BLO d:16) 2 BVE d:16 2 BVE d:16 2 BVE d:16 2 BVC d:16 2 BVS d:16 2 BVS d:16 2 BVI d:16 <td></td> <td>BVC d:8</td> <td>2</td>		BVC d:8	2
BMI d:8 2 BGE d:8 2 Bcc BLT d:8 2 BGT d:8 2 BGT d:8 2 BLE d:8 2 BRA d:16(BT d:16) 2 BRN d:16(BF d:16) 2 BLS d:16 2 BCC d:16(BHS d:16) 2 BCC d:16(BLO d:16) 2 BCC d:16(BLO d:16) 2 BCC d:16(BLO d:16) 2 BCC d:16(BLO d:16) 2 BVE d:16 2 BVE d:16 2 BVE d:16 2 BVE d:16 2 BVC d:16 2 BVC d:16 2 BVC d:16 2 BVI d:16 2 BVI d:16 2 BUI d:16		BVS d:8	2
BGE d:8 2 Bcc BLT d:8 2 BGT d:8 2 BGT d:8 2 BLE d:8 2 BRA d:16(BT d:16) 2 BRN d:16(BT d:16) 2 BRN d:16(BT d:16) 2 BRN d:16(BF d:16) 2 BCC d:16(BHS d:16) 2 BCS d:16(BLO d:16) 2 BCS d:16(BLO d:16) 2 BNE d:16 2 BVC d:16 2 BVC d:16 2 BVS d:16 2 BVS d:16 2 BVS d:16 2 BVS d:16 2 BVI d:16 2 BVI d:16 2 BVI d:16 2 BUI d:16 2 BUI d:16 2 BUI d:16 2 BUT d:16		BPL d:8	2
Bcc BLT d:8 2 BGT d:8 2 BLE d:8 2 BRA d:16(BT d:16) 2 BRN d:16(BF d:16) 2 BHI d:16 2 BCC d:16(BHS d:16) 2 BCS d:16(BLO d:16) 2 BCS d:16(BLO d:16) 2 BVE d:16 2 BVC d:16 2 BVS d:16 2 BVS d:16 2 BVS d:16 2 BVS d:16 2 BVL d:16 2 BVS d:16 2 BVL d:16 2		BMI d:8	2
BGT d:82BLE d:82BRA d:16(BT d:16)2BRN d:16(BF d:16)2BHI d:162BLS d:162BCS d:16(BHS d:16)2BNE d:162BNE d:162BNE d:162BVC d:162BVS d:162BVS d:162BNI d:162BNI d:162BNI d:162BNI d:162BIT d:163<		BGE d:8	2
BLE d:82BRA d:16(BT d:16)2BRN d:16(BF d:16)2BHI d:162BLS d:162BCC d:16(BHS d:16)2BNE d:162BNE d:162BVC d:162BVC d:162BVS d:162BNI d:162BLT d:162BIN d:162BIN d:162BIN d:162BIN d:162BIN d:162BIT d:163	Bcc	BLT d:8	2
BRA d: 16(BT d: 16)2BRN d: 16(BF d: 16)2BH d: 162BLS d: 162BCC d: 16(BHS d: 16)2BCS d: 16(BLO d: 16)2BNE d: 162BVC d: 162BVC d: 162BVC d: 162BVS d: 162BNI d: 162BMI d: 162BGE d: 162BGE d: 162BGT d: 162BT d: 162<		BGT d:8	2
BRN d:16(BF d:16)2BH d:162BLS d:162BCC d:16(BHS d:16)2BCS d:16(BLO d:16)2BNE d:162BVC d:162BVC d:162BVS d:162BNI d:162BMI d:162BGE d:162BT d:162		BLE d:8	2
BHI d:162BLS d:162BCC d:16(BHS d:16)2BCS d:16(BLO d:16)2BNE d:162BVC d:162BVC d:162BVS d:162BPL d:162BMI d:162BGE d:162BGT d:162		BRA d:16(BT d:16)	2
BLS d: 162BCC d: 16(BHS d: 16)2BCS d: 16(BLO d: 16)2BNE d: 162BEQ d: 162BVC d: 162BVS d: 162BNI d: 162BGE d: 162BGE d: 162BGT d: 162		BRN d:16(BF d:16)	2
BCC d:16(BHS d:16)2BCS d:16(BLO d:16)2BNE d:162BEQ d:162BVC d:162BPL d:162BMI d:162BGE d:162BGT d:162		BHI d:16	2
BCS d:16(BLO d:16)2BNE d:162BEQ d:162BVC d:162BVS d:162BPL d:162BMI d:162BET d:162BCT d:162		BLS d:16	2
BNE d:162BEQ d:162BVC d:162BVS d:162BPL d:162BGE d:162BGT d:162		BCC d:16(BHS d:16)	2
BEQ d:162BVC d:162BVS d:162BPL d:162BMI d:162BGE d:162BGT d:162		BCS d:16(BLO d:16)	2
BVC d:162BVS d:162BPL d:162BMI d:162BGE d:162BGT d:162		BNE d:16	2
BVS d:162BPL d:162BMI d:162BGE d:162BLT d:162BGT d:162		BEQ d:16	2
BPL d:16 2 BMI d:16 2 BGE d:16 2 BLT d:16 2 BGT d:16 2		BVC d:16	2
BMI d:16 2 BGE d:16 2 BLT d:16 2 BGT d:16 2		BVS d:16	2
BGE d:16 2 BLT d:16 2 BGT d:16 2		BPL d:16	2
BLT d:16 2 BGT d:16 2		BMI d:16	2
BGT d:16 2		BGE d:16	2
		BLT d:16	2
BLE d:16 2		BGT d:16	2
		BLE d:16	2

Rev. 3.00 Sep. 10, 2007 Page 480 of 528 REJ09B0216-0300

	BIAND #xx:3, @ERd	2	1
	BIAND #xx:3, @aa:8	2	1
BILD	BILD #xx:3, Rd	1	
	BILD #xx:3, @ERd	2	1
	BILD #xx:3, @aa:8	2	1
BIOR	BIOR #xx:8, Rd	1	
	BIOR #xx:8, @ERd	2	1
	BIOR #xx:8, @aa:8	2	1
BIST	BIST #xx:3, Rd	1	
	BIST #xx:3, @ERd	2	2
	BIST #xx:3, @aa:8	2	2
BIXOR	BIXOR #xx:3, Rd	1	
	BIXOR #xx:3, @ERd	2	1
	BIXOR #xx:3, @aa:8	2	1
BLD	BLD #xx:3, Rd	1	
	BLD #xx:3, @ERd	2	1
	BLD #xx:3, @aa:8	2	1
BNOT	BNOT #xx:3, Rd	1	
	BNOT #xx:3, @ERd	2	2
	BNOT #xx:3, @aa:8	2	2
	BNOT Rn, Rd	1	
	BNOT Rn, @ERd	2	2
	BNOT Rn, @aa:8	2	2

	BSET Rn, @ERd	2		2	
	BSET Rn, @aa:8	2		2	
BSR	BSR d:8	2	1	1	
	BSR d:16	2	1	1	
BST	BST #xx:3, Rd	1			
	BST #xx:3, @ERd	2		2	
	BST #xx:3, @aa:8	2		2	
BTST	BTST #xx:3, Rd	1			
	BTST #xx:3, @ERd	2		1	
	BTST #xx:3, @aa:8	2		1	
	BTST Rn, Rd	1			
	BTST Rn, @ERd	2		1	
	BTST Rn, @aa:8	2		1	
BXOR	BXOR #xx:3, Rd	1			
	BXOR #xx:3, @ERd	2		1	
	BXOR #xx:3, @aa:8	2		1	
CMP	CMP.B #xx:8, Rd	1			
	CMP.B Rs, Rd	1			
	CMP.W #xx:16, Rd	2			
	CMP.W Rs, Rd	1			
	CMP.L #xx:32, ERd	3			
	CMP.L ERs, ERd	1			
DAA	DAA Rd	1			
DAS	DAS Rd	1			
	·				

Rev. 3.00 Sep. 10, 2007 Page 482 of 528 REJ09B0216-0300

RENESAS

EEPMOV	EEPMOV.B	2			2n+2*1	
	EEPMOV.W	2			2n+2*1	
EXTS	EXTS.W Rd	1				
	EXTS.L ERd	1				
EXTU	EXTU.W Rd	1				
	EXTU.L ERd	1				
INC	INC.B Rd	1				
	INC.W #1/2, Rd	1				
	INC.L #1/2, ERd	1				
JMP	JMP @ERn	2				
	JMP @aa:24	2				
	JMP @@aa:8	2	1			
JSR	JSR @ERn	2		1		
	JSR @aa:24	2		1		
	JSR @@aa:8	2	1	1		
LDC	LDC #xx:8, CCR	1				
	LDC Rs, CCR	1				
	LDC@ERs, CCR	2				1
	LDC@(d:16, ERs), CCR	3				1
	LDC@(d:24,ERs), CCR	5				1
	LDC@ERs+, CCR	2				1
	LDC@aa:16, CCR	3				1
	LDC@aa:24, CCR	4				1

RENESAS

	MOV.B @aa:16, Rd	2	1	
	MOV.B @aa:24, Rd	3	1	
	MOV.B Rs, @Erd	1	1	
	MOV.B Rs, @(d:16, ERd)	2	1	
	MOV.B Rs, @(d:24, ERd)	4	1	
	MOV.B Rs, @-ERd	1	1	
	MOV.B Rs, @aa:8	1	1	
MOV	MOV.B Rs, @aa:16	2	1	
	MOV.B Rs, @aa:24	3	1	
	MOV.W #xx:16, Rd	2		
	MOV.W Rs, Rd	1		
	MOV.W @ERs, Rd	1		1
	MOV.W @(d:16,ERs), Rd	2		1
	MOV.W @(d:24,ERs), Rd	4		1
	MOV.W @ERs+, Rd	1		1
	MOV.W @aa:16, Rd	2		1
	MOV.W @aa:24, Rd	3		1
	MOV.W Rs, @ERd	1		1
	MOV.W Rs, @(d:16,ERd)	2		1
	MOV.W Rs, @(d:24,ERd)	4		1

Rev. 3.00 Sep. 10, 2007 Page 484 of 528 REJ09B0216-0300

	MOV.L @(d:24,ERs), ERd	5		2
	MOV.L @ERs+, ERd	2		2
	MOV.L @aa:16, ERd	3		2
	MOV.L @aa:24, ERd	4		2
	MOV.L ERs,@ERd	2		2
	MOV.L ERs, @(d:16,ERd)	3		2
	MOV.L ERs, @(d:24,ERd)	5		2
	MOV.L ERs, @-ERd	2		2
	MOV.L ERs, @aa:16	3		2
	MOV.L ERs, @aa:24	4		2
MOVFPE	MOVFPE @aa:16, Rd*2	2	1	
MOVTPE	MOVTPE Rs,@aa:16*2	2	1	
MULXS	MULXS.B Rs, Rd	2		
	MULXS.W Rs, ERd	2		
MULXU	MULXU.B Rs, Rd	1		
	MULXU.W Rs, ERd	1		
NEG	NEG.B Rd	1		
	NEG.W Rd	1		
	NEG.L ERd	1		
NOP	NOP	1		
NOT	NOT.B Rd	1		
	NOT.W Rd	1		
	NOT.L ERd	1		

POP.W Rn	1		1
POP.L ERn	2		2
PUSH.W Rn	1		1
PUSH.L ERn	2		2
ROTL.B Rd	1		
ROTL.W Rd	1		
ROTL.L ERd	1		
ROTR.B Rd	1		
ROTR.W Rd	1		
ROTR.L ERd	1		
ROTXL.B Rd	1		
ROTXL.W Rd	1		
ROTXL.L ERd	1		
ROTXR.B Rd	1		
ROTXR.W Rd	1		
ROTXR.L ERd	1		
RTE	2	2	
RTS	2	1	
SHAL.B Rd	1		
SHAL.W Rd	1		
SHAL.L ERd	1		
SHAR.B Rd	1		
SHAR.W Rd	1		
SHAR.L ERd	1		
· · · · ·	POP.L ERn PUSH.W Rn PUSH.L ERn ROTL.B Rd ROTL.B Rd ROTL.L ERd ROTR.B Rd ROTR.W Rd ROTR.L ERd ROTXL.B Rd ROTXL.W Rd ROTXL.L ERd ROTXR.B Rd ROTXR.B Rd ROTXR.L ERd ROTXR.L ERd SHAL.B Rd SHAL.B Rd SHAL.W Rd SHAR.B Rd SHAR.W Rd	POP.L ERn2PUSH.W Rn1PUSH.L ERn2ROTL.B Rd1ROTL.W Rd1ROTR.B Rd1ROTR.W Rd1ROTR.L ERd1ROTXL.B Rd1ROTXL.B Rd1ROTXL.B Rd1ROTXL.B Rd1ROTXL.W Rd1ROTXL.B Rd1ROTXL.W Rd1ROTXR.B Rd1ROTXR.B Rd1ROTXR.B Rd1ROTXR.W Rd1ROTXR.U ERd1SHAL.B Rd1SHAL.B Rd1SHAL.B Rd1SHAL.W Rd1SHAL.W Rd1SHAL.W Rd1SHAR.B Rd1SHAR.B Rd1SHAR.B Rd1SHAR.B Rd1SHAR.W Rd1SHAR.W Rd1	POP.L ERn 2 PUSH.W Rn 1 PUSH.L ERn 2 ROTL.B Rd 1 ROTL.W Rd 1 ROTL.L ERd 1 ROTR.B Rd 1 ROTR.B Rd 1 ROTR.L ERd 1 ROTXL.B Rd 1 ROTXL.W Rd 1 ROTXR.B Rd 1 ROTXR.B Rd 1 ROTXR.L ERd 1 ROTXR.B Rd 1 ROTXR.L ERd 1 SHAL.B Rd 1 SHAL.W Rd 1 SHAL.W Rd 1 SHAR.W Rd 1 SHAR.W Rd 1 SHAR.W Rd 1

Rev. 3.00 Sep. 10, 2007 Page 486 of 528 REJ09B0216-0300

RENESAS

STC	STC CCR, Rd	1					
	STC CCR, @ERd	2				1	
	STC CCR, @(d:16,ERd)	3				1	
	STC CCR, @(d:24,ERd)	5				1	
	STC CCR,@-ERd	2				1	
	STC CCR, @aa:16	3				1	
	STC CCR, @aa:24	4				1	_
SUB	SUB.B Rs, Rd	1					
	SUB.W #xx:16, Rd	2					
	SUB.W Rs, Rd	1					
	SUB.L #xx:32, ERd	3					
	SUB.L ERs, ERd	1					
SUBS	SUBS #1/2/4, ERd	1					
SUBX	SUBX #xx:8, Rd	1					
	SUBX. Rs, Rd	1					_
TRAPA	TRAPA #xx:2	2	1	2			_
XOR	XOR.B #xx:8, Rd	1					
	XOR.B Rs, Rd	1					
	XOR.W #xx:16, Rd	2					
	XOR.W Rs, Rd	1					
	XOR.L #xx:32, ERd	3					
	XOR.L ERs, ERd	2					_
XORC	XORC #xx:8, CCR	1					_
Notes: 1	 n: Specified value in l n+1 times respectivel Cannot be used in thi 	ly.	R4. The so	urce and de	stination op	erands a	re a

Renesas

Instructions	MOVFPE,	_	—	_	_	_	_	_	_	—	_	—	-
	MOVTPE												
Arithmetic operations	ADD, CMP	BWL	BWL	_			_	—	—	—	—	—	_
	SUB	WL	BWL	—		_	_	_	_	-	—	—	_
	ADDX, SUBX	В	В	—		_	_	—	_	-	—	—	_
	ADDS, SUBS	—	L	—		_	_	—	_	-	—	—	_
	INC, DEC	—	BWL	—	—			—	—	—	—	—	
	DAA, DAS	—	В	—	—			—	—	—	—	—	
	MULXU,	—	BW	—	—	—	—	—	—	-	-	-	_
	MULXS,												
	DIVXU,												
	DIVXS												
	NEG	—	BWL	—	—	_	_	—	—	—	—	—	_
	EXTU, EXTS	—	WL	—	—	_	_	—	—	—	—	—	_
Logical	AND, OR, XOR	—	BWL	—	—	_	_	—	—	—	—	—	_
operations	NOT	—	BWL	—	—	_	_	—	—	—	—	—	_
Shift operation	Shift operations		BWL	—	—	—	—	—	—	-	-	-	_
Bit manipulat	tions	—	В	В	—	—	—	В	—	-	-	-	_
Branching	BCC, BSR	—	-	—	—	—	—	—	—	-	-	-	-
instructions	JMP, JSR	—	-	\bigcirc	—	—	—	—	—	-	0	0	_
	RTS	—	-	—	—	—	—	—	—	0	-	-	C
System	TRAPA	—	—	—	—			—	—	—	—	—	
control	RTE	—	-	—	—	—	—	—	—	-	-	-	-
instructions	SLEEP	—	-	—	—	—	—	—	—	-	-	-	_
	LDC	В	В	W	W	W	W	—	W	W	-	-	-
	STC	—	В	W	W	W	W	-	W	W	-	—	
	ANDC, ORC,	В	—	—	—	_	_	—	—	—	—	—	_
	XORC												
	NOP	_	—	_	_	_	_	_	_	—	—	_	-
Block data tra	Block data transfer instructions		—	—	_	—	—	—	_	—	—	—	-

Rev. 3.00 Sep. 10, 2007 Page 488 of 528 REJ09B0216-0300

RENESAS

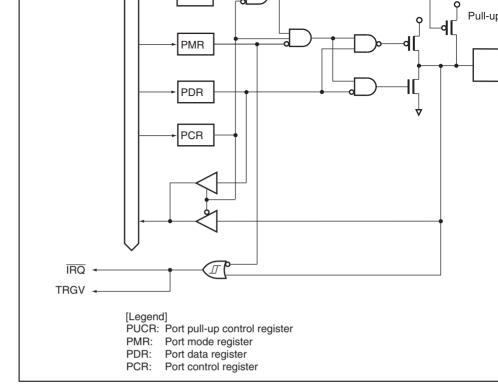


Figure B.1 Port 1 Block Diagram (P17)

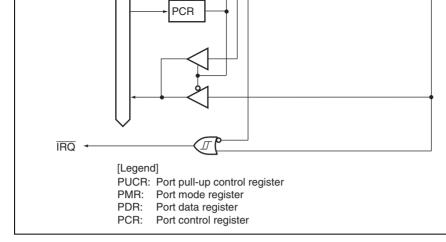


Figure B.2 Port 1 Block Diagram (P14, P16)

Rev. 3.00 Sep. 10, 2007 Page 490 of 528 REJ09B0216-0300

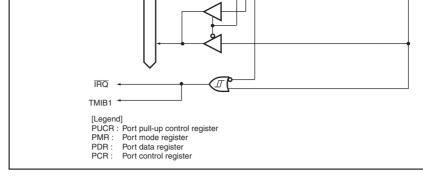


Figure B.3 Port 1 Block Diagram (P15)

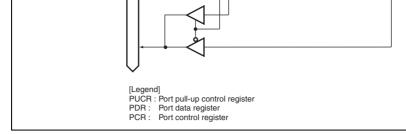


Figure B.4 Port 1 Block Diagram (P12)

Rev. 3.00 Sep. 10, 2007 Page 492 of 528 REJ09B0216-0300

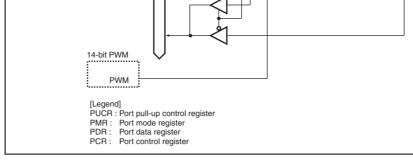


Figure B.5 Port 2 Block Diagram (P11)

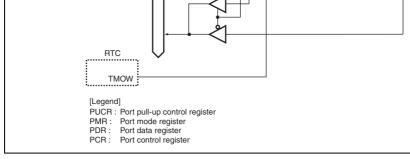


Figure B.6 Port 1 Block Diagram (P10)

Rev. 3.00 Sep. 10, 2007 Page 494 of 528 REJ09B0216-0300

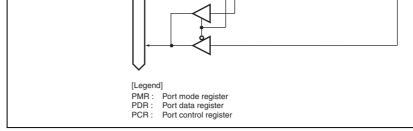


Figure B.7 Port 2 Block Diagram (P24, P23)

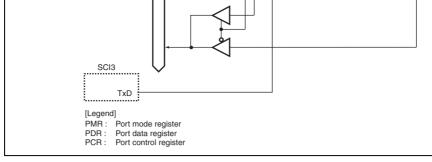


Figure B.8 Port 2 Block Diagram (P22)

Rev. 3.00 Sep. 10, 2007 Page 496 of 528 REJ09B0216-0300

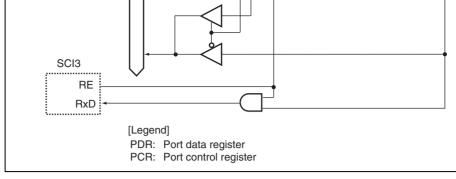


Figure B.9 Port 2 Block Diagram (P21)

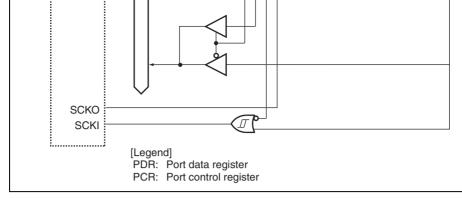


Figure B.10 Port 2 Block Diagram (P20)

Rev. 3.00 Sep. 10, 2007 Page 498 of 528 REJ09B0216-0300

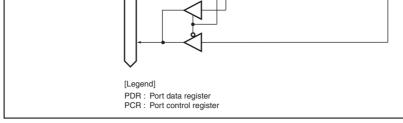


Figure B.11 Port 3 Block Diagram (P37 to P30)

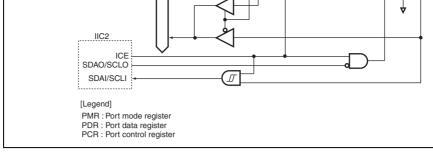


Figure B.12 Port 5 Block Diagram (P57, P56)

Rev. 3.00 Sep. 10, 2007 Page 500 of 528 REJ09B0216-0300

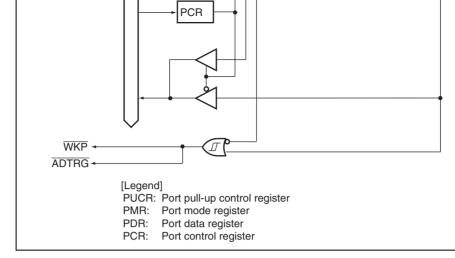


Figure B.13 Port 5 Block Diagram (P55)

Figure B.14 Port 5 Block Diagram (P54 to P50)

Rev. 3.00 Sep. 10, 2007 Page 502 of 528 REJ09B0216-0300

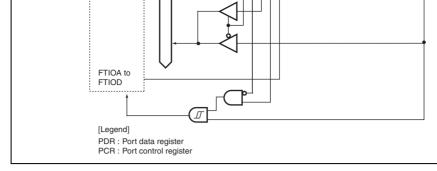


Figure B.15 Port 6 Block Diagram (P67 to P60)

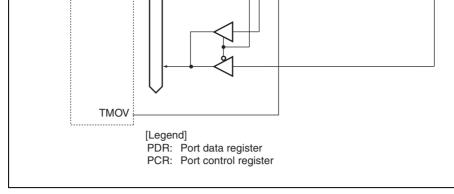


Figure B.16 Port 7 Block Diagram (P76)

Rev. 3.00 Sep. 10, 2007 Page 504 of 528 REJ09B0216-0300

Figure B.17 Port 7 Block Diagram (P75)

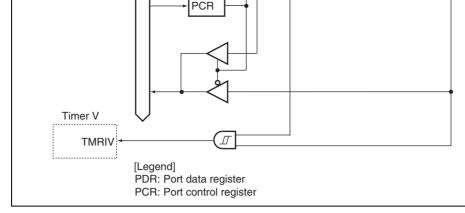


Figure B.18 Port 7 Block Diagram (P74)

Rev. 3.00 Sep. 10, 2007 Page 506 of 528 REJ09B0216-0300

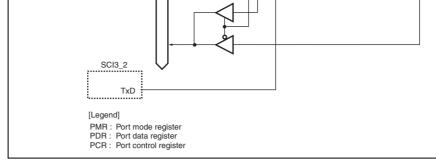


Figure B.19 Port 7 Block Diagram (P72)

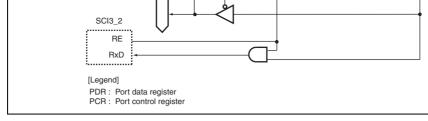


Figure B.20 Port 7 Block Diagram (P71)

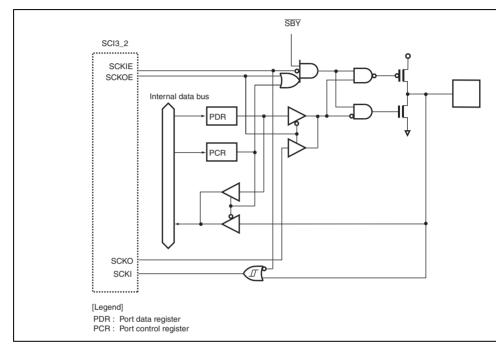


Figure B.21 Port 7 Block Diagram (P70)

Rev. 3.00 Sep. 10, 2007 Page 508 of 528 REJ09B0216-0300

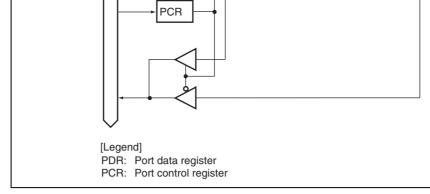


Figure B.22 Port 8 Block Diagram (P87 to P85)

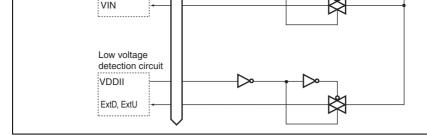


Figure B.23 Port B Block Diagram (PB7 and PB6)

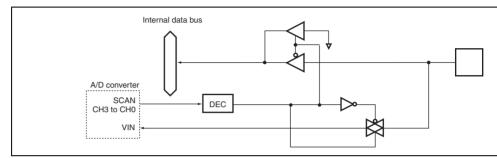


Figure B.24 Port B Block Diagram (PB5 to PB0)

Rev. 3.00 Sep. 10, 2007 Page 510 of 528 REJ09B0216-0300

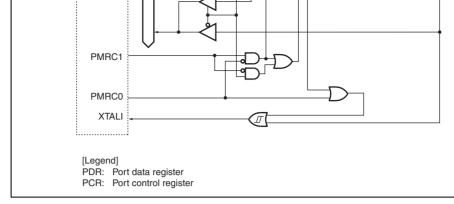


Figure B.25 Port B Block Diagram (PC1)

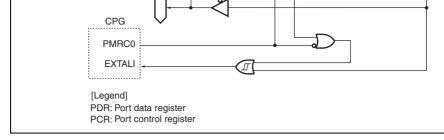


Figure B.26 Port B Block Diagram (PC0)

Rev. 3.00 Sep. 10, 2007 Page 512 of 528 REJ09B0216-0300

P67 to P60	High impedance	Retained	Retained	High impedance	Functioning	Fu
P76 to P74, P72 to P70	High impedance	Retained	Retained	High impedance	Functioning	Fu
P87 to P85	High impedance	Retained	Retained	High impedance	Functioning	Fu
PB7 to PB0	High impedance	High impedance	High impedance	High impedance	High impedance	Hi im
PC1 and PC0	High impedance	Retained	Retained	High impedance	Functioning	Fu

Note: * High level output when the pull-up MOS is turned on.

RENESAS

H8/36079LF	3.3 V	Regular	HD64F36079LH	HD64F36079LH
		Wide range	HD64F36079LHW	HD64F36079LHW
		Regular	HD64F36079LFZ	HD64F36079LFZ
		Wide range	HD64F36079LFZW	HD64F36079LFZW
H8/36078GF	5.0 V	Regular	HD64F36078GH	HD64F36078GH
		Wide range	HD64F36078GHW	HD64F36078GHW
		Regular	HD64F36078GFZ	HD64F36078GFZ
		Wide range	HD64F36078GFZW	HD64F36078GFZW
H8/36078LF	3.3 V	Regular	HD64F36078LH	HD64F36078LH
		Wide range	HD64F36078LHW	HD64F36078LHW
		Regular	HD64F36078LFZ	HD64F36078LFZ
		Wide range	HD64F36078LFZW	HD64F36078LFZW

Rev. 3.00 Sep. 10, 2007 Page 514 of 528 REJ09B0216-0300

		negulai		11D041 30077E1 Z
		Wide range	HD64F36077LFZW	HD64F36077LFZ
H8/36074GF	5.0 V	Regular	HD64F36074GH	HD64F36074GH
		Wide range	HD64F36074GHW	HD64F36074GH
		Regular	HD64F36074GFZ	HD64F36074GF2
		Wide range	HD64F36074GFZW	HD64F36074GF2
H8/36074LF	3.3 V	Regular	HD64F36074LH	HD64F36074LH
		Wide range	HD64F36074LHW	HD64F36074LHV
		Regular	HD64F36074LFZ	HD64F36074LFZ
		Wide range	HD64F36074LFZW	HD64F36074LF2

Notes: 1. Operating voltage range: 4.5 to 5.5 V (5.0-V models), 3.0 to 3.6 V (3.3-V mod

- Operating temperature range: Regular specifications: -20 to +75°C, wide-range specifications: -40 to +85°C
- 3. The table includes products that are yet to be released. For details, please co of our sales representatives.

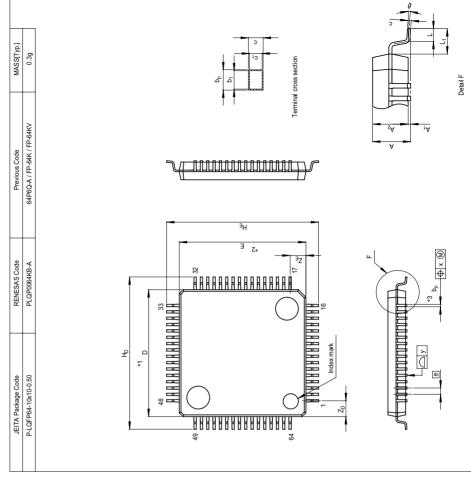


Figure D.1 FP-64K Package Dimensions

Rev. 3.00 Sep. 10, 2007 Page 516 of 528 REJ09B0216-0300

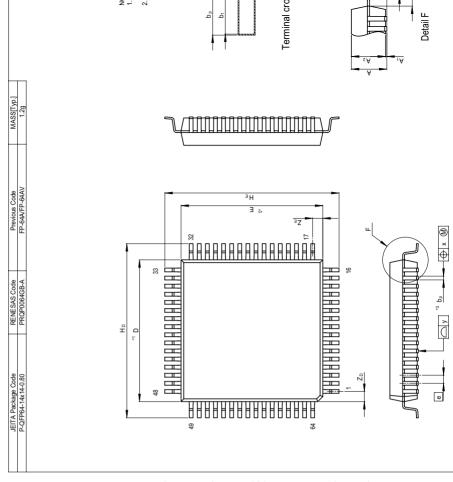


Figure D.2 FP-64A Package Dimensions

Rev. 3.00 Sep. 10, 2007 Page 518 of 528 REJ09B0216-0300

					Operating I	Frequency	yø(MHz
(SCI3)				12.2	88		1
Table 16.3 Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (3)		Bit Rate (bit/s)	n	N	Error (%)	n	N
Section 18 A/D Converter	368	Deleted					
Figure 18.1 Block Diagram of A/D Converter			(Control	circuit		0/4 0/8
Section 21 List of Registers	405	Amended					
		Register Name		В	Bit 7		
			:		:		
		FLPWCR		P	DWND		
		EBR1*1		E	B7		
		Notes:					
			•		R1 differs ad		products

										_
			H8/36	6074 C	G,H8/.	36074	١L			
			Register Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1
			EBR1	Ļ	Ļ	Ļ	EB4	EB3	EB2	EB1
Section 22 Electrical Characteristics	415 to 458		e wide ded to					of Ta	= -4	0 to +8
Table 22.3 AC Characteristics	427	Am	ended							
					_					Value
		-	Item			est Con			Min.	Тур
			On-chip oscillator			cc = 5.0 a = 25°C			19.70	20.0
			oscillatio frequenc			SEL= 1 CLSEL=	= 0			
						GEL = 1 a = -20 1		C.	19.40	20.0
						CLSEL		_,		
						SEL = 1 a = -40 1		•	19.20	20.00
						CLSEL :		σ,		
						cc = 5.0			15.76	16.0
						a = 25°C SEL = 0				
					V	CLSEL	= 0			
						SEL = 0 a = -20 1		С.	15.52	16.0
						CLSEL				
						SEL = 0 a = -40 1		C .	15.36	16.0
						CLSEL		-,		

Rev. 3.00 Sep. 10, 2007 Page 520 of 528 REJ09B0216-0300

RENESAS

		-	Absolute accur	асу	-		_
Table 22.9 Power-Supply-	434	An	nended				
Voltage Detection Circuit							Valu
Characteristics			Item			Min	Тур
		-	Reset detection vol	tage 2*2		3.3	3.6
		-		lage 2		0.0	0.0
Table 22.12 DC Characteristics (1)	440	An	nended				Valu
			Item	Symbol		Min	Тур
		-	:	:	:	:	:
		-	Pull-up MOS current	$-I_p$			60.0
		An	nended				
							Valu
			Item	Symbol		Min	Тур
		•	:	:	:	:	:
		-	Active mode current	:	:	:	:
			consumption	I _{OPE2}		_	2.8
						_	2.5

			Power-supply fallin detection voltage	ng	2.8	2.9	
Unaraciensiics			ltem		Min.	N	lin.
Table 22.19 Power-Supply- Voltage Detection Circuit Characteristics	453	An	nended			Va	lues
				. 5202			
				FSEL = Ta = -4 VCLSE	0 to +85°C,	15.52	16.0
				FSEL = Ta = -2 VCLSE	20 to +75°C,	15.36	16.0
				Vcc = 3 Ta = 25 FSEL = VCLSE	5°C, = 0,	15.76	16.00
				Ta = -4 VCLSE	10 to +85°C, EL = 0		

Power-supply rising 2.9 detection voltage 3.0

Rev. 3.00 Sep. 10, 2007 Page 522 of 528 REJ09B0216-0300

Wide range H		HD64F36
Regular H		HD64F36
Wide range H		HD64F36
Regular H	H8/36078GF 5.0 V	HD64F36
Wide range H		HD64F36
Regular H		HD64F36
Wide range H		HD64F36
Regular H	H8/36078LF 3.3 V	HD64F36
Wide range H		HD64F36
Regular H		HD64F36
Wide range H		HD64F36

RENESAS

		Wide range	HD64F36077LHW	HD64F36077LH
		Regular	HD64F36077LFZ	HD64F36077LF
		Wide range	HD64F36077LFZW	HD64F36077LF
H8/36074GF	5.0 V	Regular	HD64F36074GH	HD64F36074GH
		Wide range	HD64F36074GHW	HD64F36074GH
		Regular	HD64F36074GFZ	HD64F36074GF
		Wide range	HD64F36074GFZW	HD64F36074GF
H8/36074LF	3.3 V	Regular	HD64F36074LH	HD64F36074LH
		Wide range	HD64F36074LHW	HD64F36074LH
		Regular	HD64F36074LFZ	HD64F36074LF

Rev. 3.00 Sep. 10, 2007 Page 524 of 528 REJ09B0216-0300

Address break	
Addressing modes	30
Arithmetic operations instructions	
Asynchronous mode	303
Auto-reload timer operation	183

B

Bit manipulation instructions	24
Bit rate	296
Bit synchronous circuit	363
Block data transfer instructions	
Boot mode	117
Boot program	117
Branch instructions	
Break	326
Buffer operation	254
-	

С

Clock synchronous mode	311
Clock synchronous serial format	354
Complementary PWM mode	244
Condition field	29
Condition-code register (CCR)	14
CPU	9

Erase/erase-verify Erasing units Error protection Event counter operation Exception handling

F

Flash memory
Framing error

G

0	
General registers	

H

Hardware protection.....

I

1
I/O port block diagrams
I/O ports
I ² C bus format
I ² C bus interface 2 (IIC2)
Immediate
Initial setting procedure
Input capture function
Instruction set

Rev. 3.00 Sep. 10, 2007 Pag

RENESAS

REJ09

Logic operations instructions	. 23
Low-voltage detection circuit	379
LVDI (interrupt by low voltage detect)	
circuit	390
LVDR (reset by low voltage detect)	
circuit	387

Μ

Memory indirect	32
Memory map	11
Module standby function	106
Multiprocessor communication	
function	318

N

NMI interrupt	. 56
Noise canceler	357

0

On-board programming modes	117
Operation field	29
Overrun error	307

Rev. 3.00 Sep. 10, 2007 Page 526 of 528 REJ09B0216-0300

RENESAS

Program/program-verify
Program-counter relative
Programmer mode
Programming units
Programming/erasing in
user program mode
PWM mode

R

Realtime clock (RT	C)
Register direct	
Register field	
Register indirect	
Register indirect wi	th displacement
Register indirect wi	th post-increme
Register indirect wi	th pre-decrement
Register settings	
Registers	
ABRKCR	
ABRKSR	
ADCR	
ADCSR	
ADDRA	
ADDRB	
ADDRC	
ADDRD	
BARE	
BARH	

GRB		PMR1	
GRC		PMR3	138, 40
GRD		PMR5	146, 40
ICCR1		POCR	
ICCR2		PUCR1	134, 40
ICDRR		PUCR5	148, 40
ICDRS		PWCR	
ICDRT		PWDRL	
ICIER		PWDRU	
ICMR		RCCR	
ICSR		RCTRMDPR	
IEGR1		RCTRMDR	
IEGR2		RDR	
IENR1	50, 401, 407, 413	RHRDR	171, 39
IENR2	51, 401, 407, 413	RMINDR	170, 39
IRR1	51, 401, 407, 413	RSECDR	169, 39
IRR2	53, 402, 407, 413	RSR	
IWPR	53, 402, 407, 413	RTCCR1	173, 39
LVDCR		RTCCR2	174, 39
LVDRF		RTCCSR	175, 39
LVDSR		RWKDR	172, 39
MSTCR1		SAR	343, 39
MSTCR2		SCR3	
PCR1		SMR	290, 39
PCR2		SSR	
PCR3		SYSCR1	
PCR5		SYSCR2	
PCR6		TCB1	182, 39
PCR7		TCNT	213, 39

TIER	220, 396, 403, 409
TIORA	215, 396, 403, 409
TIORC	216, 396, 403, 409
TLB1	182, 398, 405, 410
TMB1	181, 398, 405, 410
TMDR	206, 397, 404, 409
TMWD	278, 400, 406, 411
TOCR	212, 397, 404, 409
TOER	210, 397, 404, 409
TPMR	207, 397, 404, 409
TSR	218, 396, 403, 409
TSTR	206, 397, 404, 409
Reset exception handling	g 55
Reset synchronous PWM	1 mode 240

S

Sample-and-hold circuit	. 374
Scan mode	. 373
Serial communication	
interface 3 (SCI3)	. 285
Shift instructions	23
Single mode	. 373

System clocks	•
System control instructions	•
System prescaler S	•

Т

Timer B1
Timer V
Timer Z
Transfer rate
Trap instruction

V

Vector address	•••
----------------	-----

W

Watchdog timer
Waveform output
Waveform output by compare mate
WKP5 to WKP0 interrupts

Rev. 3.00 Sep. 10, 2007 Page 528 of 528 REJ09B0216-0300

Renesas 16-Bit Single-Chip Microcomputer Hardware Manual H8/36079 Group, H8/36077 Group

Publication Date:	Rev.1.00, Sep. 16, 2005
	Rev.3.00, Sep. 10, 2007
Published by:	Sales Strategic Planning Div.
	Renesas Technology Corp.
Edited by:	Customer Support Department
	Global Strategic Communication Div.
	Renesas Solutions Corp.

© 2007. Renesas Technology Corp., All rights reserved. Printed in Japan.

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, J

RENESAS SALES OFFICES

http://www.rei

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <865 (21) 5877-1818, Fax: <865 (21) 5887-7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd.

10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65- 6213-0200, Fax: <65- 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bidg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82- (2) 796-3115, Fax: <82- (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Tel: -603> 7955-9300, Fax: -603> 7955-9510

H8/36079 Group, H8/36077 Group Hardware Manual

Renesas Electronics Corporation 1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

REJ09B0216-0300

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for 16-bit Microcontrollers - MCU category:

Click to view products by Renesas manufacturer:

Other Similar products are found below :

MB90F036APMC-GSE1 MB90F342CASPMC-GSE1 MB90F345CESPMC-GE1 MB90F349CAPFR-GSE1 MB90F428GCPFR-GSE1 MB90F462APFM-GE1 MB90F462APMC-G-SNE1 MB90F497GPF-GE1 MB90F546GSPFR-GE1 MB90F947APFR-GS-SPE1 MB96F346RSBPMC-GS-N2E2 MB96F683RBPMC-GSAE1 R5F11BGEAFB#30 DF3026XBL25V S912ZVFP64F1VLL R4F24268NVRFQV R5F107DEGSP#X0 R5F11B7EANA#U0 R5F21172DSP#U0 M30622F8PGP#U3C MB90092PF-G-BNDE1 MB90F335APMC1-G-SPE1 MB90F342CASPFR-GS-N2E1 MB90F345CAPFR-GSE1 MB90F543GPF-GE1 MB90F546GSPF-GE1 MB90F568PMCR-GE1 MB90F594APFR-GE1 MB90F882ASPMC-GE1 MB96F346RSAPQCR-GS-N2E2 MB96F387RSBPMC-GSE2 MB96F387RSBPMC-GS-N2E2 MB96F395RSAPMC-GSE2 MB96F623RBPMC1-GSE1 MB96F646RBPMC-GSE1 XE167F96F66LACFXUMA1 MB96F696RBPMC-GSAE1 MB96F018RBPMC-GSE1 MB90F962SPMCR-GE1 MB90F867ASPFR-GE1 MB90F543GPF-G-FLE1 MB90F345CESPF-GE1 M30290FCHP#U3A DF2239FA20IV HD64F3672FPV R5F104AEASP#V0 R5F100BCANA#U0 R5F100BFANA#U0 S9S12H256J2VFVER R5F100ACASP#V0