Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics atta abooks, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU ROHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

16

H8/36912 Group, H8/36902 Group

Hardware Manual

Renesas 16-Bit Single-Chip Microcomputer H8 Family/H8/300H Tiny Series

,	
H8/36912F	HD64F36912G
H8/36902F	HD64F36902G
H8/36912	HD64336912G
H8/36911	HD64336911G
H8/36902	HD64336902G
H8/36901	HD64336901G
H8/36900	HD64336900G

Renesas Electronics

Rev.3.00 2006.09

Rev. 3.00 Sep. 14, 2006 Page ii of xxviii

- a third party.
- Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any party's rights, originating in the use of any product data, diagrams, charts, programs, algorith circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, program algorithms represents information on products at the time of publication of these materials, and subject to change by Renesas Technology Corp. without notice due to product improvements other reasons. It is therefore recommended that customers contact Renesas Technology Corp. an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by various including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com

- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a to system before making a final decision on the applicability of the information and products. Rechnology Corp. assumes no responsibility for any damage, liability or other loss resulting finformation contained herein.
- 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a desystem that is used under circumstances in which human life is potentially at stake. Please or Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor w considering the use of a product contained herein for any specific purposes, such as apparat systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use
- The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they be exported under a license from the Japanese government and cannot be imported into a co other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or country of destination is prohibited.

Please contact Renesas Technology Corp. for further details on these materials or the producontained therein.

Rev. 3.00 Sep. 14, 2006 Pa

- are in their open states, intermediate levels are induced by noise in the vicinity, a through current flows internally, and a malfunction may occur.
- 3. Processing before Initialization
- Note: When power is first supplied, the product's state is undefined.
 - The states of internal circuits are undefined until full power is supplied throughout chip and a low level is input on the reset pin. During the period where the states a undefined, the register settings and the output state of each pin are also undefined your system so that it does not malfunction because of processing while it is in the undefined state. For those products which have a reset function, reset the LSI imma after the power supply has been turned on.
- 4. Prohibition of Access to Undefined or Reserved Addresses
- Note: Access to undefined or reserved addresses is prohibited. The undefined or reserved addresses may be used to expand functions, or test reg may have been be allocated to these addresses. Do not access these registers; the operation is not guaranteed if they are accessed.

Rev. 3.00 Sep. 14, 2006 Page iv of xxviii

- 1
 - CPU and System-Control Modules
 - On-Chip Peripheral Modules

The configuration of the functional description of each module differs according module. However, the generic style includes the following items:

- i) Feature
- ii) Input/Output Pin
- iii) Register Description
- iv) Operation
- v) Usage Note

When designing an application system that includes this LSI, take notes into account. Exincludes notes in relation to the descriptions given, and usage notes are given, as require final part of each section.

- 7. List of Registers
- 8. Electrical Characteristics
- 9. Appendix
- 10. Main Revisions and Additions in this Edition (only for revised versions)

The list of revisions is a summary of points that have been revised or added to earlier ver This does not include all of the revised contents. For details, see the actual locations in t manual.

11. Index

Renesas

Rev. 3.00 Sep. 14, 2006 Pa

- interocomputers.
- Objective: This manual was written to explain the hardware functions and electrical characteristics of the H8/36912 Group and H8/36902 Group to the target Refer to the H8/300H Series Software Manual for a detailed description or instruction set.

Notes on reading this manual:

- In order to understand the overall functions of the chip Read the manual according to the contents. This manual can be roughly categorized in on the CPU, system control functions, peripheral functions and electrical characteristi
- In order to understand the details of the CPU's functions Read the H8/300H Series Software Manual.
- In order to understand the details of a register when its name is known Read the index that is the final part of the manual to find the page number of the entry register. The addresses, bits, and initial values of the registers are summarized in secti List of Registers.

Example:	Register name:	The following notation is used for cases when the sa
		similar function, e.g. serial communication interface
		implemented on more than one channel:
		XXX_N (XXX is the register name and N is the cha
		number)
	Bit order:	The MSB is on the left and the LSB is on the right.

Rev. 3.00 Sep. 14, 2006 Page vi of xxviii

- 5. When the E7 or E8 is used, NMI is an input/output pin (open-drain in output mode).
- **Related Manuals:** The latest versions of all related manuals are available from our we Please ensure you have the latest versions of all documents you red http://www.renesas.com/

H8/36912 Group and H8/36902 Group manuals:

Document Title	Docume
H8/36912 Group, H8/36902 Group Hardware Manual	This ma
H8/300H Series Software Manual	REJ09B

User's manuals for development tools:

Document Title	Docume
H8S, H8/300 Series C/C++ Compiler, Assembler, Optimizing Linkage Editor User's Manual	REJ10B
H8S, H8/300 Series Simulator/Debugger User's Manual	REJ10B
H8S, H8/300 Series High-Performance Embedded Workshop 3 Tutorial	REJ10B
H8S, H8/300 Series High-Performance Embedded Workshop 3 User's Manual	REJ10B

Application notes:

Document Title	
H8S, H8/300 Series C/C++ Compiler Package Application Note	REJ05B
Single Power Supply F-ZTAT [™] On-Board Programming	REJ05B

Rev. 3.00 Sep. 14, 2006 Pag

RENESAS

Rev. 3.00 Sep. 14, 2006 Page viii of xxviii

2.1	Address	Space and Memory Map
2.2	Register	Configuration
	2.2.1	General Registers
	2.2.2	Program Counter (PC)
	2.2.3	Condition-Code Register (CCR)
2.3	Data For	mats
	2.3.1	General Register Data Formats
	2.3.2	Memory Data Formats
2.4	Instructio	on Set
	2.4.1	Table of Instructions Classified by Function
	2.4.2	Basic Instruction Formats
2.5	Addressi	ng Modes and Effective Address Calculation
	2.5.1	Addressing Modes
	2.5.2	Effective Address Calculation
2.6	Basic Bu	s Cycle
	2.6.1	Access to On-Chip Memory (RAM, ROM)
	2.6.2	On-Chip Peripheral Modules
2.7	CPU Stat	tes
2.8	Usage No	otes
	2.8.1	Notes on Data Access to Empty Areas
	2.8.2	EEPMOV Instruction
	2.8.3	Bit Manipulation Instruction
Sectio	on 3 Ex	ception Handling
3.1		n Sources and Vector Address
3.2	Register	Descriptions
	3.2.1	Interrupt Edge Select Register 1 (IEGR1)
	3.2.2	Interrupt Edge Select Register 2 (IEGR2)
	3.2.3	Interrupt Enable Register 1 (IENR1)

Renesas

Rev. 3.00 Sep. 14, 2006 Pag

	3.5.1	Interrupts after Reset
	3.5.2	Notes on Stack Area Use
	3.5.3	Notes on Rewriting Port Mode Registers
Section	on 4 Ad	ldress Break
4.1	Register	Descriptions
	4.1.1	Address Break Control Register (ABRKCR)
	4.1.2	Address Break Status Register (ABRKSR)
	4.1.3	Break Address Registers (BARH, BARL)
	4.1.4	Break Data Registers (BDRH, BDRL)
4.2	Operation	n
Section	on 5 Cl	ock Pulse Generators
5.1		
5.2	Register	Descriptions
	5.2.1	RC Control Register (RCCR)
	5.2.2	RC Trimming Data Protect Register (RCTRMDPR)
	5.2.3	RC Trimming Data Register (RCTRMDR)
	5.2.4	Clock Control/Status Register (CKCSR)
5.3	System C	Clock Select Operation
	5.3.1	Clock Control Operation
	5.3.2	Clock Change Timing
5.4	Trimmin	g of On-chip Oscillator Frequency
5.5		Oscillators
	5.5.1	Connecting Crystal Resonator
	5.5.2	Connecting Ceramic Resonator
	5.5.3	External Clock Input Method
5.6		
	5.6.1	Prescaler S

Rev. 3.00 Sep. 14, 2006 Page x of xxviii

	6.2.1	Sleep Mode
	6.2.2	Standby Mode
	6.2.3	Subsleep Mode
6.3	Operation	ng Frequency in Active Mode
6.4	Direct T	ransition
6.5	Module	Standby Function
Secti	on 7 R	ОМ
7.1		onfiguration
7.2		Descriptions
	7.2.1	Flash Memory Control Register 1 (FLMCR1)
	7.2.2	Flash Memory Control Register 2 (FLMCR2)
	7.2.3	Erase Block Register 1 (EBR1)
	7.2.4	Flash Memory Enable Register (FENR)
7.3	On-Boa	rd Programming Modes
	7.3.1	Boot Mode
	7.3.2	Programming/Erasing in User Program Mode
7.4	Flash M	emory Programming/Erasing
	7.4.1	Program/Program-Verify
	7.4.2	Erase/Erase-Verify
	7.4.3	Interrupt Handling when Programming/Erasing Flash Memory
7.5	Program	1/Erase Protection
	7.5.1	Hardware Protection
	7.5.2	Software Protection
	7.5.3	Error Protection
Secti	on 8 R	АМ

Rev. 3.00 Sep. 14, 2006 Pa

Renesas

	9.2.3	Pin Functions
9.3	Port 5	
	9.3.1	Port Mode Register 5 (PMR5)
	9.3.2	Port Control Register 5 (PCR5)
	9.3.3	Port Data Register 5 (PDR5)
	9.3.4	Port Pull-Up Control Register 5 (PUCR5)
	9.3.5	Pin Functions
9.4	Port 7	
	9.4.1	Port Control Register 7 (PCR7)
	9.4.2	Port Data Register 7 (PDR7)
	9.4.3	Pin Functions
9.5	Port 8	
	9.5.1	Port Control Register 8 (PCR8)
	9.5.2	Port Data Register 8 (PDR8)
	9.5.3	Pin Functions
9.6	Port B	
	9.6.1	Port Data Register B (PDRB)
	9.6.2	Pin Functions
9.7	Port C	
	9.7.1	Port Control Register C (PCRC)
	9.7.2	Port Data Register C (PDRC)
	9.7.3	Pin Functions
Secti	on 10	Timer B1
10.1	Features	
10.2	Register	Descriptions
	10.2.1	Timer Mode Register B1 (TMB1)
	10.2.2	Timer Counter B1 (TCB1)
	10.2.3	Timer Load Register B1 (TLB1)

Rev. 3.00 Sep. 14, 2006 Page xii of xxviii

	11.3.3	Timer Control Register V0 (TCRV0)
	11.3.4	Timer Control/Status Register V (TCSRV)
	11.3.5	Timer Control Register V1 (TCRV1)
11.4	Operatio	n
	11.4.1	Timer V Operation
11.5	Timer V	Application Examples
	11.5.1	Pulse Output with Arbitrary Duty Cycle
	11.5.2	Pulse Output with Arbitrary Pulse Width and Delay from TRGV Input
11.6	Usage N	otes
Section	on 12 7	Fimer W
12.1	Features	
12.2	Input/Ou	ıtput Pins
12.3	Register	Descriptions
	12.3.1	Timer Mode Register W (TMRW)
	12.3.2	Timer Control Register W (TCRW)
	12.3.3	Timer Interrupt Enable Register W (TIERW)
	12.3.4	Timer Status Register W (TSRW)
	12.3.5	Timer I/O Control Register 0 (TIOR0)
	12.3.6	Timer I/O Control Register 1 (TIOR1)
	12.3.7	Timer Counter (TCNT)
	12.3.8	General Registers A to D (GRA to GRD)
12.4	Operatio	n
	12.4.1	Normal Operation
	12.4.2	PWM Operation
12.5	Operatio	n Timing
	12.5.1	TCNT Count Timing
	12.5.2	Output Compare Output Timing
	12.5.3	Input Capture Timing
		-

Rev. 3.00 Sep. 14, 2006 Pag

	13.2.2	Timer Counter WD (TCWD)
	13.2.3	Timer Mode Register WD (TMWD)
13.3	Operatio	n
Secti	on 14 S	Serial Communication Interface 3 (SCI3)
14.1	Features	
14.2	Input/Ou	ıtput Pins
14.3	Register	Descriptions
	14.3.1	Receive Shift Register (RSR)
	14.3.2	Receive Data Register (RDR)
	14.3.3	Transmit Shift Register (TSR)
	14.3.4	Transmit Data Register (TDR)
	14.3.5	Serial Mode Register (SMR)
	14.3.6	Serial Control Register 3 (SCR3)
	14.3.7	Serial Status Register (SSR)
	14.3.8	Bit Rate Register (BRR)
	14.3.9	Sampling Mode Register (SPMR)
14.4	Operatio	n in Asynchronous Mode
	14.4.1	Clock
	14.4.2	SCI3 Initialization
	14.4.3	Data Transmission
	14.4.4	Serial Data Reception
14.5	Operatio	n in Clocked Synchronous Mode
	14.5.1	Clock
	14.5.2	SCI3 Initialization
	14.5.3	Serial Data Transmission
	14.5.4	Serial Data Reception (Clocked Synchronous Mode)
	14.5.5	Simultaneous Serial Data Transmission and Reception
14.6	Multipro	cessor Communication Function
	-	

Rev. 3.00 Sep. 14, 2006 Page xiv of xxviii

Secti	on 15	I ² C Bus Interface 2 (IIC2)
15.1	Feature	S
15.2	Input/O	utput Pins
15.3	Register	r Descriptions
	15.3.1	I ² C Bus Control Register 1 (ICCR1)
	15.3.2	I ² C Bus Control Register 2 (ICCR2)
	15.3.3	I ² C Bus Mode Register (ICMR)
	15.3.4	I ² C Bus Interrupt Enable Register (ICIER)
	15.3.5	I ² C Bus Status Register (ICSR)
	15.3.6	Slave Address Register (SAR)
	15.3.7	I ² C Bus Transmit Data Register (ICDRT)
	15.3.8	I ² C Bus Receive Data Register (ICDRR)
	15.3.9	I ² C Bus Shift Register (ICDRS)
15.4	Operati	on
	15.4.1	I ² C Bus Format
	15.4.2	Master Transmit Operation
	15.4.3	Master Receive Operation
	15.4.4	Slave Transmit Operation
	15.4.5	Slave Receive Operation
	15.4.6	Clocked Synchronous Serial Format
	15.4.7	Noise Canceler
	15.4.8	Example of Use
15.5	Interrup	vts
15.6	Bit Syn	chronous Circuit
15.7	Usage N	Notes
	15.7.1	Issue (Retransmission) of Start/Stop Conditions
	15.7.2	WAIT Setting in I ² C Bus Mode Register (ICMR)

Rev. 3.00 Sep. 14, 2006 Pag

	16.4.3	Input Sampling and A/D Conversion Time
	16.4.4	External Trigger Input Timing
16.5	A/D Co	nversion Accuracy Definitions
16.6		lotes
	16.6.1	Permissible Signal Source Impedance
	16.6.2	Influences on Absolute Accuracy
		·
Sect	ion 17	Band-Gap Circuit, Power-On Reset, and Low-Voltage
]	Detection Circuits
17.1	Features	5
17.2	Register	Descriptions
	17.2.1	Low-Voltage-Detection Control Register (LVDCR)
	17.2.2	Low-Voltage-Detection Status Register (LVDSR)
17.3	Operatio	DNS
	17.3.1	Power-On Reset Circuit
	17.3.2	Low-Voltage Detection Circuit
Sect	ion 18 l	Power Supply Circuit
18.1	When U	Ising Internal Power Supply Step-Down Circuit
18.2	When N	ot Using Internal Power Supply Step-Down Circuit
Sect	ion 19 l	List of Registers
19.1	Register	Addresses (Address Order)
19.2	Register	Bits
19.3	Register	States in Each Operating Mode
Sect	ion 20 l	Electrical Characteristics
20.1		e Maximum Ratings
20.2	Electrica	al Characteristics (F-ZTAT [™] Version)

Rev. 3.00 Sep. 14, 2006 Page xvi of xxviii

	20.3.2	DC Characteristics
	20.3.3	AC Characteristics
	20.3.4	A/D Converter Characteristics
	20.3.5	Watchdog Timer Characteristics
	20.3.6	Power-Supply-Voltage Detection Circuit Characteristics
	20.3.7	LVDI External Voltage Detection Circuit Characteristics
	20.3.8	Power-On Reset Characteristics
20.4	Operation	1 Timing
20.5		oad Condition
	-	
Appe	ndix A	Instruction Set
A.1	Instructio	n List
A.2		n Code Map
A.3		of Execution States
A.4	Combinat	tions of Instructions and Addressing Modes
Appe	ndix B	I/O Port Block Diagrams
B.1	I/O Port I	Block Diagrams
B.2		es in Each Operating State
Appe	ndix C	Product Code Lineup
Appe	ndix D	Package Dimensions
Main	Revision	ns and Additions in this Edition
Index	•••••	

RENESAS

Rev. 3.00 Sep. 14, 2006 Page

Rev. 3.00 Sep. 14, 2006 Page xviii of xxviii

Section 2 CPU

Figure 2.1	Memory Map (1)
Figure 2.1	Memory Map (2)
Figure 2.2	CPU Registers
Figure 2.3	Usage of General Registers
Figure 2.4	Relationship between Stack Pointer and Stack Area
Figure 2.5	General Register Data Formats (1)
Figure 2.5	General Register Data Formats (2)
Figure 2.6	Memory Data Formats
Figure 2.7	Instruction Formats
Figure 2.8	Branch Address Specification in Memory Indirect Mode
Figure 2.9	On-Chip Memory Access Cycle
Figure 2.10	On-Chip Peripheral Module Access Cycle (3-State Access)
Figure 2.11	CPU Operation States
Figure 2.12	State Transitions
Figure 2.13	Example of Timer Configuration with Two Registers Allocated to Same
	Address
Section 3	Exception Handling
	Reset Sequence
-	Stack Status after Exception Handling
-	Interrupt Sequence
U	Port Mode Register Setting and Interrupt Request Flag Clearing Procedure .
Section 4	Address Break
Figure 4.1	Block Diagram of Address Break
Figure 4.2	Address Break Interrupt Operation Example (1)

Figure 4.2 Address Break Interrupt Operation Example (1).....

Renesas

Rev. 3.00 Sep. 14, 2006 Page

Rev. 3.00 Sep. 14, 2006 Page xx of xxviii

riguie 12.2	Tree-Kunning Counter Operation
Figure 12.3	Periodic Counter Operation
Figure 12.4	0 and 1 Output Example (TOA = 0, TOB = 1)
Figure 12.5	Toggle Output Example (TOA = 0, TOB = 1)
Figure 12.6	Toggle Output Example (TOA = 0, TOB = 1)
Figure 12.7	Input Capture Operating Example
Figure 12.8	Buffer Operation Example (Input Capture)
Figure 12.9	PWM Mode Example (1)
Figure 12.10	PWM Mode Example (2)
Figure 12.11	Buffer Operation Example (Output Compare)
Figure 12.12	PWM Mode Example
	(TOB, TOC, and TOD = 0: Initial Output Values are Set to 0)
Figure 12.13	PWM Mode Example
	(TOB, TOC, and TOD = 1: Initial Output Values are Set to 1)
Figure 12.14	Count Timing for Internal Clock Source
Figure 12.15	Count Timing for External Clock Source
Figure 12.16	Output Compare Output Timing
Figure 12.17	Input Capture Input Signal Timing
Figure 12.18	Timing of Counter Clearing by Compare Match
Figure 12.19	Buffer Operation Timing (Compare Match)
Figure 12.20	Buffer Operation Timing (Input Capture)
Figure 12.21	Timing of IMFA to IMFD Flag Setting at Compare Match
Figure 12.22	Timing of IMFA to IMFD Flag Setting at Input Capture
Figure 12.23	Timing of Status Flag Clearing by CPU
Figure 12.24	Contention between TCNT Write and Clear
Figure 12.25	Internal Clock Switching and TCNT Operation
Figure 12.26	When Compare Match and Bit Manipulation Instruction to TCRW Occur
	Same Timing

Rev. 3.00 Sep. 14, 2006 Page

Figure 14.6	Example of SCI3 Transmission in Asynchronous Mode
	(8-Bit Data, Parity, One Stop Bit)
Figure 14.7	Sample Serial Transmission Data Flowchart (Asynchronous Mode)
Figure 14.8	Example of SCI3 Reception in Asynchronous Mode
	(8-Bit Data, Parity, One Stop Bit)
Figure 14.9	Sample Serial Reception Data Flowchart (Asynchronous Mode)
Figure 14.10	Data Format in Clocked Synchronous Communication
Figure 14.11	Example of SCI3 Transmission in Clocked Synchronous Mode
Figure 14.12	2 Sample Serial Transmission Flowchart (Clocked Synchronous Mode)
Figure 14.13	Example of SCI3 Reception in Clocked Synchronous Mode
Figure 14.14	Sample Serial Reception Flowchart (Clocked Synchronous Mode)
Figure 14.15	Sample Flowchart of Simultaneous Serial Transmit and Receive Operation
	(Clocked Synchronous Mode)
Figure 14.16	Example of Inter-Processor Communication Using Multiprocessor Format
	(Transmission of Data H'AA to Receiving Station A)
Figure 14.17	Sample Multiprocessor Serial Transmission Flowchart
Figure 14.18	Sample Multiprocessor Serial Reception Flowchart (1)
Figure 14.18	Sample Multiprocessor Serial Reception Flowchart (2)
Figure 14.19	Example of SCI3 Reception Using Multiprocessor Format
	(Example with 8-Bit Data, Multiprocessor Bit, One Stop Bit)
Figure 14.20	Receive Data Sampling Timing in Asynchronous Mode
Section 15	I ² C Bus Interface 2 (IIC2)
Figure 15.1	Block Diagram of I ² C Bus Interface 2
Figure 15.2	External Circuit Connections of I/O Pins
Figure 15.3	I ² C Bus Formats
Figure 15.4	I ² C Bus Timing
Figure 15.5	Master Transmit Mode Operation Timing (1)
Figure 15.6	Master Transmit Mode Operation Timing (2)
Figure 15.7	Master Receive Mode Operation Timing (1)

Rev. 3.00 Sep. 14, 2006 Page xxii of xxviii

Figure 15.19	Sample Flowchart for Slave Transmit Mode
Figure 15.20) Sample Flowchart for Slave Receive Mode
Figure 15.2	1 Timing of Bit Synchronous Circuit
Section 16	A/D Converter
Figure 16.1	Block Diagram of A/D Converter
Figure 16.2	A/D Conversion Timing
Figure 16.3	External Trigger Input Timing
Figure 16.4	A/D Conversion Accuracy Definitions (1)
Figure 16.5	A/D Conversion Accuracy Definitions (2)
Figure 16.6	Analog Input Circuit Example
Section 17	Band-Gap Circuit, Power-On Reset, and Low-Voltage Detection Circu
Figure 17.1	Block Diagram around BGR
Figure 17.2	Block Diagram of Power-On Reset Circuit and Low-Voltage Detection Circuit
-	Operational Timing of Power-On Reset Circuit
Figure 17.4	Operating Timing of LVDR Circuit
Figure 17.5	Operational Timing of LVDI Circuit
Figure 17.6	Operational Timing of LVDI Circuit
	(When Compared Voltage is Input through ExtU and ExtD Pins)
Figure 17.7	Timing for Enabling/Disabling of Low-Voltage Detection Circuit
Section 18	Power Supply Circuit
Figure 18.1	Power Supply Connection when Internal Step-Down Circuit is Used
Figure 18.2	Power Supply Connection when Internal Step-Down Circuit is Not Used
Section 20	Electrical Characteristics
Figure 20.1	System Clock Input Timing
Figure 20.2	RES Low Width Timing
Figure 20.3	Input Timing
Figure 20.4	I ² C Bus Interface Input/Output Timing

RENESAS

Rev. 3.00 Sep. 14, 2006 Page

Figure B.0 (2) Fort 5 Block Diagram (157, 150) (101 118/50502 Gloup)
Figure B.7 Port 5 Block Diagram (P55)
Figure B.8 Port 5 Block Diagram (P76)
Figure B.9 Port 7 Block Diagram (P75)
Figure B.10 Port 7 Block Diagram (P74)
Figure B.11 Port 8 Block Diagram (P84 to P81)
Figure B.12 Port 8 Block Diagram (P80)
Figure B.13 Port B Block Diagram (PB3, PB2)
Figure B.14 Port B Block Diagram (PB1, PB0)
Figure B.15 Port C Block Diagram (PC1)
Figure B.16 Port C Block Diagram (PC0)
Figure D.1 FP-32D Package Dimensions
Figure D.2 FP-32A Package Dimension
Figure D.3 32P4B Package Dimension

Rev. 3.00 Sep. 14, 2006 Page xxiv of xxviii

Table 2.4	Logic Operations instructions
Table 2.5	Shift Instructions
Table 2.6	Bit Manipulation Instructions (1)
Table 2.6	Bit Manipulation Instructions (2)
Table 2.7	Branch Instructions
Table 2.8	System Control Instructions
Table 2.9	Block Data Transfer Instructions
Table 2.10	Addressing Modes
Table 2.11	Absolute Address Access Ranges
Table 2.12	Effective Address Calculation (1)
Table 2.12	Effective Address Calculation (2)
Section 3 E	xception Handling
Table 3.1	Exception Sources and Vector Address
Table 3.2	Interrupt Wait States
Section 4 A	ddress Break
Table 4.1	Access and Data Bus Used
1 abic 4.1	Access and Data Dus Oscu
Section 5 C	lock Pulse Generators
Table 5.1	Crystal Resonator Parameters
Section 6 Po	ower-Down Modes
Table 6.1	Operating Frequency and Wait Time
Table 6.2	Transition Mode after SLEEP Instruction Execution and Interrupt Handl
Table 6.3	Internal State in Each Operating Mode
Section 7 R	ОМ
Table 7.1	Setting Programming Modes
Table 7.2	Boot Mode Operation
Table 7.3	System Clock Frequencies for which Automatic Adjustment of LSI Bit F
14010 7.5	Possible
	1 0001010

Rev. 3.00 Sep. 14, 2006 Page

Table 12.1 Table 12.2	Pin Configuration
Section 14	Serial Communication Interface 3 (SCI3)
Table 14.1	Pin Configuration
Table 14.2	Examples of BRR Settings for Various Bit Rates (Asynchronous Mode)
Table 14.3	Maximum Bit Rate for Each Frequency (Asynchronous Mode)
Table 14.4	Examples of BRR Settings for Various Bit Rates
	(Clocked Synchronous Mode)
Table 14.5	SSR Status Flags and Receive Data Handling
Table 14.6	SCI3 Interrupt Requests
Section 15	I ² C Bus Interface 2 (IIC2)
Table 15.1	Pin Configuration
Table 15.2	Transfer Rate
Table 15.3	Interrupt Requests
Table 15.4	Time for Monitoring SCL
Section 16	A/D Converter
Table 16.1	Pin Configuration
Table 16.2	Analog Input Channels and Corresponding ADDR Registers
Table 16.3	A/D Conversion Time (Single Mode)
Section 17	Band-Gap Circuit, Power-On Reset, and Low-Voltage Detection Circuit
Table 17.1	LVDCR Settings and Select Functions
Section 20	Electrical Characteristics
Table 20.1	Absolute Maximum Ratings
Table 20.1 Table 20.2	
	Absolute Maximum Ratings DC Characteristics (1) DC Characteristics (2)
Table 20.2 Table 20.2 Table 20.3	Absolute Maximum Ratings DC Characteristics (1) DC Characteristics (2) AC Characteristics
Table 20.2 Table 20.2	Absolute Maximum Ratings DC Characteristics (1) DC Characteristics (2)

Rev. 3.00 Sep. 14, 2006 Page xxvi of xxviii

Table 20.15	Serial Interface (SCI3) Timing	
Table 20.16	A/D Converter Characteristics	
Table 20.17	Watchdog Timer Characteristics	
Table 20.18	Power-Supply-Voltage Detection Circuit Characteristics	
Fable 20.19	LVDI External Voltage Detection Circuit Characteristics	
Table 20.20	Power-On Reset Circuit Characteristics	
Appendix		
Table A 1	Instruction Sot	

A

Table A.1	Instruction Set
Table A.2	Operation Code Map (1)
Table A.2	Operation Code Map (2)
Table A.2	Operation Code Map (3)
Table A.3	Number of Cycles in Each Instruction
Table A.4	Number of Cycles in Each Instruction
Table A.5	Combinations of Instructions and Addressing Modes
1 4010 1 1.0	

RENESAS

Rev. 3.00 Sep. 14, 2006 Page

Rev. 3.00 Sep. 14, 2006 Page xxviii of xxviii

RENESAS

- Timer B1* (8-bit timer)
- Timer V (8-bit timer)
- Timer W (16-bit timer)
- Watchdog timer
- SCI3 (Asynchronous or clocked synchronous serial communication interface)
- 10-bit A/D converter
- I^2C bus interface* (conforms to the Philips I^2C bus interface functions)
- POR/LVD (Power-on reset and low-voltage detection circuits)
- Address break

Note: * Available for the H8/36912 Group only.

• On-chip memory

Product Classification		Туре	ROM	RAM	Remar
Flash memory version (F-ZTAT [™] version)	H8/36912F	HD64F36912G	8 kbytes	1,536 bytes	
	H8/36902F	HD64F36902G	8 kbytes	1,536 bytes	
Masked ROM version	H8/36912	HD64336912G	8 kbytes	512 bytes	
	H8/36911	HD64336911G	4 kbytes	256 bytes	
	H8/36902	HD64336902G	8 kbytes	512 bytes	
	H8/36901	HD64336901G	4 kbytes	256 bytes	
	H8/36900	HD64336900G	2 kbytes	256 bytes	

Note: F-ZTAT[™] is a trademark of Renesas Technology Corp.

RENESAS

Rev. 3.00 Sep. 14, 2006 P REJ09

Package	Code	Body Size	Pin Pitch	Remarks
LQFP-32	FP-32A	7.0 imes7.0 mm	0.8 mm	
SOP-32	FP-32D	11.3 imes20.45 mm	1.27 mm	
SDIP-32*	32P4B	400 mil	1.78 mm	

- F · · · · 0

Note: * Flash memory version only

Rev. 3.00 Sep. 14, 2006 Page 2 of 408 REJ09B0105-0300

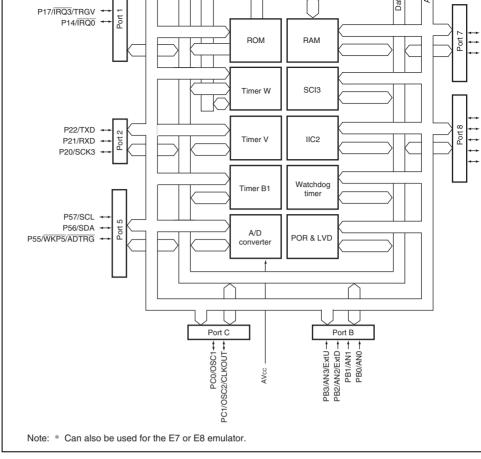


Figure 1.1 Internal Block Diagram of H8/36912 Group

RENESAS

Rev. 3.00 Sep. 14, 2006 P REJ09

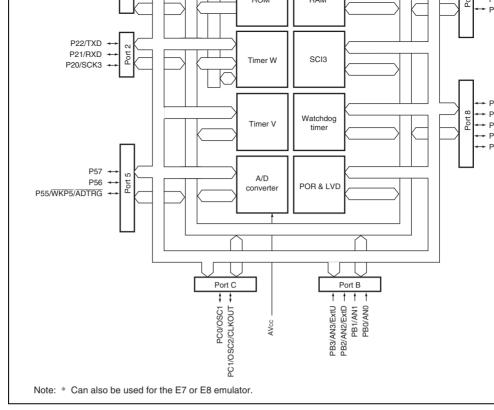


Figure 1.2 Internal Block Diagram of H8/36902 Group

Rev. 3.00 Sep. 14, 2006 Page 4 of 408 REJ09B0105-0300

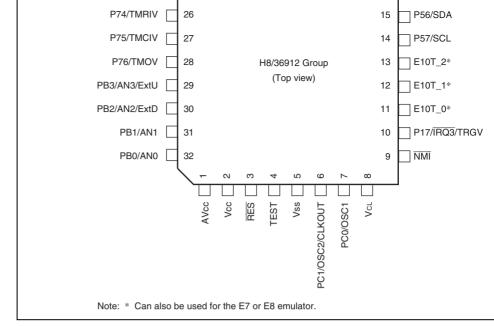


Figure 1.3 Pin Arrangement of H8/36912 Group (FP-32A)

Rev. 3.00 Sep. 14, 2006 P REJ09

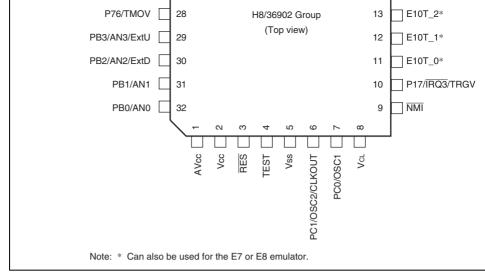


Figure 1.4 Pin Arrangement of H8/36902 Group (FP-32A)

Rev. 3.00 Sep. 14, 2006 Page 6 of 408 REJ09B0105-0300

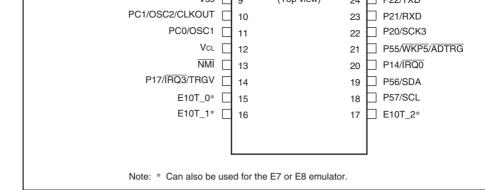


Figure 1.5 Pin Arrangement of H8/36912 Group (FP-32D, 32P4B)

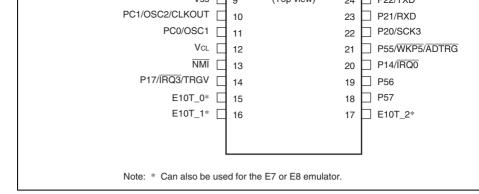


Figure 1.6 Pin Arrangement of H8/36902 Group (FP-32D, 32P4B)

Rev. 3.00 Sep. 14, 2006 Page 8 of 408 REJ09B0105-0300

					••••
	AV _{cc}	5	1	Input	Analog power supply pin A/D converter. When the converter is not used, con pin to the system power s
	V _{CL}	12	8	Input	Internal step-down power pin. Connect a capacitor $0.1 \ \mu F$ between this pin a pin for stabilization.
Clock	OSC1	11	7	Input	These pins are connected
	OSC2/ CLKOUT	10	6	Output	crystal or ceramic resona system clocks, or can be input an external clock. V on-chip oscillator is used clocks can be output to C section 5, Clock Pulse Go for a typical connection.
System control	RES	7	3	Input	Reset pin. The pull-up reads $150 \text{ k}\Omega$) is incorporated. driven low, the chip is res
	TEST	8	4	Input	Test pin. Connect this pir
External interrupt	NMI	13	9	Input	Non-maskable interrupt r input pin. Be sure to pull- pull-up resistor.
	ĪRQ0, ĪRQ3	20, 14	16, 10	Input	External interrupt request pins. Can select the rising edge.
	WKP5	21	17	Input	External interrupt reques Can select the rising or fa

Renesas

	FTIOA to FTIOD	26 to 29	22 to 25	I/O	Output compare output/ in capture input/ PWM outpu pins
I ² C bus interface 2*	SDA	19	15	I/O	I ² C data I/O pin. NMOS op output can directly drive th
	SCL	18	14	I/O	I ² C clock I/O pin. NMOS of output can directly drive th
Serial	TXD	24	20	Output	Transmit data output pin
communi- cation	RXD	23	19	Input	Receive data input pin
interface	SCK3	22	18	I/O	Clock I/O pin
A/D	AN3 to AN0	1 to 4	29 to 32	Input	Analog input pin
converter	ADTRG	21	17	Input	A/D converter trigger input
I/O ports	P17, P14	14, 20	10, 16	I/O	2-bit I/O port
	P22 to P20	24 to 22	20 to 18	I/O	3-bit I/O port
	P57 to P55	18, 19, 21	14, 15, 17	I/O	3-bit I/O port
	P76 to P74	32 to 30	28 to 26	I/O	3-bit I/O port
	P84 to P80	29 to 25	25 to 21	I/O	5-bit I/O port
	PB3 to PB0	1 to 4	29 to 32	Input	4-bit input port
	PC1, PC0	10, 11	6, 7	I/O	2-bit I/O port
Low voltage detection circuit	ExtU, ExtD	1, 2	29, 30	Input	External input pins for the voltage used in the low-vo detection circuit
E7, E8	E10T_0, E10T_1, E10T_2	15, 16, 17	11, 12, 13	—	Interface pins for the E7 of emulator

Note: * Available for the H8/36912 Group only.

Rev. 3.00 Sep. 14, 2006 Page 10 of 408 REJ09B0105-0300

RENESAS

• General-register architecture

- Sixteen 16-bit general registers also usable as sixteen 8-bit registers or eight 32-b

- Sixty-two basic instructions
 - 8/16/32-bit data transfer and arithmetic and logic instructions
 - Multiply and divide instructions
 - Powerful bit-manipulation instructions
- Eight addressing modes
 - Register direct [Rn]
 - Register indirect [@ERn]
 - Register indirect with displacement [@(d:16,ERn) or @(d:24,ERn)]
 - Register indirect with post-increment or pre-decrement [@ERn+ or @-ERn]
 - Absolute address [@aa:8, @aa:16, @aa:24]
 - Immediate [#xx:8, #xx:16, or #xx:32]
 - Program-counter relative [@(d:8,PC) or @(d:16,PC)]
 - Memory indirect [@@aa:8]
- 64-kbyte address space
- High-speed operation
 - All frequently-used instructions execute in two or four states
 - 8/16/32-bit register-register add/subtract : 2 state
 - 8 × 8-bit register-register multiply : 14 states
 - 16 ÷ 8-bit register-register divide : 14 states
 - 16 \times 16-bit register-register multiply : 22 states
 - $-32 \div 16$ -bit register-register divide : 22 states
- Power-down state
 - Transition to power-down state by SLEEP instruction

CPU30H2E_000120030300

RENESAS

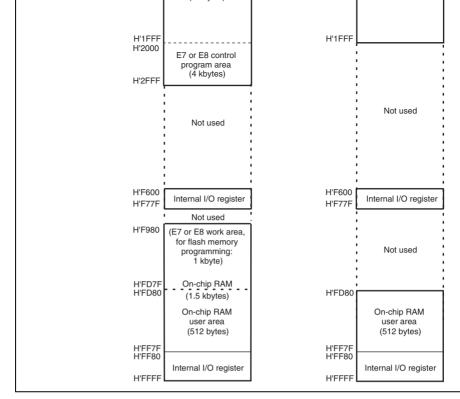


Figure 2.1 Memory Map (1)

Rev. 3.00 Sep. 14, 2006 Page 12 of 408 REJ09B0105-0300

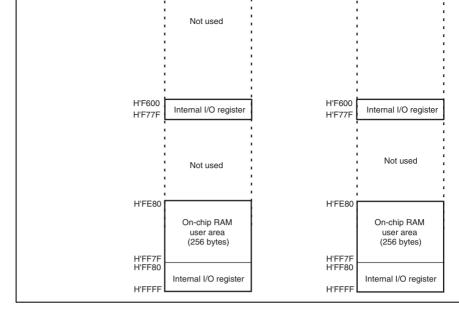


Figure 2.1 Memory Map (2)

RENESAS

ER3	E3	R3H	R3L
ER4	E4	R4H	R4L
ER5	E5	R5H	R5L
ER6	E6	R6H	R6L
ER7 (SP)	E7	R7H	R7L
Control regi	sters (CR) 23	PC	0 7 6 5 4 3 2 1 0 1 UIHUNZVC
[Legen SP: PC: CCR: I: UI:	d] Stack pointer Program counter Condition-code register Interrupt mask bit User bit	H: Half-carry U: User bit N: Negative Z: Zero flag V: Overflow C: Carry flag	flag flag

Rev. 3.00 Sep. 14, 2006 Page 14 of 408 REJ09B0105-0300

The R registers divide into 8-bit registers designated by the letters RH (R0H to R7H) and to R7L). These registers are functionally equivalent, providing a maximum of sixteen 8-registers.

The usage of each register can be selected independently.

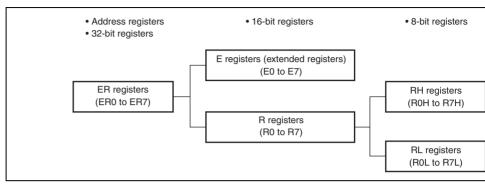


Figure 2.3 Usage of General Registers

Figure 2.4 Relationship between Stack Pointer and Stack Area

2.2.2 Program Counter (PC)

This 24-bit counter indicates the address of the next instruction the CPU will execute. The of all CPU instructions is 2 bytes (one word), so the least significant PC bit is ignored. (W instruction is fetched, the least significant PC bit is regarded as 0). The PC is initialized w start address is loaded by the vector address generated during reset exception-handling se

2.2.3 Condition-Code Register (CCR)

This 8-bit register contains internal CPU status information, including an interrupt mask l half-carry (H), negative (N), zero (Z), overflow (V), and carry (C) flags. The I bit is initial by reset exception-handling sequence, but other bits are not initialized.

Some instructions leave flag bits unchanged. Operations can be performed on the CCR bit LDC, STC, ANDC, ORC, and XORC instructions. The N, Z, V, and C flags are used as be conditions for conditional branch (Bcc) instructions.

For the action of each instruction on the flag bits, see appendix A.1, Instruction List.

Rev. 3.00 Sep. 14, 2006 Page 16 of 408 REJ09B0105-0300

			NEG.B instruction is executed, this flag is set to is a carry or borrow at bit 3, and cleared to 0 of When the ADD.W, SUB.W, CMP.W, or NEG.W instruction is executed, the H flag is set to 1 if th carry or borrow at bit 11, and cleared to 0 other When the ADD.L, SUB.L, CMP.L, or NEG.L ins executed, the H flag is set to 1 if there is a carry borrow at bit 27, and cleared to 0 otherwise.
4	U	Undefined R/W	User Bit
			Can be written and read by software using the ANDC, ORC, and XORC instructions.
3	Ν	Undefined R/W	Negative Flag
			Stores the value of the most significant bit of da sign bit.
2	Z	Undefined R/W	Zero Flag
			Set to 1 to indicate zero data, and cleared to 0 non-zero data.
1	V	Undefined R/W	Overflow Flag
			Set to 1 when an arithmetic overflow occurs, ar to 0 at other times.
0	С	Undefined R/W	Carry Flag
			Set to 1 when a carry occurs, and cleared to 0 Used by:
			Add instructions, to indicate a carry
			Subtract instructions, to indicate a borrow
			Shift and rotate instructions, to indicate a ca
			The carry flag is also used as a bit accumulator manipulation instructions.

Renesas

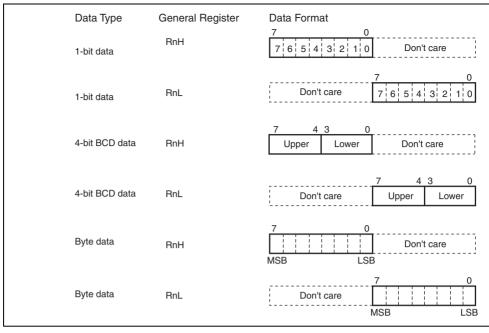


Figure 2.5 General Register Data Formats (1)

Rev. 3.00 Sep. 14, 2006 Page 18 of 408 REJ09B0105-0300

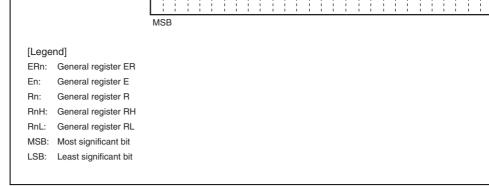


Figure 2.5 General Register Data Formats (2)

Data Type	Address		Data Format						
			_		_	-	_		_
		7							0
1-bit data	Address L	7	6	5	4	3	2	1	0
Byte data	Address L	MSB					:	1	LSB
									-
Word data	Address 2M	MSB							
	Address 2M+1								LSB
Longword data	Address 2N	MSB					:	:	
	Address 2N+1				-				
	Address 2N+2		 		 	 	 		
	Address 2N+3								LSB
			_		_	_			
							<u> </u>	_	

Figure 2.6 Memory Data Formats

Rev. 3.00 Sep. 14, 2006 Page 20 of 408 REJ09B0105-0300

Rs	General register (source)*
Rn	General register*
ERn	General register (32-bit register or address register)
(EAd)	Destination operand
(EAs)	Source operand
CCR	Condition-code register
Ν	N (negative) flag in CCR
Z	Z (zero) flag in CCR
V	V (overflow) flag in CCR
С	C (carry) flag in CCR
PC	Program counter
SP	Stack pointer
#IMM	Immediate data
disp	Displacement
+	Addition
_	Subtraction
×	Multiplication
÷	Division
^	Logical AND
V	Logical OR
\oplus	Logical XOR
\rightarrow	Move
٦	NOT (logical complement)

RENESAS

MOVFPE	В	(EAs) \rightarrow Rd, Cannot be used in this LSI.
MOVTPE	В	$\text{Rs} \rightarrow $ (EAs) Cannot be used in this LSI.
POP	W/L	$@SP+ \rightarrow Rn$ Pops a general register from the stack. POP.W Rn is identical to @SP+, Rn. POP.L ERn is identical to MOV.L $@SP+$, ERn.
PUSH	W/L	$Rn \rightarrow @-SP$ Pushes a general register onto the stack. PUSH.W Rn is identic MOV.W Rn, @-SP. PUSH.L ERn is identical to MOV.L ERn, @
Note: *	Refers to the	operand size.
	B: Byte W: Word	

L: Longword

Rev. 3.00 Sep. 14, 2006 Page 22 of 408 REJ09B0105-0300

DEC	_,	Increments or decrements a general register by 1 or 2. (Byte o can be incremented or decremented by 1 only.)
ADDS SUBS	L	$\begin{array}{ll} Rd\pm 1\toRd, & Rd\pm 2\toRd, & Rd\pm 4\toRd\\ Adds \text{ or subtracts the value 1, 2, or 4 to or from data in a 32-bi} \end{array}$
DAA DAS	В	Rd decimal adjust \rightarrow Rd Decimal-adjusts an addition or subtraction result in a general referring to the CCR to produce 4-bit BCD data.
MULXU	B/W	$\begin{array}{l} Rd\timesRs\toRd\\ Performs \text{ unsigned multiplication on data in two general registe}\\ 8 \ bits\times8 \ bits\to16 \ bits or \ 16 \ bits\times16 \ bits\to32 \ bits. \end{array}$
MULXS	B/W	$Rd \times Rs \rightarrow Rd$ Performs signed multiplication on data in two general registers bits $\times 8$ bits $\rightarrow 16$ bits or 16 bits $\times 16$ bits $\rightarrow 32$ bits.
DIVXU	B/W	Rd \div Rs \rightarrow Rd Performs unsigned division on data in two general registers: ei bits \div 8 bits \rightarrow 8-bit quotient and 8-bit remainder or 32 bits \div 1 16-bit quotient and 16-bit remainder.
Note: *	Refers to the	e operand size.
	B: Bvte	

B: Byte

W: Word

L: Longword

RENESAS

		general register.
EXTU	W/L	Rd (zero extension) \rightarrow Rd Extends the lower 8 bits of a 16-bit register to word size, or the bits of a 32-bit register to longword size, by padding with zeros of left.
EXTS	W/L	Rd (sign extension) \rightarrow Rd Extends the lower 8 bits of a 16-bit register to word size, or the bits of a 32-bit register to longword size, by extending the sign b
Note:	* Refers to the	operand size.
	B: Byte W: Word	

L: Longword

Rev. 3.00 Sep. 14, 2006 Page 24 of 408 REJ09B0105-0300

NOT			B/W/L	\neg (Rd) \rightarrow (Rd)
				Takes the one's complement of general register contents.
Note:	*	Refe	rs to the	operand size.
		B:	Byte	
		W:	Word	

L: Longword

Table 2.5Shift Instructions

Instructio	n Size*	Function
SHAL SHAR	B/W/L	Rd (shift) \rightarrow Rd Performs an arithmetic shift on general register contents.
SHLL SHLR	B/W/L	Rd (shift) \rightarrow Rd Performs a logical shift on general register contents.
ROTL ROTR	B/W/L	Rd (rotate) \rightarrow Rd Rotates general register contents.
ROTXL ROTXR	B/W/L	Rd (rotate) \rightarrow Rd Rotates general register contents through the carry flag.
Note: *	Refers to the	operand size.

B: Byte

W: Word

L: Longword

Renesas

		Inverts a specified bit in a general register or memory operand. number is specified by 3-bit immediate data or the lower three b general register.
BTST	В	¬ (<bit-no.> of <ead>) → Z Tests a specified bit in a general register or memory operand ar clears the Z flag accordingly. The bit number is specified by 3-b immediate data or the lower three bits of a general register.</ead></bit-no.>
BAND	В	$C \land (of) \rightarrow C$ ANDs the carry flag with a specified bit in a general register or r operand and stores the result in the carry flag.
BIAND	В	$C \land \neg$ (<bit-no.> of <ead>) $\rightarrow C$ ANDs the carry flag with the inverse of a specified bit in a gener register or memory operand and stores the result in the carry fla The bit number is specified by 3-bit immediate data.</ead></bit-no.>
BOR	В	$C \lor ($ <bit-no.> of <ead>) $\rightarrow C$ ORs the carry flag with a specified bit in a general register or more operand and stores the result in the carry flag.</ead></bit-no.>
BIOR	В	$C \lor \neg$ (<bit-no.> of <ead>) $\rightarrow C$ ORs the carry flag with the inverse of a specified bit in a genera or memory operand and stores the result in the carry flag. The bit number is specified by 3-bit immediate data.</ead></bit-no.>
Note: *	Refers to th	e operand size.

B: Byte

Rev. 3.00 Sep. 14, 2006 Page 26 of 408 REJ09B0105-0300

		carry flag.
BILD	В	¬ (<bit-no.> of <ead>) → C Transfers the inverse of a specified bit in a general register or operand to the carry flag. The bit number is specified by 3-bit immediate data.</ead></bit-no.>
BST	В	$C \rightarrow$ (<bit-no.> of <ead>) Transfers the carry flag value to a specified bit in a general reg memory operand.</ead></bit-no.>
BIST	В	\neg C \rightarrow (<bit-no.> of <ead>) Transfers the inverse of the carry flag value to a specified bit ir register or memory operand. The bit number is specified by 3-bit immediate data.</ead></bit-no.>
Note: *	Refers to	o the operand size.
	B: By	yte

RENESAS

BCC(BHS)	Carry clear (high or same)	C = 0
BCS(BLO)	Carry set (low)	C = 1
BNE	Not equal	Z = 0
BEQ	Equal	Z = 1
BVC	Overflow clear	V = 0
BVS	Overflow set	V = 1
BPL	Plus	N = 0
BMI	Minus	N = 1
BGE	Greater or equal	N ⊕ V = 0
BLT	Less than	N ⊕ V = 1
BGT	Greater than	$Z \lor (N \oplus V) = 0$
BLE	Less or equal	$Z \lor (N \oplus V) = 1$

JMP	_	Branches unconditionally to a specified address.
BSR	_	Branches to a subroutine at a specified address.
JSR	_	Branches to a subroutine at a specified address.
RTS	_	Returns from a subroutine

Note: * Bcc is the general name for conditional branch instructions.

Rev. 3.00 Sep. 14, 2006 Page 28 of 408 REJ09B0105-0300

		register size is one byte, but in transfer to memory, data is writ word access.
ANDC	В	CCR \land #IMM \rightarrow CCR, EXR \land #IMM \rightarrow EXR Logically ANDs the CCR with immediate data.
ORC	В	CCR \lor #IMM \rightarrow CCR, EXR \lor #IMM \rightarrow EXR Logically ORs the CCR with immediate data.
XORC	В	$CCR \oplus \#IMM \rightarrow CCR$, EXR $\oplus \#IMM \rightarrow EXR$ Logically XORs the CCR with immediate data.
NOP	—	$PC + 2 \rightarrow PC$ Only increments the program counter.
A.L	D ()	

Note: * Refers to the operand size.

B: Byte

W: Word

Renesas

else next;

Transfers a data block. Starting from the address set in ER5, tra data for the number of bytes set in R4L or R4 to the address loc in ER6.

Execution of the next instruction begins as soon as the transfer completed.

2.4.2 Basic Instruction Formats

H8/300H CPU instructions consist of 2-byte (1-word) units. An instruction consists of an operation field (op field), a register field (r field), an effective address extension (EA field condition field (cc).

Figure 2.7 shows examples of instruction formats.

(1) **Operation Field**

Indicates the function of the instruction, the addressing mode, and the operation to be car on the operand. The operation field always includes the first four bits of the instruction. S instructions have two operation fields.

(2) Register Field

Specifies a general register. Address registers are specified by 3 bits, and data registers by 4 bits. Some instructions have two register fields. Some have no register field.

Rev. 3.00 Sep. 14, 2006 Page 30 of 408 REJ09B0105-0300

					I
(2) O	peration field a	nd register fiel	ds		
	o	р	rn	rm	ADD.B Rn, Rm, etc.
(3) O	peration field, I	register fields,	and effective a	ddress extensi	on
		ор	rn	rm	MOV.B @(d:16, Rn), Rm
	EA(disp)				
(4) O	peration field, e	effective addre	ss extension, a	and condition fi	eld
	ор сс			disp)	BRA d:8
					-

Figure 2.7 Instruction Formats

Arithmetic and logic instructions can use the register direct and immediate modes. Data t instructions can use all addressing modes except program-counter relative and memory in Bit manipulation instructions use register direct, register indirect, or the absolute addressi to specify an operand, and register direct (BSET, BCLR, BNOT, and BTST instructions) immediate (3-bit) addressing mode to specify a bit number in the operand.

No.	Addressing Mode	Symbol
1	Register direct	Rn
2	Register indirect	@ERn
3	Register indirect with displacement	@(d:16,ERn)/@(d:24,ERn)
4	Register indirect with post-increment Register indirect with pre-decrement	@ERn+ @-ERn
5	Absolute address	@aa:8/@aa:16/@aa:24
6	Immediate	#xx:8/#xx:16/#xx:32
7	Program-counter relative	@(d:8,PC)/@(d:16,PC)
8	Memory indirect	@@aa:8

Table 2.10 Addressing Modes

(1) Register Direct—Rn

The register field of the instruction specifies an 8-, 16-, or 32-bit general register containing operand. R0H to R7H and R0L to R7L can be specified as 8-bit registers. R0 to R7 and E can be specified as 16-bit registers. ER0 to ER7 can be specified as 32-bit registers.

Rev. 3.00 Sep. 14, 2006 Page 32 of 408 REJ09B0105-0300

RENESAS

• Register indirect with post-increment—@ERn+

The register field of the instruction code specifies an address register (ERn) the lower of which contains the address of a memory operand. After the operand is accessed, 1 added to the address register contents (32 bits) and the sum is stored in the address re The value added is 1 for byte access, 2 for word access, or 4 for longword access. For or longword access, the register value should be even.

• Register indirect with pre-decrement—@-ERn

The value 1, 2, or 4 is subtracted from an address register (ERn) specified by the reg in the instruction code, and the lower 24 bits of the result is the address of a memory. The result is also stored in the address register. The value subtracted is 1 for byte acc word access, or 4 for longword access. For the word or longword access, the register should be even.

(5) Absolute Address—@aa:8, @aa:16, @aa:24

The instruction code contains the absolute address of a memory operand. The absolute a may be 8 bits long (@aa:8), 16 bits long (@aa:16), 24 bits long (@aa:24)

For an 8-bit absolute address, the upper 16 bits are all assumed to be 1 (H'FFFF). For a 2 absolute address the upper 8 bits are a sign extension. A 24-bit absolute address can accelentire address space.

The access ranges of absolute addresses for the group of this LSI are those shown in tab because the upper 8 bits are ignored.

RENESAS

operand.

The ADDS, SUBS, INC, and DEC instructions contain immediate data implicitly. Some manipulation instructions contain 3-bit immediate data in the instruction code, specifying number. The TRAPA instruction contains 2-bit immediate data in its instruction code, spector address.

(7) Program-Counter Relative—@(d:8, PC) or @(d:16, PC)

This mode is used in the BSR instruction. An 8-bit or 16-bit displacement contained in the instruction is sign-extended and added to the 24-bit PC contents to generate a branch add PC value to which the displacement is added is the address of the first byte of the next ins so the possible branching range is -126 to +128 bytes (-63 to +64 words) or -32766 to + bytes (-16383 to +16384 words) from the branch instruction. The resulting value should even number.

(8) Memory Indirect—@@aa:8

This mode can be used by the JMP and JSR instructions. The instruction code contains ar absolute address specifying a memory operand. This memory operand contains a branch a The memory operand is accessed by longword access. The first byte of the memory opera ignored, generating a 24-bit branch address. Figure 2.8 shows how to specify branch address memory indirect mode. The upper bits of the absolute address are all assumed to be 0, so address range is 0 to 255 (H'0000 to H'00FF).

Note that the first part of the address range is also the exception vector area.

Rev. 3.00 Sep. 14, 2006 Page 34 of 408 REJ09B0105-0300

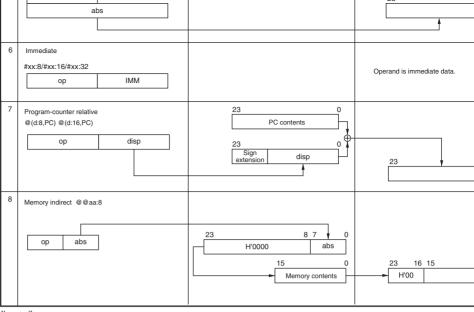

2.5.2 Effective Address Calculation

Table 2.12 indicates how effective addresses are calculated in each addressing mode. In the upper 8 bits of the effective address are ignored in order to generate a 16-bit effective

Table 2.12	Effective	Address	Calculation	(1)

No	Addressing Mode and Instruction Format	Effective Address Calculation	Effective Address (E
1	Register direct(Rn)		Operand is general register cor
2	Register indirect(@ERn)	31 0 General register contents	23
3	Register indirect with displacement @(d:16,ERn) or @(d:24,ERn) op r disp	31 0 General register contents	23
4	Register indirect with post-increment or pre-decrement •Register indirect with post-increment @ERn+ op r •Register indirect with pre-decrement @-ERn op r	31 General register contents 1, 2, or 4 General register contents 1, 2, or 4 The value to be added or subtracted is 1 when the operand is byte size, 2 for word size, and 4 for longword size.	23

Renesas

[Legend]

r, rm,rn : Register field

op : Operation field

disp : Displacement

IMM : Immediate data

abs : Absolute address

Rev. 3.00 Sep. 14, 2006 Page 36 of 408 REJ09B0105-0300

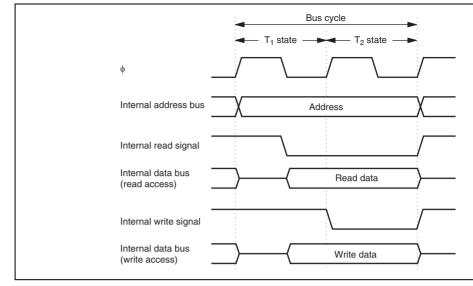


Figure 2.9 On-Chip Memory Access Cycle

module.



Figure 2.10 On-Chip Peripheral Module Access Cycle (3-State Access)

Rev. 3.00 Sep. 14, 2006 Page 38 of 408 REJ09B0105-0300

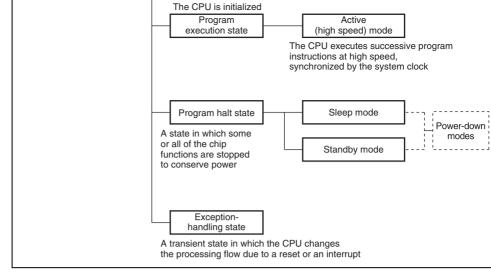


Figure 2.11 CPU Operation States

2.8 Usage Notes

2.8.1 Notes on Data Access to Empty Areas

The address space of this LSI includes empty areas in addition to the ROM, RAM, and or I/O registers areas available to the user. When data is transferred from CPU to empty area transferred data will be lost. This action may also cause the CPU to malfunction. When d transferred from an empty area to CPU, the contents of the data cannot be guaranteed.

2.8.2 EEPMOV Instruction

EEPMOV is a block-transfer instruction and transfers the byte size of data indicated by R which starts from the address indicated by R5, to the address indicated by R6. Set R4L ar that the end address of the destination address (value of R6 + R4L) does not exceed H'FF value of R6 must not change from H'FFFF to H'0000 during execution).

2.8.3 Bit Manipulation Instruction

The BSET, BCLR, BNOT, BST, and BIST instructions read data from the specified address byte units, manipulate the data of the target bit, and write data to the same address again is units. Special care is required when using these instructions in cases where two registers a assigned to the same address or when a bit is directly manipulated for a port, because this rewrite data of a bit other than the bit to be manipulated.

Rev. 3.00 Sep. 14, 2006 Page 40 of 408 REJ09B0105-0300

- 2. The CPU sets or resets the bit to be manipulated with the bit manipulation instruction
- 3. The written data is written again in byte units to the timer load register.

The timer is counting, so the value read is not necessarily the same as the value in the timer egister. As a result, bits other than the intended bit in the timer counter may be modified modified value may be written to the timer load register.

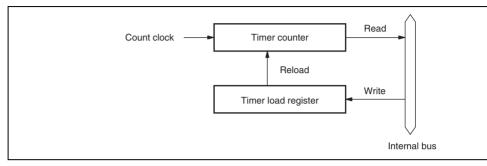


Figure 2.13 Example of Timer Configuration with Two Registers Allocated Same Address

	level						
PCR5	0	0	1	1	1	1	1
PDR5	1	0	0	0	0	0	0

[BSET instruction executed]

BSET	#0,	@PDR5

The BSET instruction is executed for port 5.

[After executing BSET]

	P57	P56	P55	P54	P53	P52	P51
Input/output	Input	Input	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level
PCR5	0	0	1	1	1	1	1
PDR5	0	1	0	0	0	0	0

[Description on operation]

- When the BSET instruction is executed, first the CPU reads port 5. Since P57 and P50 input pins, the CPU reads the pin states (low-level and high-level input).
 P55 to P50 are output pins, so the CPU reads the value in PDR5. In this example PDR value of H'80, but the value read by the CPU is H'40.
- 2. Next, the CPU sets bit 0 of the read data to 1, changing the PDR5 data to H'41.
- 3. Finally, the CPU writes H'41 to PDR5, completing execution of BSET.

Rev. 3.00 Sep. 14, 2006 Page 42 of 408 REJ09B0105-0300

	P57	P56	P55	P54	P53	P52	P51
Input/output	Input	Input	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level
PCR5	0	0	1	1	1	1	1
PDR5	1	0	0	0	0	0	0
RAM0	1	0	0	0	0	0	0

[BSET instruction executed]

BSET #0,	@RAM0
----------	-------

The BSET instruction is executed designating the work area (RAM0).

[After executing BSET]

MOV.B	@RAMO, ROL	Ī
MOV.B	ROL, @PDR5	

The work area (RAM0) value is written to PDR5

	P57	P56	P55	P54	P53	P52	P51
Input/output	Input	Input	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level
PCR5	0	0	1	1	1	1	1
PDR5	1	0	0	0	0	0	0
RAM0	1	0	0	0	0	0	0

RENESAS

Input/output	Input	Input	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level
PCR5	0	0	1	1	1	1	1
PDR5	1	0	0	0	0	0	0

[BCLR instruction executed]

BCLR	#O,	@PCR5

The BCLR instruction is executed for PCR5.

[After executing BCLR]

	P57	P56	P55	P54	P53	P52	P51
Input/output	Output	Output	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level
PCR5	1	1	1	1	1	1	1
PDR5	1	0	0	0	0	0	0

[Description on operation]

- 1. When the BCLR instruction is executed, first the CPU reads PCR5. Since PCR5 is a vregister, the CPU reads a value of H'FF, even though the PCR5 value is actually H'3F
- 2. Next, the CPU clears bit 0 in the read data to 0, changing the data to H'FE.
- 3. Finally, H'FE is written to PCR5 and BCLR instruction execution ends.

Rev. 3.00 Sep. 14, 2006 Page 44 of 408 REJ09B0105-0300

	P57	P56	P55	P54	P53	P52	P51
Input/output	Input	Input	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level
PCR5	0	0	1	1	1	1	1
PDR5	1	0	0	0	0	0	0
RAM0	0	0	1	1	1	1	1

[BCLR instruction executed]

BCLR	#O,	@RAM0

The BCLR instructions executed for the PCR5 w (RAM0).

[After executing BCLR]

I

MOV.B	@RAMO, ROL	
MOV.B	ROL, @PCR5	

The work area (RAM0) value is written to PCR5

	P57	P56	P55	P54	P53	P52	P51
Input/output	Input	Input	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level
PCR5	0	0	1	1	1	1	1
PDR5	1	0	0	0	0	0	0
RAM0	0	0	1	1	1	1	1

Rev. 3.00 Sep. 14, 2006 Page 46 of 408 REJ09B0105-0300

Exception handling starts when a trap instruction (TRAPA) is executed. The TRAPA instruction generates a vector address corresponding to a vector number from 0 to 3, specified in the instruction code. Exception handling can be executed at all times in the program execution state.

• Interrupts

External interrupts other than NMI and internal interrupts other than address break a by the I bit in CCR, and kept masked while the I bit is set to 1. Exception handling s the current instruction or exception handling ends, if an interrupt request has been is:

3.1 Exception Sources and Vector Address

Table 3.1 shows the vector addresses and priority of each exception handling. When mo one interrupt is requested, handling is performed from the interrupt with the highest prior

		Vector	
Relative Module	Exception Sources	Number	Vector Address
RES pin	Reset	0	H'0000 to H'0001
Watchdog timer			
_	Reserved for system use	1 to 6	H'0002 to H'000D
External interrupt pin	NMI	7	H'000E to H'000F
CPU	Trap instruction #0	8	H'0010 to H'0011
	Trap instruction #1	9	H'0012 to H'0013
	Trap instruction #2	10	H'0014 to H'0015
	Trap instruction #3	11	H'0016 to H'0017

Table 3.1 Exception Sources and Vector Address

RENESAS

—	Reserved for system use	19, 20	H'0026 to H'0029
Timer W	Timer W input capture A/ compare match A Timer W input capture B/ compare match B Timer W input capture C/ compare match C Timer W input capture D/ compare match D Timer W overflow	21	H'002A to H'002B
Timer V	Timer V compare match A Timer V compare match B Timer V overflow	22	H'002C to H'002D
SCI3	SCI3 receive data full SCI3 transmit data empty SCI3 transmit end SCI3 receive error	23	H'002E to H'002F
IIC2*	IIC_2 transmit data empty IIC_2 transmit end IIC_2 receive error	24	H'0030 to H'0031
A/D converter	A/D conversion end	25	H'0032 to H'0033
_	Reserved for system use	26 to 28	H'0034 to H'0039
Timer B1*	Timer B1 overflow	29	H'003A to H'003B
	Reserved for system use	30 to 33	H'003C to H'0043
Clock switch	Clock switch (external clock to on-chip oscillator clock)	34	H'0044 to H'0045

Note: * Available for the H8/36912 Group only.

Rev. 3.00 Sep. 14, 2006 Page 48 of 408 REJ09B0105-0300

RENESAS

• Wakeup interrupt flag register (IWPR)

3.2.1 Interrupt Edge Select Register 1 (IEGR1)

IEGR1 selects the direction of an edge that generates interrupt requests of the $\overline{IRQ3}$ and pins.

Bit	Bit Name	Initial Value	R/W	Description
7	_	0	_	Reserved
				This bit is always read as 0.
6 to 4	_	All 1	_	Reserved
				These bits are always read as 1.
3	IEG3	0	R/W	IRQ3 Edge Select
				0: Falling edge of IRQ3 pin input is detected
				1: Rising edge of IRQ3 pin input is detected
2, 1	—	All 0	—	Reserved
				These bits are always read as 0.
0	IEG0	0	R/W	IRQ0 Edge Select
				0: Falling edge of $\overline{IRQ0}$ pin input is detected
				1: Rising edge of $\overline{IRQ0}$ pin input is detected

RENESAS

			0: Falling edge of WKP5 (ADTRG) pin input is d
			1: Rising edge of WKP5 (ADTRG) pin input is de
4 to 0 —	All 0	—	Reserved
			These bits are always read as 0.

3.2.3 Interrupt Enable Register 1 (IENR1)

IENR1 enables direct transition interrupts and external pin interrupts.

Bit	Bit Name	Initial Value	R/W	Description
7	IENDT	0	R/W	Direct Transfer Interrupt Enable
				When this bit is set to 1, direct transition interrup requests are enabled.
6	_	0		Reserved
				This bit is always read as 0.
5	IENWP	0	R/W	Wakeup Interrupt Enable
				This bit is an enable bit of the $\overline{WKP5}$ pin. When the set to 1, interrupt requests are enabled.
4	_	1		Reserved
				This bit is always read as 1.
3	IEN3	0	R/W	IRQ3 Interrupt Enable
				When this bit is set to 1, interrupt requests of the pin are enabled.
2, 1	_	All 0		Reserved
				These bits are always read as 0.

Rev. 3.00 Sep. 14, 2006 Page 50 of 408 REJ09B0105-0300

RENESAS

		Initiai		
Bit	Bit Name	Value	R/W	Description
7	—	0	—	Reserved
				This bit is always read as 0.
6	—	0	R/W	Reserved
				Although this bit is readable/writable, it should to 1.
5	IENTB1	0	R/W	Timer B1 Interrupt Enable
				When this bit is set to 1, overflow interrupt req timer B1 are enabled.
4 to 0	_	All 1		Reserved
				These bits are always read as 1.

When disabling interrupts by clearing bits in an interrupt enable register, or when clearing an interrupt flag register, always do so while interrupts are masked (I = 1). If the above operations are performed while I = 0, and as a result a conflict arises between the clear i and an interrupt request, exception handling for the interrupt will be executed after the client instruction has been executed.

				When IRRDT is cleared by writing 0
6		0		Reserved
				This bit is always read as 0.
5, 4	_	All 1		Reserved
				These bits are always read as 1.
3	IRRI3	0	R/W	IRQ3 Interrupt Request Flag
				[Setting condition]
				When IRQ3 pin is designated for interrupt inp
				the designated signal edge is detected
				[Clearing condition]
				• When IRRI3 is cleared by writing 0
2, 1	_	All 0		Reserved
				These bits are always read as 0.
0	IRRI0	0	R/W	IRQ0 Interrupt Request Flag
				[Setting condition]
				When IRQ0 pin is designated for interrupt inp
				the designated signal edge is detected
				[Clearing condition]
				When IRRI0 is cleared by writing 0

Rev. 3.00 Sep. 14, 2006 Page 52 of 408 REJ09B0105-0300

		[Setting condition]		
			When timer B1 overflows	
			[Clearing condition]	
			• When IRRTB1 is cleared by writing 0	
4 to 0 —	All 1	_	Reserved	
			These bits are always read as 1.	

3.2.7 Wakeup Interrupt Flag Register (IWPR)

IWPR is a status flag register for $\overline{WKP5}$ interrupt requests.

Bit	Bit Name	Initial Value	R/W	Description
7, 6	_	All 1	_	Reserved
				These bits are always read as 1.
5	IWPF5	0	R/W	WKP5 Interrupt Request Flag
				[Setting condition]
				 When WKP5 pin is designated for interrupt the designated signal edge is detected. [Clearing condition]
				• When IWPF5 is cleared by writing 0
4 to 0		All 0	_	Reserved
				These bits are always read as 0.

RENESAS

- - 1. Set the I bit in the condition code register (CCR) to 1.
 - 2. The CPU generates a reset exception handling vector address (from H'0000 to H'0001 data in that address is sent to the program counter (PC) as the start address, and program execution starts from that address.

Rev. 3.00 Sep. 14, 2006 Page 54 of 408 REJ09B0105-0300

(2) IRQ3 and IRQ0 Interrupts

IRQ3 and IRQ0 interrupts are requested by input signals to the $\overline{IRQ3}$ and $\overline{IRQ0}$ pins. The interrupts are given different vector addresses, and are detected individually by either rissensing or falling edge sensing, depending on the settings of the IEG3 and IEG0 bits in

When the $\overline{IRQ3}$ and $\overline{IRQ0}$ pins are designated for interrupt input in PMR1 and the design signal edge is input, the corresponding bit in IRR1 is set to 1, requesting the CPU of an These interrupts can be masked by setting the IEN3 and IEN0 bits in IENR1.

(3) WKP Interrupt

WKP interrupt is requested by an input signal to the $\overline{WKP5}$ pin. This interrupt is detecter rising edge sensing or falling edge sensing, depending on the setting of the WPEG5 bit is

When the $\overline{WKP5}$ pin is designated for interrupt input in PMR5 and the designated signal input, the corresponding bit in IWPR is set to 1, requesting the CPU of an interrupt. This can be masked by setting the IENWP bit in IENR1.

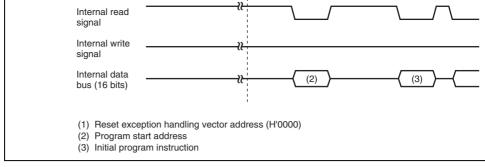


Figure 3.1 Reset Sequence

3.4.2 Internal Interrupts

Each on-chip peripheral module has a flag to show the interrupt request status and the enable or disable the interrupt. For direct transfer interrupt requests generated by execution SLEEP instruction, this function is included in IRR1 and IENR1.

When an on-chip peripheral module requests an interrupt, the corresponding interrupt req status flag is set to 1, requesting the CPU of an interrupt. When this interrupt is accepted, is set to 1 in CCR. These interrupts can be masked by writing 0 to clear the corresponding bit.

Rev. 3.00 Sep. 14, 2006 Page 56 of 408 REJ09B0105-0300

- 3. The CPU accepts the NMI or address break without depending on the I bit value. Oth interrupt requests are accepted, if the I bit is cleared to 0 in CCR; if the I bit is set to interrupt request is held pending.
- 4. If the CPU accepts the interrupt after processing of the current instruction is complete interrupt exception handling will begin. First, both PC and CCR are pushed onto the state of the stack at this time is shown in figure 3.2. The PC value pushed onto the st address of the first instruction to be executed upon return from interrupt handling.
- 5. Then, the I bit of CCR is set to 1, masking further interrupts excluding the NMI and break. Upon return from interrupt handling, the values of I bit and other bits in CCR restored and returned to the values prior to the start of interrupt exception handling.
- 6. Next, the CPU generates the vector address corresponding to the accepted interrupt, transfers the address to PC as a start address of the interrupt handling-routine. Then starts executing from the address indicated in PC.

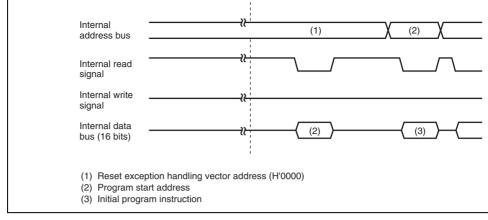


Figure 3.2 Stack Status after Exception Handling

Rev. 3.00 Sep. 14, 2006 Page 58 of 408 REJ09B0105-0300

	L	
Instruction fetch	4	
Internal processing	4	

Note: * EEPMOV instruction is not included.

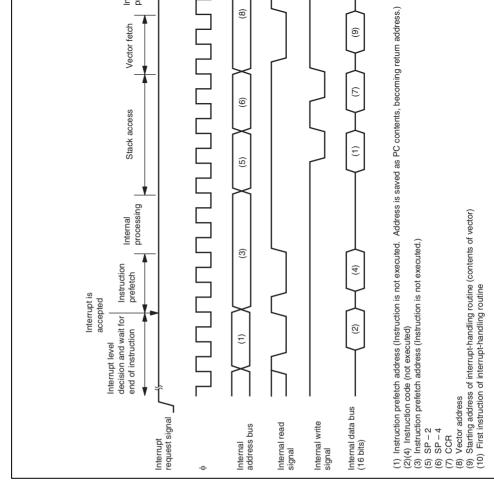


Figure 3.3 Interrupt Sequence

Rev. 3.00 Sep. 14, 2006 Page 60 of 408 REJ09B0105-0300

3.5.2 Notes on Stack Area Use

When word data is accessed, the least significant bit of the address is regarded as 0. Acc stack always takes place in word size, so the stack pointer (SP: R7) should never indicat address. Use PUSH Rn (MOV.W Rn, @–SP) or POP Rn (MOV.W @SP+, Rn) to save or register values.

3.5.3 Notes on Rewriting Port Mode Registers

When a port mode register is rewritten to switch the functions of external interrupt pins, $\overline{IRQ0}$, and $\overline{WKP5}$, the interrupt request flag may be set to 1.

When switching a pin function, mask the interrupt before setting the bit in the port mode After accessing the port mode register, execute at least one instruction (e.g., NOP), then interrupt request flag from 1 to 0.

Figure 3.4 shows a port mode register setting and interrupt request flag clearing procedu

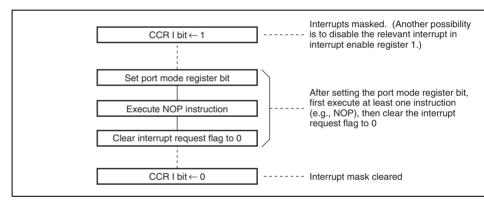


Figure 3.4 Port Mode Register Setting and Interrupt Request Flag Clearing Pr

Rev. 3.00 Sep. 14, 2006 Page 62 of 408 REJ09B0105-0300

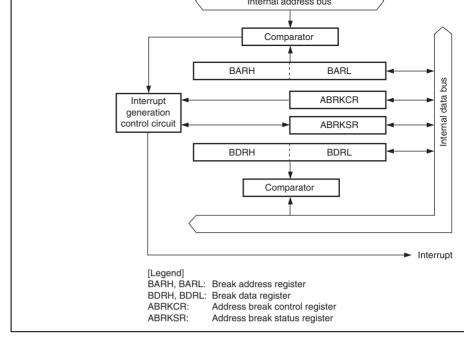


Figure 4.1 Block Diagram of Address Break

ABK0001A_000020020200

RENESAS

ABRKCR sets addre	ss break conditions.
-------------------	----------------------

Bit	Bit Name	Initial Value	R/W	Description
7	RTINTE	1	R/W	RTE Interrupt Enable
				When this bit is 0, the interrupt immediately after executing RTE is masked and then one instruction be executed. When this bit is 1, the interrupt is n masked.
6	CSEL1	0	R/W	Condition Select 1 and 0
5	CSEL0	0	R/W	These bits set address break conditions.
				00: Instruction execution cycle
				01: CPU data read cycle
				10: CPU data write cycle
				11: CPU data read/write cycle
4	ACMP2	0	R/W	Address Compare Condition Select 2 to 0
3	ACMP1	0	R/W	These bits comparison condition between the ad
2	ACMP0	0	R/W	in BAR and the internal address bus.
				000: Compares 16-bit addresses
				001: Compares upper 12-bit addresses
				010: Compares upper 8-bit addresses
				011: Compares upper 4-bit addresses
				1XX: Reserved (setting prohibited)

Rev. 3.00 Sep. 14, 2006 Page 64 of 408 REJ09B0105-0300

[Legend] X: Don't care

When an address break is set in the data read cycle or data write cycle, the data bus used depend on the combination of the byte/word access and address. Table 4.1 shows the acc data bus used. When an I/O register space with an 8-bit data bus width is accessed in work byte access is generated twice. For details on data widths of each register, see section 19 Register Addresses (Address Order).

Table 4.1 Access and Data Bus Used

	Word A	Access	Byte Acces		
	Even Address	Odd Address	Even Address	Odd	
ROM space	Upper 8 bits	Lower 8 bits	Upper 8 bits	Upp	
RAM space	Upper 8 bits	Lower 8 bits	Upper 8 bits	Upp	
I/O register with 8-bit data bus width	Upper 8 bits	Upper 8 bits	Upper 8 bits	Upp	
I/O register with 16-bit data bus width	Upper 8 bits	Lower 8 bits	_	_	

RENESAS

				 When 0 is written after ABIF=1 is read
6	ABIE	0	R/W	Address Break Interrupt Enable
				When this bit is 1, an address break interrupt rec enabled.
5 to 0	_	All 1		Reserved
				These bits are always read as 1.

4.1.3 Break Address Registers (BARH, BARL)

BARH and BARL are 16-bit read/write registers that set the address for generating an adbreak interrupt. When setting the address break condition to the instruction execution cyc first byte address of the instruction. The initial value of this register is H'FFFF.

4.1.4 Break Data Registers (BDRH, BDRL)

BDRH and BDRL are 16-bit read/write registers that set the data for generating an address interrupt. BDRH is compared with the upper 8-bit data bus. BDRL is compared with the bit data bus. When memory or registers are accessed by byte, the upper 8-bit data bus is u even and odd addresses in the data transmission. Therefore, comparison data must be set for byte access. For word access, the data bus used depends on the address. See section 4 Address Break Control Register (ABRKCR), for details. The initial value of this register undefined.

Rev. 3.00 Sep. 14, 2006 Page 66 of 408 REJ09B0105-0300

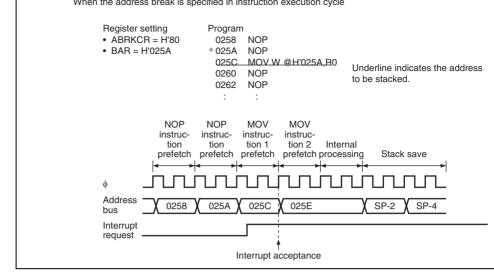


Figure 4.2 Address Break Interrupt Operation Example (1)

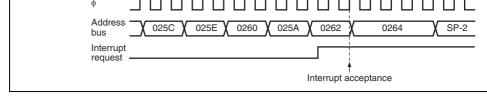


Figure 4.2 Address Break Interrupt Operation Example (2)

Rev. 3.00 Sep. 14, 2006 Page 68 of 408 REJ09B0105-0300

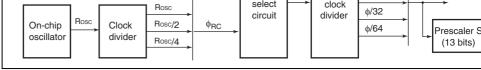


Figure 5.1 Block Diagram of Clock Pulse Generators

The system clock (ϕ) is a basic clock on which the CPU and on-chip peripheral modules. The system clock is divided into $\phi/2$ to $\phi/8192$ by prescaler S and the divided clocks are to respective peripheral modules.

CPG0200A_000020020200

RENESAS

- Users can adjust the on-chip oscination nequency by rewriting the trimining registers
- Interrupt can be requested to the CPU when the system clock is changed from the extension clock to the on-chip oscillator clock.

Rev. 3.00 Sep. 14, 2006 Page 70 of 408 REJ09B0105-0300

RCCR controls the on-chip oscillator.

Bit	Bit Name	Initial Value	R/W	Description
7	RCSTP	0	R/W	On-chip Oscillator Standby
				The internal on-chip oscillator standby state is e setting this bit to 1.
6	FSEL	0	R/W	Frequency Select for On-chip Oscillator
				0: 8MHz
				1: 10MHz
5	VCLSEL	0	R/W	Power Supply Select for On-chip Oscillator
				0: Selects VBGR
				1: Selects VCL
				When VCL is selected, the accuracy of the on-or- oscillator frequency cannot be guaranteed.
4 to 2	_	All 0	_	Reserved
				These bits are always read as 0.
1	RCPSC1	0	R/W	Division Ratio Select for On-chip Oscillator
0	RCPSC0	0	R/W	The division ratio of R _{osc} changes right after rev bit.
				These bits can be written to only when the CKS CKCSR is 0.
				0X: R _{osc} (not divided)
				10: R _{osc} /2
				11: R _{osc} /4

Renesas

				Bits 5 and 4 can be written to when this bit is set [Setting condition]
				 When writing 0 to the WRI bit and writing 1 to PRWE bit
				[Clearing conditions]
				Reset
				 When writing 0 to the WRI bit and writing 0 to PRWE bit
5	LOCKDW	0	R/W	Trimming Data Register Lock Down
				The RC trimming data register (RCTRMDR) can written to when this bit is set to 1. Once this bit is this register cannot be written to until a reset is in if 0 is written to this bit.
				[Setting condition]
				 When writing 0 to the WRI bit and writing 1 to LOCKDW bit while the PRWE bit is 1
				[Clearing condition]
				Reset

Rev. 3.00 Sep. 14, 2006 Page 72 of 408 REJ09B0105-0300

				 When writing 0 to the WRI bit and writing 0
				TRMDRWE bit while the PRWE bit is 1
3 to 0	_	All 1	_	Reserved
				These bits are always read as 1

5.2.3 RC Trimming Data Register (RCTRMDR)

RCTRMDR stores the trimming data of the on-chip oscillator frequency.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	TRMD7	(0)*	R/W	Trimming Data
6	TRMD6	(0)*	R/W	In the flash memory version, the trimming data
5	TRMD5	(0)*	R/W	from the flash memory to this register right afte These bits are always read as undefined value.
4	TRMD4	(0)*	R/W	,
3	TRMD3	(0)*	R/W	As for the masked ROM version, the on-chip os frequency can be trimmed by rewriting these bi
2	TRMD2	(0)*	R/W	frequency generated in the on-chip oscillator ch
1	TRMD1	0	R	right after rewriting these bits. These bits are in H'00.
0	TRMD0	0	R	Frequency variation is expressed as follows (th
				bit is a sign bit):
				(Min.) H'80 \leftarrow H'FC \leftarrow H'00 \rightarrow H'04 \rightarrow H'7C (M
Note: *	The initial	value diff	ers from	product to product in the flash memory version.

RENESAS

				0	1	I/O	OSC1 (external cloc		
				1	1	OSC2	OSC1		
5	_	0	R/W	Res	erved				
				Althe to 1.	0	bit is readab	le/writable, it should no		
4	OSCSEL	0	R/W	LSI	Operatio	n Clock Seled	ot		
				This	bit forcib	ly selects the	e system clock of this L		
				0: S	elects the	e on-chip osc	illator clock as the syst		
				1: Selects the external clock as the system clock					
3	CKSWIE	0	R/W	Clock Switch Interrupt Enable					
				Setting this bit to 1 enables the clock switch inter request.					
2	CKSWIF	0	R/W	Clock Switch Interrupt Request Flag					
				[Setting condition]					
				When the external clock is switched to the on oscillator clock					
				[Clearing condition]					
				• \	Nhen wri	ting 0 after re	eading 1		
1		1	R	Res	erved				
				This	bit is alw	ays read as	1.		
0	CKSTA	0	R	LSI	Operatin	g Clock Statu	S		
				0: TI	his LSI op	perates on or	n-chip oscillator clock.		
				1: TI	his LSI op	perates on ex	ternal clock.		

Rev. 3.00 Sep. 14, 2006 Page 74 of 408 REJ09B0105-0300

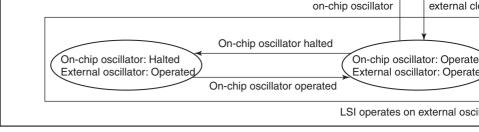
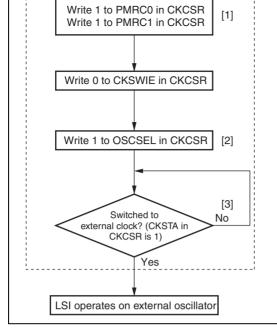



Figure 5.2 State Transition of System Clock

which is the number of wait cycles for oscil settling, and Nstby, which is the number of cycles for oscillation settling when returnin standby mode, is as follows:

Nstby \leq Nwait \leq 2 \times Nstby

- Nstby is set by bits STS 2 to 0 in SYSCR1 For details, see section 6.1.1, System Con Register 1 (SYSCR1).
- [3] While the system is waiting for the externa oscillation settling, this LSI is not halted bu continues to operate on the on-chip oscilla Read the value of the CKSTA bit in CKCSF ensure that the system clocks are switched

Figure 5.3 Flowchart of Clock Switching On-chip Oscillator Clock to External Clock (1)

Rev. 3.00 Sep. 14, 2006 Page 76 of 408 REJ09B0105-0300

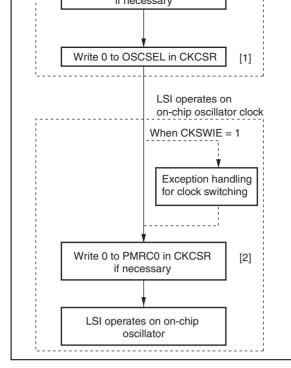


Figure 5.4 Flowchart of Clock Switching External Clock to On-chip Oscillator Clock (2)

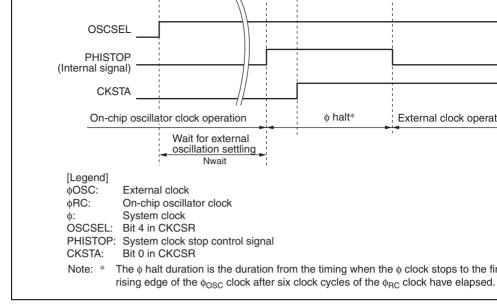


Figure 5.5 Timing Chart of Switching On-chip Oscillator Clock to External C

Rev. 3.00 Sep. 14, 2006 Page 78 of 408 REJ09B0105-0300

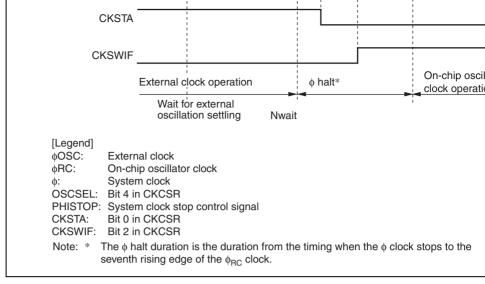


Figure 5.6 Timing Chart to Switch External Clock to On-chip Oscillator Cl

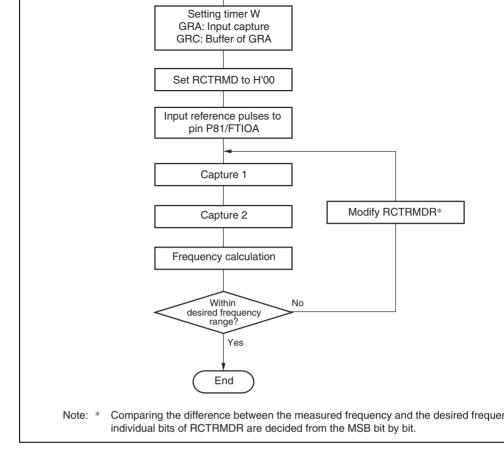


Figure 5.7 Example of Trimming Flow for On-chip Oscillator Frequency

Rev. 3.00 Sep. 14, 2006 Page 80 of 408 REJ09B0105-0300

1	Capture 1	 1	Captur
1	1	 	

Figure 5.8 Timing Chart of Trimming of On-chip Oscillator Frequency

The on-chip oscillator frequency is gained by the expression below. Since the input-cap is sampled by the ϕ_{RC} clock, the calculated result may include a sampling error of ± 1 cyc ϕ_{RC} clock.

$$\phi RC = \frac{(M + \alpha) - M}{t_A} \quad (MHz)$$

 $\label{eq:rescaled} \ensuremath{\varphi} \text{RC:} \quad \mbox{Frequency of on-chip oscillator (MHz)}$

 t_A : Period of reference clock (µs)

M: Timer W counter value

resonator having the characteristics given in table 5.1 should be used.

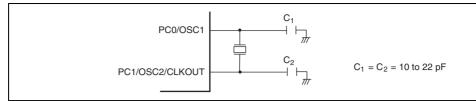


Figure 5.9 Example of Connection to Crystal Resonator

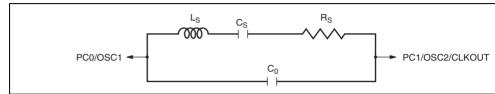


Figure 5.10 Equivalent Circuit of Crystal Resonator

Table 5.1 Crystal Resonator Parameters

Frequency (MHz)	2	4	8	10	12
R _s (Max.)	500 Ω	120 Ω	80 Ω	60 Ω	50 🖸
C ₀ (Max.)			70 pF	:	

Rev. 3.00 Sep. 14, 2006 Page 82 of 408 REJ09B0105-0300

5.5.3 External Clock Input Method

To use the external clock, input the external clock on pin OSC1. Figure 5.12 shows an e connection. The duty cycle of the external clock signal must be 45 to 55%.

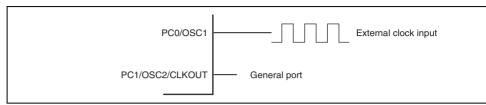


Figure 5.12 Example of External Clock Input

5.6 Prescaler

5.6.1 Prescaler S

Prescaler S is a 13-bit counter using the system clock (ϕ) as its input clock. The outputs, divided clocks, are used as internal clocks by the on-chip peripheral modules. Prescaler initialized to H'0000 by a reset, and starts counting on exit from the reset state. In standar and subsleep mode, the system clock pulse generator stops. Prescaler S also stops and is to H'0000. It cannot be read from or written to by the CPU.

The outputs from prescaler S is shared by the on-chip peripheral modules. The division is be set separately for each on-chip peripheral module. In active mode and sleep mode, the input to prescaler S is a system clock with the division ratio specified by bits MA2 to M SYSCR2.

RENESAS

5.7.2 Notes on Board Design

When using a crystal resonator (ceramic resonator), place the resonator and its load capac close as possible to pins OSC1 and OSC2. Other signal lines should be routed away from oscillator circuit to prevent induction from interfering with correct oscillation (see figure

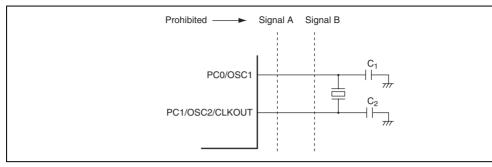


Figure 5.13 Example of Incorrect Board Design

Rev. 3.00 Sep. 14, 2006 Page 84 of 408 REJ09B0105-0300

• Sleep mode

The CPU halts. On-chip peripheral modules are operable on the system clock.

• Standby mode

The CPU and all on-chip peripheral modules halt.

• Subsleep mode

The CPU and all on-chip peripheral modules halt. I/O ports keep the same states as b transition.

• Module standby function

Independent of the above modes, power consumption can be reduced by halting onperipheral modules that are not used in module units.

6.1 **Register Descriptions**

The registers related to power-down modes are listed below.

- System control register 1 (SYSCR1)
- System control register 2 (SYSCR2)
- Module standby control register 1 (MSTCR1)
- Module standby control register 2 (MSTCR2)

LPW3003A_000020020200

RENESAS

				1. Shins to standby mode.
				For details, see table 6.2.
6	STS2	0	R/W	Standby Timer Select 2 to 0
5	STS1	0	R/W	These bits set the wait time from when the syste
4	STSO	0	R/W	oscillator starts functioning until the clock is supported by mode, to active mode or slowed. During the wait time, this LSI automatical the on-chip oscillator clock as its system clock a the number of wait states. Select a wait time of e (oscillation stabilization time) or longer, depending operating frequency. Table 6.1 shows the relation between the STS2 to STS0 values and the wait
				When using an external clock, set the wait time $100 \ \mu$ s or longer in the F-ZTAT version. In the m ROM version, the minimum value (STS2 = STS ² = 1) is recommended.
				These bits also set the wait states for external or stabilization when system clock is switched from chip oscillator clock to the external clock by user software.
				The relationship between Nwait (number of wait oscillation stabilization) and Nstby (number of wa for recovering to the standby mode) is as follows
				$Nstby \le Nwait \le 2 \times Nstby$
3 to 0		All 0		Reserved
				These bits are always read as 0.

Rev. 3.00 Sep. 14, 2006 Page 86 of 408 REJ09B0105-0300

1	1	0	128 states	0.01	0.02	0.03	0.03	0.05
1	1	1	16 states	0.00	0.00	0.00	0.00	0.00

Notes: 1. Time unit is ms.

2. The on-chip oscillator clock counts the wait states, even when the external clo as system clock.

				This bit is always read as 0.
5	DTON	0	R/W	Direct Transfer on Flag
				This bit specifies the mode to be entered after earther SLEEP instruction, as well as the SSBY bit in SYSCR1. For details, see table 6.2.
4	MA2	0	R/W	Active Mode Clock Select 2 to 0
3	MA1	0	R/W	These bits select the operating clock frequency i
2	MA0	0	R/W	and sleep modes. The operating clock frequency changes to the set frequency after the SLEEP in is executed.
				ΟΧΧ: φ
				100:
				101:
				110: φ/32
				111: φ/64
1, 0	_	All 0	—	Reserved
				These bits are always read as 0.
[Legen	ld			

[Legend]

X: Don't care

Rev. 3.00 Sep. 14, 2006 Page 88 of 408 REJ09B0105-0300

5	MSTS3	0	R/W	SCI3 Module Standby
				SCI3 enters standby mode when this bit is set t
4	MSTAD	0	R/W	A/D Converter Module Standby
				A/D converter enters standby mode when this to 1.
3	MSTWD	0	R/W	Watchdog Timer Module Standby
				Watchdog timer enters standby mode when this to 1. (When the internal oscillator is selected fo watchdog timer clock, the watchdog timer operaregardless of the setting of this bit.)
2	MSTTW	0	R/W	Timer W Module Standby
				Timer W enters standby mode when this bit is a
1	MSTTV	0	R/W	Timer V Module Standby
				Timer V enters standby mode when this bit is s
0		0	—	Reserved
				This bit is always read as 0.

Renesas

3 to 0 —	All 0	—	Reserved
			These bits are always read as 0.

Rev. 3.00 Sep. 14, 2006 Page 90 of 408 REJ09B0105-0300

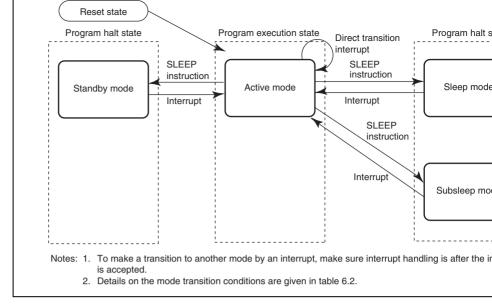


Figure 6.1 Mode Transition Diagram

converter are reset, and all registers are set to their initial values. To use these functions after entering active mode, reset the registers.

Function		Active Mode	Sleep Mode	Subsleep Mode	Standby Mode
System clock oscillator		Functioning	Functioning	Halted	Halted
CPU	Instructions	Functioning	Halted	Halted	Halted
operations	Registers	Functioning	Retained	Retained	Retained
RAM		Functioning	Retained	Retained	Retained
IO ports		Functioning	Retained	Retained	Register content retained, but out high-impedance
External	IRQ3, IRQ0	Functioning	Functioning	Functioning	Functioning
interrupts	WKP5	Functioning	Functioning	Functioning	Functioning
Peripheral	Timer B1	Functioning	Functioning	Retained	Retained
modules	Timer V	Functioning	Functioning	Reset	Reset
	Timer W	Functioning	Functioning	Retained	Retained
	Watchdog timer	Functioning	Functioning	Retained (Functioning if the in as a count clock.)	nternal oscillator is
	SCI3	Functioning	Functioning	Reset	Reset
	IIC2	Functioning	Functioning	Retained	Retained
	A/D converter	Functioning	Functioning	Reset	Reset
	LVD	Functioning	Functioning	Functioning	Functioning

Table 6.3 Internal State in Each Operating Mode

Rev. 3.00 Sep. 14, 2006 Page 92 of 408 REJ09B0105-0300

In standby mode, the system clock oscillator is halted, and operation of the CPU and onperipheral modules is halted. However, as long as the rated voltage is supplied, the conte CPU registers, on-chip RAM, and some on-chip peripheral module registers are retained RAM contents will be retained as long as the voltage set by the RAM data retention volt provided. The I/O ports go to the high-impedance state.

Standby mode is cleared by an interrupt. When an interrupt is requested, the on-chip osc starts functioning. The external oscillator also starts functioning when used. After the tin the STS2 to STS0 bits in SYSCR1 has elapsed, standby mode is cleared and the CPU stainterrupt exception handling. Standby mode is not cleared if the I bit in the condition co-(CCR) is set to 1 or the requested interrupt is disabled by the interrupt enable bit.

When the $\overline{\text{RES}}$ pin is driven low in standby mode, the on-chip oscillator starts functionin system clock is supplied to the entire chip as soon as the on-chip oscillator starts function $\overline{\text{RES}}$ pin must be kept low for the rated period. On driving the $\overline{\text{RES}}$ pin high, after the os stabilization time set by the power-on reset circuit has elapsed, the internal reset signal i and the CPU starts reset exception handling.

register (CCR) is set to 1 or the requested interrupt is disabled by the interrupt enable bit.

When the $\overline{\text{RES}}$ pin is driven low in subsleep mode, the on-chip oscillator starts functioning system clock is supplied to the entire chip as soon as the on-chip oscillator starts function $\overline{\text{RES}}$ pin must be kept low for the rated period. On driving the $\overline{\text{RES}}$ pin high, after the osc stabilization time set by the power-on reset circuit has elapsed, the internal reset signal is and the CPU starts reset exception handling.

6.3 Operating Frequency in Active Mode

Operation in active mode is clocked at the frequency designated by the MA2 to MA0 bits SYSCR2. The operating frequency changes to the set frequency after SLEEP instruction execution.

6.4 Direct Transition

The CPU can execute programs in active mode. The operating frequency can be changed making a transition directly from active mode to active mode. A direct transition can be r executing a SLEEP instruction while the DTON bit in SYSCR2 is set to 1. If the direct transition register 1, a transition is made instead to sleep subsleep mode. Note that if a direct transition is attempted while the I bit in condition corregister (CCR) is set to 1, sleep mode or subsleep mode will be entered though that mode be cleared by means of an interrupt.

Rev. 3.00 Sep. 14, 2006 Page 94 of 408 REJ09B0105-0300

Rev. 3.00 Sep. 14, 2006 Page 96 of 408 REJ09B0105-0300

- The flash memory can be reprogrammed up to 1,000 times.
- On-board programming
 - On-board programming/erasing can be done in boot mode, in which the boot pro into the chip is started to erase or program of the entire flash memory. In normal program mode, individual blocks can be erased or programmed.
- Automatic bit rate adjustment
 - For data transfer in boot mode, this LSI's bit rate can be automatically adjusted to the transfer bit rate of the host.
- Programming/erasing protection
 - Sets software protection against flash memory programming/erasing.

7.1 Block Configuration

Figure 7.1 shows the block configuration of 12-kbyte flash memory. The thick lines independent of the erasing units, the narrow lines indicate programming units, and the values are addresses memory is divided into 1 kbyte \times 4 blocks and 4 kbytes \times 2 blocks. Erasing is performed units. Programming is performed in 64-byte units starting from an address with lower ei H'00, H'40, H'80, or H'C0.

ROM3321A_000120030300

RENESAS

	H'0800	H'0801	H'0802	Programming units C4 butca	H'083F
	П 0800		H 0802	 Programming unit: 64 bytes 	п 083г
Erase unit	H'0840	H'0841	H'0842		H'087F
1 kbyte					1 1
					1
	H'0BC0	H'0BC1	H'0BC2		H'0BFF
	H'0C00	H'0C01	H'0C02	- Programming unit: 64 bytes	H'0C3F
Erase unit	H'0C40	H'0C41	H'0C42		H'0C7F
1 kbyte					
					1 1
	H'0FC0	H'0FC1	H'0FC2		H'0FFF
	H'1000	H'1001	H'1002	← Programming unit: 64 bytes →	H'103F
Erase unit	H'1040	H'1041	H'1042		H'107F
4 kbytes					
					1
					1 1 1
	H'1FC0	H'1FC1	H'1FC2		H'1FFF
	H'2000	H'2001	H'2002	← Programming unit: 64 bytes →	H'203F
Erase unit	H'2040	H'2041	H'2042		H'207F
4 kbytes					1 1 1
	H'2FC0	H'2FC1	H'2FC2		H'2FFF

Figure 7.1 Flash Memory Block Configuration

Rev. 3.00 Sep. 14, 2006 Page 98 of 408 REJ09B0105-0300

RENESAS

FLMCR1 is a register that makes the flash memory change to program mode, programmode, erase mode, or erase-verify mode. For details on register setting, refer to section 7 Memory Programming/Erasing.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	_	0	_	Reserved
				This bit is always read as 0.
6	SWE	0	R/W	Software Write Enable
				When this bit is set to 1, flash memory programming/erasing is enabled. When this bit to 0, other FLMCR1 register bits and all EBR1 I be set.
5	ESU	0	R/W	Erase Setup
				When this bit is set to 1, the flash memory char erase setup state. When it is cleared to 0, the e state is cancelled. Set this bit to 1 before setting to 1 in FLMCR1.
4	PSU	0	R/W	Program Setup
				When this bit is set to 1, the flash memory char program setup state. When it is cleared to 0, th setup state is cancelled. Set this bit to 1 before P bit in FLMCR1.
3	EV	0	R/W	Erase-Verify
				When this bit is set to 1, the flash memory char erase-verify mode. When it is cleared to 0, eras mode is cancelled.

When this bit is set to 1 while SWE = 1 and PSL flash memory changes to program mode. When cleared to 0, program mode is cancelled.

7.2.2 Flash Memory Control Register 2 (FLMCR2)

FLMCR2 is a register that displays the state of flash memory programming/erasing. FLM read-only register, and should not be written to.

Bit	Bit Name	Initial Value	R/W	Description
7	FLER	0	R	Flash Memory Error
				Indicates that an error has occurred during an op on flash memory (programming or erasing). Whe is set to 1, flash memory goes to the error-protect state.
				See section 7.5.3, Error Protection, for details.
6 to 0	_	All 0	_	Reserved
				These bits are always read as 0.

Rev. 3.00 Sep. 14, 2006 Page 100 of 408 REJ09B0105-0300

5	EDO	0	R/VV	be erased.
4	EB4	0	R/W	When this bit is set to 1, 4 kbytes of H'1000 to I be erased.
3	EB3	0	R/W	When this bit is set to 1, 1 kbyte of H'0C00 to H be erased.
2	EB2	0	R/W	When this bit is set to 1, 1 kbyte of H'0800 to H be erased.
1	EB1	0	R/W	When this bit is set to 1, 1 kbyte of H'0400 to H be erased.
0	EB0	0	R/W	When this bit is set to 1, 1 kbyte of H'0000 to H be erased.

7.2.4 Flash Memory Enable Register (FENR)

Bit 7 (FLSHE) in FENR enables or disables the CPU access to the flash memory contro FLMCR1, FLMCR2, and EBR1.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	FLSHE	0	R/W	Flash Memory Control Register Enable
				Flash memory control registers can be accesse this bit is set to 1. Flash memory control registe be accessed when this bit is set to 0.
6 to 0	_	All 0	_	Reserved
				These bits are always read as 0.

RENESAS

This can be used for programming initial values in the on-board state or for a forcible retr programming/erasing can no longer be done in user program mode. In user program mod individual blocks can be erased and programmed by branching to the user program/erase program prepared by the user.

Table 7.1	Setting Programming Modes
-----------	---------------------------

TEST	NMI	E10T_0	LSI State after Reset End
0	1	Х	User mode
0	0	1	Boot mode

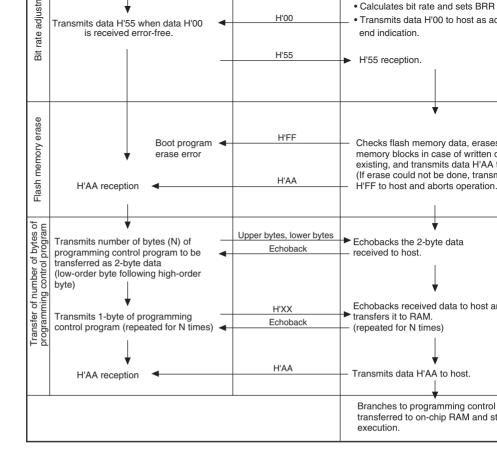
[Legend]

X: Don't care

7.3.1 Boot Mode

Table 7.2 shows the boot mode operations between reset end and branching to the progra control program.

- 1. When boot mode is used, the flash memory programming control program must be pr the host beforehand. Prepare a programming control program in accordance with the description in section 7.4, Flash Memory Programming/Erasing.
- 2. SCI3 should be set to asynchronous mode, and the transfer format as follows: 8-bit da bit, and no parity.


Rev. 3.00 Sep. 14, 2006 Page 102 of 408 REJ09B0105-0300

the bit rates of the host and the chip. To operate the SCI properly, set the host's trans and system clock frequency of this LSI within the ranges listed in table 7.3.

- 5. In boot mode, a part of the on-chip RAM area is used by the boot program. The area H'FEEF is the area to which the programming control program is transferred from th The boot program area cannot be used until the execution state in boot mode switche programming control program.
- 6. Before branching to the programming control program, the chip terminates transfer of by SCI3 (by clearing the RE and TE bits in SCR3 to 0), however the adjusted bit rate remains set in BRR. Therefore, the programming control program can still use it for write data or verify data with the host. The TxD pin is high (PCR22 = 1, P22 = 1). T contents of the CPU general registers are undefined immediately after branching to t programming control program. These registers must be initialized at the beginning o programming control program, as the stack pointer (SP), in particular, is used implice subroutine calls, etc.
- Boot mode can be cleared by a reset. End the reset after driving the reset pin low, we least 20 states, and then setting the TEST pin and NMI pin. Boot mode is also cleare WDT overflow occurs.
- 8. Do not change the TEST pin and $\overline{\text{NMI}}$ pin input levels in boot mode.

Rev. 3.00 Sep. 14, 2006 Page 104 of 408 REJ09B0105-0300

Thash Memory Trogramming/Erasing.

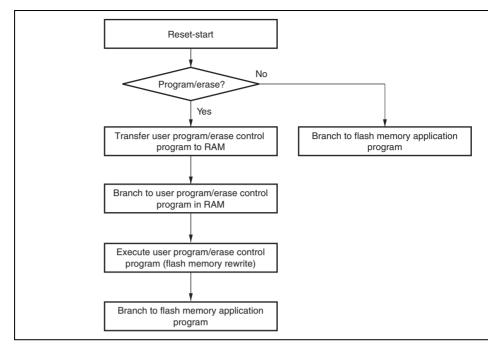
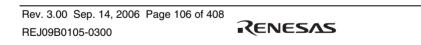



Figure 7.2 Programming/Erasing Flowchart Example in User Program Mo

7.4.1 Program/Program-Verify

When writing data or programs to the flash memory, the program/program-verify flowed in figure 7.3 should be followed. Performing programming operations according to this will enable data or programs to be written to the flash memory without subjecting the ch voltage stress or sacrificing program data reliability.

- 1. Programming must be done to an empty address. Do not reprogram an address to whe programming has already been performed.
- 2. Programming should be carried out 64 bytes at a time. A 64-byte data transfer must performed even if writing fewer than 64 bytes. In this case, H'FF data must be writte extra addresses.
- 3. Prepare the following data storage areas in RAM: A 64-byte programming data area, reprogramming data area, and a 64-byte additional-programming data area. Perform reprogramming data computation according to table 7.4, and additional programmin, computation according to table 7.5.
- 4. Consecutively transfer 64 bytes of data in byte units from the reprogramming data are additional-programming data area to the flash memory. The program address and 64 are latched in the flash memory. The lower 8 bits of the start address in the flash me destination area must be H'00, H'40, H'80, or H'C0.
- 5. The time during which the P bit is set to 1 is the programming time. Table 7.6 shows allowable programming times.
- 6. The watchdog timer (WDT) is set to prevent overprogramming due to program runa An overflow cycle of approximately 6.6 ms is allowed.
- 7. For a dummy write to a verify address, write 1-byte data H'FF to an even address. Ve can be read in words from the address to which a dummy write was performed.
- 8. The maximum number of repetitions of the program/program-verify sequence of the is 1,000.

Renesas

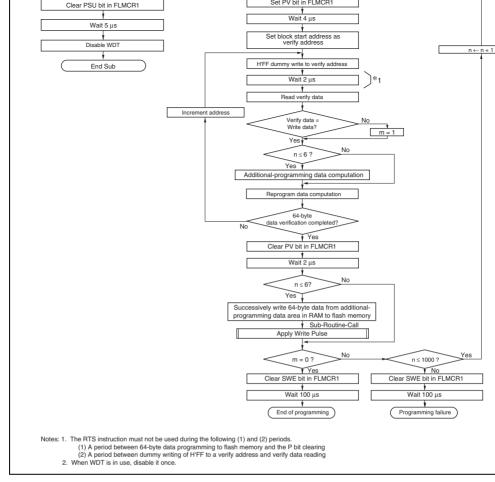


Figure 7.3 Program/Program-Verify Flowchart

Rev. 3.00 Sep. 14, 2006 Page 108 of 408 REJ09B0105-0300

Reprogram Data	Verify Data	Data	Comments
0	0	0	Additional-program
0	1	1	No additional progra
1	0	1	No additional progra
1	1	1	No additional progra

Table 7.6Programming Time

n (Number of Writes)	Programming Time	In Additional Programming	Comments
1 to 6	30	10	
7 to 1,000	200	_	

Note: Time shown in μ s.

7.4.2 Erase/Erase-Verify

When erasing flash memory, the erase/erase-verify flowchart shown in figure 7.4 should followed.

- 1. Prewriting (setting erase block data to all 0s) is not necessary.
- 2. Erasing is performed in block units. Make only a single-bit specification in the erase register (EBR1). To erase multiple blocks, each block must be erased in turn.
- 3. The time during which the E bit is set to 1 is the flash memory erase time.
- 4. The watchdog timer (WDT) is set to prevent overerasing due to program runaway, e overflow cycle of approximately 19.8 ms is allowed.
- 5. For a dummy write to a verify address, write 1-byte data H'FF to an even address. Ve can be read in words from the address to which a dummy write was performed.

- 2. If interrupt exception handling starts before the vector address is written or during programming/erasing, a correct vector cannot be fetched and the CPU malfunctions.
- 3. If an interrupt occurs during boot program execution, normal boot mode sequence can carried out.

Rev. 3.00 Sep. 14, 2006 Page 110 of 408 REJ09B0105-0300



Figure 7.4 Erase/Erase-Verify Flowchart

RENESAS

unless the $\overline{\text{RES}}$ pin is held low until oscillation stabilizes after powering on. In the case of during operation, hold the $\overline{\text{RES}}$ pin low for the $\overline{\text{RES}}$ pulse width specified in the AC Characteristics section.

7.5.2 Software Protection

Software protection can be implemented against programming/erasing of all flash memory by clearing the SWE bit in FLMCR1. When software protection is in effect, setting the P in FLMCR1 does not cause a transition to program mode or erase mode. By setting the erregister 1 (EBR1), erase protection can be set for individual blocks. When EBR1 is set to erase protection is set for all blocks.

7.5.3 Error Protection

In error protection, an error is detected when CPU runaway occurs during flash memory programming/erasing, or operation is not performed in accordance with the program/erase algorithm, and the program/erase operation is aborted. Aborting the program/erase operate prevents damage to the flash memory due to overprogramming or overerasing.

When the following errors are detected during programming/erasing of flash memory, the bit in FLMCR2 is set to 1, and the error protection state is entered.

- When the flash memory of the relevant address area is read during programming/erast (including vector read and instruction fetch)
- Immediately after exception handling excluding a reset during programming/erasing
- When a SLEEP instruction is executed during programming/erasing

Rev. 3.00 Sep. 14, 2006 Page 112 of 408 REJ09B0105-0300

Rev. 3.00 Sep. 14, 2006 Page 114 of 408 REJ09B0105-0300

Masked ROM vers	ion H8/36912, H8/36902	512 bytes	H'FD80 to H'FF7F
	H8/36911, H8/36901	256 bytes	H'FE80 to H'FF7F
	H8/36900	256 bytes	H'FE80 to H'FF7F
Note: * When t	he E7 or E8 is used, area H'F98	0 to H'FD7F mus	t not be accessed.

RAM0400A_000020020200

RENESAS

Rev. 3.00 Sep. 14, 2006 Page 116 of 408 REJ09B0105-0300

bit manipulation instructions to the port control register and port data register, see section Bit Manipulation Instruction.

9.1 Port 1

Port 1 is a general I/O port also functioning as an IRQ interrupt input pin and timer V in Figure 9.1 shows its pin configuration.

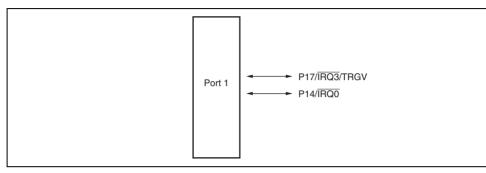


Figure 9.1 Port 1 Pin Configuration

Port 1 has the following registers.

- Port mode register 1 (PMR1)
- Port control register 1 (PCR1)
- Port data register 1 (PDR1)
- Port pull-up control register 1 (PUCR1)

RENESAS

6, 5 — All 0 — Reserved	
These bits are always read as 0.	
4 IRQ0 0 R/W P14/IRQ0 Pin Function Switch	
Selects whether pin P14/IRQ0 is used IRQ0.	l as P14 o
0: General I/O port	
1: IRQ0 input pin	
3, 2 — All 0 — Reserved	
These bits are always read as 0.	
1 TXD 0 R/W P22/TXD Pin Function Switch	
Selects whether pin P22/TXD is used	as P22 or
0: General I/O port	
1: TXD output pin	
0 — 0 — Reserved	
This bit is always read as 0.	

Rev. 3.00 Sep. 14, 2006 Page 118 of 408 REJ09B0105-0300

3	—	—	_
2	—	—	—
1	—	—	—
0	_	_	—

9.1.3 Port Data Register 1 (PDR1)

PDR1 is a general I/O port data register of port 1.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	P17	0	R/W	These bits store output data for port 1 pins.
6	—	1	—	If PDR1 is read while PCR1 bits are set to 1, th
5	_	1	_	stored in PDR1 are read. If PDR1 is read while
4	P14	0	R/W	are cleared to 0, the pin states are read regard value stored in PDR1.
3		1	—	Bits 6, 5, and 3 to 0 are reserved. These bits ar
2		1	—	read as 1.
1	—	1	—	
0	—	1	—	

RENESAS

3	—	1	—	read as 1.
2	—	1	—	
1	_	1	_	
0		1	—	

9.1.5 Pin Functions

The correspondence between the register specification and the port functions is shown be

• P17/IRQ3/TRGV pin

Register	PMR1	PCR1	
Bit Name	IRQ3	PCR17	Pin Function
Setting value	e 0	0	P17 input pin
		1	P17 output pin
	1	Х	IRQ3 input/TRGV input pin

[Legend]

X: Don't care

Rev. 3.00 Sep. 14, 2006 Page 120 of 408 REJ09B0105-0300

9.2 Port 2

Port 2 is a general I/O port also functioning as a SCI3 I/O pin. Each pin of the port 2 is s figure 9.2. The register settings of PMR1 and SCI3 have priority for functions of the pin uses.

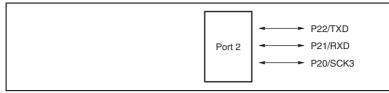


Figure 9.2 Port 2 Pin Configuration

Port 2 has the following registers.

- Port control register 2 (PCR2)
- Port data register 2 (PDR2)

9.2.2 Port Data Register 2 (PDR2)

PDR2 is a general I/O port data register of port 2.

		Initial		
Bit	Bit Name	Value	R/W	Description
7 to 3	_	All 1	_	Reserved
				These bits are always read as 1.
2	P22	0	R/W	These bits store output data for port 2 pins.
1	P21	0	R/W	If PDR2 is read while PCR2 bits are set to 1, the
0	P20	0	R/W	stored in PDR2 is read. If PDR2 is read while PO are cleared to 0, the pin states are read regardle value stored in PDR2.

Rev. 3.00 Sep. 14, 2006 Page 122 of 408 REJ09B0105-0300

	1		
 1	Х	TXD output pin	

[Legend]

X: Don't care

• P21/RXD pin

Register	SCR3	PCR2	
Bit Name	RE	PCR21	Pin Function
Setting value	0	0	P21 input pin
		1	P21 output pin
	1	Х	RXD input pin
FI 13			

[Legend]

X: Don't care

• P20/SCK3 pin

Register	SCR3		SMR	PCR2	
Bit Name	CKE1	CKE0	COM	PCR20	Pin Function
Setting value	9 0	0	0	0	P20 input pin
				1	P20 output pin
	0	0	1	Х	SCK3 output pin
	0	1	Х	Х	SCK3 output pin
	1	Х	Х	Х	SCK3 input pin

[Legend]

X: Don't care

Rev. 3.00 Sep.

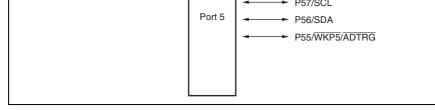


Figure 9.3 Port 5 Pin Configuration

Port 5 has the following registers.

- Port mode register 5 (PMR5)
- Port control register 5 (PCR5)
- Port data register 5 (PDR5)
- Port pull-up control register 5 (PUCR5)

Rev. 3.00 Sep. 14, 2006 Page 124 of 408 REJ09B0105-0300

			or as WKP5/ADTRG.
			0: General I/O port
			1: WKP5/ADTRG input pin
4 to 0 —	All 0	_	Reserved
			These bits are always read as 0.

9.3.2 Port Control Register 5 (PCR5)

PCR5 selects inputs/outputs in bit units for pins to be used as general I/O ports of port 5

D ''	D'AN	Initial	D 444	
Bit	Bit Name	Value	R/W	Description
7	PCR57	0	W	When each of the port 5 pins, P57 to P55, func
6	PCR56	0	W	general I/O port, setting a PCR5 bit to 1 makes
5	PCR55	0	W	corresponding pin an output port, while clearing 0 makes the pin an input port.
4 to 0	_	_	_	Reserved

4 to 0 —	All 1	—	Reserved
			These bits are always read as 1.

9.3.4 Port Pull-Up Control Register 5 (PUCR5)

PUCR5 controls the pull-up MOS in bit units of the pins set as the input ports.

Bit	Bit Name	Initial Value	R/W	Description
7, 6	_	All 0	_	Reserved
				These bits are always read as 0.
5	PUCR55	0	R/W	Only bits for which PCR5 is cleared are valid.
				The pull-up MOS of the corresponding pins enter state when this bit is set to 1, while they enter the state when this bit is cleared to 0.
4 to 0	_	All 0	_	Reserved
				These bits are always read as 0.

Rev. 3.00 Sep. 14, 2006 Page 126 of 408 REJ09B0105-0300

1 X SCL	₋ I/O pin*
---------	------------

[Legend]

X: Don't care

Note: As the SCL output form is NMOS open-drain, direct bus drive is enabled.

* Supported only by the H8/36912 Group.

• P56/SDA pin

Register	ICCR	PCR5	
Bit Name	ICE	PCR56	Pin Function
Setting value	e 0	0	P56 input pin
		1	P56 output pin
	1	Х	SDA I/O pin*

[Legend]

X: Don't care

Note: As the SDA output form is NMOS open-drain, direct bus drive is enabled.

* Supported only by the H8/36912 Group.

• P55/WKP5/ADTRG pin

Register	PMR5	PCR5		
Bit Name	WKP5	PCR55	Pin Function	
Setting value	e 0	0	P55 input pin	
		1	P55 output pin	
	1	Х	WKP5/ADTRG input pin	
[Legend]				
X: Don't care				

Renesas

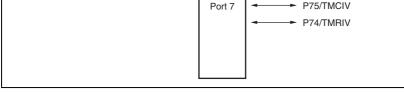


Figure 9.4 Port 7 Pin Configuration

Port 7 has the following registers.

- Port control register 7 (PCR7)
- Port data register 7 (PDR7)

9.4.1 Port Control Register 7 (PCR7)

PCR7 selects inputs/outputs in bit units for pins to be used as general I/O ports of port 7.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	_	_	_	Reserved
6	PCR76	0	W	Setting a PCR7 bit to 1 makes the corresponding
5	PCR75	0	W	output port, while clearing the bit to 0 makes the
4	PCR74	0	W	input port. Note that the TCSRV setting of the tin priority for deciding input/output direction of the P76/TMOV pin.
3 to 0				Reserved

Rev. 3.00 Sep. 14, 2006 Page 128 of 408 REJ09B0105-0300

4	P74	0	R/W	are cleared to 0, the pin states are read regard value stored in PDR7.
3 to 0		All 1	—	Reserved
				These bits are always read as 1.

9.4.3 Pin Functions

The correspondence between the register specification and the port functions is shown b

• P76/TMOV pin

Register	TCSRV	PCR7	
Bit Name	OS3 to OS0	PCR76	Pin Function
Setting value	0000	0	P76 input pin
		1	P76 output pin
	Other than the above values	х	TMOV output pin
[Legend]			

X: Don't care

RENESAS

Bit Name	PCR74	Pin Function
Setting value	0	P74 input/TMRIV input pin
	1	P74 output/TMRIV input pin

9.5 Port 8

Port 8 is a general I/O port also functioning as a timer W I/O pin. Each pin of the port 8 i in figure 9.5. The register setting of the timer W has priority for functions of the P84/FTI P83/FTIOC, P82/FTIOB, and P81/FTIOA pins. The P80/FTCI pin also functions as a tim input port that is connected to the timer W regardless of the register setting of port 8.

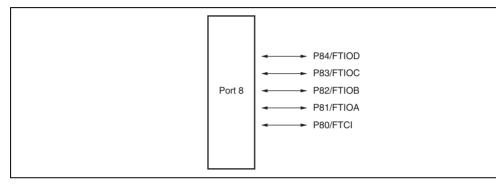


Figure 9.5 Port 8 Pin Configuration

Port 8 has the following registers.

- Port control register 8 (PCR8)
- Port data register 8 (PDR8)

Rev. 3.00 Sep. 14, 2006 Page 130 of 408 REJ09B0105-0300

1	PCR81	0	W
0	PCR80	0	W

9.5.2 Port Data Register 8 (PDR8)

PDR8 is a general I/O port data register of port 8.

		Initial		
Bit	Bit Name	Value	R/W	Description
7 to 5	_	All 0	_	Reserved
4	P84	0	R/W	These bits store output data for port 8 pins.
3	P83	0	R/W	If PDR8 is read while PCR8 bits are set to 1, th
2	P82	0	R/W	stored in PDR8 is read. If PDR8 is read while P are cleared to 0, the pin states are read regard
1	P81	0	R/W	value stored in PDR8.
0	P80	0	R/W	

Renesas

				1	
	0	0	1	Х	FTIOD output pin
	0	1	Х	Х	FTIOD output pin
	1	Х	Х	0	P84 input/FTIOD inpu
				1	P84 output/FTIOD inp
1	Х	Х	Х	Х	PWM output pin

[Legend]

X: Don't care

• P83/FTIOC pin

Register	TMRW		TIOR1			
Bit Name	PWMC	IOC2	IOC1	IOC0	PCR83	Pin Function
Setting value	0	0	0	0	0	P83 input/FTIOC inpu
					1	P83 output/FTIOC in
		0	0	1	Х	FTIOC output pin
		0	1	Х	Х	FTIOC output pin
		1	Х	Х	0	P83 input/FTIOC inpu
					1	P83 output/FTIOC in
	1	Х	Х	Х	Х	PWM output pin
[logond]						

[Legend]

X: Don't care

Rev. 3.00 Sep. 14, 2006 Page 132 of 408 REJ09B0105-0300

					1	P82 output/FTIOB in
	1	Х	Х	Х	Х	PWM output pin
[Leg	end]					
X:	Don't care					

• P81/FTIOA pin

Register		TIOR0		PCR8	
Bit Name	IOA2	IOA1	IOA0	PCR81	Pin Function
Setting value	0	0	0	0	P81 input/FTIOA input pin
				1	P81 output/FTIOA input pin
	0	0	1	Х	FTIOA output pin
	0	1	Х	Х	FTIOA output pin
	1	Х	Х	0	P81 input/FTIOA input pin
				1	P81 output/FTIOA input pin

[Legend]

X: Don't care

• P80/FTCI pin

Register	PCR8				
Bit Name	PCR80	Pin Function			
Setting value 0		P80 input/FTCI input pin			
	1	P80 output/FTCI input pin			

RENESAS

Figure 9.6 Port B Pin Configuration

Port B has the following register.

• Port data register B (PDRB)

9.6.1 Port Data Register B (PDRB)

PDRB is a general input-only port data register of port B.

		Initial		
Bit	Bit Name	Value	R/W	Description
7 to 4	_	_	_	Reserved
3	PB3	_	R	The input value of each pin is read by reading th
2	PB2	_	R	register.
1	PB1	_	R	However, if a port B pin is designated as an anal
0	PB0	_	R	channel by ADCSR in A/D converter or external comparison voltage input pin by LVDCR in low-v detection circuit, 0 is read.

Rev. 3.00 Sep. 14, 2006 Page 134 of 408 REJ09B0105-0300

Other than the above values	1	PB3 input pin
	0	PB3 input/ExtU input

• PB2/AN2/ExtD pin

Register		ADCSR			LVDCR	
Bit Name	CH2	SCAN	CH1	CH0	VDDII	Pin Function
Setting value	0	0	1	0	1	AN2 input pin
	0	1	1	Х	0	AN2 input/ExtD input
	Other th	nan the ab	ove values	S	1	PB2 input pin
					0	PB2 input/ExtD input

[Legend]

X: Don't care

• PB1/AN1 pin

Register			ADCSR		
Bit Name	CH2	SCAN	CH1	CH0	Pin Function
Setting value	0	Х	0	1	AN1 input pin
	0	1	1	Х	
	Other that	in the above v	alues		PB1 input pin
[Legend]					
X: Don't care					

RENESAS

9.7 Port C

Port C is a general I/O port also functioning as an external oscillation pin and clock output Each pin of the port C is shown in figure 9.7. The register setting of CKCSR has priority functions of the pins for both uses.

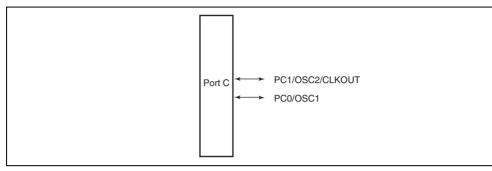


Figure 9.7 Port C Pin Configuration

Port C has the following registers.

- Port control register C (PCRC)
- Port data register C (PDRC)

Rev. 3.00 Sep. 14, 2006 Page 136 of 408 REJ09B0105-0300

9.7.2 Port Data Register C (PDRC)

PDRC is a general I/O port data register of port C.

Bit	Bit Name	Initial Value	R/W	Description
7 to 2	_	_		Reserved
1	PC1	0	R/W	These bits store output data for port C pins.
0	PC0	0	R/W	If PDRC is read while PCRC bits are set to 1, the stored in PDRC is read. If PDRC is read while here are cleared to 0, the pin states are read regardle value stored in PDRC.

	1	0	Х	CLKOUT output pin	
		1	Х	OSC2 oscillation pin	
[Legend]					

X: Don't care

• PC0/OSC1 pin

Register	CKCSR	PCRC			
Bit Name	PMRC0	PCRC0	Pin Function		
Setting value 0		0	PC0 input pin		
		1	PC0 output pin		
	1	Х	OSC1 oscillation pin		

[Legend]

X: Don't care

Rev. 3.00 Sep. 14, 2006 Page 138 of 408 REJ09B0105-0300

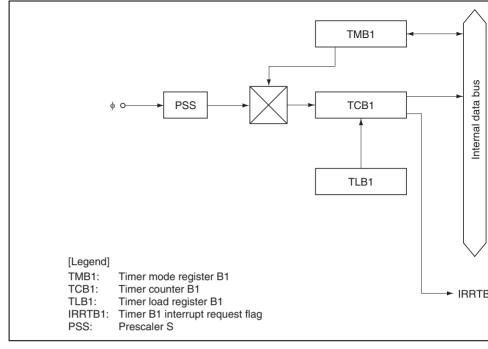


Figure 10.1 Block Diagram of Timer B1

TIM08B0A_000020020200

RENESAS

Bit	Bit Name	Initial Value	R/W	Description
7	TMB17	0	R/W	Auto-Reload Function Select
				0: Interval timer function selected
				1: Auto-reload function selected
6	_	1	R/W	Reserved
				Although this bit is readable/writable, it should no to 0.
5 to 3	_	All 1		Reserved
				These bits are always read as 1.
2	TMB12	0	R/W	Clock Select
1	TMB11	0	R/W	000: Internal clock:
0	TMB10	0	R/W	001: Internal clock: ø/2048
				010: Internal clock: ø/512
				011: Internal clock: ø/256
				100: Internal clock: ø/64
				101: Internal clock: \phi/16
				110: Internal clock: φ/4
				111: Reserved (setting prohibited)

I MB1 selects the auto-reload function and input clock.

Rev. 3.00 Sep. 14, 2006 Page 140 of 408 REJ09B0105-0300

value. When TCB1 overflows during operation in auto-reload mode, the TLB1 value is into TCB1. Accordingly, overflow periods can be set within the range of 1 to 256 input TLB1 is allocated to the same address as TCB1.

the CPU.

At overflow, TCB1 returns to H'00 and starts counting up again. During interval timer op (TMB17 = 0), when a value is set in TLB1, the same value is set in TCB1.

10.3.2 Auto-Reload Timer Operation

Setting bit TMB17 in TMB1 to 1 causes timer B1 to function as an 8-bit auto-reload time a reload value is set in TLB1, the same value is loaded into TCB1, becoming the value for TCB1 starts its count. After the count value in TCB1 reaches H'FF, the next clock signal causes timer B1 to overflow. The TLB1 value is then loaded into TCB1, and the count co from that value. The overflow period can be set within a range from 1 to 256 input clocks depending on the TLB1 value.

The clock sources and interrupts in auto-reload mode are the same as in interval mode. In reload mode (TMB17 = 1), when a new value is set in TLB1, the TLB1 value is also load TCB1.

Rev. 3.00 Sep. 14, 2006 Page 142 of 408 REJ09B0105-0300

Rev. 3.00 Sep. 14, 2006 Page 144 of 408 REJ09B0105-0300

• Choice of seven clock signals is available.

Choice of six internal clock sources ($\phi/128$, $\phi/64$, $\phi/32$, $\phi/16$, $\phi/8$, $\phi/4$) or an external

- Counter can be cleared by compare match A or B, or by an external reset signal. If the stop function is selected, the counter can be halted when cleared.
- Timer output is controlled by two independent compare match signals, enabling puls with an arbitrary duty cycle, PWM output, and other applications.
- Three interrupt sources: compare match A, compare match B, timer overflow
- Counting can be initiated by trigger input at the TRGV pin. The rising edge, falling of both edges of the TRGV input can be selected.

TIM08V0A_000120030300

RENESAS

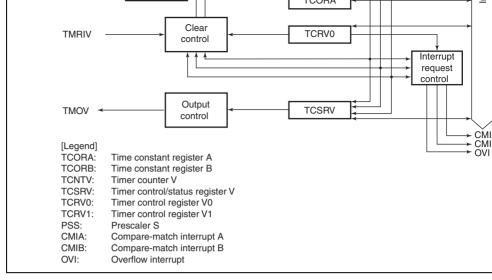


Figure 11.1 Block Diagram of Timer V

Rev. 3.00 Sep. 14, 2006 Page 146 of 408 REJ09B0105-0300

11.3 Register Descriptions

Time V has the following registers.

- Timer counter V (TCNTV)
- Timer constant register A (TCORA)
- Timer constant register B (TCORB)
- Timer control register V0 (TCRV0)
- Timer control/status register V (TCSRV)
- Timer control register V1 (TCRV1)

11.3.1 Timer Counter V (TCNTV)

TCNTV is an 8-bit up-counter. The clock source is selected by bits CKS2 to CKS0 in ti control register V0 (TCRV0). The TCNTV value can be read and written by the CPU at TCNTV can be cleared by an external reset input signal, or by compare match A or B. T clearing signal is selected by bits CCLR1 and CCLR0 in TCRV0.

When TCNTV overflows, OVF is set to 1 in timer control/status register V (TCSRV).

TCNTV is initialized to H'00.

RENESAS

and the settings of bits OS3 to OS0 in TCSRV.

TCORA and TCORB are initialized to H'FF.

11.3.3 Timer Control Register V0 (TCRV0)

TCRV0 selects the input clock signals of TCNTV, specifies the clearing conditions of TC and controls each interrupt request.

Dit	DitNews	Initial	D // 4/	Description
Bit	Bit Name	Value	R/W	Description
7	CMIEB	0	R/W	Compare Match Interrupt Enable B
				When this bit is set to 1, interrupt request from the bit in TCSRV is enabled.
6	CMIEA	0	R/W	Compare Match Interrupt Enable A
				When this bit is set to 1, interrupt request from the bit in TCSRV is enabled.
5	OVIE	0	R/W	Timer Overflow Interrupt Enable
				When this bit is set to 1, interrupt request from the bit in TCSRV is enabled.

Rev. 3.00 Sep. 14, 2006 Page 148 of 408 REJ09B0105-0300

1 CKS1 0 R/W These bits select clock signals to input to TCN 0 CKS0 0 R/W counting condition in combination with ICKS0
2 CKS2 0 R/W Clock Select 2 to 0

Table 11.2 Clock Signals to Input to TCIVI V and Counting Condition	Table 11.2	Clock Signals to Input to TCNTV and Cou	nting Conditions
---	-------------------	---	------------------

	TCRV	J	TCRV1	
Bit 2	Bit 1	Bit 0	Bit 0	—
CKS2	CKS1	CKS0	ICKS0	Description
0	0	0		Clock input prohibited
		1	0	Internal clock: counts on $\phi/4$, falling e
			1	Internal clock: counts on $\phi/8$, falling e
	1	0	0	Internal clock: counts on $\phi/16$, falling
			1	Internal clock: counts on $\phi/32$, falling
		1	0	Internal clock: counts on \u00f6/64, falling
			1	Internal clock: counts on \$\\$128, falling
1	0	0		Clock input prohibited
		1		External clock: counts on rising edge
	1	0	_	External clock: counts on falling edge
		1		External clock: counts on rising and tedge

				 After reading CMFB = 1, cleared by writing 0
6	CMFA	0	R/W	Compare Match Flag A
				[Setting condition]
				• When the TCNTV value matches the TCORA
				[Clearing condition]
				• After reading CMFA = 1, cleared by writing 0
5	OVF	0	R/W	Timer Overflow Flag
				[Setting condition]
				• When TCNTV overflows from H'FF to H'00
				[Clearing condition]
				• After reading OVF = 1, cleared by writing 0 to
4	—	1	—	Reserved
				This bit is always read as 1.
3	OS3	0	R/W	Output Select 3 and 2
2	OS2	0	R/W	These bits select an output method for the TMO' the compare match of TCORB and TCNTV.
				00: No change
				01: 0 output
				10: 1 output
				11: Output toggles

Rev. 3.00 Sep. 14, 2006 Page 150 of 408 REJ09B0105-0300

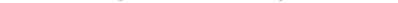
OS3 and OS2 select the output level for compare match B. OS1 and OS0 select the outp for compare match A. The two output levels can be controlled independently. After a rest timer output is 0 until the first compare match.

11.3.5 Timer Control Register V1 (TCRV1)

TCRV1 selects the edge at the TRGV pin, enables TRGV input, and selects the clock in TCNTV.

		Initial		
Bit	Bit Name	Value	R/W	Description
7 to 5	_	All 1	_	Reserved
				These bits are always read as 1.
4	TVEG1	0	R/W	TRGV Input Edge Select
3	TVEG0	0	R/W	These bits select the TRGV input edge.
				00: TRGV trigger input is prohibited
				01: Rising edge is selected
				10: Falling edge is selected
				11: Rising and falling edges are both selected
2	TRGE	0	R/W	TCNT starts counting up by the input of the edg selected by TVEG1 and TVEG0.
				0: Disables starting counting-up TCNTV by the the TRGV pin and halting counting-up TCNT TCNTV is cleared by a compare match.
				 Enables starting counting-up TCNTV by the i the TRGV pin and halting counting-up TCNT TCNTV is cleared by a compare match.

Renesas


11.4 Operation

11.4.1 Timer V Operation

- According to table 11.2, six internal/external clock signals output by prescaler S can be selected as the timer V operating clock signals. When the operating clock signal is selected, selected, and figure 11.3 shows the count timing with both edges of an external clock selected.
- When TCNTV overflows (changes from H'FF to H'00), the overflow flag (OVF) in T will be set. The timing at this time is shown in figure 11.4. An interrupt request is sen CPU when OVIE in TCRV0 is 1.
- 3. TCNTV is constantly compared with TCORA and TCORB. Compare match flag A of (CMFA or CMFB) is set to 1 when TCNTV matches TCORA or TCORB, respectivel compare-match signal is generated in the last state in which the values match. Figure shows the timing. An interrupt request is generated for the CPU when CMIEA or CM TCRV0 is 1.
- 4. When a compare match A or B is generated, the TMOV responds with the output valu selected by bits OS3 to OS0 in TCSRV. Figure 11.6 shows the timing when the output toggled by compare match A.
- 5. When CCLR1 or CCLR0 in TCRV0 is 01 or 10, TCNTV can be cleared by the corres compare match. Figure 11.7 shows the timing.
- When CCLR1 or CCLR0 in TCRV0 is 11, TCNTV can be cleared by the rising edge input of TMRIV pin. A TMRIV input pulse-width of at least 1.5 system clocks is new Figure 11.8 shows the timing.
- When a counter-clearing source is generated with TRGE in TCRV1 set to 1, the coun halted as soon as TCNTV is cleared. TCNTV resumes counting-up when the edge sel TVEG1 or TVEG0 in TCRV1 is input from the TGRV pin.

Rev. 3.00 Sep. 14, 2006 Page 152 of 408 REJ09B0105-0300

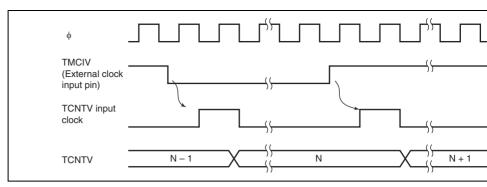


Figure 11.3 Increment Timing with External Clock

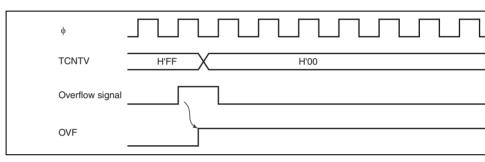


Figure 11.4 OVF Set Timing

Figure 11.5 CMFA and CMFB Set Timing

Figure 11.6 TMOV Output Timing

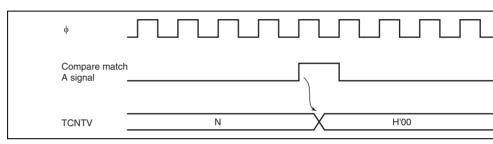
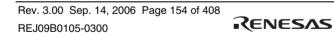



Figure 11.7 Clear Timing by Compare Match

11.5 Timer V Application Examples

11.5.1 Pulse Output with Arbitrary Duty Cycle

Figure 11.9 shows an example of output of pulses with an arbitrary duty cycle.

- 1. Set bits CCLR1 and CCLR0 in TCRV0 so that TCNTV will be cleared by compare a TCORA.
- 2. Set bits OS3 to OS0 in TCSRV so that the output will go to 1 at compare match with and to 0 at compare match with TCORB.
- 3. Set bits CKS2 to CKS0 in TCRV0 and bit ICKS0 in TCRV1 to select the desired clo
- 4. With these settings, a waveform is output without further software intervention, with determined by TCORA and a pulse width determined by TCORB.

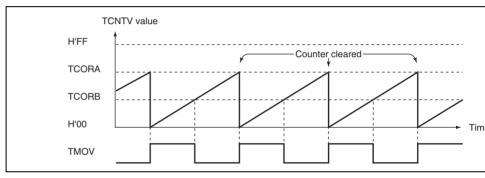


Figure 11.9 Pulse Output Example

- 4. Set bits CKS2 to CKS0 in TCRV0 and bit ICKS0 in TCRV1 to select the desired cloc
- 5. After these settings, a pulse waveform will be output without further software interver with a delay determined by TCORA from the TRGV input, and a pulse width determin (TCORB to TCORA).

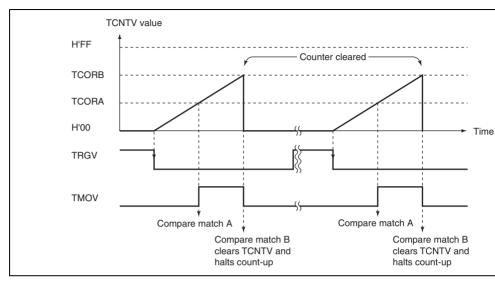



Figure 11.10 Example of Pulse Output Synchronized to TRGV Input

- 3. If compare matches A and B occur simultaneously, any conflict between the output for compare match A and compare match B is resolved by the following priority: to output > output 1 > output 0.
- 4. Depending on the timing, TCNTV may be incremented by a switch between differer clock sources. When TCNTV is internally clocked, an increment pulse is generated falling edge of an internal clock signal, that is divided system clock (φ). Therefore, in figure 11.13 the switch is from a high clock signal to a low clock signal, the switch seen as a falling edge, causing TCNTV to increment. TCNTV can also be increment switch between internal and external clocks.

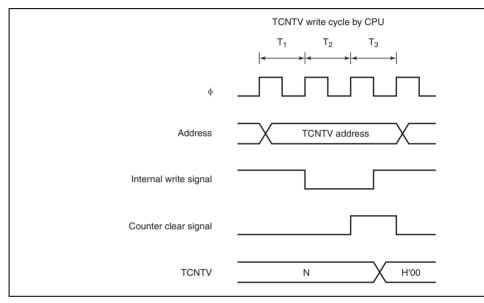


Figure 11.11 Contention between TCNTV Write and Clear

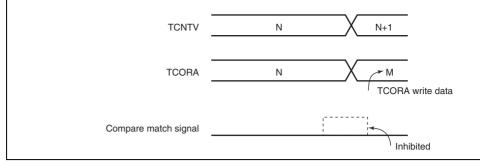


Figure 11.12 Contention between TCORA Write and Compare Match

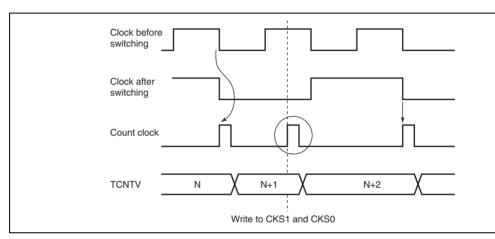


Figure 11.13 Internal Clock Switching and TCNTV Operation

Rev. 3.00 Sep. 14, 2006 Page 158 of 408 REJ09B0105-0300

RENESAS

- Capability to process up to four pulse outputs or four pulse inputs
- Four general registers:
 - Independently assignable output compare or input capture functions
 - Usable as two pairs of registers; one register of each pair operates as a buffer for compare or input capture register
- Four selectable operating modes:
 - Waveform output by compare match

Selections of 0 output, 1 output, or toggle output

- Input capture function

Rising edge, falling edge, or both edges

— Counter clearing function

Counters can be cleared by compare match

- PWM mode

Up to three-phase PWM output can be provided with desired duty ratio.

- Any initial timer output value can be set
- Five interrupt sources

Four compare match/input capture interrupts and an overflow interrupt.

TIM08W0A_000020020200

Renesas

Counter clearing function		GRA			buffer mode)	mod
		GRA compare match	GRA compare match	_	_	_
Initial output value setting function		—	Yes	Yes	Yes	Yes
Buffer function		_	Yes	Yes	_	_
Compare	0	_	Yes	Yes	Yes	Yes
match output	1	_	Yes	Yes	Yes	Yes
	Toggle	_	Yes	Yes	Yes	Yes
Input capture function		_	Yes	Yes	Yes	Yes
PWM mode		_	_	Yes	Yes	Yes
Interrupt sources		Overflow	Compare match/input capture	Compare match/input capture	Compare match/input capture	Con mate capt

Rev. 3.00 Sep. 14, 2006 Page 160 of 408 REJ09B0105-0300

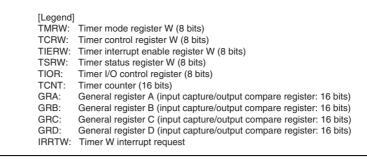


Figure 12.1 Timer W Block Diagram

compare B			PWM output pin in PWM mod
Input capture/output compare C	FTIOC	Input/output	Output pin for GRC output co input pin for GRC input captu PWM output pin in PWM moc
Input capture/output compare D	FTIOD	Input/output	Output pin for GRD output co input pin for GRD input captu PWM output pin in PWM moc

12.3 Register Descriptions

The timer W has the following registers.

- Timer mode register W (TMRW)
- Timer control register W (TCRW)
- Timer interrupt enable register W (TIERW)
- Timer status register W (TSRW)
- Timer I/O control register 0 (TIOR0)
- Timer I/O control register 1 (TIOR1)
- Timer counter (TCNT)
- General register A (GRA)
- General register B (GRB)
- General register C (GRC)
- General register D (GRD)

Rev. 3.00 Sep. 14, 2006 Page 162 of 408 REJ09B0105-0300

				This bit is always read as T.
5	BUFEB	0	R/W	Buffer Operation B
				Selects the GRD function.
				0: GRD operates as an input capture/output co register
				1: GRD operates as the buffer register for GRB
4	BUFEA	0	R/W	Buffer Operation A
				Selects the GRC function.
				0: GRC operates as an input capture/output co register
				1: GRC operates as the buffer register for GRA
3		1		Reserved
				This bit is always read as 1.
2	PWMD	0	R/W	PWM Mode D
				Selects the output mode of the FTIOD pin.
				0: FTIOD operates normally (output compare o
				1: PWM output
1	PWMC	0	R/W	PWM Mode C
				Selects the output mode of the FTIOC pin.
				0: FTIOC operates normally (output compare o
				1: PWM output
0	PWMB	0	R/W	PWM Mode B
				Selects the output mode of the FTIOB pin.
				0: FTIOB operates normally (output compare o
				1: PWM output

5	CKS1	0	R/W	Select the TCNT clock source.
4	CKS0	0	R/W	000: Internal clock: counts on ϕ
				001: Internal clock: counts on \phi/2
				010: Internal clock: counts on $\phi/4$
				011: Internal clock: counts on $\phi/8$
				1XX: Counts on rising edges of the external even
				When the internal clock source (ϕ) is selected, s sources are counted in subactive and subsleep r
3	TOD	0	R/W	Timer Output Level Setting D
				Sets the output value of the FTIOD pin until the f compare match D is generated.
				0: Output value is 0*
				1: Output value is 1*
2	TOC	0	R/W	Timer Output Level Setting C
				Sets the output value of the FTIOC pin until the f compare match C is generated.
				0: Output value is 0*
				1: Output value is 1*
1	TOB	0	R/W	Timer Output Level Setting B
				Sets the output value of the FTIOB pin until the f compare match B is generated.
				0: Output value is 0*
				1: Output value is 1*

Rev. 3.00 Sep. 14, 2006 Page 164 of 408 REJ09B0105-0300

12.3.3 Timer Interrupt Enable Register W (TIERW)

TIERW controls the timer W interrupt request.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	OVIE	0	R/W	Timer Overflow Interrupt Enable
				When this bit is set to 1, FOVI interrupt request flag in TSRW is enabled.
6 to 4		All 1		Reserved
				These bits are always read as 1.
3	IMIED	0	R/W	Input Capture/Compare Match Interrupt Enable
				When this bit is set to 1, IMID interrupt requeste IMFD flag in TSRW is enabled.
2	IMIEC	0	R/W	Input Capture/Compare Match Interrupt Enable
				When this bit is set to 1, IMIC interrupt requeste IMFC flag in TSRW is enabled.
1	IMIEB	0	R/W	Input Capture/Compare Match Interrupt Enable
				When this bit is set to 1, IMIB interrupt requester IMFB flag in TSRW is enabled.
0	IMIEA	0	R/W	Input Capture/Compare Match Interrupt Enable
				When this bit is set to 1, IMIA interrupt requester IMFA flag in TSRW is enabled.

RENESAS

			 Read OVF when OVF = 1, then write 0 in OV
_	All 1		Reserved
			These bits are always read as 1.
IMFD	0	R/W	Input Capture/Compare Match Flag D
			[Setting conditions]
			 TCNT = GRD when GRD functions as an ou compare register
			• The TCNT value is transferred to GRD by ar
			capture signal when GRD functions as an in
			capture register
			[Clearing condition]
			• Read IMFD when IMFD = 1, then write 0 in I
IMFC	0	R/W	Input Capture/Compare Match Flag C
			[Setting conditions]
			TCNT = GRC when GRC functions as an ou compare register
			 The TCNT value is transferred to GRC by ar capture signal when GRC functions as an in capture register
			[Clearing condition]
			• Read IMFC when IMFC = 1, then write 0 in I
		IMFD 0	IMFD 0 R/W

Rev. 3.00 Sep. 14, 2006 Page 166 of 408 REJ09B0105-0300

				• Read IMFB when IMFB = 1, then write 0 in
0	IMFA	0	R/W	Input Capture/Compare Match Flag A
				[Setting conditions]
				 TCNT = GRA when GRA functions as an ou compare register
				 The TCNT value is transferred to GRA by a capture signal when GRA functions as an in capture register [Clearing condition]
				• Read IMFA when IMFA = 1, then write 0 in

				0: GRB functions as an output compare register
				1: GRB functions as an input capture register
5	IOB1	0	R/W	I/O Control B1 and B0
4	IOB0	0	R/W	When IOB2 = 0,
				00: No output at compare match
				01: 0 output to the FTIOB pin at GRB compare r
				10: 1 output to the FTIOB pin at GRB compare r
				11: Output toggles to the FTIOB pin at GRB con match
				When IOB2 = 1,
				00: Input capture at rising edge at the FTIOB pir
				01: Input capture at falling edge at the FTIOB pi
				1X: Input capture at rising and falling edges of th pin
3		1		Reserved
				This bit is always read as 1.
2	IOA2	0	R/W	I/O Control A2
				Selects the GRA function.
				0: GRA functions as an output compare register
				1: GRA functions as an input capture register

Rev. 3.00 Sep. 14, 2006 Page 168 of 408 REJ09B0105-0300

00: Input capture at rising edge of the FTIOA p01: Input capture at falling edge of the FTIOA p1X: Input capture at rising and falling edges of pin

[Legend] X: Don't care

12.3.6 Timer I/O Control Register 1 (TIOR1)

TIOR1 selects the functions of GRC and GRD, and specifies the functions of the FTIOC FTIOD pins.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	_	1	_	Reserved
				This bit is always read as 1.
6	IOD2	0	R/W	I/O Control D2
				Selects the GRD function.
				0: GRD functions as an output compare registe
				1: GRD functions as an input capture register
				When GRB buffer operation has been selected BUFEB in TMRW, select the same function as

RENESAS

				00: Input capture at rising edge at the FTIOD pir
				01: Input capture at falling edge at the FTIOD pi
				1X: Input capture at rising and falling edges at th pin
3	—	1		Reserved
				This bit is always read as 1.
2	IOC2	0	R/W	I/O Control C2
				Selects the GRC function.
				0: GRC functions as an output compare register
				1: GRC functions as an input capture register
				When GRA buffer operation has been selected b BUFEA in TMRW, select the same function as G
1	IOC1	0	R/W	I/O Control C1 and C0
0	IOC0	0	R/W	When $IOC2 = 0$,
				00: No output at compare match
				01: 0 output to the FTIOC pin at GRC compare r
				10: 1 output to the FTIOC pin at GRC compare r
				11: Output toggles to the FTIOC pin at GRC con match
				When IOC2 = 1,
				00: Input capture to GRC at rising edge of the F
				01: Input capture to GRC at falling edge of the F
				1X: Input capture to GRC at rising and falling ed the FTIOC pin

X: Don't care

Rev. 3.00 Sep. 14, 2006 Page 170 of 408 REJ09B0105-0300

RENESAS

Each general register is a 16-bit readable/writable register that can function as either an compare register or an input-capture register. The function is selected by settings in TIO TIOR1.

When a general register is used as an input-compare register, its value is constantly com the TCNT value. When the two values match (a compare match), the corresponding flag IMFB, IMFC, or IMFD) in TSRW is set to 1. An interrupt request is generated at this tin IMIEA, IMIEB, IMIEC, or IMIED is set to 1. Compare match output can be selected in

When a general register is used as an input-capture register, an external input-capture signed detected and the current TCNT value is stored in the general register. The corresponding (IMFA, IMFB, IMFC, or IMFD) in TSRW is set to 1. If the corresponding interrupt-ena (IMIEA, IMIEB, IMIEC, or IMIED) in TSRW is set to 1 at this time, an interrupt requer generated. The edge of the input-capture signal is selected in TIOR.

GRC and GRD can be used as buffer registers of GRA and GRB, respectively, by setting and BUFEB in TMRW.

For example, when GRA is set as an output-compare register and GRC is set as the buff for GRA, the value in the buffer register GRC is sent to GRA whenever compare match generated.

When GRA is set as an input-capture register and GRC is set as the buffer register for G value in TCNT is transferred to GRA and the value in the buffer register GRC is transfe GRA whenever an input capture is generated.

GRA to GRD must be written or read in 16-bit units; 8-bit access is not allowed. GRA to initialized to H'FFFF by a reset.

RENESAS

When the count overflows from H'FFFF to H'0000, the OVF flag in TSRW is set to 1. If in TIERW is set to 1, an interrupt request is generated. Figure 12.2 shows free-running co

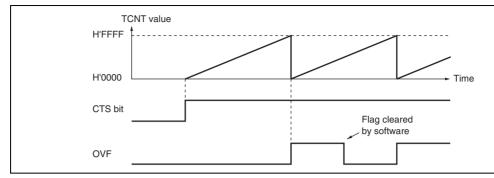


Figure 12.2 Free-Running Counter Operation

Rev. 3.00 Sep. 14, 2006 Page 172 of 408 REJ09B0105-0300

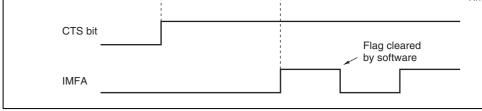


Figure 12.3 Periodic Counter Operation

By setting a general register as an output compare register, compare match A, B, C, or E cause the output at the FTIOA, FTIOB, FTIOC, or FTIOD pin to output 0, output 1, or t Figure 12.4 shows an example of 0 and 1 output when TCNT operates as a free-running output is selected for compare match A, and 0 output is selected for compare match B. V signal is already at the selected output level, the signal level does not change at compare

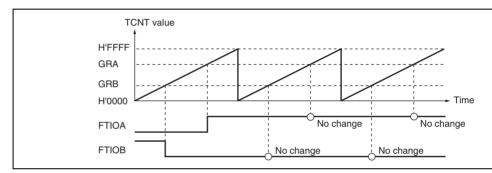


Figure 12.4 0 and 1 Output Example (TOA = 0, TOB = 1)

Rev. 3

FTIOB		Toggle output
	•	

Figure 12.5 Toggle Output Example (TOA = 0, TOB = 1)

Figure 12.6 shows another example of toggle output when TCNT operates as a periodic c cleared by compare match A. Toggle output is selected for both compare match A and B.

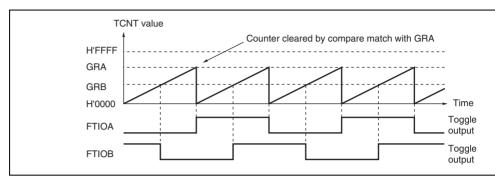


Figure 12.6 Toggle Output Example (TOA = 0, TOB = 1)

Rev. 3.00 Sep. 14, 2006 Page 174 of 408 REJ09B0105-0300

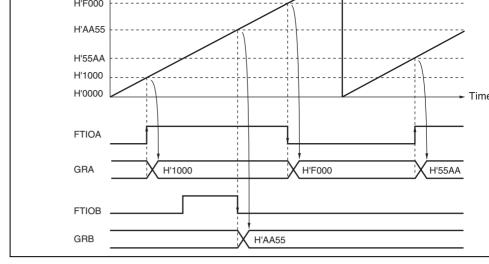


Figure 12.7 Input Capture Operating Example

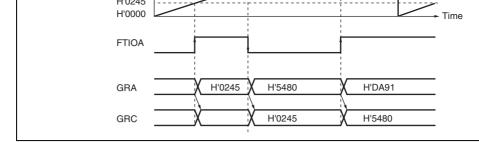


Figure 12.8 Buffer Operation Example (Input Capture)

12.4.2 PWM Operation

In PWM mode, PWM waveforms are generated by using GRA as the period register and GRC, and GRD as duty registers. PWM waveforms are output from the FTIOB, FTIOC, FTIOD pins. Up to three-phase PWM waveforms can be output. In PWM mode, a general functions as an output compare register automatically. The output level of each pin deper corresponding timer output level set bit (TOB, TOC, and TOD) in TCRW. When TOB is FTIOB output goes to 1 at compare match A and to 0 at compare match B. When TOB is FTIOB output goes to 0 at compare match A and to 1 at compare match B. Thus the commatch output level settings in TIOR0 and TIOR1 are ignored for the output pin set to PW If the same value is set in the cycle register and the duty register, the output does not char a compare match occurs.

Figure 12.9 shows an example of operation in PWM mode. The output signals go to 1 and is cleared at compare match A, and the output signals go to 0 at compare match B, C, and (TOB, TOC, and TOD = 1: initial output values are set to 1).

Rev. 3.00 Sep. 14, 2006 Page 176 of 408 REJ09B0105-0300

Figure 12.9 PWM Mode Example (1)

Figure 12.10 shows another example of operation in PWM mode. The output signals go TCNT is cleared at compare match A, and the output signals go to 1 at compare match H D (TOB, TOC, and TOD = 0: initial output values are set to 1).

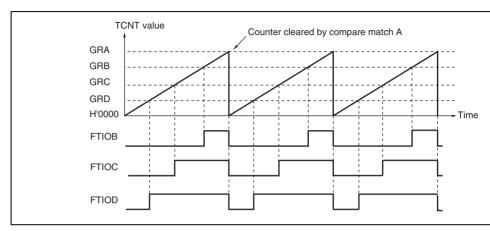


Figure 12.10 PWM Mode Example (2)

Renesas

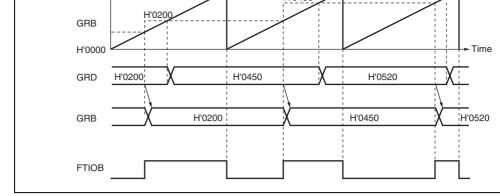


Figure 12.11 Buffer Operation Example (Output Compare)

Rev. 3.00 Sep. 14, 2006 Page 178 of 408 REJ09B0105-0300

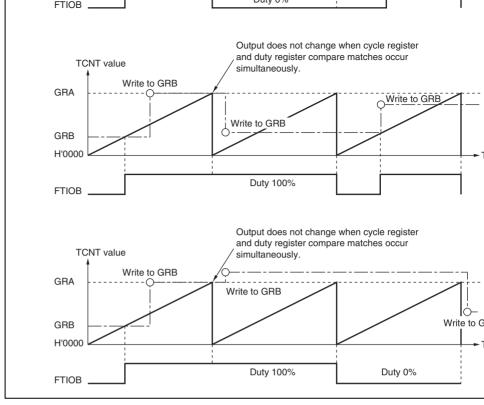


Figure 12.12 PWM Mode Example (TOB, TOC, and TOD = 0: Initial Output Values are Set to 0)

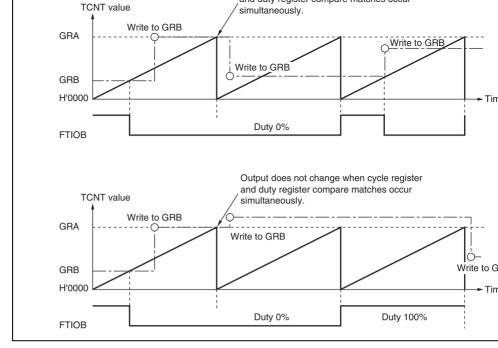


Figure 12.13 PWM Mode Example (TOB, TOC, and TOD = 1: Initial Output Values are Set to 1)

Rev. 3.00 Sep. 14, 2006 Page 180 of 408 REJ09B0105-0300

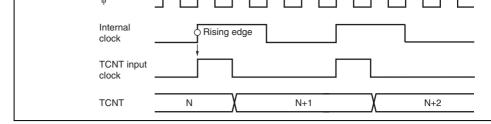


Figure 12.14 Count Timing for Internal Clock Source

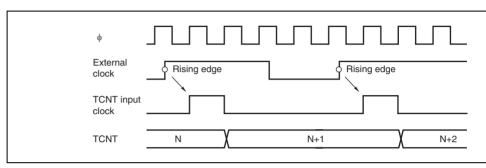


Figure 12.15 Count Timing for External Clock Source

φ	
TCNT input clock	
TCNT	N X N+1
GRA to GRD	Ν
Compare match signal	
FTIOA to FTIOD	χ

Figure 12.16 Output Compare Output Timing

Rev. 3.00 Sep. 14, 2006 Page 182 of 408 REJ09B0105-0300

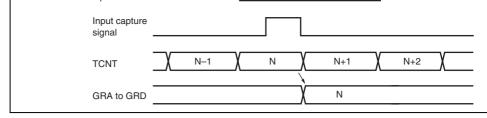


Figure 12.17 Input Capture Input Signal Timing

12.5.4 Timing of Counter Clearing by Compare Match

Figure 12.18 shows the timing when the counter is cleared by compare match A. When value is N, the counter counts from 0 to N, and its cycle is N + 1.

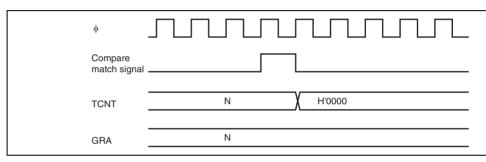


Figure 12.18 Timing of Counter Clearing by Compare Match

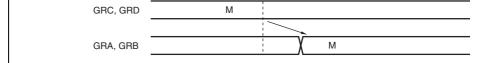


Figure 12.19 Buffer Operation Timing (Compare Match)

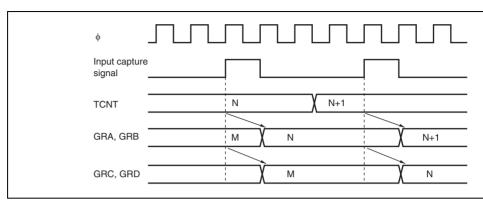


Figure 12.20 Buffer Operation Timing (Input Capture)

Rev. 3.00 Sep. 14, 2006 Page 184 of 408 REJ09B0105-0300

 ГСNT input clock ТСNT
clock
TCNT N N+1
GRA to GRD N
Compare
IMFA to IMFD
IRRTW

Figure 12.21 Timing of IMFA to IMFD Flag Setting at Compare Match

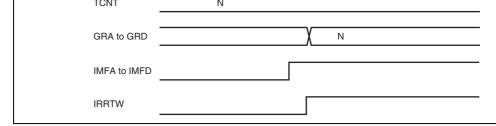


Figure 12.22 Timing of IMFA to IMFD Flag Setting at Input Capture

12.5.8 Timing of Status Flag Clearing

When the CPU reads a status flag while it is set to 1, then writes 0 in the status flag, the s is cleared. Figure 12.23 shows the status flag clearing timing.

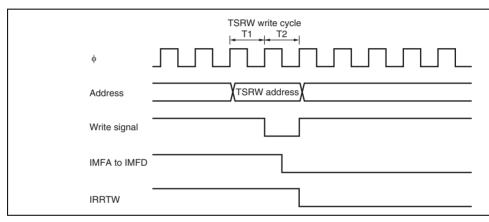
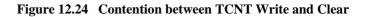



Figure 12.23 Timing of Status Flag Clearing by CPU

- 3. Depending on the timing, TCNT may be incremented by a switch between different clock sources. When TCNT is internally clocked, an increment pulse is generated from rising edge of an internal clock signal, that is divided system clock (φ). Therefore, as figure 12.25 the switch is from a low clock signal to a high clock signal, the switch as a rising edge, causing TCNT to increment.
- 4. If timer W enters module standby mode while an interrupt request is generated, the i request cannot be cleared. Before entering module standby mode, disable interrupt re
- 5. The TOA to TOD bits in TCRW decide the value of the FTIO pin, which is output u first compare match occurs. Once a compare match occurs and this compare match ocurs of FTIOA to FTIOD output, the values of the FTIOA to FTIOD pin output an values read from the TOA to TOD bits may differ. Moreover, when the writing to To the generation of the compare match A to D occur at the same timing, the writing to has the priority. Thus, output change due to the compare match is not reflected to the to FTIOD pins. Therefore, when bit manipulation instruction is used to write to TCR values of the FTIOA to FTIOD pin output may result in an unexpected result. When to be written to while compare match is operating, stop the counter once before acce TCRW, read the port 8 state to reflect the values of FTIOA to FTIOD output, to TOA and then restart the counter. Figure 12.26 shows an example when the compare match bit manipulation instruction to TCRW occur at the same timing.

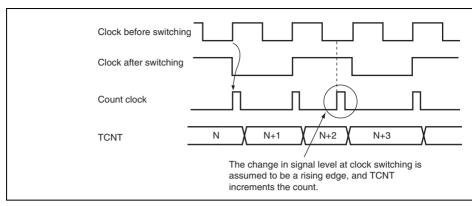


Figure 12.25 Internal Clock Switching and TCNT Operation

Rev. 3.00 Sep. 14, 2006 Page 188 of 408 REJ09B0105-0300

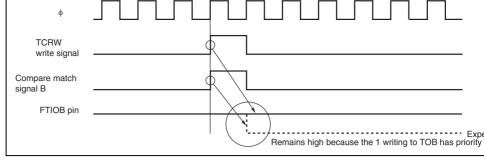


Figure 12.26 When Compare Match and Bit Manipulation Instruction to TO Occur at the Same Timing

Rev. 3.00 Sep. 14, 2006 Page 190 of 408 REJ09B0105-0300

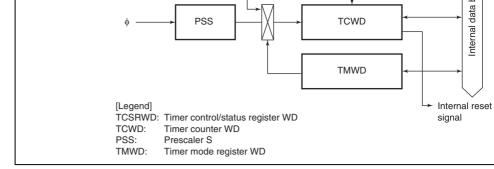


Figure 13.1 Block Diagram of Watchdog Timer

13.1 Features

• Selectable from nine counter input clocks.

Eight clock sources ($\phi/64$, $\phi/128$, $\phi/256$, $\phi/512$, $\phi/1024$, $\phi/2048$, $\phi/4096$, and $\phi/8192$) WDT dedicated internal oscillator can be selected as the timer-counter clock. When dedicated internal oscillator is selected, it can operate as the watchdog timer in any c mode.

• Reset signal generated on counter overflow

An overflow period of 1 to 256 times the selected clock can be set.

• The watchdog timer is enabled in the initial state.

It starts operating after the reset state is canceled.

WDT0110A_000020030300

Renesas

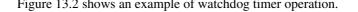
watchdog timer operation and indicates the operating state. TCSRWD also controls the the MOV instruction. The bit manipulation instruction cannot be used to change the setting

		Initial		
Bit	Bit Name	Value	R/W	Description
7	B6WI	1	R/W	Bit 6 Write Inhibit
				The TCWE bit can be written only when the write the B6WI bit is 0.
				This bit is always read as 1.
6	TCWE	0	R/W	Timer Counter WD Write Enable
				TCWD can be written when the TCWE bit is set
				When writing data to this bit, the value for bit 7 n
5	B4WI	1	R/W	Bit 4 Write Inhibit
				The TCSRWE bit can be written only when the w value of the B4WI bit is 0. This bit is always read
4	TCSRWE	0	R/W	Timer Control/Status Register WD Write Enable
				The WDON and WRST bits can be written when TCSRWE bit is set to 1.
				When writing data to this bit, the value for bit 5 m
3	B2WI	1	R/W	Bit 2 Write Inhibit
				This bit can be written to the WDON bit only whe write value of the B2WI bit is 0.
				This bit is always read as 1.

Rev. 3.00 Sep. 14, 2006 Page 192 of 408 REJ09B0105-0300

				 [Clearing conditions] When 0 is written to the WDON bit and 0 is the B2WI bit while the TCSRWE bit = 1
1	B0WI	1	R/W	Bit 0 Write Inhibit
				This bit can be written to the WRST bit only wh write value of the B0WI bit is 0. This bit is alway 1.
0	WRST*	0	R/W	Watchdog Timer Reset
				[Setting condition]
				 When TCWD overflows and an internal reso generated
				[Clearing conditions]
				Reset by the RES pin
				• When 0 is written to the WRST bit and 0 is the B0WI bit while the TCSRWE bit = 1

Note: * The WRST bit cannot be modified to 1.


	All 1		Reserved
			These bits are always read as 1.
CKS3	1	R/W	Clock Select 3 to 0
CKS2	1	R/W	Select the clock to be input to TCWD.
CKS1	1	R/W	1000: Internal clock: counts on \u00e6/64
CKS0	1	R/W	1001: Internal clock: counts on \u00e6/128
			1010: Internal clock: counts on \u00e6/256
			1011: Internal clock: counts on \u00e4/512
			1100: Internal clock: counts on \u00f6/1024
			1101: Internal clock: counts on \u00e6/2048
			1110: Internal clock: counts on $\phi/4096$
			1111: Internal clock: counts on ϕ 8192
			0XXX: WDT dedicated internal oscillator
			For the overflow periods of the WDT dedicated i oscillator, see section 20, Electrical Characterist
	CKS2 CKS1	CKS2 1 CKS1 1 CKS0 1	CKS2 1 R/W CKS1 1 R/W CKS0 1 R/W

[Legend]

X: Don't care

Rev. 3.00 Sep. 14, 2006 Page 194 of 408 REJ09B0105-0300

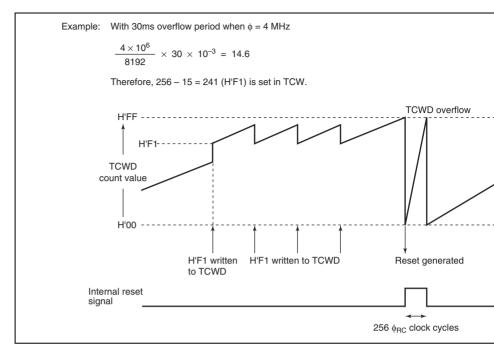


Figure 13.2 Watchdog Timer Operation Example

Rev. 3.00 Sep. 14, 2006 Page 196 of 408 REJ09B0105-0300

14.1 Features

- Choice of asynchronous or clocked synchronous serial communication mode
- Full-duplex communication capability

The transmitter and receiver are mutually independent, enabling transmission and rebe executed simultaneously.

Double-buffering is used in both the transmitter and the receiver, enabling continuou transmission and continuous reception of serial data.

- On-chip baud rate generator allows any bit rate to be selected
- External clock or on-chip baud rate generator can be selected as a transfer clock sour
- Six interrupt sources

Transmit-end, transmit-data-empty, receive-data-full, overrun error, framing error, a error.

• Internal noise filter circuit (available for asynchronous serial communication only)

Asynchronous mode

- Data length: 7 or 8 bits
- Stop bit length: 1 or 2 bits
- Parity: Even, odd, or none
- Receive error detection: Parity, overrun, and framing errors
- Break detection: Break can be detected by reading the RXD pin level directly in the framing error

SCI0010A_000120030300

Renesas

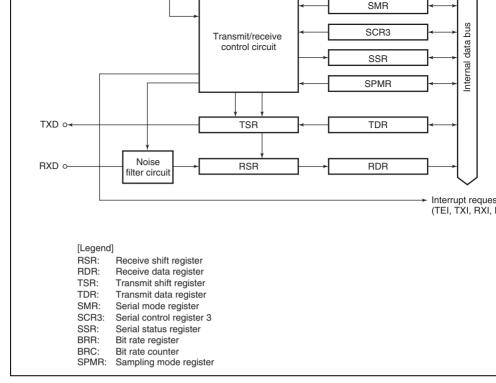


Figure 14.1 Block Diagram of SCI3

Rev. 3.00 Sep. 14, 2006 Page 198 of 408 REJ09B0105-0300

14.3 **Register Descriptions**

SCI3 has the following registers for each channel.

- Receive shift register (RSR)
- Receive data register (RDR)
- Transmit shift register (TSR)
- Transmit data register (TDR)
- Serial mode register (SMR)
- Serial control register 3 (SCR3)
- Serial status register (SSR)
- Bit rate register (BRR)
- Sampling mode register (SPMR)

operations are possible. After confirming that the RDRF bit in SSR is set to 1, read RDR once. RDR cannot be written to by the CPU. RDR is initialized to H'00.

14.3.3 Transmit Shift Register (TSR)

TSR is a shift register that transmits serial data. To perform serial data transmission, SCI transfers transmit data from TDR to TSR automatically, then sends the data that starts from LSB to the TXD pin. TSR cannot be directly accessed by the CPU.

14.3.4 Transmit Data Register (TDR)

TDR is an 8-bit register that stores data for transmission. When SCI3 detects that TSR is transfers the transmit data written in TDR to TSR and starts transmission. The double-bu structure of TDR and TSR enables continuous serial transmission. If the next transmit data already been written to TDR during transmission of one-frame data, SCI3 transfers the w data to TSR to continue transmission. To achieve reliable serial transmission, write transmit to TDR only once after confirming that the TDRE bit in SSR is set to 1. TDR is initialize H'FF.

Rev. 3.00 Sep. 14, 2006 Page 200 of 408 REJ09B0105-0300

6	CHR	0	R/W	Character Length (enabled only in asynchronou
				0: Selects 8 bits as the data length.
				1: Selects 7 bits as the data length.
5	PE	0	R/W	Parity Enable (enabled only in asynchronous m
				When this bit is set to 1, the parity bit is added data before transmission, and the parity bit is clareception.
4	РМ	0	R/W	Parity Mode (enabled only when the PE bit is 1 asynchronous mode)
				0: Selects even parity.
				1: Selects odd parity.
3	STOP	0	R/W	Stop Bit Length (enabled only in asynchronous
				Selects the stop bit length in transmission.
				0: 1 stop bit
				1: 2 stop bits
				For reception, only the first stop bit is checked, of the value in the bit. If the second stop bit is 0 treated as the start bit of the next transmit chara
2	MP	0	R/W	Multiprocessor Mode
				When this bit is set to 1, the multiprocessor communication function is enabled. The PE bit bit settings are invalid in multiprocessor mode. synchronous mode, clear this bit to 0.

Renesas

14.3.6 Serial Control Register 3 (SCR3)

SCR3 is a register that enables or disables SCI3 transfer operations and interrupt requests also used to select the transfer clock source. For details on interrupt requests, refer to sect Interrupts.

Bit	Bit Name	Initial Value	R/W	Description
7	TIE	0	R/W	Transmit Interrupt Enable
				When this bit is set to 1, the TXI interrupt reques enabled.
6	RIE	0	R/W	Receive Interrupt Enable
				When this bit is set to 1, RXI and ERI interrupt reare enabled.
5	TE	0	R/W	Transmit Enable
				When this bit s set to 1, transmission is enabled.
4	RE	0	R/W	Receive Enable
				When this bit is set to 1, reception is enabled.

Rev. 3.00 Sep. 14, 2006 Page 202 of 408 REJ09B0105-0300

_		•		
				When this bit is set to 1, TEI interrupt request is
1	CKE1	0	R/W	Clock Enable 0 and 1
0	CKE0	0	R/W	Selects the clock source.
				Asynchronous mode
				00: On-chip baud rate generator
				01: On-chip baud rate generator
				Outputs a clock of the same frequency as the from the SCK3 pin.
				10: External clock
				Inputs a clock with a frequency 16 times the from the SCK3 pin.
				11:Reserved
				Clocked synchronous mode
				00: On-chip clock (SCK3 pin functions as clock
				01:Reserved
				10: External clock (SCK3 pin functions as clock
				11:Reserved

				 When the TE bit in SCR3 is 0
				When data is transferred from TDR to TSR
				[Clearing conditions]
				• When 0 is written to TDRE after reading TDF
				When the transmit data is written to TDR
6	RDRF	0	R/W	Receive Data Register Full
				Indicates that the received data is stored in RDF
				[Setting condition]
				 When serial reception ends normally and rec is transferred from RSR to RDR
				[Clearing conditions]
				When 0 is written to RDRF after reading RDI
				When data is read from RDR
5	OER	0	R/W	Overrun Error
				[Setting condition]
				When an overrun error occurs in reception
				[Clearing condition]
				When 0 is written to OER after reading OER
4	FER	0	R/W	Framing Error
				[Setting condition]
				When a framing error occurs in reception
				[Clearing condition]
				• When 0 is written to FER after reading FER =

Rev. 3.00 Sep. 14, 2006 Page 204 of 408 REJ09B0105-0300

RENESAS

				• When TDRE = 1 at transmission of the last frame serial transmit character
				[Clearing conditions]
				• When 0 is written to TDRE after reading TD
				• When the transmit data is written to TDR
1	MPBR	0	R	Multiprocessor Bit Receive
				MPBR stores the multiprocessor bit in the recei character data. When the RE bit in SCR3 is cle its state is retained.
0	MPBT	0	R/W	Multiprocessor Bit Transfer
_				MPBT stores the multiprocessor bit to be added transmit character data.

[Asynchronous Mode]

$$\mathsf{N} = \frac{\phi}{64 \times 2^{2\mathsf{n}-1} \times \mathsf{B}} \times 10^6 - 1$$

Error (%) =
$$\left\{\frac{\phi \times 10^{6}}{(N+1) \times B \times 64 \times 2^{2n-1}} - 1\right\} \times 100$$

[Clocked Synchronous Mode]

$$N = \frac{\phi}{8 \times 2^{2n-1} \times B} \times 10^6 - 1$$

Legend B: Bit rate (bit/s)

- N: BRR setting for baud rate generator ($0 \le N \le 255$)
- \$\\$ Operating frequency (MHz)

n: CSK1 and CSK0 settings in SMR ($0 \le n \le 3$)

Rev. 3.00 Sep. 14, 2006 Page 206 of 408 REJ09B0105-0300

1200	0	51	0.16	0	54	-0.70	0	63	0.00	0	77
2400	0	25	0.16	0	26	1.14	0	31	0.00	0	38
4800	0	12	0.16	0	13	-2.48	0	15	0.00	0	19
9600	0	6	-6.99	0	6	-2.48	0	7	0.00	0	9
19200	0	2	8.51	0	2	13.78	0	3	0.00	0	4
31250	0	1	0.00	0	1	4.86	0	1	22.88	0	2
38400	0	1	-18.62	0	1	-14.67	0	1	0.00		_

2400	0	47	0.00	0	51	0.10	0	03	0.00	0	04
4800	0	23	0.00	0	25	0.16	0	31	0.00	0	32
9600	0	11	0.00	0	12	0.16	0	15	0.00	0	15
19200	0	5	0.00	0	6	-6.99	0	7	0.00	0	7
31250	_	_	_	0	3	0.00	0	4	-1.70	0	4
38400	0	2	0.00	0	2	8.51	0	3	0.00	0	3

[Legend]

--: A setting is available but error occurs

		Operating Frequency φ (MHz)										
		6			6.144	i I		7.3728				
Bit Rate (bit/s)	n	N	Error (%)	n	N	Error (%)	n	N				
110	2	106	-0.44	2	108	0.08	2	130				
150	2	77	0.16	2	79	0.00	2	95				
300	1	155	0.16	1	159	0.00	1	191				
600	1	77	0.16	1	79	0.00	1	95				
1200	0	155	0.16	0	159	0.00	0	191				
2400	0	77	0.16	0	79	0.00	0	95				
4800	0	38	0.16	0	39	0.00	0	47				
9600	0	19	-2.34	0	19	0.00	0	23				
19200	0	9	-2.34	0	9	0.00	0	11				
31250	0	5	0.00	0	5	2.40	0	6				
38400	0	4	-2.34	0	4	0.00	0	5				

Rev. 3.00 Sep. 14, 2006 Page 208 of 408 REJ09B0105-0300

RENESAS

4800	0	51	0.16	0	63	0.00	0	64	C
9600	0	25	0.16	0	31	0.00	0	32	1
19200	0	12	0.16	0	15	0.00	0	15	-
31250	0	7	0.00	0	9	-1.70	0	9	C
38400	0	6	-6.99	0	7	0.00	0	7	-

Table 14.3 Maximum Bit Rate for Each Frequency (Asynchronous Mode)

φ (MHz)	Maximum Bit Rate (bit/s)	n	Ν	φ (MHz)	Maximum Bit Rate (bit/s)	n
2	62500	0	0	5	156250	0
2.097152	65536	0	0	6	187500	0
2.4576	76800	0	0	6.144	192000	0
3	93750	0	0	7.3728	230400	0
3.6864	115200	0	0	8	250000	0
4	125000	0	0	9.8304	307200	0
4.9152	153600	0	0	10	312500	0

Renesas

2.5k	0	199	1	99	1	199	1
5k	0	99	0	199	1	99	1
10k	0	49	0	99	0	199	0
25k	0	19	0	39	0	79	0
50k	0	9	0	19	0	39	0
100k	0	4	0	9	0	19	0
250k	0	1	0	3	0	7	0
500k	0	0*	0	1	0	3	0
1M			0	0*	0	1	<u> </u>
2M					0	0*	<u> </u>
2.5M							0
4M							

[Legend]

Blank: No setting is available.

-: A setting is available but error occurs.

*: Continuous transfer is not possible.

Rev. 3.00 Sep. 14, 2006 Page 210 of 408 REJ09B0105-0300

			asynchronous mode.
			0: Noise filter circuit is enabled
			1: Noise filter circuit is disabled
1, 0	 All 1	_	Reserved
			These bits are always read as 1.

• Noise Filter Circuit

The RXD input signal is latched through the noise filter circuit. The noise filter circuit comprises a series of three latch circuits and a match detection circuit. The RXD inp sampled by the basic clock with the 16 times the transfer clock frequency. If three la outputs match, its level is transferred to the next stage. If not, the circuit holds the pr value.

That is, when the incoming signal holds the same level for three clock cycles, it is re the proper signal. If the levels of the signal is less than three clock cycles, the signal regarded as a noise.

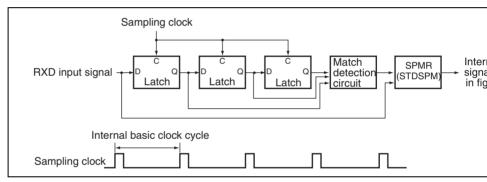


Figure 14.2 Block Diagram of Noise Filter Circuit

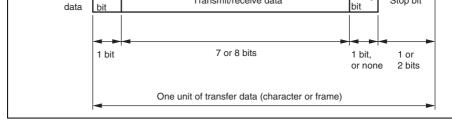


Figure 14.3 Data Format in Asynchronous Communication

14.4.1 Clock

Either an internal clock generated by the on-chip baud rate generator or an external clock the SCK3 pin can be selected as the SCI3's serial clock, according to the setting of the CC SMR and the CKE0 and CKE1 bits in SCR3. When an external clock is input at the SCK clock frequency should be 16 times the bit rate used.

When SCI3 is operated on an internal clock, the clock can be output from the SCK3 pin. Frequency of the clock output in this case is equal to the bit rate, and the phase is such that rising edge of the clock is in the middle of the transmit data, as shown in figure 14.4.

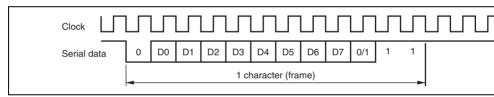
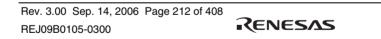
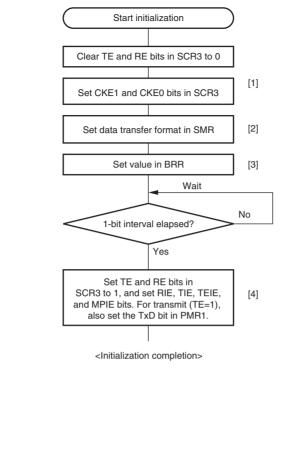




Figure 14.4 Relationship between Output Clock and Transfer Data Phase (Asynchronous Mode) (Example with 8-Bit Data, Parity, Two Stop Bits)

 Set the clock selection in SCR3. Be sure to clear bits RIE, TIE, TEIE, and MPIE, and bits TE and RE, to 0.

When the clock output is selected in asynchronous mode, clock is output immediately after CKE1 and CKE0 settings are made. When the clock output is selected at reception in clocked synchronous mode, clock is output immediately after CKE1, CKE0, and RE are set to 1.

- [2] Set the data transfer format in SMR.
- [3] Write a value corresponding to the bit rate to BRR. Not necessary if an external clock is used.
- [4] Wait at least one bit interval, then set the TE bit or RE bit in SCR3 to 1. RE settings enable the RXD pin to be used. For transmission, set the TXD bit in PMR1 to 1 to enable the TXD output pin to be used. Also set the RIE, TIE, TEIE, and MPIE bits, depending on whether interrupts are required. In asynchronous mode, the bits are marked at transmission and idled at reception to wait for the start bit.

For transmission, set the TE bit to 1 and then output 1 for one frame to enable.

Figure 14.5 Sample SCI3 Initialization Flowchart

- 3. SCI3 checks the TDRE flag at the timing for sending the stop bit.
- 4. If the TDRE flag is 0, the data is transferred from TDR to TSR, the stop bit is sent, an serial transmission of the next frame is started.
- 5. If the TDRE flag is 1, the TEND flag in SSR is set to 1, the stop bit is sent, and then t state" is entered, in which 1 is output. If the TEIE bit in SCR3 is set to 1 at this time, a interrupt request is generated.
- 6. Figure 14.7 shows a sample flowchart for transmission in asynchronous mode.

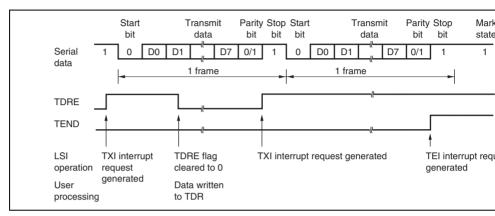
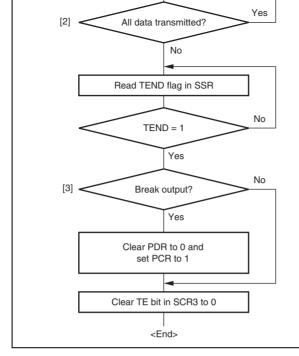
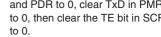




Figure 14.6 Example of SCI3 Transmission in Asynchronous Mode (8-Bit Data, Parity, One Stop Bit)

Rev. 3.00 Sep. 14, 2006 Page 214 of 408 REJ09B0105-0300

- RDR. If the RIE bit in SCR3 is set to 1 at this time, an ERI interrupt request is genera
- 4. If a framing error is detected (when the stop bit is 0), the FER bit in SSR is set to 1 and data is transferred to RDR. If the RIE bit in SCR3 is set to 1 at this time, an ERI interpretent request is generated.
- 5. If reception is completed successfully, the RDRF bit in SSR is set to 1, and receive da transferred to RDR. If the RIE bit in SCR3 is set to 1 at this time, an RXI interrupt rec generated. Continuous reception is possible because the RXI interrupt routine reads th data transferred to RDR before reception of the next receive data has been completed.

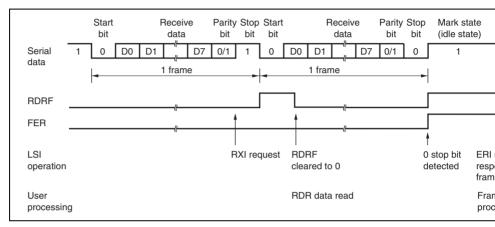
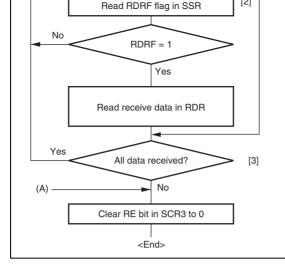


Figure 14.8 Example of SCI3 Reception in Asynchronous Mode (8-Bit Data, Parity, One Stop Bit)


Rev. 3.00 Sep. 14, 2006 Page 216 of 408 REJ09B0105-0300

0	0	1	0	Transferred to RDR	Framing error
0	0	0	1	Transferred to RDR	Parity error
1	1	1	0	Lost	Overrun error + frami
1	1	0	1	Lost	Overrun error + parity
0	0	1	1	Transferred to RDR	Framing error + parity
1	1	1	1	Lost	Overrun error + frami parity error

Note: * The RDRF flag retains the state it had before data reception.

the error. After performing the appropriate error processing, enthat the OER, PER, and FER flaall cleared to 0. Reception cann resumed if any of these flags are 1. In the case of a framing error break can be detected by readin value of the input port correspon the RxD pin.

Figure 14.9 Sample Serial Reception Data Flowchart (Asynchronous Mode

Rev. 3.00 Sep. 14, 2006 Page 218 of 408 REJ09B0105-0300

also have a double-buffered structure, so data can be read or written during transmission reception, enabling continuous data transfer.

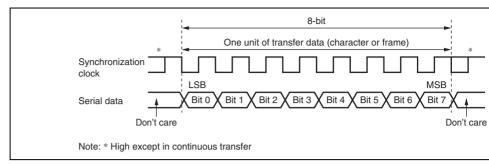


Figure 14.10 Data Format in Clocked Synchronous Communication

14.5.1 Clock

Either an internal clock generated by the on-chip baud rate generator or an external synchronization clock input at the SCK3 pin can be selected, according to the setting of bit in SMR and CKE0 and CKE1 bits in SCR3. When SCI3 is operated on an internal cl synchronization clock is output from the SCK3 pin. Eight synchronization clock pulses in the transfer of one character, and when no transfer is performed the clock is fixed hig

- written to TDR, and transfers the data from TDR to TSR.
- 2. SCI3 sets the TDRE flag to 1 and starts transmission. If the TIE bit in SCR3 is set to time, a transmit data empty interrupt (TXI) is generated.
- 3. 8-bit data is sent from the TXD pin synchronized with the output clock when output c mode has been specified, and synchronized with the input clock when use of an extern has been specified. Serial data is transmitted sequentially from the LSB (bit 0), from t pin.
- 4. SCI3 checks the TDRE flag at the timing for sending the MSB (bit 7).
- 5. If the TDRE flag is cleared to 0, data is transferred from TDR to TSR, and serial trans of the next frame is started.
- 6. If the TDRE flag is set to 1, the TEND flag in SSR is set to 1, and the TDRE flag mai output state of the last bit. If the TEIE bit in SCR3 is set to 1 at this time, a TEI interrurequest is generated.
- 7. The SCK3 pin is fixed high at the end of transmission.

Rev. 3.00 Sep. 14, 2006 Page 220 of 408 REJ09B0105-0300

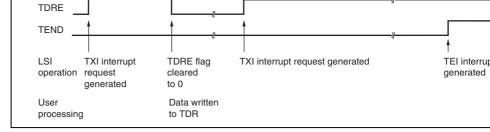


Figure 14.11 Example of SCI3 Transmission in Clocked Synchronous Mo

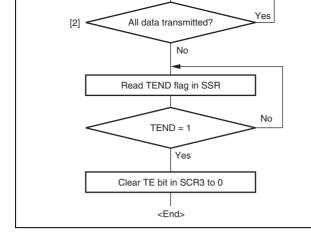
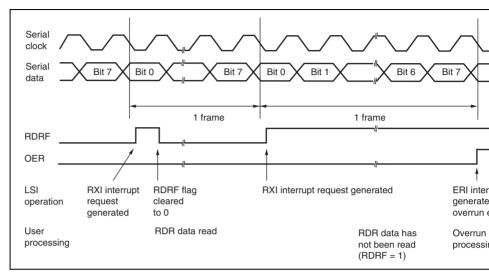
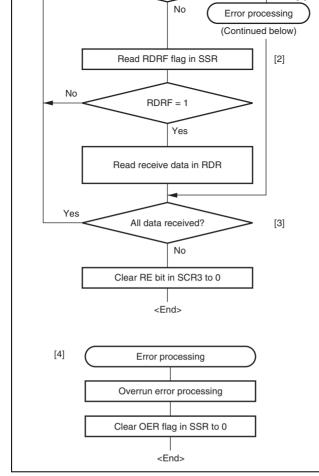
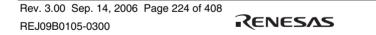


Figure 14.12 Sample Serial Transmission Flowchart (Clocked Synchronous M

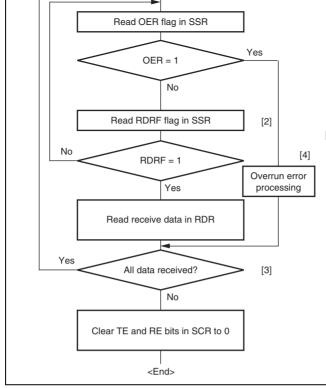
Rev. 3.00 Sep. 14, 2006 Page 222 of 408 REJ09B0105-0300

- RDRF flag remains to be set to 1.
- 4. If reception is completed successfully, the RDRF bit in SSR is set to 1, and receive transferred to RDR. If the RIE bit in SCR3 is set to 1 at this time, an RXI interrupt regenerated.

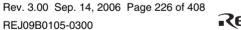

Figure 14.13 Example of SCI3 Reception in Clocked Synchronous Mode

Renesas



- [3] To continue serial reception, before the MSB (bit 7) of the current frame is reading the RDRF flag and reading R should be finished. When data is read RDR, the RDRF flag is automatically cleared to 0.
- [4] If an overrun error occurs, read the O flag in SSR, and after performing the appropriate error processing, clear the flag to 0. Reception cannot be resum the OER flag is set to 1.

Figure 14.14 Sample Serial Reception Flowchart (Clocked Synchronous Mod



reading the HDHF flag, reading f Also, before the MSB (bit 7) of th current frame is transmitted, read from the TDRE flag to confirm th writing is possible. Then write da TDR.

When data is written to TDR, the TDRE flag is automatically cleare 0. When data is read from RDR, RDRF flag is automatically cleare 0.

[4] If an overrun error occurs, read t OER flag in SSR, and after performing the appropriate error processing, clear the OER flag to Transmission/reception cannot b resumed if the OER flag is set to For overrun error processing, see figure 14.14.

Figure 14.15 Sample Flowchart of Simultaneous Serial Transmit and Receive Ope (Clocked Synchronous Mode)

communication using the multiprocessor format. The transmitting station first sends the of the receiving station with which it wants to perform serial communication as data wit multiprocessor bit added. It then sends transmit data as data with a 0 multiprocessor bit a When data with a 1 multiprocessor bit is received, the receiving station compares that da own ID. The station whose ID matches then receives the data sent next. Stations whose match continue to skip data until data with a 1 multiprocessor bit is again received.

SCI3 uses the MPIE bit in SCR3 to implement this function. When the MPIE bit is set to transfer of receive data from RSR to RDR, error flag detection, and setting the SSR state RDRF, FER, and OER, to 1, are inhibited until data with a 1 multiprocessor bit is receive reception of a receive character with a 1 multiprocessor bit, the MPBR bit in SSR is set the MPIE bit is automatically cleared, thus normal reception is resumed. If the RIE bit is set to 1 at this time, an RXI interrupt is generated.

When the multiprocessor format is selected, the parity bit setting is rendered invalid. Al settings are the same as those in normal asynchronous mode. The clock used for multiple communication is the same as that in normal asynchronous mode.

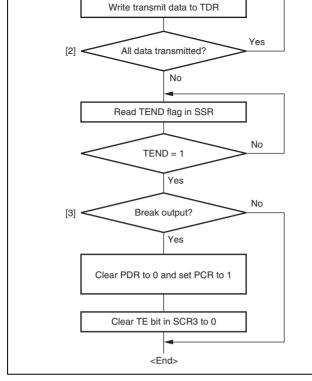
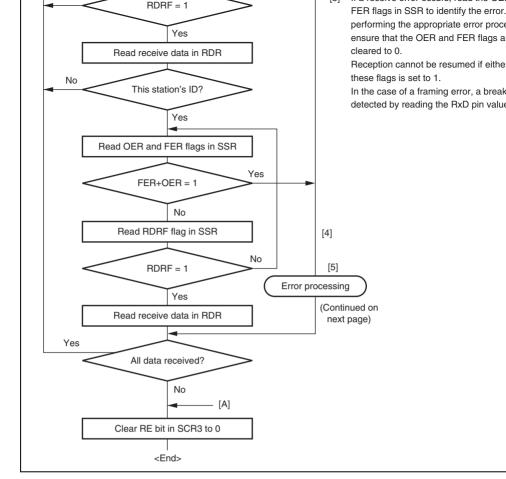
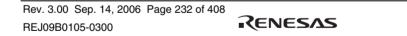

specification	receiving station specified by ib	
[Legend] MPB: Multiprocessor bit		

Figure 14.16 Example of Inter-Processor Communication Using Multiprocessor (Transmission of Data H'AA to Receiving Station A)

Rev. 3.00 Sep. 14, 2006 Page 228 of 408 REJ09B0105-0300



transmission, set the port PCR to 1, clear PDR to 0, then clear the TE bit in SCR3 to 0.


Figure 14.17 Sample Multiprocessor Serial Transmission Flowchart

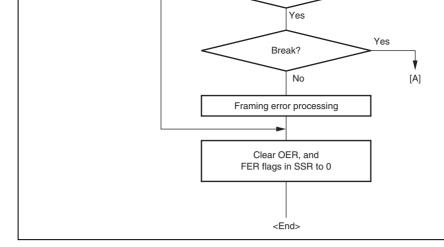


Figure 14.18 Sample Multiprocessor Serial Reception Flowchart (2)

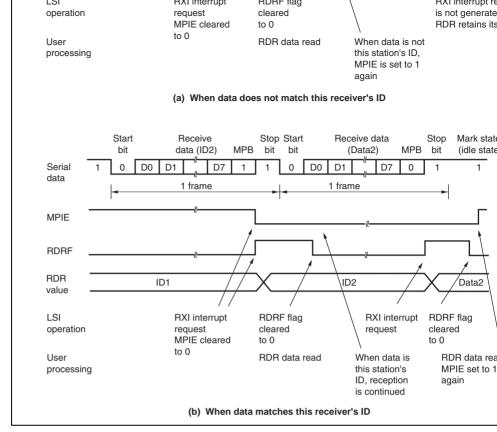


Figure 14.19 Example of SCI3 Reception Using Multiprocessor Format (Example with 8-Bit Data, Multiprocessor Bit, One Stop Bit)

Rev. 3.00 Sep. 14, 2006 Page 234 of 408 REJ09B0105-0300

RENESAS

Transmission End	TEI	Setting TEND in SSR
Receive Error	ERI	Setting OER, FER, and PER in SSR

The initial value of the TDRE flag in SSR is 1. Thus, when the TIE bit in SCR3 is set to transferring the transmit data to TDR, a TXI interrupt request is generated even if the transmit is not ready. The initial value of the TEND flag in SSR is 1. Thus, when the TEIE bit in set to 1 before transferring the transmit data to TDR, a TEI interrupt request is generated the transmit data has not been sent. It is possible to make use of the most of these interrupt requests efficiently by transferring the transmit data to TDR in the interrupt routine. To the generation of these interrupt requests (TXI and TEI), set the enable bits (TIE and TE correspond to these interrupt requests to 1, after transferring the transmit data to TDR.

When the TXD bit in PMR1 is 1, the TxD pin is used as an I/O port whose direction (inp output) and level are determined by PCR and PDR. This can be used to set the TxD pin to state (high level) or send a break during serial data transmission. To maintain the commu line at mark state until TE is set to 1, set PCR and PDR to 1 respectively, and also set the to 1. At this time, the TxD pin becomes an I/O port, and 1 is output from the TxD pin. To break during serial data transmission, first set PCR to 1 and clear PDR to 0, and then set bit to 1. Regardless of the current transmission state, the TxD pin becomes an I/O port, an output from the TxD pin.

14.8.3 Receive Error Flags and Transmit Operations (Clocked Synchronous Mod

Transmission cannot be started when a receive error flag (OER, PER, or FER) is set to 1, the TDRE flag is cleared to 0. Be sure to clear the receive error flags to 0 before starting transmission. Note also that receive error flags cannot be cleared to 0 even if the RE bit is to 0.

Rev. 3.00 Sep. 14, 2006 Page 236 of 408 REJ09B0105-0300

... Formula (1)

Legend N : Ratio of bit rate to clock (N = 16)

- D : Clock duty (D = 0.5 to 1.0)
- L : Frame length (L = 9 to 12)
- F : Absolute value of clock rate deviation

Assuming values of F (absolute value of clock rate deviation) = 0 and D (clock duty) = f formula (1), the reception margin can be given by the formula.

 $M = \{0.5 - 1/(2 \times 16)\} \times 100 \ [\%] = 46.875\%$

However, this is only the computed value, and a margin of 20% to 30% should be allow system design.

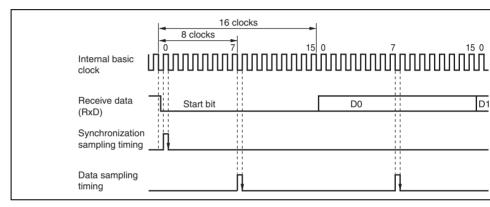


Figure 14.20 Receive Data Sampling Timing in Asynchronous Mode

RENESAS

Rev. 3.00 Sep. 14, 2006 Page 238 of 408 REJ09B0105-0300

13.1 Features

- Selection of I²C format or clocked synchronous serial format
- Continuous transmission/reception

Since the shift register, transmit data register, and receive data register are independe each other, the continuous transmission/reception can be performed.

I²C bus format:

- Start and stop conditions generated automatically in master mode
- Selection of acknowledge output levels when receiving
- Automatic loading of acknowledge bit when transmitting
- Bit synchronization/wait function

In master mode, the state of SCL is monitored per bit, and the timing is synchronized automatically.

If transmission/reception is not yet possible, set the SCL to low until preparations are completed.

• Six interrupt sources

Transmit data empty (including slave-address match), transmit end, receive data full slave-address match), arbitration lost, NACK detection, and stop condition detection

• Direct bus drive

Two pins, SCL and SDA pins, function as NMOS open-drain outputs when the bus of function is selected.

Clocked synchronous format:

• Four interrupt sources

Transmit-data-empty, transmit-end, receive-data-full, and overrun error

IFIIC10A_000020030300

Renesas

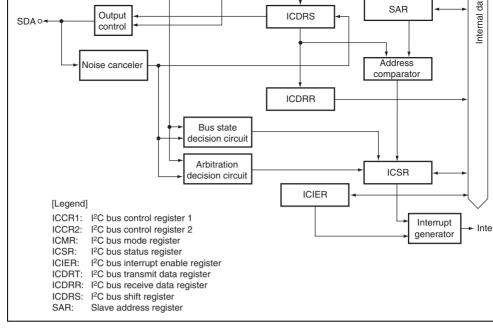


Figure 15.1 Block Diagram of I²C Bus Interface 2

Rev. 3.00 Sep. 14, 2006 Page 240 of 408 REJ09B0105-0300

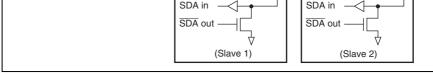


Figure 15.2 External Circuit Connections of I/O Pins

15.2 Input/Output Pins

Table 15.1 summarizes the input/output pins used by the I²C bus interface 2.

Table 15.1 Pin Configuration

Name	Abbreviation	I/O	Function
Serial clock	SCL	I/O	I ² C serial clock input/output
Serial data	SDA	I/O	l ² C serial data input/output

- I²C bus transmit data register (ICDRT)
- I²C bus receive data register (ICDRR)
- I²C bus shift register (ICDRS)

15.3.1 I²C Bus Control Register 1 (ICCR1)

ICCR1 enables or disables the I²C bus interface 2, controls transmission or reception, and master or slave mode, transmission or reception, and transfer clock frequency in master r

Bit	Bit Name	Initial Value	R/W	Description
7	ICE	0	R/W	l ² C Bus Interface Enable
				0: This module is halted. (SCL and SDA pins are port function.)
				1: This bit is enabled for transfer operations. (SCI SDA pins are bus drive state.)
6	RCVD	0	R/W	Reception Disable
				This bit enables or disables the next operation while of and ICDRR is read.
				0: Enables next reception
				1: Disables next reception

Rev. 3.00 Sep. 14, 2006 Page 242 of 408 REJ09B0105-0300

				MST is cleared to 0 and slave receive mode is e
				Operating modes are described below according and TRS combination. When clocked synchrono format is selected and MST is 1, clock is output.
				00: Slave receive mode
				01: Slave transmit mode
				10: Master receive mode
				11: Master transmit mode
3 to 0	CKS3 to	All 0	R/W	Transfer Clock Select 3 to 0
	CKS0			These bits should be set according to the necess transfer rate (see table 15.2) in master mode. In mode, these bits are used reservation of the set transmit mode. The time is $10t_{cyc}$ when CKS3 = 0. $20t_{cyc}$ when CKS3 = 1.

		1	0	φ/112	44.6 KHZ	/1.4 kHz	89.3
			1	φ /128	39.1 kHz	62.5 kHz	78.1
1	0	0	0	φ/56	89.3 kHz	143 kHz	179
			1	φ/80	62.5 kHz	100 kHz	125
		1	0	φ/96	52.1 kHz	83.3 kHz	104
			1	φ /128	39.1 kHz	62.5 kHz	78.1
	1	0	0	φ /16 0	31.3 kHz	50.0 kHz	62.5
			1	ф/200	25.0 kHz	40.0 kHz	50.0
		1	0	ф/224	22.3 kHz	35.7 kHz	44.6
			1	ф/256	19.5 kHz	31.3 kHz	39.1

Rev. 3.00 Sep. 14, 2006 Page 244 of 408 REJ09B0105-0300

			SDA level changes from high to low under the cond SCL = high, assuming that the start condition has to issued. This bit is cleared to 0 when the SDA level from low to high under the condition of SCL = high, that the stop condition has been issued. Write 1 to 0 to SCP to issue a start condition. Follow this pro- when also re-transmitting a start condition. Write 0 and 0 in SCP to issue a stop condition. To issue st conditions, use the MOV instruction.
6	SCP	1	R/W Start/Stop Issue Condition Disable
			The SCP bit controls the issue of start/stop condition master mode.
			To issue a start condition, write 1 in BBSY and 0 in retransmit start condition is issued in the same way a stop condition, write 0 in BBSY and 0 in SCP. Th always read as 1. If 1 is written, the data is not stor
5	SDAO	1	R/W SDA Output Value Control
			This bit is used with SDAOP when modifying outpu SDA. This bit should not be manipulated during tra
			0: When reading, SDA pin outputs low.
			When writing, SDA pin is changed to output low
			1: When reading, SDA pin outputs high.
			When writing, SDA pin is changed to output Hi- high by external pull-up resistance).
4	SDAOP	1	R/W SDAO Write Protect
			This bit controls change of output level of the SDA modifying the SDAO bit. To change the output leve SDAO and SDAOP to 0 or set SDAO to 1 and clea to 0 by the MOV instruction. This bit is always read
			Rev. 3.00 Sep. 14, 2006 Pag REJ09

15.3.3 I²C Bus Mode Register (ICMR)

ICMR selects whether the MSB or LSB is transferred first, performs master mode wait co and selects the transfer bit count.

Bit	Bit Name	Initial Value	R/W	Description
7	MLS	0	R/W	MSB-First/LSB-First Select
				0: MSB-first
				1: LSB-first
				Set this bit to 0 when the I^2C bus format is used.
6	WAIT	0	R/W	Wait Insertion Bit
				In master mode with the I ² C bus format, this bit sele whether to insert a wait after data transfer except the acknowledge bit. When WAIT is set to 1, after the fa clock for the final data bit, low period is extended for transfer clocks. If WAIT is cleared to 0, data and acknowledge bits are transferred consecutively with inserted.
				The setting of this bit is invalid in slave mode with th format or with the clocked synchronous serial forma
5, 4	_	All 1	_	Reserved
				These bits are always read as 1.

Rev. 3.00 Sep. 14, 2006 Page 246 of 408 REJ09B0105-0300

1	DOT	0			
0	BC0	0	R/W	indicated. With the one addition ackne	maining number of transfer bits i e I ² C bus format, the data is trans owledge bit. Bit BC2 to BC0 setti n interval between transfer frame
				BC2 to BC0 are se should be made w to 000 at the end of	et to a value other than 000, the s /hile the SCL pin is low. The valu of a data transfer, including the With the clock synchronous seria
				I ² C Bus Format	Clock Synchronous Serial Fo
				000: 9 bits	000: 8 bits
				001: 2 bits	001: 1 bits
				010: 3 bits	010: 2 bits
				011: 4 bits	011: 3 bits
				100: 5 bits	100: 4 bits
				101: 6 bits	101: 5 bits
				110: 7 bits	110: 6 bits
				111: 8 bits	111: 7 bits

				1: Transmit data empty interrupt request (TXI) is ena
6	TEIE	0	R/W	Transmit End Interrupt Enable
				This bit enables or disables the transmit end interru the rising of the ninth clock while the TDRE bit in IC TEI can be canceled by clearing the TEND bit or the to 0.
				0: Transmit end interrupt request (TEI) is disabled.
				1: Transmit end interrupt request (TEI) is enabled.
5	RIE	0	R/W	Receive Interrupt Enable
				This bit enables or disables the receive data full interequest (RXI) and the overrun error interrupt request with the clocked synchronous format, when a receive transferred from ICDRS to ICDRR and the RDRF bit is set to 1. RXI can be canceled by clearing the RDF bit to 0.
				0: Receive data full interrupt request (RXI) and over interrupt request (ERI) with the clocked synchron format are disabled.
				1: Receive data full interrupt request (RXI) and over interrupt request (ERI) with the clocked synchron format are enabled.

Rev. 3.00 Sep. 14, 2006 Page 248 of 408 REJ09B0105-0300

			0: Stop condition detection interrupt request (STPI) disabled.
			1: Stop condition detection interrupt request (STPI) enabled.
ACKE	0	R/W	Acknowledge Bit Judgement Select
			0: The value of the receive acknowledge bit is igno continuous transfer is performed.
			1: If the receive acknowledge bit is 1, continuous tr halted.
ACKBR	0	R	Receive Acknowledge
			In transmit mode, this bit stores the acknowledge of are returned by the receive device. This bit cannot modified.
			0: Receive acknowledge = 0
			1: Receive acknowledge = 1
ACKBT	0	R/W	Transmit Acknowledge
			In receive mode, this bit specifies the bit to be sent acknowledge timing.
			0: 0 is sent at the acknowledge timing.
			1: 1 is sent at the acknowledge timing.
	ACKBR	ACKBR 0	ACKBR 0 R

			 When a start condition (including re-transfer) has issued
			 When transmit mode is entered from receive mo slave mode
			[Clearing conditions]
			 When 0 is written in TDRE after reading TDRE =
			When data is written to ICDRT with an instructio
6	TEND	0	R/W Transmit End
			[Setting conditions]
			 When the ninth clock of SCL rises with the l²C be while the TDRE flag is 1
			 When the final bit of transmit frame is sent with t synchronous serial format
			[Clearing conditions]
			 When 0 is written in TEND after reading TEND =
			 When data is written to ICDRT with an instructio
5	RDRF	0	R/W Receive Data Register Full
			[Setting condition]
			When a receive data is transferred from ICDRS
			[Clearing conditions]
			 When 0 is written in RDRF after reading RDRF =
			When ICDRR is read with an instruction

Rev. 3.00 Sep. 14, 2006 Page 250 of 408 REJ09B0105-0300

			 frame transfer In slave mode, when a stop condition is detect
			after the general call address or the first byte s address, next to detection of start condition, ac with the address set in SAR
			[Clearing condition]
			When 0 is written in STOP after reading STOP
2	AL/OVE	0	R/W Arbitration Lost Flag/Overrun Error Flag
			This flag indicates that arbitration was lost in mast with the l^2C bus format and that the final bit has be received while RDRF = 1 with the clocked synchro format.
			When two or more master devices attempt to seize at nearly the same time, if the I ² C bus interface de differing from the data it sent, it sets AL to 1 to indi the bus has been taken by another master.
			[Setting conditions]
			 If the internal SDA and SDA pin disagree at the SCL in master transmit mode
			 When the SDA pin outputs high in master mod start condition is detected
			 When the final bit is received with the clocked synchronous format while RDRF = 1
			[Clearing condition]
			When 0 is written in AL/OVE after reading AL/0

			[Clearing condition]		
			When 0 is written in AAS after reading AAS=1		
0	ADZ	0	R/W General Call Address Recognition Flag		
			This bit is valid in I ² C bus format slave receive mode		
			[Setting condition]		
			 When the general call address is detected in slar receive mode 		
			[Clearing condition]		
			When 0 is written in ADZ after reading ADZ=1		

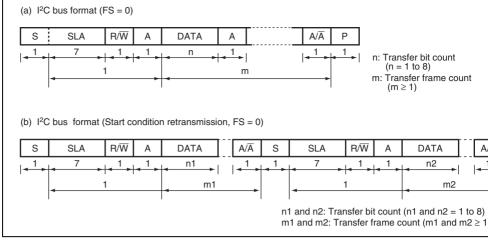
15.3.6 Slave Address Register (SAR)

SAR selects the communication format and sets the slave address. When the chip is in sla with the I²C bus format, if the upper 7 bits of SAR match the upper 7 bits of the first fram received after a start condition, the chip operates as the slave device.

BIt	Bit Name	Initial value	R/W	Description
7 to 1	SVA6 to	All 0	R/W	Slave Address 6 to 0
	SVA0			These bits set a unique address in bits SVA6 to SVA differing form the addresses of other slave devices connected to the I^2C bus.
0	FS	0	R/W	Format Select
				0: I ² C bus format is selected.
				1: Clocked synchronous serial format is selected.
-				

Bit	Bit Name	Initial Value	R/W	Description
-----	----------	---------------	-----	-------------

Rev. 3.00 Sep. 14, 2006 Page 252 of 408 REJ09B0105-0300



ICDRR is an 8-bit register that stores the receive data. When data of one byte is received transfers the receive data from ICDRS to ICDRR and the next data can be received. ICE receive-only register, therefore the CPU cannot write to this register. The initial value of is H'FF.

15.3.9 I²C Bus Shift Register (ICDRS)

ICDRS is a register that is used to transfer/receive data. In transmission, data is transferr ICDRT to ICDRS and the data is sent from the SDA pin. In reception, data is transferred ICDRS to ICDRR after data of one byte is received. This register cannot be read directly CPU.

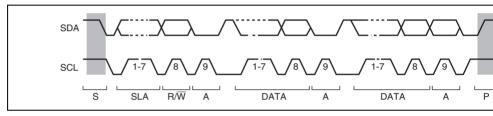


Figure 15.4 I²C Bus Timing

In master transmit mode, the master device outputs the transmit clock and transmit data, slave device returns an acknowledge signal. For master transmit mode operation timing, figures 15.5 and 15.6. The transmission procedure and operations in master transmit mode described below.

- 1. Set the ICE bit in ICCR1 to 1. Set the MLS and WAIT bits in ICMR and the CKS3 bits in ICCR1 to 1. (Initial setting)
- 2. Read the BBSY flag in ICCR2 to confirm that the bus is free. Set the MST and TRS ICCR1 to select master transmit mode. Then, write 1 to BBSY and 0 to SCP using N instruction. (Start condition issued) This generates the start condition.
- 3. After confirming that TDRE in ICSR has been set, write the transmit data (the first b show the slave address and R/\overline{W}) to ICDRT. At this time, TDRE is automatically clear and data is transferred from ICDRT to ICDRS. TDRE is set again.
- 4. When transmission of one byte data is completed while TDRE is 1, TEND in ICSR is at the rise of the 9th transmit clock pulse. Read the ACKBR bit in ICIER, and confir slave device has been selected. Then, write second byte data to ICDRT. When ACKE the slave device has not been acknowledged, so issue the stop condition. To issue the condition, write 0 to BBSY and SCP using MOV instruction. SCL is fixed low until transmit data is prepared or the stop condition is issued.
- 5. The transmit data after the second byte is written to ICDRT every time TDRE is set.
- 6. Write the number of bytes to be transmitted to ICDRT. Wait until TEND is set (the e byte data transmission) while TDRE is 1, or wait for NACK (NACKF in ICSR = 1) receive device while ACKE in ICIER is 1. Then, issue the stop condition to clear TE NACKF.
- 7. When the STOP bit in ICSR is set to 1, the operation returns to the slave receive mod

RENESAS

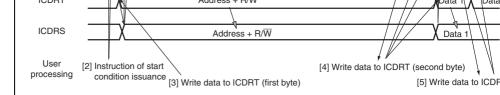


Figure 15.5 Master Transmit Mode Operation Timing (1)

Figure 15.6 Master Transmit Mode Operation Timing (2)

Rev. 3.00 Sep. 14, 2006 Page 256 of 408 REJ09B0105-0300

RENESAS

- level specified by ACKBT in ICIER to SDA, at the 9th receive clock pulse.
- 3. After the reception of first frame data is completed, the RDRF bit in ICST is set to 1 of 9th receive clock pulse. At this time, the receive data is read by reading ICDRR, a is cleared to 0.
- The continuous reception is performed by reading ICDRR every time RDRF is set. I
 receive clock pulse falls after reading ICDRR by the other processing while RDRF i
 fixed low until ICDRR is read.
- 5. If next frame is the last receive data, set the RCVD bit in ICCR1 to 1 before reading This enables the issuance of the stop condition after the next reception.
- 6. When the RDRF bit is set to 1 at rise of the 9th receive clock pulse, issue the stage c
- 7. When the STOP bit in ICSR is set to 1, read ICDRR. Then clear the RCVD bit to 0.
- 8. The operation returns to the slave receive mode.

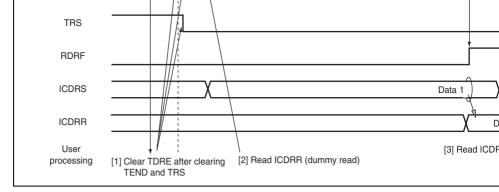


Figure 15.7 Master Receive Mode Operation Timing (1)

Rev. 3.00 Sep. 14, 2006 Page 258 of 408 REJ09B0105-0300

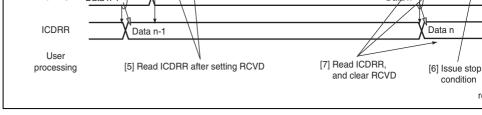


Figure 15.8 Master Receive Mode Operation Timing (2)

15.4.4 Slave Transmit Operation

In slave transmit mode, the slave device outputs the transmit data, while the master device the receive clock and returns an acknowledge signal. For slave transmit mode operation refer to figures 15.9 and 15.10.

The transmission procedure and operations in slave transmit mode are described below.

- Set the ICE bit in ICCR1 to 1. Set the MLS and WAIT bits in ICMR and the CKS3 t bits in ICCR1 to 1. (Initial setting) Set the MST and TRS bits in ICCR1 to select slav mode, and wait until the slave address matches.
- 2. When the slave address matches in the first frame following detection of the start conthe slave device outputs the level specified by ACKBT in ICIER to SDA, at the rise clock pulse. At this time, if the 8th bit data $(R\overline{N})$ is 1, the TRS and ICSR bits in IC set to 1, and the mode changes to slave transmit mode automatically. The continuous transmission is performed by writing transmit data to ICDRT every time TDRE is set.
- 3. If TDRE is set after writing last transmit data to ICDRT, wait until TEND in ICSR is with TDRE = 1. When TEND is set, clear TEND.
- 4. Clear TRS for the end processing, and read ICDRR (dummy read). SCL is free.
- 5. Clear TDRE.

RENESAS

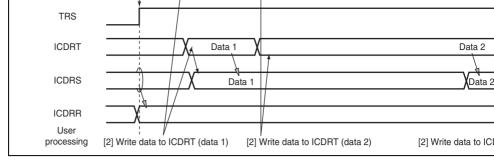


Figure 15.9 Slave Transmit Mode Operation Timing (1)

Rev. 3.00 Sep. 14, 2006 Page 260 of 408 REJ09B0105-0300

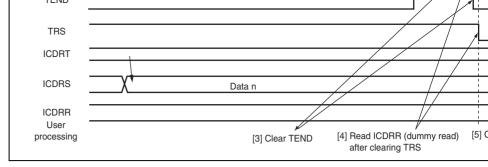


Figure 15.10 Slave Transmit Mode Operation Timing (2)

15.4.5 Slave Receive Operation

In slave receive mode, the master device outputs the transmit clock and transmit data, and slave device returns an acknowledge signal. For slave receive mode operation timing, refigures 15.11 and 15.12. The reception procedure and operations in slave receive mode a described below.

- 1. Set the ICE bit in ICCR1 to 1. Set the MLS and WAIT bits in ICMR and the CKS3 bits in ICCR1 to 1. (Initial setting) Set the MST and TRS bits in ICCR1 to select sla mode, and wait until the slave address matches.
- 2. When the slave address matches in the first frame following detection of the start count the slave device outputs the level specified by ACKBT in ICIER to SDA, at the rise clock pulse. At the same time, RDRF in ICSR is set to read ICDRR (dummy read). (read data show the slave address and R/W, it is not used.)
- 3. Read ICDRR every time RDRF is set. If 8th receive clock pulse falls while RDRF is fixed low until ICDRR is read. The change of the acknowledge before reading ICDF returned to the master device, is reflected to the next transmit frame.

Renesas

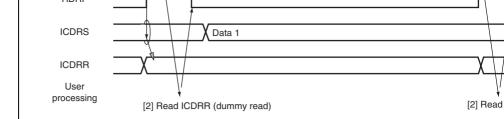


Figure 15.11 Slave Receive Mode Operation Timing (1)

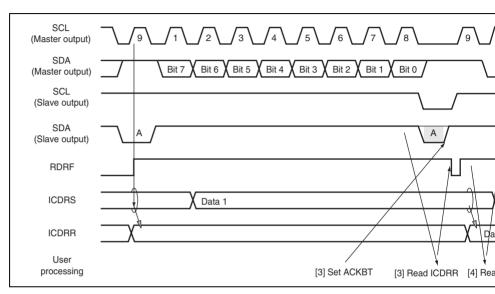
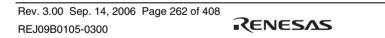



Figure 15.12 Slave Receive Mode Operation Timing (2)

of the SCL clock is guaranteed. The MLS bit in ICMR sets the order of data transfer, in MSB first or LSB first. The output level of SDA can be changed during the transfer wai SDAO bit in ICCR2.

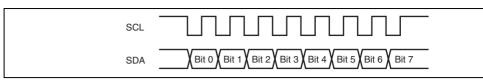


Figure 15.13 Clocked Synchronous Serial Transfer Format

(2) Transmit Operation:

In transmit mode, transmit data is output from SDA, in synchronization with the fall of a clock. The transfer clock is output when MST in ICCR1 is 1, and is input when MST is transmit mode operation timing, refer to figure 15.14. The transmission procedure and c in transmit mode are described below.

- 1. Set the ICE bit in ICCR1 to 1. Set the MST and CKS3 to CKS0 bits in ICCR1 to 1. (setting)
- 2. Set the TRS bit in ICCR1 to select the transmit mode. Then, TDRE in ICSR is set.
- 3. Confirm that TDRE has been set. Then, write the transmit data to ICDRT. The data transferred from ICDRT to ICDRS, and TDRE is set automatically. The continuous transmission is performed by writing data to ICDRT every time TDRE is set. When from transmit mode to receive mode, clear TRS while TDRE is 1.

Renesas

Figure 15.14 Transmit Mode Operation Timing

[3

(3) Receive Operation:

In receive mode, data is latched at the rise of the transfer clock. The transfer clock is outp MST in ICCR1 is 1, and is input when MST is 0. For receive mode operation timing, referigure 15.15. The reception procedure and operations in receive mode are described below

- 1. Set the ICE bit in ICCR1 to 1. Set the MST and CKS3 to CKS0 bits in ICCR1 to 1. (I setting)
- 2. When the transfer clock is output, set MST to 1 to start outputting the receive clock.
- 3. When the receive operation is completed, data is transferred from ICDRS to ICDRR a RDRF in ICSR is set. When MST = 1, the next byte can be received, so the clock is continually output. The continuous reception is performed by reading ICDRR every the RDRF is set. When the 8th clock is risen while RDRF is 1, the overrun is detected and AL/OVE in ICSR is set. At this time, the previous reception data is retained in ICDRI
- 4. To stop receiving when MST = 1, set RCVD in ICCR1 to 1, then read ICDRR. Then, fixed high after receiving the next byte data.

Rev. 3.00 Sep. 14, 2006 Page 264 of 408 REJ09B0105-0300

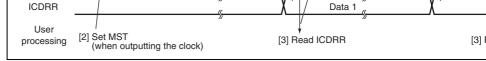
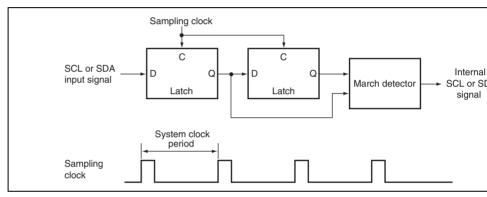
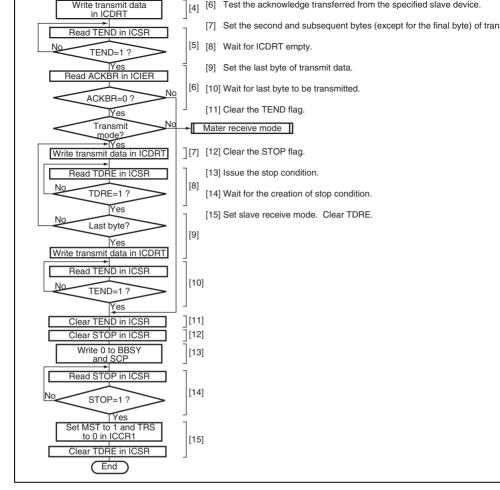


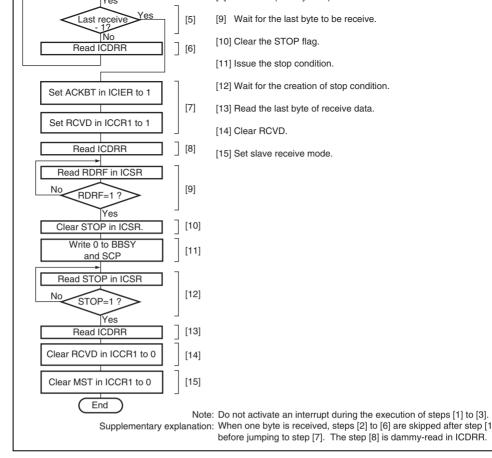
Figure 15.15 Receive Mode Operation Timing

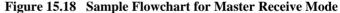
15.4.7 Noise Canceler

The logic levels at the SCL and SDA pins are routed through the noise canceler before before before a latched internally. Figure 15.16 shows a block diagram of the noise canceler.

The noise canceler consists of two cascaded latches and a match detector. The SCL (or sinput signal is sampled on the system clock, but is not passed forward to the next circuit outputs of both latches agree. If they do not agree, the previous value is held.


Figure 15.16 Block Diagram of Noise Canceler



Rev. 3.00 Sep. 14, 2006 Page 266 of 408 REJ09B0105-0300

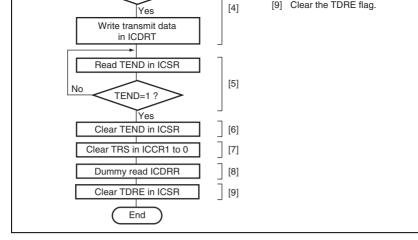


Figure 15.19 Sample Flowchart for Slave Transmit Mode

Rev. 3.00 Sep. 14, 2006 Page 268 of 408 REJ09B0105-0300

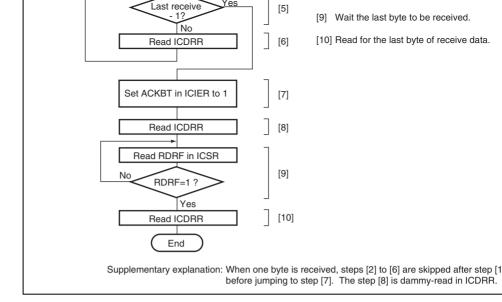


Figure 15.20 Sample Flowchart for Slave Receive Mode

I ransmit Data Empty	IXI	$(IDRE=1) \cdot (IIE=1)$	0	0
Transmit End	TEI	(TEND=1) · (TEIE=1)	0	0
Receive Data Full	RXI	(RDRF=1) • (RIE=1)	0	0
STOP Recognition	STPI	(STOP=1) ·(STIE=1)	0	×
NACK Receive	NAKI	{(NACKF=1)+(AL=1)} •	0	×
Arbitration Lost/Overrun Error	_	(NAKIE=1)	0	0

When interrupt conditions described in table 15.3 are 1 and the I bit in CCR is 0, the CPU executes an interrupt exception processing. Interrupt sources should be cleared in the exc processing. TDRE and TEND are automatically cleared to 0 by writing the transmit data ICDRT. RDRF are automatically cleared to 0 by reading ICDRR. TDRE is set to 1 again same time when transmit data is written to ICDRT. When TDRE is cleared to 0, then an o data of one byte may be transmitted.

Rev. 3.00 Sep. 14, 2006 Page 270 of 408 REJ09B0105-0300

Figure 15.21 shows the timing of the bit synchronous circuit and table 15.4 shows the tim SCL output changes from low to Hi-Z then SCL is monitored.

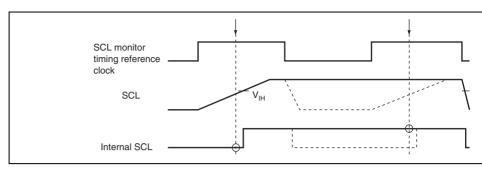


Figure 15.21 Timing of Bit Synchronous Circuit

Table 15.4	Time for	Monitoring	SCL
-------------------	----------	------------	-----

CKS3	CKS2	Time for Monitoring SCL
0	0	7.5 tcyc
	1	19.5 tcyc
1	0	17.5 tcyc
	1	41.5 tcyc

RENESAS

- Circuit, by the load of the SCL bus (load capacitance of pun-up resistance)
- 2. When the bit synchronous circuit is activated by extending the low period of eighth an clocks, that is driven by the slave device

15.7.2 WAIT Setting in I²C Bus Mode Register (ICMR)

If the WAIT bit is set to 1, and the SCL signal is driven low for two or more transfer cloc slave device at the eighth and ninth clocks, the high period of ninth clock may be shorten avoid this, set the WAIT bit in ICMR to 0.

Rev. 3.00 Sep. 14, 2006 Page 272 of 408 REJ09B0105-0300

- Conversion time: At least 7 µs per channel (at 10 MHz operation)
- Two operating modes
 - Single mode: Single-channel A/D conversion
 - Scan mode: Continuous A/D conversion on 1 to 4 channels
- Four data registers
 - Conversion results are held in a 16-bit data register for each channel
- Sample and hold function
- Two conversion start methods
 - Software
 - External trigger signal
- Interrupt request
 - An A/D conversion end interrupt request (ADI) can be generated

ADCMS32A_000020020200

RENESAS

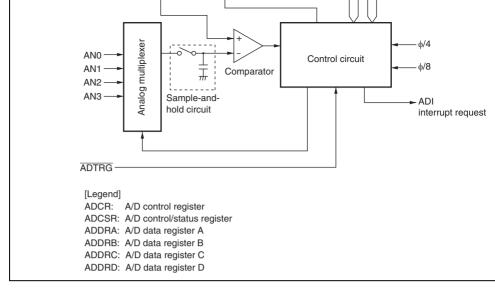


Figure 16.1 Block Diagram of A/D Converter

Rev. 3.00 Sep. 14, 2006 Page 274 of 408 REJ09B0105-0300

Analog input pin 2	ANZ	input	
Analog input pin 3	AN3	Input	
A/D external trigger input pin	ADTRG	Input	External trigger input pin for state conversion

16.3 Register Description

The A/D converter has the following registers.

- A/D data register A (ADDRA)
- A/D data register B (ADDRB)
- A/D data register C (ADDRC)
- A/D data register D (ADDRD)
- A/D control/status register (ADCSR)
- A/D control register (ADCR)

16.3.1 A/D Data Registers A to D (ADDRA to ADDRD)

There are four 16-bit read-only ADDR registers; ADDRA to ADDRD, used to store the A/D conversion. The ADDR registers, which store a conversion result for each channel, in table 16.2.

The converted 10-bit data is stored in bits 6 to 15. The lower 6 bits are always read as 0.

The data bus between the CPU and the A/D converter is 8 bits wide. The upper byte can directly from the CPU, however the lower byte should be read via a temporary register. It temporary register contents are transferred from the ADDR when the upper byte data is

Renesas

16.3.2 A/D Control/Status Register (ADCSR)

ADCSR consists of the control bits and conversion end status bits of the A/D converter.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	ADF	0	R/W	A/D End Flag
				[Setting conditions]
				When A/D conversion ends in single mode
				When A/D conversion ends on all the channel selected in scan mode
				[Clearing condition]
				• When 0 is written after reading ADF = 1
6	ADIE	0	R/W	A/D Interrupt Enable
				A/D conversion end interrupt (ADI) request enab ADF when 1 is set
5	ADST	0	R/W	A/D Start
				Setting this bit to 1 starts A/D conversion. In sing this bit is cleared to 0 automatically when conver the specified channel is complete. In scan mode conversion continues sequentially on the specifie channels until this bit is cleared to 0 by software, or a transition to standby mode.

Rev. 3.00 Sep. 14, 2006 Page 276 of 408 REJ09B0105-0300

				1: Conversion time =	70 states (max.)
				Clear the ADST bit to time.	0 before switching the co
2	CH2	0	R/W	Channel Select 0 to 2	
1	CH1	0	R/W	Select analog input cl	nannels.
0	CH0	0	R/W	When SCAN = 0	When SCAN = 1
				000: AN0	000: AN0
				001: AN1	001: AN0 to AN1
				010: AN2	010: AN0 to AN2
				011: AN3	011: AN0 to AN3
				or AN2, do not	g the A/D conversion throuset the VDDII bit in LVDC conversion accuracy is not

				the external trigger pin (ADTRG) conforms to the bit in the interrupt edge select register 2 (IEGR2)
6 to 4		All 1	_	Reserved
				These bits are always read as 1.
3, 2	—	All 0	R/W	Reserved
				Although these bits are readable/writable, they s be set to 1.
1		1	R/W	Reserved
				This bit is always read as 1.
0		0	R/W	Reserved
				Although this bit is readable/writable, it should no to 1.

Rev. 3.00 Sep. 14, 2006 Page 278 of 408 REJ09B0105-0300

channel as follows:

- 1. A/D conversion is started from the first channel when the ADST bit in ADCSR is s according to software or external trigger input.
- 2. When A/D conversion is completed, the result is transferred to the corresponding A register to the channel.
- 3. On completion of conversion, the ADF bit in ADCSR is set to 1. If the ADIE bit is this time, an ADI interrupt request is generated.
- 4. The ADST bit remains set to 1 during A/D conversion. When A/D conversion ends ADST bit is automatically cleared to 0 and the A/D converter enters the wait state.

16.4.2 Scan Mode

In scan mode, A/D conversion is performed sequentially for the analog input on the spectra channels (four channels maximum) as follows:

- 1. When the ADST bit is set to 1 by software, or external trigger input, A/D conversion the first channel in the group.
- 2. When A/D conversion for each channel is completed, the result is sequentially transfit the A/D data register corresponding to each channel.
- 3. When conversion of all the selected channels is completed, the ADF flag in ADCSR If the ADIE bit is set to 1 at this time, an ADI interrupt is requested. Conversion of t channel in the group starts again.
- 4. The ADST bit is not automatically cleared to 0. Steps [2] to [3] are repeated as long ADST bit remains set to 1. When the ADST bit is cleared to 0, A/D conversion stops

Renesas

In scan mode, the values given in table 16.3 apply to the first conversion time. In the second subsequent conversions, the conversion time is 128 states (fixed) when CKS = 0 and 66 s (fixed) when CKS = 1.

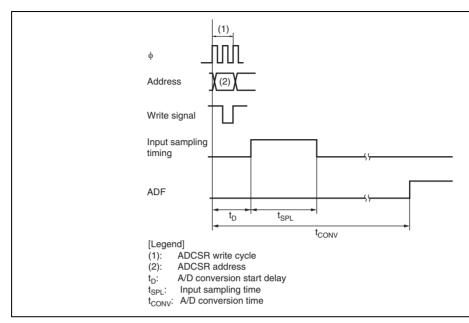


Figure 16.2 A/D Conversion Timing

Rev. 3.00 Sep. 14, 2006 Page 280 of 408 REJ09B0105-0300

10.4.4 External ringer input rinning

A/D conversion can also be started by an external trigger input. When the TRGE bit is s ADCR, external trigger input is enabled at the $\overline{\text{ADTRG}}$ pin. A falling edge at the $\overline{\text{ADTR}}$ pin sets the ADST bit to 1 in ADCSR, starting A/D conversion. Other operations, in bot and scan modes, are the same as when the bit ADST has been set to 1 by software. Figu shows the timing.

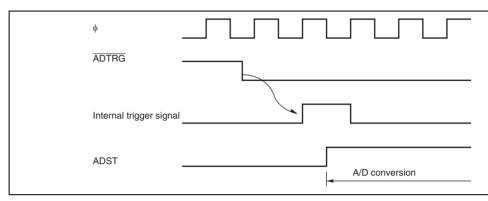


Figure 16.3 External Trigger Input Timing

when the digital output changes from the minimum voltage value 0000000000 to 000 (see figure 16.5).

• Full-scale error

The deviation of the analog input voltage value from the ideal A/D conversion charac when the digital output changes from 1111111110 to 111111111 (see figure 16.5).

• Nonlinearity error

The error with respect to the ideal A/D conversion characteristics between zero voltage full-scale voltage. Does not include offset error, full-scale error, or quantization error.

• Absolute accuracy

The deviation between the digital value and the analog input value. Includes offset errors are error, quantization error, and nonlinearity error.

Rev. 3.00 Sep. 14, 2006 Page 282 of 408 REJ09B0105-0300

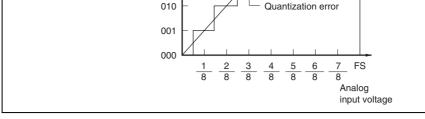


Figure 16.4 A/D Conversion Accuracy Definitions (1)

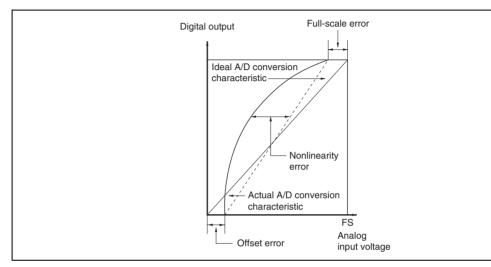


Figure 16.5 A/D Conversion Accuracy Definitions (2)

input resistance of 10 k Ω , and the signal source impedance is ignored. However, as a low filter effect is obtained in this case, it may not be possible to follow an analog signal with differential coefficient (e.g., 5 mV/µs or greater) (see figure 16.6). When converting a hig analog signal or converting in scan mode, a low-impedance buffer should be inserted.

16.6.2 Influences on Absolute Accuracy

Adding capacitance results in coupling with GND, and therefore noise in GND may adve affect absolute accuracy. Be sure to make the connection to an electrically stable GND.

Care is also required to ensure that filter circuits do not interfere with digital signals or ac antennas on the mounting board.

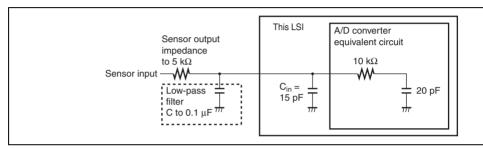
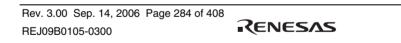



Figure 16.6 Analog Input Circuit Example

detection) and LVDR (reset by low voltage detection) circuits.

This circuit is used to prevent abnormal operation (program runaway) from occurring du power supply voltage fall and to recreate the state before the power supply voltage fall v power supply voltage rises again.

Even if the power supply voltage falls, the unstable state when the power supply voltage below the guaranteed operating voltage can be removed by entering standby mode wher exceeding the guaranteed operating voltage and during normal operation. Thus, system s can be improved. If the power supply voltage falls more, the reset state is automatically the power supply voltage rises again, the reset state is held for a specified period, then are is automatically entered.

Figure 17.2 is a block diagram of the power-on reset circuit and the low-voltage detection

PSCKT00A_000020020200

RENESAS

voltage falls below a given value.

LVDI: Monitors the power-supply voltage, and generates an interrupt when the voltage below or rises above respective given values.

Two detection levels for reset generation voltage are available: when only the LVDR used, or when the LVDI and LVDR circuits are both used.

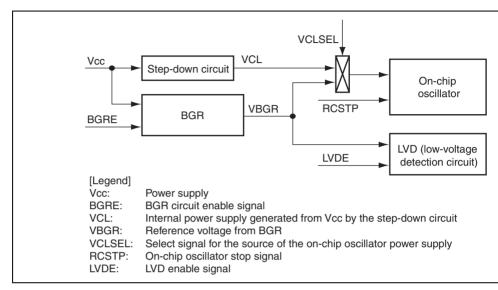


Figure 17.1 Block Diagram around BGR

Rev. 3.00 Sep. 14, 2006 Page 286 of 408 REJ09B0105-0300

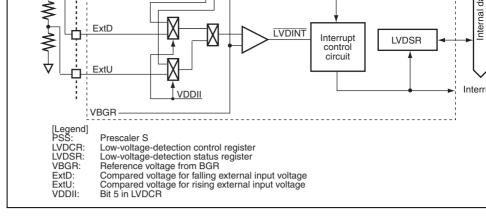


Figure 17.2 Block Diagram of Power-On Reset Circuit and Low-Voltage Detection

disables the LVDR circuit, and enables or disables generation of an interrupt when the po supply voltage rises above or falls below the respective levels.

Table 17.1 shows the relationship between the LVDCR settings and functions to be select LVDCR should be set according to table 17.1.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	LVDE	1*	R/W	LVD Enable
				0: Low-voltage detection circuit is not used (stan mode)
				1: Low-voltage detection circuit is used
6	BGRE	1*	R/W	BGR Enable
				0: BGR circuit is not used (standby mode)
				1: BGR circuit is used
5	VDDII	1*	R/W	LVDR External Compared Voltage Input Inhibit
				0: Use external voltage as LVDI compared volta
				1: Use internal voltage as LVDI compared voltage
4	_	1		Reserved
				This bit is always read as 1 and cannot be modif

Rev. 3.00 Sep. 14, 2006 Page 288 of 408 REJ09B0105-0300

				1: Enables an LVDR
1	LVDDE	0	R/W	Voltage-Fall-Interrupt Enable
				0: Interrupt on the power-supply voltage falling
				1: Interrupt on the power-supply voltage falling
0	LVDUE	0	R/W	Voltage-Rise-Interrupt Enable
				0: Interrupt on the power-supply voltage rising of
				1: Interrupt on the power-supply voltage rising e

Note: * Not initialized by an LVDR but initialized by a power-on reset or a watchdog t

		L	VDCR Se		Select	t Functions			
LVDE	BGRE	VDDII	LVDSEL	LVDRE	LVDDE	LVDUE	Power-On Reset	LVDR	Low- Voltage- Detection Fall Interrupt
0	*1	*2	*2	*2	*2	*2	\checkmark	_	_
1	1	*1	1	1	0	0	\checkmark		_
1	1	*1	0	0	1	0	\checkmark	_	
1	1	*1	0	0	1	1	\checkmark	_	
1	1	*1	0	1	1	1	\checkmark		

Notes: 1. Set these bits if necessary.

2. Settings are ignored.

RENESAS

				· · · · · · · · · · · · · · · · · · ·
				 When the power-supply voltage falls below V (Typ. = 3.7 V)
				[Clearing condition]
				• When writing 0 to this bit after reading it as 1
0	LVDUF	0*	R/W	LVD Power-Supply Voltage Rise Flag
				[Setting condition]
				 When the power supply voltage falls below V while the LVDUE bit in LVDCR is set to 1 and rises above Vint (U) (Typ. = 4.0 V) before fall below Vreset1 (Typ. = 2.3 V)
				[Clearing condition]
				• When writing 0 to this bit after reading it as 1
Note:	* Initialize	d by an LVD	R.	

Rev. 3.00 Sep. 14, 2006 Page 290 of 408 REJ09B0105-0300

noise filter circuit which removes noise with less than 400 ns (Typ.) is included to preve incorrect operation of this LSI caused by noise on the $\overline{\text{RES}}$ signal.

To achieve stable operation of this LSI, the power supply needs to rise to its full level at within the specified time. The maximum time required for the power supply to rise and (t_{PWON}) is determined by the oscillation frequency (f_{osc}) and capacitance which is connect pin $(\overline{C_{RES}})$. Where t_{PWON} is assumed to be the time required to reach 90 % of the full level power supply, the power supply circuit should be designed to satisfy the following form

 $t_{_{PWON}} \text{ (ms)} \le 90 \times C_{\overline{RES}} \text{ (}\mu\text{F)} + 162/f_{_{OSC}} \text{ (MHz)}$

($t_{PWON} \le 3000$ ms, $C_{\overline{RES}} \ge 0.22 \ \mu F$, and $f_{OSC} = 10$ in 2-MHz to 10-MHz operation

Note that the power supply voltage (Vcc) must fall below Vpor = 100 mV to remove charges pin. After that, it can be risen. To remove charge on the $\overline{\text{RES}}$ pin, it is recommended diode should be placed to Vcc. If the power supply voltage (Vcc) rises from the point abla a power-on reset may not occur.

Figure 17.3 Operational Timing of Power-On Reset Circuit

17.3.2 Low-Voltage Detection Circuit

(1) LVDR (Reset by Low Voltage Detection) Circuit

Figure 17.4 shows the timing of the operation of the LVDR circuit. The LVDR circuit is a after a power-on reset is released. To cancel the LVDR circuit, first the LVDRE bit in LV should be cleared to 0 and then the LVDE bit in LVDCR and, if necessary, the BGRE bit be cleared to 0. The LVDE and the BGRE bits must not be cleared to 0 simultaneously w LVDRE bit because incorrect operation may occur. To restart the LVDR circuit, set the L and the BGRE bit to 1, wait for 50 μ s (t_{LVDON}) given by a software timer until the reference and the low-voltage-detection power supply have settled, then set the LVDRE bit to 1. At the output settings of ports must be made.

When the power-supply voltage falls below the Vreset voltage (2.3 V or 3.6 V (Typ.)), the circuit clears the $\overline{\text{LVDRES}}$ signal to 0, and resets prescaler S. The low-voltage detection remains in place until a power-on reset is generated. When the power-supply voltage rises the Vreset voltage again, prescaler S starts counting. It counts 131,072 clock (ϕ) cycles, a releases the internal reset signal. In this case, the LVDE, BGRE, VDDII, LVDSEL, and I bits in LVDCR are not initialized.

Note that if the power supply voltage (Vcc) falls below $V_{LVDRmin} = 1.0$ V and then rises fro point, the low-voltage detection reset may not occur.

If the power supply voltage (Vcc) falls below Vpor = 100 mV, a power-on reset occurs.

Rev. 3.00 Sep. 14, 2006 Page 292 of 408 REJ09B0105-0300

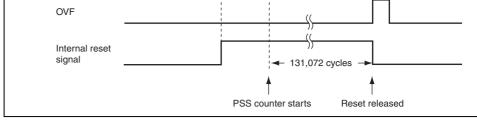


Figure 17.4 Operating Timing of LVDR Circuit

(2) Low Voltage Detection Interrupt (LVDI) Circuit (When Internally Generated Voltage is used for Detection)

Figure 17.5 shows the timing of the operation of the LVDI circuit.

The LVDI circuit is enabled after a power-on reset, however, the interrupt request is dis enable the LVDI, the LVDDF bit and LVDUF bit in LVDSR must be cleared to 0 and the LVDDE bit or LVDUE bit in LVDCR must be set to 1. After that, the output settings of must be made.

To cancel the LVDI, follow the procedures written in section 17.3.2 (4), Operating Proc Enabling/Disabling LVDR and LVDI Circuits.

To restart the LVDI circuit after standby mode, set the LVDE bit to 1, write 1 to VDDII necessary), and wait for 50 μ s (t_{LVDON}) given by a software timer until the reference volta low-voltage detection power supply have settled. Then, clear the LVDDF and LVDUF b and set the LVDDE or the LVDUE bit to 1. After that, the output settings of ports must

When the power-supply voltage falls below Vint (D) (Typ. = 3.7 V) voltage, the LVDI clears the $\overline{\text{LVDINT}}$ signal to 0 and sets the LVDDF bit to 1. If the LVDDE bit is 1 at the IRQ0 interrupt request is generated. In this case, the necessary data must be saved in the

Renesas

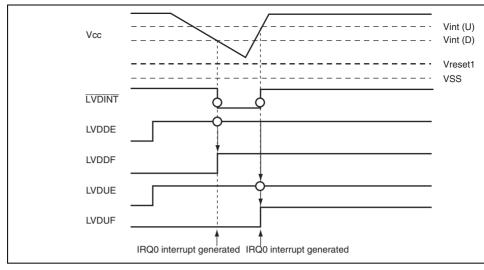


Figure 17.5 Operational Timing of LVDI Circuit

Rev. 3.00 Sep. 14, 2006 Page 294 of 408 REJ09B0105-0300

To cancel the LVDI, follow the procedures written in section 17.3.2 (4), Operating Proc Enabling/Disabling LVDR and LVDI Circuits.

When the external comparison voltage of ExtD pin falls below the Vexd (D) (Typ. = 1.1 voltage, the LVDI clears the $\overline{\text{LVDINT}}$ signal to 0 and sets the LVDDF bit in LVDSR to LVDDE bit is 1 at this time, an IRQ0 interrupt request is generated. In this case, the nec data must be saved in the external EEPROM, and a transition to standby mode or subsle must be made. Until this processing is completed, the power supply voltage must be hig the lower limit of the guaranteed operating voltage.

When the power-supply voltage does not fall below the Vreset1 (Typ. = 2.3 V) voltage a input voltage of the ExtU pin rises above Vexd (Typ. = 1.15 V) voltage, the LVDI circu LVDINT signal to 1. If the LVDUE bit is 1 at this time, the LVDUF bit in LVDSR is see an IRQ0 interrupt request is generated.

If the power supply voltage falls below the Vreset1 (Typ. = 2.3 V) voltage, this LSI entervoltage detection reset operation. When the voltages input on the ExtU and ExtD pins at the compared voltage, ensure to use the LVDR (reset detection voltage: Typ. = 2.3 V) c

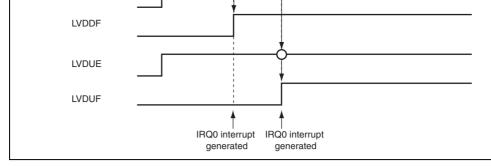


Figure 17.6 Operational Timing of LVDI Circuit (When Compared Voltage is through ExtU and ExtD Pins)

Rev. 3.00 Sep. 14, 2006 Page 296 of 408 REJ09B0105-0300

When the voltages input on the ExtU and ExtD pins are used as the compared volta the LVDDII bit to 0.

Wait for 50 μs (t_{LVDON}) given by a software timer until the reference voltage and the voltage-detection power supply have settled. Then, clear the LVDDF and LVDUF to LVDSR to 0 and set the LVDRE, LVDDE, and LVDUE bits in LVDCR to 1, if nec

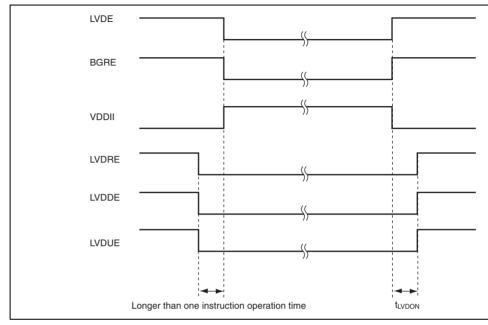


Figure 17.7 Timing for Enabling/Disabling of Low-Voltage Detection Circ

RENESAS

Rev. 3.00 Sep. 14, 2006 Page 298 of 408 REJ09B0105-0300

18.1 When Using Internal Power Supply Step-Down Circuit

Connect the external power supply to the V_{cc} pin, and connect a capacitance of approxim μ F between V_{cc} and V_{ss} , as shown in figure 18.1. The internal step-down circuit is made simply by adding this external circuit. In the external circuit interface, the external power voltage connected to V_{cc} and the GND potential connected to V_{ss} are the reference levels example, for port input/output levels, the V_{cc} level is the reference for the high level, and level is that for the low level. The A/D converter analog power supply is not affected by internal step-down circuit.

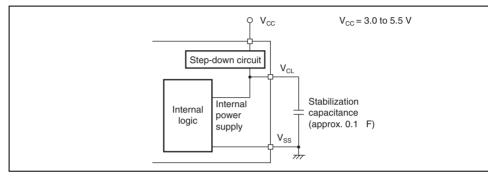


Figure 18.1 Power Supply Connection when Internal Step-Down Circuit is

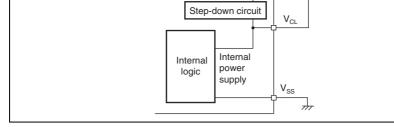


Figure 18.2 Power Supply Connection when Internal Step-Down Circuit is Not

Rev. 3.00 Sep. 14, 2006 Page 300 of 408 REJ09B0105-0300

- The number of access states is indicated.
- 2. Register bits
- Bit configurations of the registers are described in the same order as the register add
- Reserved bits are indicated by in the bit name column.
- When registers consist of 16 bits, bits are described from the MSB side.
- 3. Register states in each operating mode
- Register states are described in the same order as the register addresses.
- The register states described here are for the basic operating modes. If there is a spec for an on-chip peripheral module, refer to the section on that on-chip peripheral mod

Low-voltage-detection status register	LVDSR	8	H'F731	Low-voltage detection circuit	8
Clock control status register	CKCSR	8	H'F734	Clock oscillator	8
RC control register	RCCR	8	H'F735	On-chip oscillator	8
RC trimming data protect register	RCTRMDPR	8	H'F736	On-chip oscillator	8
RC trimming data register	RCTRMDR	8	H'F737	On-chip oscillator	8
I ² C bus control register 1	ICCR1	8	H'F748	IIC2	8
I ² C bus control register 2	ICCR2	8	H'F749	IIC2	8
I ² C bus mode register	ICMR	8	H'F74A	IIC2	8
I ² C bus interrupt enable register	ICIER	8	H'F74B	IIC2	8
I ² C bus status register	ICSR	8	H'F74C	IIC2	8
Slave address register	SAR	8	H'F74D	IIC2	8
I ² C bus transmit data register	ICDRT	8	H'F74E	IIC2	8
I ² C bus receive data register	ICDRR	8	H'F74F	IIC2	8
Timer mode register B1	TMB1	8	H'F760	Timer B1	8
Timer counter B1/Timer load register B1	TCB1(R)/ TLB1 (W)	8	H'F761	Timer B1	8
Timer mode register W	TMRW	8	H'FF80	Timer W	8
Timer control register W	TCRW	8	H'FF81	Timer W	8
Timer interrupt enable register W	TIERW	8	H'FF82	Timer W	8
Timer status register W	TSRW	8	H'FF83	Timer W	8

Rev. 3.00 Sep. 14, 2006 Page 302 of 408 REJ09B0105-0300

RENESAS

riash memory control register i		0			0
Flash memory control register 2	FLMCR2	8	H'FF91	ROM	8
Erase block register 1	EBR1	8	H'FF93	ROM	8
Flash memory enable register	FENR	8	H'FF9B	ROM	8
Timer control register V0	TCRV0	8	H'FFA0	Timer V	8
Timer control/status register V	TCSRV	8	H'FFA1	Timer V	8
Timer constant register A	TCORA	8	H'FFA2	Timer V	8
Timer constant register B	TCORB	8	H'FFA3	Timer V	8
Timer counter V	TCNTV	8	H'FFA4	Timer V	8
Timer control register V1	TCRV1	8	H'FFA5	Timer V	8
Serial mode register	SMR	8	H'FFA8	SCI3	8
Bit rate register	BRR	8	H'FFA9	SCI3	8
Serial control register 3	SCR3	8	H'FFAA	SCI3	8
Transmit data register	TDR	8	H'FFAB	SCI3	8
Serial status register	SSR	8	H'FFAC	SCI3	8
Receive data register	RDR	8	H'FFAD	SCI3	8
Sampling mode register	SPMR	8	H'FFAE	SCI3	8
A/D data register A	ADDRA	16	H'FFB0	A/D converter	8
A/D data register B	ADDRB	16	H'FFB2	A/D converter	8
A/D data register C	ADDRC	16	H'FFB4	A/D converter	8
A/D data register D	ADDRD	16	H'FFB6	A/D converter	8
A/D control/status register	ADCSR	8	H'FFB8	A/D converter	8
A/D control register	ADCR	8	H'FFB9	A/D converter	8
Timer control/status register WD	TCSRWD	8	H'FFC0	WDT* ²	8

Renesas

Dicar data register L	DDHL	0		Address break	0
Port pull-up control register 1	PUCR1	8	H'FFD0	I/O port	8
Port pull-up control register 5	PUCR5	8	H'FFD1	I/O port	8
Port data register 1	PDR1	8	H'FFD4	I/O port	8
Port data register 2	PDR2	8	H'FFD5	I/O port	8
Port data register 5	PDR5	8	H'FFD8	I/O port	8
Port data register 7	PDR7	8	H'FFDA	I/O port	8
Port data register 8	PDR8	8	H'FFDB	I/O port	8
Port data register B	PDRB	8	H'FFDD	I/O port	8
Port data register C	PDRC	8	H'FFDE	I/O port	8
Port mode register 1	PMR1	8	H'FFE0	I/O port	8
Port mode register 5	PMR5	8	H'FFE1	I/O port	8
Port control register 1	PCR1	8	H'FFE4	I/O port	8
Port control register 2	PCR2	8	H'FFE5	I/O port	8
Port control register 5	PCR5	8	H'FFE8	I/O port	8
Port control register 7	PCR7	8	H'FFEA	I/O port	8
Port control register 8	PCR8	8	H'FFEB	I/O port	8
Port control register C	PCRC	8	H'FFEE	I/O port	8
System control register 1	SYSCR1	8	H'FFF0	Power-down	8
System control register 2	SYSCR2	8	H'FFF1	Power-down	8
Interrupt edge select register 1	IEGR1	8	H'FFF2	Interrupts	8
Interrupt edge select register 2	IEGR2	8	H'FFF3	Interrupts	8
Interrupt enable register 1	IENR1	8	H'FFF4	Interrupts	8
Interrupt enable register 2	IENR2	8	H'FFF5	Interrupts	8

Rev. 3.00 Sep. 14, 2006 Page 304 of 408 REJ09B0105-0300

RENESAS

2. WDT: Watchdog timer

								(
RCCR	RCSTP	FSEL	VCLSEL	_	_	_	RCPSC1	RCPSC0 (
RCTRMDPR	WRI	PRWE	LOCKDW	TRMDRWE	—	_	—	
RCTRMDR	TRMD7	TRMD6	TRMD5	TRMD4	TRMD3	TRMD2	TRMD1	TRMD0
ICCR1	ICE	RCVD	MST	TRS	CKS3	CKS2	CKS1	CKS0 I
ICCR2	BBSY	SCP	SDAO	SDAOP	SCLO	_	IICRST	_
ICMR	MLS	WAIT	_	—	BCWP	BC2	BC1	BC0
ICIER	TIE	TEIE	RIE	NAKIE	STIE	ACKE	ACKBR	ACKBT
ICSR	TDRE	TEND	RDRF	NACKF	STOP	AL/OVE	AAS	ADZ
SAR	SVA6	SVA5	SVA4	SVA3	SVA2	SVA1	SVA0	FS
ICDRT	ICDRT7	ICDRT6	ICDRT5	ICDRT4	ICDRT3	ICDRT2	ICDRT1	ICDRT0
ICDRR	ICDRR7	ICDRR6	ICDRR5	ICDRR4	ICDRR3	ICDRR2	ICDRR1	ICDRR0
TMB1	TMB17	_		_	_	TMB12	TMB11	TMB10
TCB1 (R)/ TLB1 (W)	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
TMRW	CTS	_	BUFEB	BUFEA	_	PWMD	PWMC	PWMB 1
TCRW	CCLR	CKS2	CKS1	CKS0	TOD	TOC	ТОВ	TOA
TIERW	OVIE	_	_	_	IMIED	IMIEC	IMIEB	IMIEA
TSRW	OVF	_	_	_	IMFD	IMFC	IMFB	IMFA
TIOR0	_	IOB2	IOB1	IOB0	_	IOA2	IOA1	IOA0
TIOR1	_	IOD2	IOD1	IOD0	_	IOC2	IOC1	IOC0
TCNT	TCNT15	TCNT14	TCNT13	TCNT12	TCNT11	TCNT10	TCNT9	TCNT8
	TCNT7	TCNT6	TCNT5	TCNT4	TCNT3	TCNT2	TCNT1	TCNT0
GRA	GRA15	GRA14	GRA13	GRA12	GRA11	GRA10	GRA9	GRA8
	GRA7	GRA6	GRA5	GRA4	GRA3	GRA2	GRA1	GRA0
GRB	GRB15	GRB14	GRB13	GRB12	GRB11	GRB10	GRB9	GRB8
	GRB7	GRB6	GRB5	GRB4	GRB3	GRB2	GRB1	GRB0

Rev. 3.00 Sep. 14, 2006 Page 306 of 408 REJ09B0105-0300

RENESAS

	011120		0112	002111	002110	ONOL	01101	01100	
TCSRV	CMFB	CMFA	OVF	_	OS3	OS2	OS1	OS0	_
TCORA	TCORA7	TCORA6	TCORA5	TCORA4	TCORA3	TCORA2	TCORA1	TCORA0	_
TCORB	TCORB7	TCORB6	TCORB5	TCORB4	TCORB3	TCORB2	TCORB1	TCORB0	
TCNTV	TCNTV7	TCNTV6	TCNTV5	TCNTV4	TCNTV3	TCNTV2	TCNTV1	TCNTV0	-
TCRV1	_	_	_	TVEG1	TVEG0	TRGE	_	ICKS0	-
SMR	COM	CHR	PE	PM	STOP	MP	CKS1	CKS0	S
BRR	BRR7	BRR6	BRR5	BRR4	BRR3	BRR2	BRR1	BRR0	-
SCR3	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	-
TDR	TDR7	TDR6	TDR5	TDR4	TDR3	TDR2	TDR1	TDR0	-
SSR	TDRE	RDRF	OER	FER	PER	TEND	MPBR	MPBT	-
RDR	RDR7	RDR6	RDR5	RDR4	RDR3	RDR2	RDR1	RDR0	-
SPMR		_				STDSPM	_	_	-
ADDRA	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	A
	AD1	AD0				_	_	_	-
ADDRB	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	-
	AD1	AD0	_	_	_	_	_	_	-
ADDRC	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	-
	AD1	AD0	—	_	_	—	_	_	-
ADDRD	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	-
	AD1	AD0	_	_	_	_	_	_	-
ADCSR	ADF	ADIE	ADST	SCAN	CKS	CH2	CH1	CH0	-
ADCR	TRGE	_	_	_	_	_	_	_	-
TCSRWD	B6WI	TCWE	B4WI	TCSRWE	B2WI	WDON	B0WI	WRST	W
TCWD	TCWD7	TCWD6	TCWD5	TCWD4	TCWD3	TCWD2	TCWD1	TCWD0	-
TMWD	_	_	_	_	CKS3	CKS2	CKS1	CKS0	-

PDR1	P17	—	_	P14	_	_	—	_	-
PDR2	_		_	_	_	P22	P21	P20	-
PDR5	P57	P56	P55	_	_	_	_	_	-
PDR7	_	P76	P75	P74	_	_	_	_	-
PDR8	_		_	P84	P83	P82	P81	P80	-
PDRB	_		_	_	PB3	PB2	PB1	PB0	-
PDRC	_			_	_	_	PC1	PC0	-
PMR1	IRQ3		_	IRQ0	_	_	TXD	_	-
PMR5	_		WKP5	_	_	_	_	_	-
PCR1	PCR17			PCR14	_	_			-
PCR2	_		_	_	_	PCR22	PCR21	PCR20	-
PCR5	PCR57	PCR56	PCR55	_	_	_	_	_	-
PCR7	_	PCR76	PCR75	PCR74	_	_	_	—	-
PCR8	_	—	_	PCR84	PCR83	PCR82	PCR81	PCR80	-
PCRC	_			_	_	_	PCRC1	PCRC0	-
SYSCR1	SSBY	STS2	STS1	STS0	_	_	_	_	Po
SYSCR2	SMSEL	—	DTON	MA2	MA1	MA0	_	—	-
IEGR1	_			_	IEG3	_		IEG0	Inte
IEGR2	_	—	WPEG5	_	_	_	_	—	-
IENR1	IENDT		IENWP	_	IEN3	_		IEN0	-
IENR2	_		IENTB1	_	_	_			-
IRR1	IRRDT	_	_	_	IRRI3	—	_	IRRI0	-
IRR2	_	_	IRRTB1	_	_	_	_	_	-
IWPR	_		IWPF5	_	_	_			-
MSTCR1	_	MSTIIC	MSTS3	MSTAD	MSTWD	MSTTW	MSTTV	_	Po
MSTCR2	_	_	—	MSTTB1	_	—	—	_	-

Note: * WDT:Watchdog timer

Rev. 3.00 Sep. 14, 2006 Page 308 of 408 REJ09B0105-0300

RENESAS

ICCR1	Initialized	_	_	—		IIC2
ICCR2	Initialized	_	_	—	—	
ICMR	Initialized	_	_	_	_	
ICIER	Initialized	_	_	_	_	
ICSR	Initialized	—	—	—	—	
SAR	Initialized	—	—	—	—	
ICDRT	Initialized	_	_	_	_	
ICDRR	Initialized	_	_	—	—	_
TMB1	Initialized	—	—	—	—	Timer B1
TCB1/TLB1	Initialized	_	—	_	—	
TMRW	Initialized	_	_	_	-	Timer W
TCRW	Initialized	—	—	—	—	
TIERW	Initialized	_	_	_	_	_
TSRW	Initialized	_	_	—	—	
TIOR0	Initialized	_	_	_	_	
TIOR1	Initialized	_	_	_	_	
TCNT	Initialized	—	—	—	—	
GRA	Initialized	—	—	—	—	
GRB	Initialized	—	—	—	—	_
GRC	Initialized	—	—	—	—	
GRD	Initialized	—	—	—	—	
FLMCR1	Initialized	—	—	Initialized	Initialized	ROM
FLMCR2	Initialized	—	—	Initialized	Initialized	
EBR1	Initialized		_	Initialized	Initialized	_
FENR	Initialized	_	_	Initialized	Initialized	
TCRV0	Initialized	_	_	Initialized	Initialized	Timer V

RENESAS

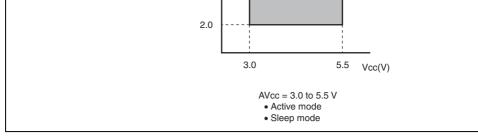
1011	n na an 200			initian200	in indian 200	
SSR	Initialized	_	—	Initialized	Initialized	-
RDR	Initialized	_	_	Initialized	Initialized	_
SPMR	Initialized	_	_	Initialized	Initialized	_
ADDRA	Initialized	_	_	Initialized	Initialized	A/D converter
ADDRB	Initialized	_	_	Initialized	Initialized	_
ADDRC	Initialized	_	_	Initialized	Initialized	_
ADDRD	Initialized	_	_	Initialized	Initialized	_
ADCSR	Initialized	_	_	Initialized	Initialized	_
ADCR	Initialized	_	_	Initialized	Initialized	_
TCSRWD	Initialized	_	_		_	WDT*
TCWD	Initialized	_	_		_	_
TMWD	Initialized	_	_	—	_	_
ABRKCR	Initialized	_	_		_	Address Break
ABRKSR	Initialized	_	_	_	_	_
BARH	Initialized	_	_		_	_
BARL	Initialized	_	_		_	_
BDRH	Initialized	_	_	_	_	_
BDRL	Initialized	_	_		_	_
PUCR1	Initialized	_	_		_	I/O port
PUCR5	Initialized	_	_	—	_	_
PDR1	Initialized	_	_	—	_	_
PDR2	Initialized	_	_	_	_	_
PDR5	Initialized	_	_	_	_	_
PDR7	Initialized	_	_	_	_	_
PDR8	Initialized	_	_	_	_	_
PDRB	Initialized	_	_	_	_	_

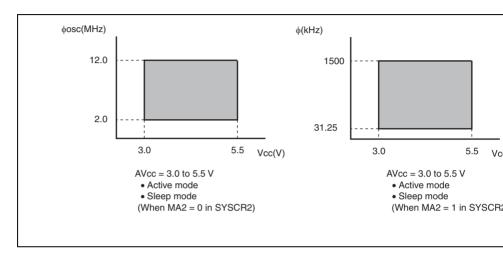
Rev. 3.00 Sep. 14, 2006 Page 310 of 408 REJ09B0105-0300

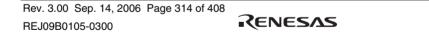
1 0110	n na an 200					
SYSCR1	Initialized	_	_	_	_	Power-down
SYSCR2	Initialized	_	—	—	—	
IEGR1	Initialized	_	_	_	_	Interrupts
IEGR2	Initialized	—	—	—	—	
IENR1	Initialized	_	—	—	—	
IENR2	Initialized	_	_	_	_	
IRR1	Initialized	—	_	_	_	
IRR2	Initialized	_	—	—	—	
IWPR	Initialized	_	_	_	_	
MSTCR1	Initialized	_	_	_	_	Power-down
MSTCR2	Initialized	_	—	_	_	

Note: — is not initialized

* WDT: Watchdog timer


Rev. 3.00 Sep. 14, 2006 Page 312 of 408 REJ09B0105-0300


· · · ·	IN		
Port B		–0.3 to AV _{cc} +0.3	3 V
Operating temperature	T_{opr}	-20 to +75	°C
Storage temperature	T_{stg}	-55 to +125	°C
Note: * Permanent damage may result if r	naximum rat	tings are exceeded. No	ormal on


Note: * Permanent damage may result if maximum ratings are exceeded. Normal operation should be under the conditions specified in Electrical Characteristics. Exceed values can result in incorrect operation and reduced reliability.

2. Power supply voltage and operating frequency range

Vcc = 3.0 to 5.5 V
 Active mode
 Sleep mode

		FTIOA to FTIOD, SCK3, TRGV					
		RXD, SCL, SDA,	V_{cc} = 4.0 V to 5.5 V	$V_{cc} imes 0.7$		V _{cc} + 0.3	V
		P17, P14, P22 to P20, P57 to P55,		$V_{cc} \times 0.8$	_	V _{cc} + 0.3	V
		P76 to P74, P84 to P80, PC1, PC0					
		PB3 to PB0	$\mathrm{AV}_{\mathrm{cc}}$ = 4.0 V to 5.5 V	$AV_{cc} imes 0.7$	—	$AV_{cc} + 0.3$	V
			AV_{cc} = 3.0 V to 5.5 V	$AV_{cc} imes 0.8$		$AV_{cc} + 0.3$	V
		OSC1	V_{cc} = 4.0 V to 5.5 V	$V_{\rm cc} - 0.5$	_	V _{cc} + 0.3	V
				$V_{\rm cc} - 0.3$		V _{cc} + 0.3	V
Input low voltage	V _{IL}	IRQ0, IRQ3, ADTRG, TMRIV,	$V_{cc} = 4.0 \text{ V} \text{ to } 5.5 \text{ V}$	-0.3	_	V _{cc} ×0.2	V
		TMCIV, FTCI, FTIOA to FTIOD, SCK3, TRGV		-0.3		V _{cc} ×0.1	V
		P17, P14, P22 to P20,	$V_{cc} = 4.0 \text{ V}$ to 5.5 V	-0.3		$V_{cc} \times 0.3$	V
		P57 to P55, P76 to P74, P84 to P80, PC1, PC0		-0.3		$V_{cc} \times 0.2$	V
		PB3 to PB0	AV_{cc} = 4.0 V to 5.5 V	-0.3		$AV_{cc} imes 0.3$	V
			AV_{cc} = 3.0 V to 5.5 V	-0.3	_	$AV_{cc} imes 0.2$	
		OSC1	V_{cc} = 4.0 V to 5.5 V	-0.3		0.5	V
				-0.3	_	0.3	V
	-						

Rev. 3.00 Sep. 14, 2006 Page 316 of 408 REJ09B0105-0300

RENESAS

		–i _{oH} = 0.1 mA				
Output low V _{OL} voltage	P17, P14, P22 to P20, P57 to P55	$V_{cc} = 4.0 \text{ V to } 5.5 \text{ V}$ $I_{ol} = 1.6 \text{ mA}$	_	_	0.6	V
	P57 to P55, P76 to P74, PC1, PC0	$I_{OL} = 0.4 \text{ mA}$	_	_	0.4	V
	P84 to P80	$V_{\rm cc}$ = 4.0 V to 5.5 V	_	_	1.5	V
		I _{oL} = 20.0 mA				
		$V_{\rm cc}$ = 4.0 V to 5.5 V	_	_	1.0	V
		I _{oL} = 10.0 mA				
		$V_{\rm cc}$ = 4.0 V to 5.5 V	_	_	0.4	V
		I _{oL} = 1.6 mA				
		I _{oL} = 0.4 mA		_	0.4	V
	SCL, SDA	$V_{\rm cc}$ = 4.0 V to 5.5 V	_	_	0.6	V
		I _{oL} = 6.0 mA				
		I _{oL} = 3.0 mA			0.4	V
Input/ I _{IL} output leakage current	OSC1, NMI, WKP5, IRQ0, IRQ3, ADTRG, TRGV, TMRIV, TMCIV, FTCI, FTIOA to FTIOD, RXD, SCK3, SCL, SDA	$V_{IN} = 0.5 V to$ ($V_{CC} - 0.5 V$)	_	_	1.0	μΑ
	P17, P14, P22 to P20, P57 to P55, P76 to P74, P84 to P80, PC1, PC0	$V_{IN} = 0.5 V to$ ($V_{CC} - 0.5 V$)	_	_	1.0	μΑ
	PB3 to PB0	$V_{IN} = 0.5 V \text{ to}$ (AV _{CC} - 0.5 V)	_	_	1.0	μA

Rev. 3.00 Sep. 14, 2006 Pag RENESAS

REJ09

consump-			030					
tion			Active mode 1 $V_{cc} = 3.0 V,$ $f_{osc} = 12 MHz$	_	9.6	_	mA	F \
	I _{OPE2}	V _{cc}	Active mode 2 $V_{cc} = 5.0 V$, $f_{osc} = 12 MHz$		2.0	2.5	mA	*
			Active mode 2 $V_{cc} = 3.0 V$, $f_{osc} = 12 MHz$	_	1.5	—	mA	F V
Sleep mode current	I _{SLEEP1}	V _{cc}	Sleep mode 1 $V_{cc} = 5.0 V$, $f_{osc} = 12 MHz$	—	7.2	12.0	mA	*
consump- tion		Sleep mode 1 $V_{cc} = 3.0 V$, $f_{osc} = 12 MHz$		6.0	—	mA	F V	
	I _{SLEEP2}	V _{cc}	Sleep mode 2 $V_{cc} = 5.0 V$, $f_{osc} = 12 MHz$	_	1.8	2.2	mA	*
			Sleep mode 2 $V_{cc} = 3.0 V$, $f_{osc} = 12 MHz$		1.4	_	mA	F V
Subsleep mode current consump- tion	I _{SUBSP}	V _{cc}	V _{cc} = 5.0 V LVDE = 0, BGRE = 0	_	_	5.0	μA	*
Standby mode current consump- tion	I _{STBY}	V _{cc}	LVDE = 0, BGRE = 0	—	_	5.0	μA	1

Rev. 3.00 Sep. 14, 2006 Page 318 of 408 REJ09B0105-0300

RENESAS

				resonator, and o
Sleep mode 1	V _{cc}	Only timers operate	$V_{\rm cc}$	oscillator
Sleep mode 2		Only timers operate ($\phi/64$)		
Subsleep mode Standby mode	V _{cc}	CPU and timers both stop	V _{cc}	_

Renesas

	SDA					
	P84 to P80	-	—	—	10.0	n
	SCL, SDA	-	—	—	6.0	n
Allowable output low ΣI_o current (total)	Output pins except P84 to P80, SCL, and SDA	V_{cc} = 4.0 V to 5.5 V	_	—	40.0	n
	P84 to P80, SCL, and SDA	-	_	_	80.0	n
	Output pins except P84 to P80, SCL, and SDA			_	20.0	m
	P84 to P80, SCL, and SDA	-	_	—	40.0	n
Allowable output high I-I		$V_{\rm cc}$ = 4.0 V to 5.5 V	_	_	4.0	n
current (per pin)	P56, P57		_	_	0.2	n
	P56, P57	$V_{\rm cc}$ = 4.0 V to 5.5 V	_	_	2.0	n
			—	—	0.2	n
Allowable output high I-2	∑I _{он} I All output pins	$V_{\rm cc}$ = 4.0 V to 5.5 V	—		40.0	n
current (total)			—	—	8.0	n

Rev. 3.00 Sep. 14, 2006 Page 320 of 408 REJ09B0105-0300

					32.0	μs
Instruction cycle time			2	_	_	t _{cyc}
Oscillation stabilization time (crystal resonator)		OSC1, OSC2	_	_	10.0	ms
Oscillation stabilization time (ceramic resonator)	t _{rc}	OSC1, OSC2	_	_	5.0	ms
External clock high width	t _{CPH}	OSC1	35.0	_	_	ns
External clock low width	t _{CPL}	OSC1	35.0	_	_	ns
External clock rise time	t _{CPr}	OSC1	_	_	15.0	ns
External clock fall time	t _{cPf}	OSC1			15.0	ns
RES pin low width*4	t _{REL}	RES	2500			ns
NMI pin high width	t _{ihnmi}	NMI	1500			ns
NMI pin low width	t _{ilnmi}	NMI	1500			ns
Input pin high width	t _{iH}	IRQ0, IRQ3, WKP5, TMCIV, TMRIV, TRGV, ADTRG, FTCI, FTIOA to FTIOD	2			t _{cyc}
Input pin low width	t _{ıL}	IRQ0, IRQ3, WKP5, TMCIV, TMRIV, TRGV, ADTRG, FTCI, FTIOA to FTIOD	2	_		t _{cyc}

Renesas

- Notes: 1. Determined by MA2 to MA0 in system control register 2 (SYSCR2).
 - 2. For the oscillation frequency of the masked ROM version, refer to the electrica characteristics specified separately.
 - 3. The values are for reference.
 - 4. Except when power-on reset circuit is used.

Rev. 3.00 Sep. 14, 2006 Page 322 of 408 REJ09B0105-0300

time	ι _{sf}			_	300	ns
SCL and SDA input spike pulse removal time	t _{sp}		 _		1t _{cyc}	ns
SDA input bus-free time	t _{buf}		5t _{cyc}		_	ns
Start condition input hold time	t _{stah}		 3t _{cyc}	_	_	ns
Retransmission start condition input setup time	t _{stas}		3t _{cyc}			ns
Setup time for stop condition input	t _{stos}		3t _{cyc}			ns
Data input setup time	t _{sdas}		 1t _{cyc} + 20	_	_	ns
Data input hold time	t _{sdah}		0	_		ns
Capacitive load of SCL and SDA	C _b		0		400	pF
SCL and SDA output fall time	t _{sf}	V _{cc} = 4.0 to 5.5 V	 		250	ns
			 		300	ns

Transmit data delay time (clocked synchronous)	t _{txd}	TXD	_	_	1	t _{cyc} F
Receive data setup time (clocked synchronous)	t _{RXS}	RXD	83.3	—	_	ns
Receive data hold time (clocked synchronous)	t _{RXH}	RXD	83.3		_	ns

Rev. 3.00 Sep. 14, 2006 Page 324 of 408 REJ09B0105-0300

Analog power supply current	AI_{OPE}	AV _{cc}	$AV_{cc} = 5.0 V$	_	_	2.0	mA
ounon			f _{osc} = 12 MHz				
	AI_{STOP1}	AV_{cc}		—	50	—	μA
	Alstop2	AV_{cc}		_	_	5.0	μA
Analog input capacitance	C _{AIN}	AN3 to AN0		_	_	30.0	pF
Allowable signal source impedance	R _{AIN}	AN3 to AN0		_	—	5.0	kΩ
Resolution (data length)				10	10	10	bit
Conversion time (single mode)			AV _{cc} = 3.0 V to 5.5 V	134	_	_	t _{cyc}
Nonlinearity error			-	_		±7.5	LSB
Offset error			_	—	—	±7.5	LSB
Full-scale error			-	_		±7.5	LSB
Quantization error			_	_	_	±0.5	LSB
Absolute accuracy			_	_		±8.0	LSB
Conversion time (single			$AV_{cc} = 4.0 V$	70	_	_	t _{cyc}
mode)			to 5.5 V				
Nonlinearity error			_	_	—	±7.5	LSB
Offset error			_	_	—	±7.5	LSB
Full-scale error			_	_	_	±7.5	LSB
Quantization error				_	_	±0.5	LSB
Absolute accuracy				_	_	±8.0	LSB

Renesas

- 2. Al_{stop1} is the current in active and sleep modes while the A/D converter is idle.
- AI_{STOP2} is the current at reset and in standby and subsleep modes while the A/E converter is idle.

20.2.5 Watchdog Timer Characteristics

Table 20.7 Watchdog Timer Characteristics

 $V_{cc} = 3.0 \text{ V}$ to 5.5 V, $V_{ss} = 0.0 \text{ V}$, $T_a = -20^{\circ}\text{C}$ to +75°C, unless otherwise specified.

		Applicable Test	Test		S			
Item Symbol Pins	Condition	Min.	Тур.	Max.	Unit	Ν		
Internal oscillator overflow time	t _{ovf}			0.2	0.4		S	*
Note: *		time to count fr Iternal oscillato		it which p	ooint an ir	nternal res	set is ge	ne

Rev. 3.00 Sep. 14, 2006 Page 326 of 408 REJ09B0105-0300

Vollago					
Reset detection voltage 1*1	Vreset1	LVDSEL = 0	2.0	2.3	2.7
Reset detection voltage 2*2	Vreset2	LVDSEL = 1	3.0	3.6	4.2
Lower-limit voltage of LVDR operation* ³	$V_{\scriptscriptstyle LVDRmin}$		1.0	_	—
LVD stabilization time	t _{LVDON}		50	_	—
Current consumption in standby mode	I _{stby}	LVDE = 1, BGRE = 1 Vcc = 5.0 V			350

Notes: 1. This voltage should be used when the falling and rising voltage detection fundused.

- 2. Select the low-voltage reset 2 when only the low-voltage detection reset is us
- When the power-supply voltage (Vcc) falls below V_{LVDRmin} = 1.0 V and then rise may not occur. Therefore sufficient evaluation is required.

20.2.7 LVDI External Voltage Detection Circuit Characteristics

Table 20.9 LVDI External Voltage Detection Circuit Characteristics

Vcc = 4.5 to 5.5 V, AVcc = 3.0 to 5.5 V, V_{ss} = 0.0 V, T_{a} = -20 to +75°C

	Test		Values				
Item	Symbol	Condition	Min.	Тур.	Max.		
ExtD/ExtU input detection voltage	Vexd		0.85	1.15	1.45		
ExtD/ExtU input voltage range	VextD/U	VextD > VextU	-0.3	_	Lower voltage, either AVcc + 0 or Vcc + 0.3		

charge of the RES pin is removed completely. In order to remove charge of the pin, it is recommended that the diode be placed in the Vcc side. If the power-su voltage (Vcc) rises from the point over 100 mV, a power-on reset may not occu

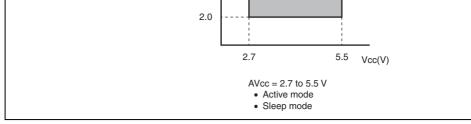
Rev. 3.00 Sep. 14, 2006 Page 328 of 408 REJ09B0105-0300

	Wait time after SWE bit setting*1	x		1	_	—
	Wait time after PSU bit setting*1	У		50	_	—
	Wait time after P bit	z1	$1 \le n \le 6$	28	30	32
	setting* ¹ * ⁴	z2	$7 \le n \le 1000$	198	200	202
		z3	Additional- programming	8	10	12
	Wait time after P bit clear*1	α		5		—
	Wait time after PSU bit clear*1	β		5		—
	Wait time after PV bit setting*1	γ		4	_	—
	Wait time after dummy write*1	ε		2	_	—
	Wait time after PV bit clear*1	η		2		—
	Wait time after SWE bit clear*1	θ		100		—
	Maximum programming count*1*4*5	Ν				1000
					·	

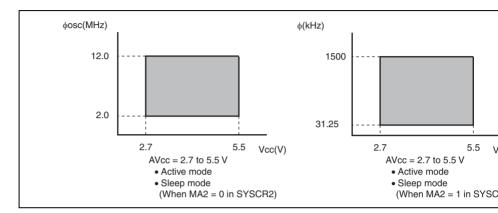
Renesas

γ	20	_	_
3	2	_	
η	4		
θ	100		
Ν			120
	τ ε η θ	ε 2 η 4 θ 100	ε 2 — η 4 — θ 100 —

Notes: 1. Make the time settings in accordance with the program/erase algorithms.


- The programming time for 64 bytes. (Indicates the total time for which the P bit memory control register 1 (FLMCR1) is set. The program-verify time is not incl
- The time required to erase one block. (Indicates the time for which the E bit in memory control register 1 (FLMCR1) is set. The erase-verify time is not include
- Programming time maximum value (t_P (max.)) = wait time after P bit setting (z) maximum programming count (N)
- Set the maximum programming count (N) according to the actual set values of and z3, so that it does not exceed the programming time maximum value (t_p (n The wait time after P bit setting (z1, z2) should be changed as follows accordin value of the programming count (n).

Programming count (n)


- $1 \le n \le 6 \qquad \qquad z1 = 30 \ \mu s$
- $7 \leq n \leq 1000 \quad z2 = 200 \ \mu s$
- 6. Erase time maximum value (t_{E} (max.)) = wait time after E bit setting (z) × maximerase count (N)
- Set the maximum erase count (N) according to the actual set value of (z), so the does not exceed the erase time maximum value (t_e (max.)).

Rev. 3.00 Sep. 14, 2006 Page 330 of 408 REJ09B0105-0300

2. Power supply voltage and operating frequency range

VCC = 2.7 10 5.5 V

Active modeSleep mode

Rev. 3.00 Sep. 14, 2006 Page 332 of 408 REJ09B0105-0300

		FIIOA to FIIOD, SCK3, TRGV					
		RXD, SCL, SDA,	$V_{\rm cc}$ = 4.0 V to 5.5 V	$V_{cc} \times 0.7$	_	$V_{cc} + 0.3$	۷
		P17, P14, P22 to P20,		$V_{cc} imes 0.8$	_	V_{cc} + 0.3	۷
		P57 to P55, P76 to P74, P84 to P80, PC1, PC0					
		PB3 to PB0	AV_{cc} = 4.0 V to 5.5 V	$AV_{cc} imes 0.7$		$AV_{cc} + 0.3$	۷
			AV_{cc} = 2.7 V to 5.5 V			$AV_{cc} + 0.3$	۷
		OSC1	$V_{\rm cc}$ = 4.0 V to 5.5 V	$V_{cc} - 0.5$		V_{cc} + 0.3	۷
				$V_{cc} - 0.3$		V _{cc} + 0.3	۷
Input low voltage	V _{IL}	RES, NMI, WKP5, IRQ0, IRQ3, ADTRG, TMRIV,	$V_{cc} = 4.0 \text{ V to } 5.5 \text{ V}$	-0.3	_	$V_{cc} \times 0.2$	V
	TI 50 80 81 81 81 81 81 81 81 81 81 81 81 81 81	TMCIV, FTCI, FTIOA to FTIOD, SCK3, TRGV		-0.3	_	$V_{cc} \times 0.1$	V
		RXD, SCL, SDA, P17, P14, P22 to P20, P57 to P55	$V_{cc} = 4.0 \text{ V} \text{ to } 5.5 \text{ V}$	-0.3	_	$V_{cc} \times 0.3$	V
		P57 to P55, P76 to P74, P84 to P80, PC1, PC0		-0.3	_	$V_{cc} \times 0.2$	V
		PB3 to PB0	$AV_{cc} = 4.0 \text{ V to } 5.5 \text{ V}$	-0.3		$AV_{cc} imes 0.3$	V
			AV_{cc} = 2.7 V to 5.5 V	-0.3		$AV_{cc} imes 0.2$	
		OSC1	$V_{\rm cc}$ = 4.0 V to 5.5 V	-0.3		0.5	V
				-0.3	_	0.3	V
			· · · · · ·				

		-i _{OH} = 0.1 mA				
Output low V _{OL} voltage	P17, P14, P22 to P20, P57 to P55,	$V_{cc} = 4.0 \text{ V} \text{ to } 5.5 \text{ V}$ $I_{oL} = 1.6 \text{ mA}$	_	_	0.6	V
	P76 to P74, PC1, PC0	I _{oL} = 0.4 mA	_	_	0.4	V
	P84 to P80	V_{cc} = 4.0 V to 5.5 V	_	_	1.5	V
		I _{oL} = 20.0 mA				
		$V_{\rm cc}$ = 4.0 V to 5.5 V	—	—	1.0	V
		I _{oL} = 10.0 mA				
		V_{cc} = 4.0 V to 5.5 V	_	_	0.4	V
		I _{oL} = 1.6 mA				
		I _{oL} = 0.4 mA	—	—	0.4	V
	SCL, SDA	V_{cc} = 4.0 V to 5.5 V	—	—	0.6	V
		I _{oL} = 6.0 mA				
		I _{oL} = 3.0 mA	—	—	0.4	V
Input/ I _{IL} output leakage current	OSC1, MMI, WKP5, IRQ0, IRQ3, ADTRG, TRGV, TMRIV, TMCIV, FTCI, FTIOA to FTIOD, RXD, SCK3, SCL, SDA	$V_{IN} = 0.5 V to$ ($V_{CC} - 0.5 V$)		_	1.0	μΑ
	P17, P14, P22 to P20, P57 to P55, P76 to P74, P84 to P80, PC1, PC0	$V_{_{\rm IN}} = 0.5 \text{ V to}$ ($V_{_{\rm CC}} - 0.5 \text{ V}$)	_	_	1.0	μA
	PB3 to PB0	$V_{IN} = 0.5 V \text{ to}$ (AV _{cc} - 0.5 V)	—	_	1.0	μA

Rev. 3.00 Sep. 14, 2006 Page 334 of 408

REJ09B0105-0300

RENESAS

			030						
consump- tion			Active mode 1 $V_{cc} = 2.7 V$, $f_{osc} = 12 MHz$	_	9.6	_	mA	١	
	I _{OPE2}	V _{cc}	Active mode 2 $V_{cc} = 5.0 V$, $f_{osc} = 12 MHz$		2.0	2.5	mA	7	
			Active mode 2 $V_{cc} = 2.7 V$, $f_{osc} = 12 MHz$	_	1.5	_	mA	F	
Sleep mode current consump- tion	I _{SLEEP1}	V _{cc}	Sleep mode 1 $V_{cc} = 5.0 V$, $f_{osc} = 12 MHz$	_	7.2	12.0	mA	*	
			Sleep mode 1 $V_{cc} = 2.7 V$, $f_{osc} = 12 MHz$	_	6.0	_	mA	F V	
	I _{SLEEP2}	V _{cc}	Sleep mode 2 $V_{cc} = 5.0 V$, $f_{osc} = 12 MHz$		1.8	2.2	mA	*	
			Sleep mode 2 $V_{cc} = 2.7 V$, $f_{osc} = 12 MHz$		1.4	—	mA	F V	
Subsleep mode current consump- tion	I _{SUBSP}	V _{cc}	V _{cc} = 5.0 V LVDE = 0, BGRE = 0	_	_	5.0	μA	*	
Standby mode current consump- tion	I _{STBY}	V _{cc}	LVDE = 0, BGRE = 0	_		5.0	μA	*	

				resonator, and
Sleep mode 1	V_{cc}	Only timers operate	V _{cc}	oscillator
Sleep mode 2		Only timers operate ($\phi/64$)		
Subsleep mode Standby mode	V _{cc}	CPU and timers both stop	V _{cc}	_

Rev. 3.00 Sep. 14, 2006 Page 336 of 408 REJ09B0105-0300

SDA				
to P80		_	—	10.0
., SDA		_	_	6.0
out pins except to P80, SCL, SDA	$V_{cc} = 4.0 \text{ V to } 5.5 \text{ V}$	_	_	40.0
to P80, SCL, SDA		_	_	80.0
out pins except to P80, SCL, SDA			_	20.0
to P80, SCL, SDA		_	_	40.0
• •	$V_{\rm cc}$ = 4.0 V to 5.5 V	_	_	4.0
, P57		_	—	0.2
, P57	$V_{\rm cc}$ = 4.0 V to 5.5 V	_	_	2.0
-		_	_	0.2
output pins	$V_{\rm cc}$ = 4.0 V to 5.5 V	_	—	40.0
		—	—	8.0
,	, SDA but pins except to P80, SCL, SDA to P80, SCL, SDA but pins except to P80, SCL, SDA to P80, SCL, SDA to P80, SCL, SDA to P80, SCL, SDA	Note product prime except to P80, SCL, SDA $V_{cc} = 4.0 \text{ V to } 5.5 \text{ V}$ to P80, SCL, SDAvto P80, SCL, SDAvbut prime except to P80, SCL, SDAvto P80, SCL, SDAvbut prime except to P80, SCL, SDAV_{cc} = 4.0 \text{ V to } 5.5 \text{ V}out prime except product prime except to P80, SCL, SDAV_{cc} = 4.0 \text{ V to } 5.5 \text{ V}put prime except product prime except 	, SDAput pins except to P80, SCL, SDA $V_{cc} = 4.0 \text{ V to } 5.5 \text{ V}$ to P80, SCL, SDAput pins except to P80, SCL, SDAput pins except to P80, SCL, SDAto P80, SCL, SDAput pins except , P57V_{cc} = 4.0 V to 5.5 V, P57V_{cc} = 4.0 V to 5.5 V, P57	, SDA put pins except to P80, SCL, SDA $V_{cc} = 4.0 \text{ V to 5.5 V}$ to P80, SCL, SDA put pins except to P80, SCL, SDA to P80, SCL, SDA to P80, SCL, SDA to P80, SCL, SDA to P80, SCL, SDA out pins except performed by the state of the state

Renesas

cycle time			_	_	32.0	μs
Instruction cycle time			2	-	_	t _{cyc}
Oscillation stabilization time (crystal resonator)	t _{rc}	OSC1, OSC2	_	_	10.0	ms
Oscillation stabilization time (ceramic resonator)	t _{rc}	OSC1, OSC2	_	—	5.0	ms
External clock high width	t _{срн}	OSC1	35.0	_	—	ns
External clock low width	t _{CPL}	OSC1	35.0	-	-	ns
External clock rise time	t _{CPr}	OSC1	_	_	15.0	ns
External clock fall time	t _{CPf}	OSC1	_	_	15.0	ns
RES pin low width*	t _{REL}	RES	2500		—	ns
NMI pin high width	t _{ihnmi}	NMI	1500			ns
NMI pin low width	t _{ilnmi}	NMI	1500	_	_	ns
Input pin high width		IRQ0, IRQ3, WKP5,TMCIV, TMRIV, TRGV, ADTRG, FTCI, FTIOA to FTIOD	2			t _{cyc}

Note: * Except when power-on reset circuit is used.

Rev. 3.00 Sep. 14, 2006 Page 338 of 408 REJ09B0105-0300

5.5 V
FSEL = 1,
VCLSEL = 0

Notes: * Determined by MA2 to MA0 in system control register 2 (SYSCR2).

Renesas

fall time	τ _{sf}			_	300	ns
SCL and SDA input spike pulse removal time	t _{sp}		—	—	1t _{cyc}	ns
SDA input bus-free time	t _{BUF}		5t _{cyc}	—	—	ns
Start condition input hold time	t _{stah}		3t _{cyc}	—	—	ns
Retransmission start condition input setup time	t _{stas}		3t _{cyc}	_		ns
Setup time for stop condition input	t _{stos}		3t _{cyc}			ns
Data input setup time	$t_{_{\mathrm{SDAS}}}$		1t _{cyc} + 20	—	_	ns
Data input hold time	t _{sdah}		0	_	_	ns
Capacitive load of SCL and SDA	C _b		0		400	рF
SCL and SDA output fall time	t _{sf}	$V_{cc} = 4.0 \text{ to} - 5.5 \text{ V}$	_	—	250	ns
					300	ns

Rev. 3.00 Sep. 14, 2006 Page 340 of 408 REJ09B0105-0300

Transmit data delay time (clocked synchronous)	t_{TXD}	TXD	_	_	1	t _{cyc}
Receive data setup time (clocked synchronous)s	t _{RXS}	RXD	83.3	_	_	ns
Receive data hold time (clocked synchronous)	t _{exh}	RXD	83.3	—		ns

Analog power supply	AI	AV _{cc}	$AV_{cc} = 5.0 V$	_	_	2.0	ma
current			$f_{osc} = 12 \text{ MHz}$				
	AI_{STOP1}	AV_{cc}		—	50	_	μA *
							F V
	$AI_{_{STOP2}}$	AV _{cc}		_	_	5.0	μA *
Analog input capacitance	C_{AIN}	AN3 to AN0		_	—	30.0	pF
Allowable signal source impedance	$R_{_{\text{AIN}}}$	AN3 to AN0		_	—	5.0	kΩ
Resolution (data length)				10	10	10	bit
Conversion time (single mode)			AV _{cc} = 2.7 V to 5.5 V	134	_	_	t _{cyc}
Nonlinearity error			_	_	_	±7.5	LSB
Offset error			_	_	_	±7.5	LSB
Full-scale error			_	_	_	±7.5	LSB
Quantization error			_	_	_	±0.5	LSB
Absolute accuracy			_	_	_	±8.0	LSB
Conversion time (single mode)			$AV_{cc} = 4.0 V$ to 5.5 V	70	_	_	t _{cyc}
Nonlinearity error			_	_	_	±7.5	LSB
Offset error			_	_	_	±7.5	LSB
Full-scale error				_	_	±7.5	LSB
Quantization error			_	_	_	±0.5	LSB
Absolute accuracy			=	_	_	±8.0	LSB

Rev. 3.00 Sep. 14, 2006 Page 342 of 408 REJ09B0105-0300

- 2. Al_{stop1} is the current in active and sleep modes while the A/D converter is idle
- 3. Al_{STOP2} is the current at reset and in standby and subsleep modes while the A/ converter is idle.

20.3.5 Watchdog Timer Characteristics

Table 20.17 Watchdog Timer Characteristics

 $V_{cc} = 2.7 \text{ V}$ to 5.5 V, $V_{ss} = 0.0 \text{ V}$, $T_a = -20^{\circ}\text{C}$ to +75°C, unless otherwise specified.

		Applicable Test			Values		
Item	Symbol		Condition	Min.	Тур.	Max.	Unit
Internal oscillator overflow time	t _{ovf}			0.2	0.4		S

Note: * Shows the time to count from 0 to 255, at which point an internal reset is gen when the internal oscillator is selected.

Vollago					
Reset detection voltage 1*1	Vreset1	LVDSEL = 0	2.0	2.3	2.7
Reset detection voltage 2*2	Vreset2	LVDSEL = 1	3.0	3.6	4.2
Lower-limit voltage of LVDR operation* ³	$V_{\scriptscriptstyle LVDRmin}$		1.0	_	
LVD stabilization time	t_{LVDON}		50		_
Current consumption in standby mode	I _{stby}	LVDE = 1, BGRE = 1 Vcc = 5.0 V	—	—	350

Notes: 1. This voltage should be used when the falling and rising voltage detection funct used.

- 2. Select the low-voltage reset 2 when only the low-voltage detection reset is use
- When the power-supply voltage (Vcc) falls below V_{LVDRmin} = 1.0 V and then rises may not occur. Therefore sufficient evaluation is required.

20.3.7 LVDI External Voltage Detection Circuit Characteristics

Table 20.19 LVDI External Voltage Detection Circuit Characteristics

Vcc = 4.5 to 5.5 V, AVcc = 2.7 to 5.5 V, V_{ss} = 0.0 V, T_{a} = -20 to +75°C

		Test		v	alues
Item	Symbol	Condition	Min.	Тур.	Max.
ExtD/ExtU input detection voltage	Vexd		0.85	1.15	1.45
ExtD/ExtU input voltage range	VextD/U	VextD > VextU	-0.3	_	Lower voltage, either AVcc + 0.3 or Vcc + 0.3

Rev. 3.00 Sep. 14, 2006 Page 344 of 408	
	_
REJ09B0105-0300	

Renesas

charge of the RES pin is removed completely. In order to remove charge of the pin, it is recommended that the diode be placed in the Vcc side. If the power-voltage (Vcc) rises from the point over 100 mV, a power-on reset may not occ

rigure 20.1 System Clock Input Timing

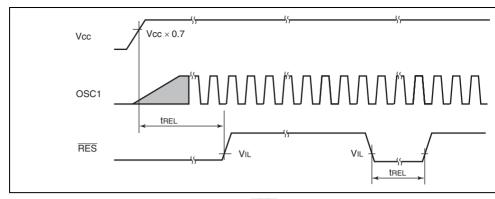


Figure 20.2 RES Low Width Timing

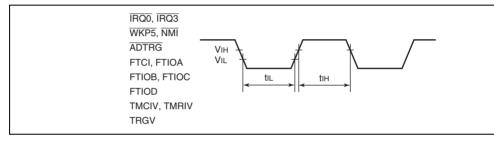


Figure 20.3 Input Timing

Rev. 3.00 Sep. 14, 2006 Page 346 of 408 REJ09B0105-0300

RENESAS

Note: * S, P, and Sr represent the following:

- S: Start condition
- P: Stop comdition
- Sr: Retransmission start condition

Figure 20.4 I²C Bus Interface Input/Output Timing



Figure 20.5 SCK3 Input Clock Timing

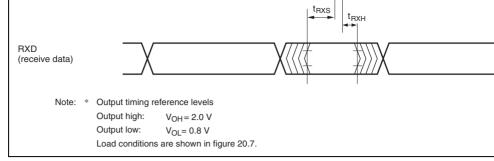


Figure 20.6 SCI3 Input/Output Timing in Clocked Synchronous Mode

20.5 Output Load Condition

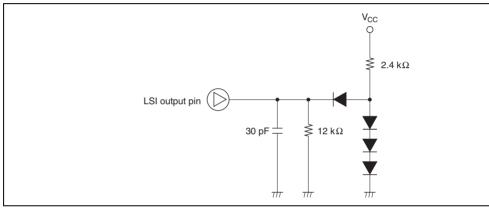


Figure 20.7 Output Load Circuit

ERd	General destination register (address register or 32-bit register)
ERs	General source register (address register or 32-bit register)
ERn	General register (32-bit register)
(EAd)	Destination operand
(EAs)	Source operand
PC	Program counter
SP	Stack pointer
CCR	Condition-code register
Ν	N (negative) flag in CCR
Z	Z (zero) flag in CCR
V	V (overflow) flag in CCR
С	C (carry) flag in CCR
disp	Displacement
\rightarrow	Transfer from the operand on the left to the operand on the right, or transi the state on the left to the state on the right
+	Addition of the operands on both sides
-	Subtraction of the operand on the right from the operand on the left
×	Multiplication of the operands on both sides
÷	Division of the operand on the left by the operand on the right
^	Logical AND of the operands on both sides
V	Logical OR of the operands on both sides
\oplus	Logical exclusive OR of the operands on both sides
7	NOT (logical complement)

Renesas

1	Set to 1
_	Not affected by execution of the instruction
Δ	Varies depending on conditions, described in notes

Rev. 3.00 Sep. 14, 2006 Page 350 of 408 REJ09B0105-0300

_

MOV.B @ERs, Rd	В			2					$@ERs\toRd8$	—	—	€	€	0
MOV.B @(d:16, ERs), Rd	В				4				@(d:16, ERs) → Rd8	—	—	\$	\Leftrightarrow	0
MOV.B @(d:24, ERs), Rd	В				8				$@(\texttt{d:24, ERs}) \rightarrow \texttt{Rd8}$	—	—	\$	\Leftrightarrow	0
MOV.B @ERs+, Rd	В					2			@ERs → Rd8 ERs32+1 → ERs32	—	—	\$	\leftrightarrow	0
MOV.B @aa:8, Rd	В						2		@aa:8 \rightarrow Rd8	—	—	\$	€	0
MOV.B @aa:16, Rd	В						4		@aa:16 \rightarrow Rd8	—	—	\$	\Leftrightarrow	0
MOV.B @aa:24, Rd	В						6		@aa:24 \rightarrow Rd8	-	—	\$	\leftrightarrow	0
MOV.B Rs, @ERd	В			2					$Rs8 \rightarrow @ERd$	—	—	\$	≎	0
MOV.B Rs, @(d:16, ERd)	В				4				$Rs8 \rightarrow @(d:16, ERd)$	—	—	\$	\Leftrightarrow	0
MOV.B Rs, @(d:24, ERd)	В				8				$Rs8 \rightarrow @(d:24, ERd)$	-	—	\$	\leftrightarrow	0
MOV.B Rs, @-ERd	В					2			$\begin{array}{l} ERd32-1 \rightarrow ERd32 \\ Rs8 \rightarrow @ ERd \end{array}$	—	—	\$	\leftrightarrow	0
MOV.B Rs, @aa:8	В						2		Rs8 \rightarrow @aa:8	—	—	\$	\$	0
MOV.B Rs, @aa:16	В						4		Rs8 \rightarrow @aa:16	—	—	\$	\$	0
MOV.B Rs, @aa:24	В						6		$Rs8 \rightarrow @aa:24$	—	—	\$	\$	0
MOV.W #xx:16, Rd	W	4							#xx:16 → Rd16	—	—	\$	\Leftrightarrow	0
MOV.W Rs, Rd	W		2						$Rs16 \rightarrow Rd16$	—	—	\$	\Leftrightarrow	0
MOV.W @ERs, Rd	W			2					$@ERs \rightarrow Rd16$	—	—	\$	€	0
MOV.W @(d:16, ERs), Rd	W				4				@(d:16, ERs) → Rd16	—	—	\$	\$	0
MOV.W @(d:24, ERs), Rd	W				8				@(d:24, ERs) → Rd16	-	—	\$	\leftrightarrow	0
MOV.W @ERs+, Rd	W					2			$@ERs \rightarrow Rd16$ ERs32+2 $\rightarrow @ERd32$	—	—	\$	\leftrightarrow	0
MOV.W @aa:16, Rd	W						4		@aa:16 \rightarrow Rd16	—	—	\$	\$	0
MOV.W @aa:24, Rd	W						6		@aa:24 \rightarrow Rd16	_	_	\$	\$	0
MOV.W Rs, @ERd	W			2					$Rs16 \rightarrow @ERd$	—	_	\$	\$	0
MOV.W Rs, @(d:16, ERd)	W				4				$Rs16 \rightarrow @(d:16, ERd)$	_	—	\$	\$	0
MOV.W Rs, @(d:24, ERd)	W				8				$Rs16 \rightarrow @(d:24, ERd)$	_	—	\$	\$	0

REJ09

Renesas

		L		2											+	¥	0
	MOV.L @ERs, ERd	L			4							$@ERs\toERd32$	_	-	€	\$	0
	MOV.L @(d:16, ERs), ERd	L				6						@(d:16, ERs) → ERd32	_	-	\$	\uparrow	0
	MOV.L @(d:24, ERs), ERd	L				10						$@(d:24, ERs) \rightarrow ERd32$	—	-	\uparrow	\$	0
	MOV.L @ERs+, ERd	L					4					$@ERs \rightarrow ERd32$	-	-	\$	\$	0
												ERs32+4 \rightarrow ERs32					
	MOV.L @aa:16, ERd	L						6				@aa:16 \rightarrow ERd32	—	-	€	\uparrow	0
	MOV.L @aa:24, ERd	L						8				@aa:24 \rightarrow ERd32	—	-	\uparrow	\$	0
	MOV.L ERs, @ERd	L			4							$ERs32 \to @ERd$	—	-	\uparrow	\$	0
	MOV.L ERs, @(d:16, ERd)	L				6						$ERs32 \to @(d:16,ERd)$	—	-	\$	\$	0
	MOV.L ERs, @(d:24, ERd)	L				10						$ERs32 \to @(d:24,ERd)$	—	-	\$	\$	0
	MOV.L ERs, @-ERd	L					4					$ERd32-4 \rightarrow ERd32$	-	-	\$	\$	0
												$ERs32 \rightarrow @ERd$					
	MOV.L ERs, @aa:16	L						6				ERs32 \rightarrow @aa:16	—	-	\$	\$	0
	MOV.L ERs, @aa:24	L						8				$ERs32 \rightarrow @aa:24$	—	-	\$	\$	0
POP	POP.W Rn	W									2	@SP → Rn16	—	-	\$	\$	0
												$SP+2 \rightarrow SP$					
	POP.L ERn	L									4	$@SP \rightarrow ERn32$	—	-	\$	\$	0
												$SP+4 \rightarrow SP$					
PUSH	PUSH.W Rn	W									2	$SP-2 \rightarrow SP$	—	-	\$	\$	0
												$Rn16 \rightarrow @SP$					
	PUSH.L ERn	L									4	$SP-4 \rightarrow SP$	—	-	\$	\$	0
												$ERn32 \rightarrow @SP$					
MOVFPE	MOVFPE @aa:16, Rd	в										Cannot be used in	Cá	anno	bt be	us	ed in
								4				this LSI	thi	is L	SI		
MOVTPE	MOVTPE Rs, @aa:16	В										Cannot be used in	Ca	anno	ot be	e us	ed in
								4				this LSI	thi	is L	SI		
		1	1					1	1	1		1					

Rev. 3.00 Sep. 14, 2006 Page 352 of 408 REJ09B0105-0300

	ADD.L #xx:32, ERd	L	6					ERd32+#xx:32 → ERd32	—	(2)	\$	\$	\$
	ADD.L ERs, ERd	L		2				ERd32+ERs32 \rightarrow ERd32	—	(2)	\$	\$	\$
ADDX	ADDX.B #xx:8, Rd	В	2					$Rd8+#xx:8+C \rightarrow Rd8$	-	\$	\$	(3)	\$
	ADDX.B Rs, Rd	в		2				$Rd8+Rs8 + C \rightarrow Rd8$	-	↕	\$	(3)	\$
ADDS	ADDS.L #1, ERd	L		2				ERd32+1 \rightarrow ERd32	-	—	—	-	1-
	ADDS.L #2, ERd	L		2				$ERd32+2 \rightarrow ERd32$	-	—	—	—	-
	ADDS.L #4, ERd	L		2				$ERd32+4 \rightarrow ERd32$	-	—	—	-	—
INC	INC.B Rd	в		2				$Rd8+1 \to Rd8$	-	—	€	\$	\$
	INC.W #1, Rd	w		2				$Rd16+1 \rightarrow Rd16$	-	—	€	\$	\$
	INC.W #2, Rd	w		2				$Rd16+2 \rightarrow Rd16$	-	—	\$	\$	\$
	INC.L #1, ERd	L		2				$ERd32+1 \rightarrow ERd32$	-	—	\$	\$	\$
	INC.L #2, ERd	L		2				$ERd32+2 \to ERd32$	-	—	\$	\$	\$
DAA	DAA Rd	В		2				Rd8 decimal adjust \rightarrow Rd8	—	*	\$	\$	*
SUB	SUB.B Rs, Rd	в		2				$Rd8-Rs8 \rightarrow Rd8$	-	\$	\$	\$	\$
	SUB.W #xx:16, Rd	w	4					Rd16–#xx:16 \rightarrow Rd16	-	(1)	\$	\$	\$
	SUB.W Rs, Rd	w		2				$Rd16-Rs16 \rightarrow Rd16$	-	(1)	€	\$	\$
	SUB.L #xx:32, ERd	L	6					ERd32–#xx:32 \rightarrow ERd32	—	(2)	\$	\$	\$
	SUB.L ERs, ERd	L		2				$ERd32{-}ERs32 \rightarrow ERd32$	-	(2)	\$	\$	\$
SUBX	SUBX.B #xx:8, Rd	В	2					$Rd8\text{-}\#xx:8\text{-}C\toRd8$	-	\updownarrow	↕	(3)	\$
	SUBX.B Rs, Rd	В		2				$Rd8\text{-}Rs8\text{-}C\toRd8$	-	\uparrow	\$	(3)	\$
SUBS	SUBS.L #1, ERd	L		2				$ERd321 \rightarrow ERd32$	-	—	—	—	-
	SUBS.L #2, ERd	L		2				$ERd32-2 \to ERd32$	-	—	—	—	-
	SUBS.L #4, ERd	Г		2				$ERd324 \to ERd32$	-	—	—	-	-
DEC	DEC.B Rd	В		2				$Rd8-1 \rightarrow Rd8$	—	_	↕	\$	€
	DEC.W #1, Rd	W		2				$Rd16-1 \rightarrow Rd16$	-	—	↕	\$	\$
	DEC.W #2, Rd	W		2				$Rd16-2 \rightarrow Rd16$	-	—	\$	\$	\$

							T		Ē						
	MULXU. W Rs, ERd	W	[2						$\begin{tabular}{l} Rd16 \times Rs16 \rightarrow ERd32 \\ (unsigned multiplication) \end{tabular}$]-	-	-	-	
MULXS	MULXS. B Rs, Rd	В		4						$Rd8 \times Rs8 \rightarrow Rd16$ (signed multiplication)	-	-	\$	\$	-
	MULXS. W Rs, ERd	W		4						$Rd16 \times Rs16 \rightarrow ERd32$ (signed multiplication)	-	-	\$	\$	
DIVXU	DIVXU. B Rs, Rd	В		2						$\begin{array}{l} Rd16 \div Rs8 \rightarrow Rd16 \\ (RdH: remainder, \\ RdL: quotient) \\ (unsigned division) \end{array}$			(6)	(7)	_
	DIVXU. W Rs, ERd	w		2						$\begin{array}{c} ERd32 \div Rs16 \rightarrow ERd32 \\ (Ed: remainder, \\ Rd: quotient) \\ (unsigned division) \end{array}$		-	(6)	(7)	
DIVXS	DIVXS. B Rs, Rd	В		4						$\begin{array}{l} Rd16 \div Rs8 \rightarrow Rd16 \\ (RdH: remainder, \\ RdL: quotient) \\ (signed division) \end{array}$			(8)	(7)	_
	DIVXS. W Rs, ERd	W		4						$\begin{array}{c} ERd32 \div Rs16 \to ERd32 \\ (Ed: remainder, \\ Rd: quotient) \\ (signed division) \end{array}$			(8)	(7)	
CMP	CMP.B #xx:8, Rd	В	2			,		\neg	\square	Rd8–#xx:8	1-	\$	\$	\$	\$
	CMP.B Rs, Rd	в		2		1				Rd8–Rs8	1-	\$	\$	\$	\$
	CMP.W #xx:16, Rd	w	4							Rd16-#xx:16	1-	(1)	\$	\$	\$
	CMP.W Rs, Rd	W		2			T			Rd16–Rs16	1_	(1)	\$	\updownarrow	\$
	CMP.L #xx:32, ERd	L	6				\Box			ERd32-#xx:32	1-	(2)	\$	\updownarrow	\$
	CMP.L ERs, ERd	L		2	-					ERd32–ERs32	1-	(2)	\$	\$	\$

Rev. 3.00 Sep. 14, 2006 Page 354 of 408 REJ09B0105-0300

		-	of ERd32)	2							
EXTS	EXTS.W Rd		(<bit 7=""> of Rd16) \rightarrow (<bits 15="" 8="" to=""> of Rd16)</bits></bit>	2				_	_	\$ \$	0
	EXTS.L ERd		(<bit 15=""> of ERd32) \rightarrow (<bits 16="" 31="" to=""> of ERd32)</bits></bit>	2				_		\$ \$	0

-													
	AND.L #xx:32, ERd	L	6					$ERd32 \land \#xx:32 \rightarrow ERd32$	—	—	\$	\$	0
	AND.L ERs, ERd	L		4				$ERd32{\scriptstyle\wedge}ERs32\rightarrowERd32$	—	—	\updownarrow	\updownarrow	0
OR	OR.B #xx:8, Rd	В	2					$Rd8/#xx:8 \rightarrow Rd8$	-	-	\updownarrow	\$	0
	OR.B Rs, Rd	В		2				$Rd8/Rs8 \rightarrow Rd8$	-	-	\updownarrow	\$	0
	OR.W #xx:16, Rd	W	4					$Rd16/#xx:16 \rightarrow Rd16$	—	—	\updownarrow	\updownarrow	0
	OR.W Rs, Rd	W		2				$Rd16/Rs16 \rightarrow Rd16$	—	—	\updownarrow	\$	0
	OR.L #xx:32, ERd	L	6					$ERd32/#xx:32 \rightarrow ERd32$	—	—	\updownarrow	\$	0
	OR.L ERs, ERd	L		4				$ERd32/ERs32 \rightarrow ERd32$	—	—	\$	\$	0
XOR	XOR.B #xx:8, Rd	В	2					$Rd8 \oplus \#xx: 8 \rightarrow Rd8$	—	—	\updownarrow	\$	0
	XOR.B Rs, Rd	В		2				$Rd8\oplusRs8 oRd8$	-	-	\updownarrow	\$	0
	XOR.W #xx:16, Rd	W	4					Rd16⊕#xx:16 → Rd16	-	-	\updownarrow	\$	0
	XOR.W Rs, Rd	W		2				Rd16⊕Rs16 → Rd16	—	—	\$	\$	0
	XOR.L #xx:32, ERd	L	6					$ERd32 \oplus \#xx:32 \to ERd32$	—	—	\updownarrow	\$	0
	XOR.L ERs, ERd	L		4				$ERd32{\oplus}ERs32 \to ERd32$	—	—	\updownarrow	\$	0
NOT	NOT.B Rd	В		2				$\neg \text{ Rd8} \rightarrow \text{ Rd8}$	—	-	\$	\$	0
	NOT.W Rd	W		2				\neg Rd16 \rightarrow Rd16	—	-	\updownarrow	\$	0
	NOT.L ERd	L		2				$\neg \text{ Rd32} \rightarrow \text{ Rd32}$	_	—	\updownarrow	\updownarrow	0

Rev. 3.00 Sep. 14, 2006 Page 356 of 408 REJ09B0105-0300

	SHAR.W Rd	W	2					_	_	\$ \$	0
	SHAR.L ERd	L	2				MSB LSB	—	-	\$ \$	0
SHLL	SHLL.B Rd	В	2					—	-	\$ \$	0
	SHLL.W Rd	W	2					—	-	\$ €	0
	SHLL.L ERd	L	2				MSB LSB	—	-	\$ \$	0
SHLR	SHLR.B Rd	В	2					—	-	\$ \$	0
	SHLR.W Rd	W	2					—	-	\$ \$	0
	SHLR.L ERd	L	2				MSB LSB	—	-	\$ \$	0
ROTXL	ROTXL.B Rd	В	2					—	-	\$ \$	0
	ROTXL.W Rd	W	2					—	-	\$ \$	0
	ROTXL.L ERd	L	2				MSB 🔶 LSB	—	-	\$ \$	0
ROTXR	ROTXR.B Rd	В	2					—	-	\$ \$	0
	ROTXR.W Rd	W	2					—	-	\$ \$	0
	ROTXR.L ERd	L	2				MSB LSB	—	-	\$ \$	0
ROTL	ROTL.B Rd	В	2					—	-	\$ \$	0
	ROTL.W Rd	W	2					—	-	\$ \$	0
	ROTL.L ERd	L	2				MSB 🗕 LSB	—	-	\$ \$	0
ROTR	ROTR.B Rd	В	2					-	-	\$ \$	0
	ROTR.W Rd	W	2					—	-	\$ \$	0
	ROTR.L ERd	L	2				MSB	—	-	\$ \$	0

	BSET Rn, @ERd	В		4				(Rn8 of @ERd) ← 1	_	_	_	_	
	BSET Rn, @aa:8	В				4		 (Rn8 of @aa:8) ← 1	-	-	—	—	_
BCLR	BCLR #xx:3, Rd	в	2					(#xx:3 of Rd8) ← 0	-	-	—	—	_
	BCLR #xx:3, @ERd	в		4				(#xx:3 of @ERd) \leftarrow 0	-	—	—	—	_
	BCLR #xx:3, @aa:8	В				4		(#xx:3 of @aa:8) ← 0	-	-	—	—	_
	BCLR Rn, Rd	В	2					(Rn8 of Rd8) ← 0	—	—	—	—	_
	BCLR Rn, @ERd	В		4				(Rn8 of @ERd) \leftarrow 0	—	—	—	—	_
	BCLR Rn, @aa:8	в				4		(Rn8 of @aa:8) ← 0	—	—	—	—	_
BNOT	BNOT #xx:3, Rd	В	2					(#xx:3 of Rd8) ← ¬ (#xx:3 of Rd8)	-	—	_	_	_
	BNOT #xx:3, @ERd	В		4				(#xx:3 of @ERd) ← ¬ (#xx:3 of @ERd)	-	-	—	—	_
	BNOT #xx:3, @aa:8	В				4		(#xx:3 of @aa:8) ← ¬ (#xx:3 of @aa:8)	-	-	—	—	_
	BNOT Rn, Rd	В	2					(Rn8 of Rd8) ← ¬ (Rn8 of Rd8)	-	-	—	—	_
	BNOT Rn, @ERd	В		4				(Rn8 of @ERd) ← ¬ (Rn8 of @ERd)	-	—	—	—	_
	BNOT Rn, @aa:8	В				4		(Rn8 of @aa:8) ← ¬ (Rn8 of @aa:8)	-	—		_	_
BTST	BTST #xx:3, Rd	В	2					¬ (#xx:3 of Rd8) → Z	-	—	—	\$	_
	BTST #xx:3, @ERd	в		4				¬ (#xx:3 of @ERd) → Z	-	—	—	\$	_
	BTST #xx:3, @aa:8	В				4		¬ (#xx:3 of @aa:8) → Z	-	-	—	\$	_
	BTST Rn, Rd	В	2					¬ (Rn8 of @Rd8) → Z	-	-	—	\$	_
	BTST Rn, @ERd	В		4				¬ (Rn8 of @ERd) → Z	-	-	—	\$	_
	BTST Rn, @aa:8	В				4		¬ (Rn8 of @aa:8) → Z	-	-	—	\$	_
BLD	BLD #xx:3, Rd	В	2					(#xx:3 of Rd8) \rightarrow C	-	—	—	—	—

Rev. 3.00 Sep. 14, 2006 Page 358 of 408 REJ09B0105-0300

001	Bo 1 #XX.0, 110		-										
	BST #xx:3, @ERd	В		4				$C \rightarrow (\#xx:3 \text{ of } @ERd24)$	-	—	—	—	—
BIST	BST #xx:3, @aa:8	В				4		$C \rightarrow (\#xx:3 \text{ of } @aa:8)$	-	—	—	—	—
	BIST #xx:3, Rd	В	2					\neg C \rightarrow (#xx:3 of Rd8)	-	-	—	—	-
	BIST #xx:3, @ERd	В		4				$\neg \text{ C} \rightarrow (\text{\#xx:3 of } @ \text{ERd24})$	-	-	—	—	-
	BIST #xx:3, @aa:8	В				4		$\neg C \rightarrow (\#xx:3 \text{ of } @aa:8)$	-	—	—	—	—
BAND	BAND #xx:3, Rd	В	2					$C \land (\#xx:3 \text{ of } Rd8) \rightarrow C$	-	—	—	—	—
	BAND #xx:3, @ERd	В		4				$C{\scriptscriptstyle\wedge}(\texttt{\#xx:3 of @ERd24}) \to C$	—	—	—	—	—
BIAND	BAND #xx:3, @aa:8	В				4		$C {\scriptstyle \land} (\#xx:3 \text{ of } @aa:8) \rightarrow C$	-	—	—	—	—
	BIAND #xx:3, Rd	В	2					$C \land \neg \text{ (\#xx:3 of Rd8)} \to C$	-	—	—	—	—
	BIAND #xx:3, @ERd	В		4				$C \land \neg$ (#xx:3 of @ERd24) \rightarrow C	-	-	—	—	-
	BIAND #xx:3, @aa:8	В				4		$C \wedge \neg$ (#xx:3 of @aa:8) $\rightarrow C$	-	—	—	—	—
BOR	BOR #xx:3, Rd	В	2					C/(#xx:3 of Rd8) \rightarrow C	—	—	—	—	—
	BOR #xx:3, @ERd	В		4				C/(#xx:3 of @ERd24) \rightarrow C	—	—	—	—	—
	BOR #xx:3, @aa:8	В				4		C/(#xx:3 of @aa:8) \rightarrow C	—	—	—	—	—
BIOR	BIOR #xx:3, Rd	В	2					C⁄ \neg (#xx:3 of Rd8) \rightarrow C	-	—	—	—	—
	BIOR #xx:3, @ERd	В		4				C/ \neg (#xx:3 of @ERd24) \rightarrow C	-	—	—	—	—
	BIOR #xx:3, @aa:8	В				4		C/ \neg (#xx:3 of @aa:8) \rightarrow C	-	—	—	—	—
BXOR	BXOR #xx:3, Rd	В	2					$C {\oplus} (\#xx:3 \text{ of } Rd8) \to C$	-	—	—	—	—
	BXOR #xx:3, @ERd	В		4				$C {\oplus} (\#xx:3 \text{ of } @ERd24) \rightarrow C$	—	—	—	—	—
	BXOR #xx:3, @aa:8	В				4		$C {\oplus} (\#xx:3 \text{ of } @aa:8) \rightarrow C$	—	—	—	—	—
BIXOR	BIXOR #xx:3, Rd	В	2					$C \oplus \neg (\#xx:3 \text{ of } Rd8) \to C$	-	_	—	_	_
	BIXOR #xx:3, @ERd	В		4				$C \oplus \neg (\#xx:3 \text{ of } @ERd24) \rightarrow C$	-	_	—	-	_
	BIXOR #xx:3, @aa:8	В				4		$C \oplus \neg (\#xx:3 \text{ of } @aa:8) \rightarrow C$	—	—	—	—	—

ВН	1I d:8				2		C/Z=0	_	_	_	—	· ·
BH	ll d:16	_			4			_	_	_	_	
BL	.S d:8	_			2		C/Z = 1	_	_	_	_	
BL	S d:16	_			4			_	_	-	_	
BC	CC d:8 (BHS d:8)	_			2		C = 0	—	_	-	_	
BC	CC d:16 (BHS d:16)	—			4			-	-	—	—	
BC	CS d:8 (BLO d:8)	—			2		C = 1	—	—	-	—	_
BC	CS d:16 (BLO d:16)	—			4			—	—	-	—	
BN	NE d:8	—			2		Z = 0	—	—	-	—	
BN	NE d:16	—			4			—	—	—	—	—
BE	EQ d:8	—			2		Z = 1	—	—	—	—	—
BE	EQ d:16	_			4			—	—	—	—	
BV	/C d:8	—			2		V = 0	_	_	—	—	_
BV	/C d:16	_			4			-	—	_	_	_
BV	/S d:8	_			2		V = 1	_	—	—	_	_
BV	/S d:16	—			4			—	—	—	_	_ -
BP	PL d:8	—			2		N = 0	—	—	—	—	— ·
BP	PL d:16	—			4			—	—	—	_	-
BM	/I d:8	_			2		N = 1	_	_	—	—	-
BM	/II d:16	—			4			_	—	—	_	-
BG	GE d:8	—			2		N⊕V = 0	_	—	—	_	
BG	GE d:16	—			4			_	—	—	_	_
BL	.T d:8	—			2		N⊕V = 1	_	—	—	_	_
BL	.T d:16	—			4			—	-	—	_	
BG	GT d:8	—			2		$Z/(N \oplus V) = 0$	_	-	—	_	
BG	GT d:16	—			4			_	_	—	_	_
BLI	.E d:8	—			2		$Z/(N \oplus V) = 1$	_	_	—	_	
BLI	.E d:16	—			4			—	-	-	_	_[

Rev. 3.00 Sep. 14, 2006 Page 360 of 408 REJ09B0105-0300

	Donra.ito								$PC \leftarrow PC+d:16$					
JSR	JSR @ERn	-		2					$PC \rightarrow @-SP$ $PC \leftarrow ERn$	-	-	—		—
	JSR @aa:24	_				4			$PC \rightarrow @-SP$ $PC \leftarrow aa:24$	_	-	—		
	JSR @@aa:8	_					2		$PC \rightarrow @-SP$ $PC \leftarrow @aa:8$	-	-	—		_
RTS	RTS	—						2	$PC \leftarrow @SP+$	—	—	—	—	—

											$PC \gets @SP+$					
SLEEP	SLEEP	—									Transition to power- down state	_	—	—	-	_
LDC	LDC #xx:8, CCR	В	2								$#xx:8 \rightarrow CCR$	\updownarrow	\updownarrow	\updownarrow	\$	\$
	LDC Rs, CCR	В		2							$Rs8 \rightarrow CCR$	\updownarrow	\updownarrow	\updownarrow	\$	\uparrow
	LDC @ERs, CCR	W			4						$@ERs\toCCR$	\updownarrow	\updownarrow	\updownarrow	\$	\uparrow
	LDC @(d:16, ERs), CCR	W				6					@(d:16, ERs) → CCR	\updownarrow	\updownarrow	\updownarrow	\$	\uparrow
	LDC @(d:24, ERs), CCR	W				10					$@(d{:}24,ERs)\toCCR$	\updownarrow	\updownarrow	\updownarrow	\$	\uparrow
	LDC @ERs+, CCR	w					4				@ ERs → CCR ERs32+2 → ERs32	≎	≎	\$	\$	\$
	LDC @aa:16, CCR	w						6			@aa:16 \rightarrow CCR	\updownarrow	\updownarrow	\updownarrow	\$	\$
	LDC @aa:24, CCR	w						8			@aa:24 \rightarrow CCR	\uparrow	\uparrow	\$	\$	\$
STC	STC CCR, Rd	в		2							$CCR \rightarrow Rd8$	-	—	—	—	_
	STC CCR, @ERd	W			4						$CCR \rightarrow @ERd$	-	—	-	—	_
	STC CCR, @(d:16, ERd)	W				6					$CCR \rightarrow @(d:16, ERd)$	—	—	—	—	-
	STC CCR, @(d:24, ERd)	W				10					$CCR \rightarrow @(d:24, ERd)$	—	—	—	—	_
	STC CCR, @-ERd	w					4				$ \begin{array}{l} ERd32-2 \rightarrow ERd32 \\ CCR \rightarrow @ ERd \end{array} $	-	-	-	-	-
	STC CCR, @aa:16	w						6			$CCR \rightarrow @aa:16$	-	—	-	—	—
	STC CCR, @aa:24	w						8			$CCR \rightarrow @aa:24$	-	—	—	—	_
ANDC	ANDC #xx:8, CCR	В	2								CCR_{\wedge} #xx:8 \rightarrow CCR	\updownarrow	\updownarrow	\$	\$	\$
ORC	ORC #xx:8, CCR	В	2								CCR/#xx:8 → CCR	\$	\updownarrow	\$	\$	\$
XORC	XORC #xx:8, CCR	В	2								$CCR \oplus \#xx:8 \rightarrow CCR$	\updownarrow	\updownarrow	\$	\$	\$
NOP	NOP	—								2	$PC \leftarrow PC+2$	-	—	—	—	-

Rev. 3.00 Sep. 14, 2006 Page 362 of 408 REJ09B0105-0300

								until R4L=0					
								else next					
	EEPMOV. W	—					4	if R4 ≠ 0 then	-	—	-	—	—
								repeat @R5 \rightarrow @R6					
								$R5+1 \rightarrow R5$					
								$R6+1 \rightarrow R6$					
								$R4-1 \rightarrow R4$					
								until R4=0					
								else next					

- Notes: 1. The number of states in cases where the instruction code and its operands and in on-chip memory is shown here. For other cases see appendix A.3, Number Execution States.
 - 2. n is the value set in register R4L or R4.
 - (1) Set to 1 when a carry or borrow occurs at bit 11; otherwise cleared to 0.
 - (2) Set to 1 when a carry or borrow occurs at bit 27; otherwise cleared to 0.
 - (3) Retains its previous value when the result is zero; otherwise cleared to 0.
 - (4) Set to 1 when the adjustment produces a carry; otherwise retains its prev
 - (5) The number of states required for execution of an instruction that transfer synchronization with the E clock is variable.
 - (6) Set to 1 when the divisor is negative; otherwise cleared to 0.
 - (7) Set to 1 when the divisor is zero; otherwise cleared to 0.
 - (8) Set to 1 when the quotient is negative; otherwise cleared to 0.

Instruction code:	tion cod		1st byte AH AL	2nd byte BH BL	byte BL		— Inst]▲- Inst	truction	when I when I	nost sig nost sig	pnifican pnifican	 Instruction when most significant bit of BH is Instruction when most significant bit of BH is 	BH ia BH ia
AH	0	-	5	n	4	ى م	9	2	ω	6	A	۵	υ
0	NOP	Table A-2 (2)	STC	LDC	ORC	XORC	ANDC	LDC	ADD	Q	Table A-2 (2)	Table A-2 Table A-2 (2) (2)	
-	Table A-2 (2)	Table A-2 (2)	Table A-2 Table A-2 Table A-2 Table A-2 Table A-2 Table A-2 Table A-3 Table A-3 <thtable a-3<="" th=""> <thtable a-3<="" th=""> <tht< td=""><td>Table A-2 (2)</td><td>OR.B</td><td>XOR.B</td><td>AND.B</td><td>Table A-2 (2)</td><td>SUB</td><td>В</td><td>Table A-2 (2)</td><td>Table A-2 Table A-2 (2) (2)</td><td></td></tht<></thtable></thtable>	Table A-2 (2)	OR.B	XOR.B	AND.B	Table A-2 (2)	SUB	В	Table A-2 (2)	Table A-2 Table A-2 (2) (2)	
N													
e								MOV.B					
4	BRA	BRN	BHI	BLS	BCC	BCS	BNE	BEQ	BVC	BVS	BPL	BMI	BGE
2	MULXU	DIVXU	мигхи	DIVXU	RTS	BSR	RTE	TRAPA	Table A-2 (2)		JMP		BSR
9		ł	0	10	ОВ	XOR	AND	BST BIST				W	NOV
7	BSEI	BNUI	ВСГН		BOR BIOR	BXOR BIXOR	BAND BIAND	BLD	MOV	Table A-2 (2)	Table A-2 Table A-2 EEPMOV (2) (2)	EEPMOV	
8								ADD					
6								ADDX					
A								CMP					
В								SUBX					
υ								OR					
۵								XOR					
ш								AND					

Rev. 3.00 Sep. 14, 2006 Page 364 of 408

REJ09B0105-0300

RENESAS

AH AL	0	1	0	3	4	5	6	7	8	6	A	В
01	MOV				LDC/STC				SLEEP			
OA	INC											
OB	ADDS					INC		INC	ADI	ADDS		
OF	DAA											
10	SH	SHLL		SHLL					SH	SHAL		SHAL
11	ΗS	SHLR		SHLR					SH	SHAR		SHAR
4	RO ⁻	ROTXL		ROTXL					RO	ROTL		ROTL
13	RO ⁷	ROTXR		ROTXR					RO	ROTR		ROTR
17	Ň	NOT		NOT		ЕХТО		EXTU	NE	NEG		NEG
1A	DEC											
1B	SUBS					DEC		DEC	SL	SUB		
1F	DAS											
58	BRA	BRN	BHI	BLS	BCC	BCS	BNE	BEQ	BVC	BVS	BPL	BMI
79	MOV	ADD	CMP	SUB	OR	XOR	AND					

1st byte2nd byteAHALBHBL

Instruction code:

Renesas

Instruction code: Ist byte Znd byte Znd byte Ath	/hen n /hen m		LDC												
Ist byte 2nd byte 3rd byte 4th byte AH AL BH BL CH CL DH DL 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 NULXS MULXS NULXS 0 NU 8	ction w ction w	∢													
Ist byte 2nd byte 3rd byte 4th byte AH AL BH BL CH CL DH 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 3 3 3 3 3 3 3 1 3 3 4 5 6 7 8 1 8 3 3 3 3 3 3 1 8 3 <td< td=""><td>- Instru</td><td>σ</td><td>LDC STC</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	- Instru	σ	LDC STC												
Ist byte 2nd byte 3rd byte 4th byte AH AL BH BL CH CL DH DL 1 2 3 4 5 6 1 MULXS MULXS 3 4 5 6 1 MULXS MULXS AND AND 8 8 MULXS MULXS AND AND 8 8 MULXS AND BTST AND AND 8 MOT BCL BNAR BNAR 8 8 MOT BCLR BTST BIOR BNAR 8 MOT BCLR BTST BIOR BIOR 8 MOT BCLR BTST BIOR BIOR 8 MOT BCLR BTST BIOR BIOR BIOR	-	ω													
Ist byte 2nd byte 3rd byte 4th 4th AH AL BH BL CH CL DH 1 2 3 4 5 6 MULXS MULXS 0R XOR MU NVXS DIVXS 0R XOR BAND NV BIST 0R XOR BAND NOT BCLR BIST BOR BIOR BIAND NOT BCLR BIST BOR BIOR BIAND NOT BCLR BIST BOR BIOR BIAND NOT BCLR BIST BOR BIAND	DL	~						m /	BST BIST				BST BIST		
1st byte 2nd byte 3rd AH AL BH BL CH 1 2 3 4 MULXS 3 4 3 MULXS 0 0 0	4th b DH	٥				AND		l mi				A			
1st byte 2nd byte AH AL BH BH BL 0 MULXS 91/XS MULXS 0R BTST 0R MOT BCLR	d byte	a				XOR						â			
1st byte AH AL NUCS MULKS MULS MULS MULS MULS MULS MULS MULS MUL	-	4				OR		BOR BIOR				BOR BIOR			
	2nd by BH E	m			DIVXS		BTST	BTST			BTST	BTST			
Istruction code: Isi CH 0 1 CH		N		MULXS					BCLR	BCLR			BCLR	BCLR	ation field.
Istruction code LBH 0 CH 0 01406 01406 01605 MULXS 01606*1 Cro6*1 BSET Cro6*1 BSET Eaa6*2 Eaa6*2 Eaa6*2 BSET Faa6*2 BSET		-			DIVXS				BNOT	BNOT			BNOT	BNOT	ter designa
Istructi LBH CL CH CH05 01406 01406 01406 01406 01505 01506 01506 1 Cr05*1 Cr05*1 Cr06*1 Dr07*1 Cr07*1 Cr06	on code	0		WULXS					BSET	BSET			BSET	BSET	is the regis
	Instructi	CL AH ALBH BLCH	01406	01C05	01D05	01F06	7Cr06*1	7Cr07*1	7Dr06*1	7Dr07*1	7Eaa6*2	7Eaa7*2	7Faa6*2	7Faa7*2	Notes: 1. r

Rev. 3.00 Sep. 14, 2006 Page 366 of 408

REJ09B0105-0300

RENESAS

2. aa is the absolute address field.

BSET #0, @FF00

From table A.4: I = L = 2, J = K = M = N= 0

From table A.3: $S_1 = 2$, $S_L = 2$

 $S_{I} = S_{I} = S_{K} = 2$

Number of states required for execution = $2 \times 2 + 2 \times 2 = 8$

When instruction is fetched from on-chip ROM, branch address is read from on-chip RO on-chip RAM is used for stack area.

JSR @ @ 30 From table A.4: I = 2, J = K = 1, L = M = N = 0From table A.3:

Number of states required for execution = $2 \times 2 + 1 \times 2 + 1 \times 2 = 8$

Note: * Depends on which on-chip peripheral module is accessed. See section 19.1, F Addresses (Address Order).

Rev. 3.00 Sep. 14, 2006 Page 368 of 408 REJ09B0105-0300

ADDS	ADDS #1/2/4, ERd	1	
ADDX	ADDX #xx:8, Rd	1	
	ADDX Rs, Rd	1	
AND	AND.B #xx:8, Rd	1	
	AND.B Rs, Rd	1	
	AND.W #xx:16, Rd	2	
	AND.W Rs, Rd	1	
	AND.L #xx:32, ERd	3	
	AND.L ERs, ERd	2	
ANDC	ANDC #xx:8, CCR	1	
BAND	BAND #xx:3, Rd	1	
	BAND #xx:3, @ERd	2	1
	BAND #xx:3, @aa:8	2	1
Bcc	BRA d:8 (BT d:8)	2	
	BRN d:8 (BF d:8)	2	
	BHI d:8	2	
	BLS d:8	2	
	BCC d:8 (BHS d:8)	2	
	BCS d:8 (BLO d:8)	2	
	BNE d:8	2	
	BEQ d:8	2	
	BVC d:8	2	
	BVS d:8	2	
	BPL d:8	2	
	BMI d:8	2	
	BGE d:8	2	

	BCS d:16(BLO d:16)	2	:
	BNE d:16	2	:
	BEQ d:16	2	:
	BVC d:16	2	:
	BVS d:16	2	1
	BPL d:16	2	1
	BMI d:16	2	:
	BGE d:16	2	1
	BLT d:16	2	
	BGT d:16	2	
	BLE d:16	2	
BCLR	BCLR #xx:3, Rd	1	
	BCLR #xx:3, @ERd	2	2
	BCLR #xx:3, @aa:8	2	2
	BCLR Rn, Rd	1	
	BCLR Rn, @ERd	2	2
	BCLR Rn, @aa:8	2	2
BIAND	BIAND #xx:3, Rd	1	
	BIAND #xx:3, @ERd	2	1
	BIAND #xx:3, @aa:8	2	1
BILD	BILD #xx:3, Rd	1	
	BILD #xx:3, @ERd	2	1
	BILD #xx:3, @aa:8	2	1

Rev. 3.00 Sep. 14, 2006 Page 370 of 408 REJ09B0105-0300

	BIXOR #xx:3, @aa:8	2		1	
BLD	BLD #xx:3, Rd	1			
	BLD #xx:3, @ERd	2		1	
	BLD #xx:3, @aa:8	2		1	
BNOT	BNOT #xx:3, Rd	1			
	BNOT #xx:3, @ERd	2		2	
	BNOT #xx:3, @aa:8	2		2	
	BNOT Rn, Rd	1			
	BNOT Rn, @ERd	2		2	
	BNOT Rn, @aa:8	2		2	
BOR	BOR #xx:3, Rd	1			
	BOR #xx:3, @ERd	2		1	
	BOR #xx:3, @aa:8	2		1	
BSET	BSET #xx:3, Rd	1			
	BSET #xx:3, @ERd	2		2	
	BSET #xx:3, @aa:8	2		2	
	BSET Rn, Rd	1			
	BSET Rn, @ERd	2		2	
	BSET Rn, @aa:8	2		2	
BSR	BSR d:8	2	1		
	BSR d:16	2	1		
BST	BST #xx:3, Rd	1			
	BST #xx:3, @ERd	2		2	
	BST #xx:3, @aa:8	2		2	

	BXOR #xx:3, @aa:8	2	1
CMP	CMP.B #xx:8, Rd	1	
	CMP.B Rs, Rd	1	
	CMP.W #xx:16, Rd	2	
	CMP.W Rs, Rd	1	
	CMP.L #xx:32, ERd	3	
	CMP.L ERs, ERd	1	
DAA	DAA Rd	1	
DAS	DAS Rd	1	
DEC	DEC.B Rd	1	
	DEC.W #1/2, Rd	1	
	DEC.L #1/2, ERd	1	
DUVXS	DIVXS.B Rs, Rd	2	
	DIVXS.W Rs, ERd	2	
DIVXU	DIVXU.B Rs, Rd	1	
	DIVXU.W Rs, ERd	1	
EEPMOV	EEPMOV.B	2	2n+2*1
	EEPMOV.W	2	2n+2*1
EXTS	EXTS.W Rd	1	
	EXTS.L ERd	1	
EXTU	EXTU.W Rd	1	
	EXTU.L ERd	1	

Rev. 3.00 Sep. 14, 2006 Page 372 of 408 REJ09B0105-0300

	JSR @@aa:8	2	1	1		
LDC	LDC #xx:8, CCR	1				
	LDC Rs, CCR	1				
	LDC@ERs, CCR	2				1
	LDC@(d:16, ERs), CCR	3				1
	LDC@(d:24,ERs), CCR	5				1
	LDC@ERs+, CCR	2				1
	LDC@aa:16, CCR	3				1
	LDC@aa:24, CCR	4				1
MOV	MOV.B #xx:8, Rd	1				
	MOV.B Rs, Rd	1				
	MOV.B @ERs, Rd	1			1	
	MOV.B @(d:16, ERs), Rd	2			1	
	MOV.B @(d:24, ERs), Rd	4			1	
	MOV.B @ERs+, Rd	1			1	
	MOV.B @aa:8, Rd	1			1	
	MOV.B @aa:16, Rd	2			1	
	MOV.B @aa:24, Rd	3			1	
	MOV.B Rs, @Erd	1			1	
	MOV.B Rs, @(d:16, ERd)	2			1	
	MOV.B Rs, @(d:24, ERd)	4			1	
	MOV.B Rs, @-ERd	1			1	
	MOV.B Rs, @aa:8	1			1	

Renesas

	MOV.W @aa:16, Rd	2		1
	MOV.W @aa:24, Rd	3		1
	MOV.W Rs, @ERd	1		1
	MOV.W Rs, @(d:16,ERd)	2		1
	MOV.W Rs, @(d:24,ERd)	4		1
MOV	MOV.W Rs, @-ERd	1		1
	MOV.W Rs, @aa:16	2		1
	MOV.W Rs, @aa:24	3		1
	MOV.L #xx:32, ERd	3		
	MOV.L ERs, ERd	1		
	MOV.L @ERs, ERd	2		2
	MOV.L @(d:16,ERs), ERd	3		2
	MOV.L @(d:24,ERs), ERd	5		2
	MOV.L @ERs+, ERd	2		2
	MOV.L @aa:16, ERd	3		2
	MOV.L @aa:24, ERd	4		2
	MOV.L ERs,@ERd	2		2
	MOV.L ERs, @(d:16,ERd)	3		2
	MOV.L ERs, @(d:24,ERd)	5		2
	MOV.L ERs, @-ERd	2		2
	MOV.L ERs, @aa:16	3		2
	MOV.L ERs, @aa:24	4		2
MOVFPE	MOVFPE @aa:16, Rd* ²	2	1	
MOVTPE	MOVTPE Rs,@aa:16*2	2	1	

Rev. 3.00 Sep. 14, 2006 Page 374 of 408 REJ09B0105-0300

RENESAS

NOT		4	
NOT	NOT.B Rd	1	
	NOT.W Rd	1	
	NOT.L ERd	1	
OR	OR.B #xx:8, Rd	1	
	OR.B Rs, Rd	1	
	OR.W #xx:16, Rd	2	
	OR.W Rs, Rd	1	
	OR.L #xx:32, ERd	3	
	OR.L ERs, ERd	2	
ORC	ORC #xx:8, CCR	1	
POP	POP.W Rn	1	1
	POP.L ERn	2	2
PUSH	PUSH.W Rn	1	1
	PUSH.L ERn	2	2
ROTL	ROTL.B Rd	1	
	ROTL.W Rd	1	
	ROTL.L ERd	1	
ROTR	ROTR.B Rd	1	
	ROTR.W Rd	1	
	ROTR.L ERd	1	
ROTXL	ROTXL.B Rd	1	
	ROTXL.W Rd	1	
	ROTXL.L ERd	1	

-	-		
SHAR	SHAR.B Rd	1	
	SHAR.W Rd	1	
	SHAR.L ERd	1	
SHLL	SHLL.B Rd	1	
	SHLL.W Rd	1	
	SHLL.L ERd	1	
SHLR	SHLR.B Rd	1	
	SHLR.W Rd	1	
	SHLR.L ERd	1	
SLEEP	SLEEP	1	
STC	STC CCR, Rd	1	
	STC CCR, @ERd	2	1
	STC CCR, @(d:16,ERd)	3	1
	STC CCR, @(d:24,ERd)	5	1
	STC CCR,@-ERd	2	1 2
	STC CCR, @aa:16	3	1
	STC CCR, @aa:24	4	1
SUB	SUB.B Rs, Rd	1	
	SUB.W #xx:16, Rd	2	
	SUB.W Rs, Rd	1	
	SUB.L #xx:32, ERd	3	
	SUB.L ERs, ERd	1	
SUBS	SUBS #1/2/4, ERd	1	
-			

Rev. 3.00 Sep. 14, 2006 Page 376 of 408 REJ09B0105-0300

	XOR.L ERs, ERd	2		
XORC	XORC #xx:8, CCR	1		

Notes: 1. n: Specified value in R4L and R4. The source and destination operands are a n+1 times respectively.

2. Cannot be used in this LSI.

Renesas

Instructions	MOVFPE,	_	—	_	_	_	—		—	—	—	—	-
	MOVTPE												
Arithmetic	ADD, CMP	BWL	BWL	—	—	—	—	—	—	—	—	—	
operations	SUB	WL	BWL	_	—	—	—	—	—	—	—		-
	ADDX, SUBX	В	В	_	—	—	—	—	—	—	—		-
	ADDS, SUBS	_	L	_	—	—	—	—	—	—	—		-
	INC, DEC	_	BWL	—	—	—	—	—	—	—	—	—	
	DAA, DAS	_	В	_	—	—	—	—	—	—	—		-
	MULXU,	_	BW	—	—	—	—	—	—	—	-	_	-
	MULXS,												
	DIVXU,												
	DIVXS												
	NEG	_	BWL	_	_	_	—	—	—	—	-	_	-
	EXTU, EXTS	_	WL	_	_	_	—	_	—	—	-	_	-
Logical	AND, OR, XOR	_	BWL	—	—	—	—	—	—	—	-		-
operations	NOT	_	BWL	—	—	—	—	_	—	—	-		-
Shift operation	ons	_	BWL	—	—	—	—	—	—	—	—		-
Bit manipulat	ions	_	В	В	—	—	—	В	—	—	—		-
Branching	BCC, BSR	_	—	—	—	—	—	—	—	—	—		-
instructions	JMP, JSR	_	—	\bigcirc	—	—	—	—	—	—	0	\bigcirc	-
	RTS	_	—	—	—	—	—	—	—	0	—		C
System	TRAPA	_	—	—	—	—	—	—	—	—	—		-
control	RTE	_	—	—	—	—	—	—	—	—	—		-
instructions	SLEEP	—	—	—	—	—	—	—	—	—	_	—	-
	LDC	В	В	W	W	W	W	—	W	W	—		-
	STC	_	В	W	W	W	W	—	W	W	—		-
	ANDC, ORC,	В	—	—	—	—	—	—	—	—	-	—	-
	XORC												
	NOP		—	_	—	—	—		—	—	-	-	-
Block data tra	ansfer instructions	_	—	_	_	_	—	_	—	—	—	_	-

Rev. 3.00 Sep. 14, 2006 Page 378 of 408 REJ09B0105-0300

RENESAS

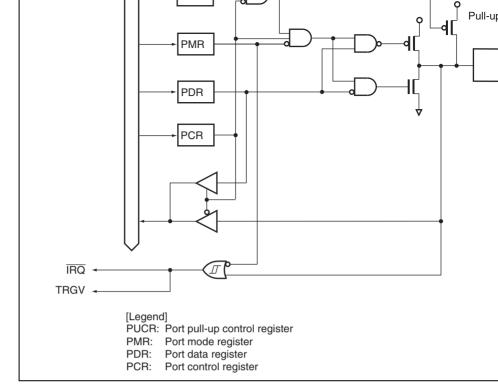


Figure B.1 Port 1 Block Diagram (P17)

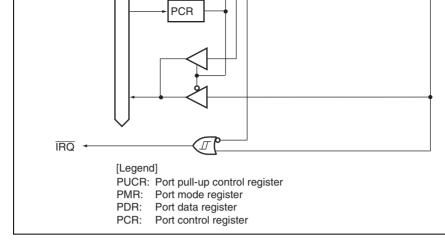


Figure B.2 Port 1 Block Diagram (P14)

Rev. 3.00 Sep. 14, 2006 Page 380 of 408 REJ09B0105-0300

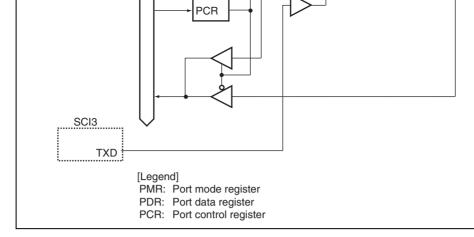


Figure B.3 Port 2 Block Diagram (P22)

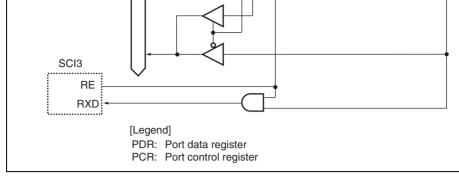


Figure B.4 Port 2 Block Diagram (P21)

Rev. 3.00 Sep. 14, 2006 Page 382 of 408 REJ09B0105-0300

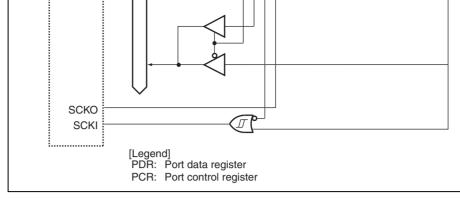


Figure B.5 Port 2 Block Diagram (P20)

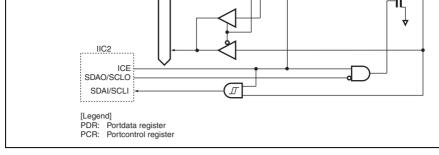


Figure B.6 (1) Port 5 Block Diagram (P57, P56) (for H8/36912 Group)

Rev. 3.00 Sep. 14, 2006 Page 384 of 408 REJ09B0105-0300

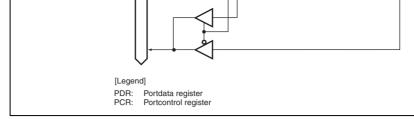


Figure B.6 (2) Port 5 Block Diagram (P57, P56) (for H8/36902 Group)

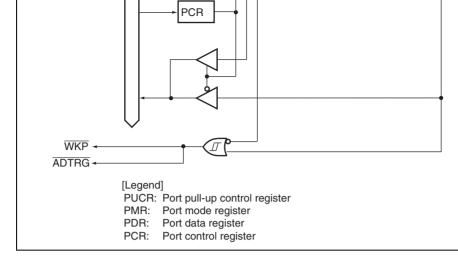


Figure B.7 Port 5 Block Diagram (P55)

Rev. 3.00 Sep. 14, 2006 Page 386 of 408 REJ09B0105-0300

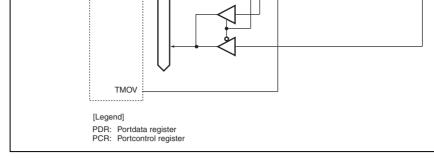


Figure B.8 Port 5 Block Diagram (P76)

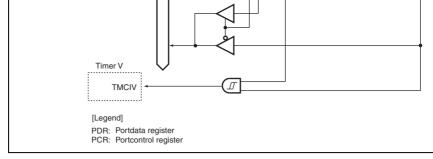


Figure B.9 Port 7 Block Diagram (P75)

Rev. 3.00 Sep. 14, 2006 Page 388 of 408 REJ09B0105-0300

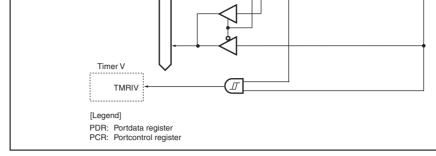


Figure B.10 Port 7 Block Diagram (P74)

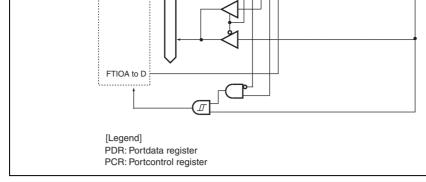


Figure B.11 Port 8 Block Diagram (P84 to P81)

Rev. 3.00 Sep. 14, 2006 Page 390 of 408 REJ09B0105-0300

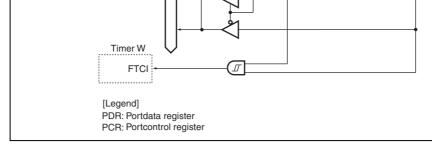


Figure B.12 Port 8 Block Diagram (P80)

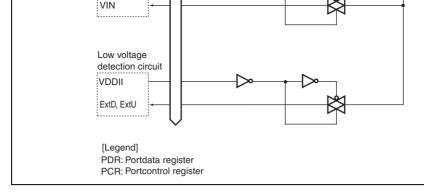


Figure B.13 Port B Block Diagram (PB3, PB2)

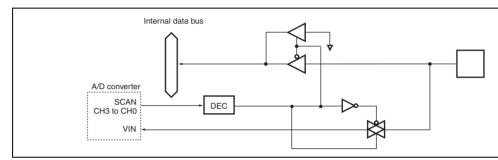
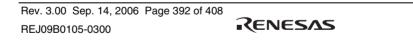



Figure B.14 Port B Block Diagram (PB1, PB0)

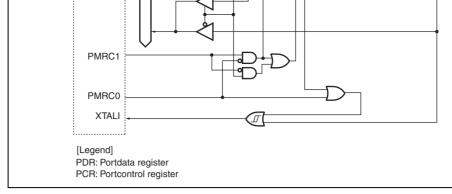


Figure B.15 Port C Block Diagram (PC1)

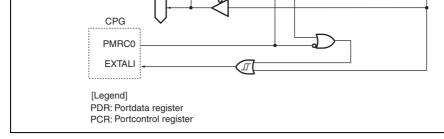


Figure B.16 Port C Block Diagram (PC0)

B.2 Port States in Each Operating State

Port	Reset	Active	Sleep	Subsleep	Standby
P17, P14	High impedance	Functioning	Retained	Retained	High imped
P22 to P20	High impedance	Functioning	Retained	Retained	High imped
P57 to P55	High impedance	Functioning	Retained	Retained	High imped
P76 to P74	High impedance	Functioning	Retained	Retained	High imped
P84 to P80	High impedance	Functioning	Retained	Retained	High imped
PB3 to PB0	High impedance	High impedance	High impedance	Retained	High imped
PC1, PC0	High impedance	Functioning	Retained	Retained	High imped
Noto: * Hi	ich level output when	the pull-up MC	NS is in on sta	to	

Note: * High level output when the pull-up MOS is in on state.

Rev. 3.00 Sep. 14, 2006 Page 394 of 408 REJ09B0105-0300

RENESAS

	version		HD64336911G (***) TP	SOP-32 (FI
H8/36902	Flash memory	HD64F36902G	HD64F36902GFH	LQFP-32 (F
	version		HD64F36902GTP	SOP-32 (FI
			HD64F36902GP	SDIP-32 (3
	Masked ROM	HD64336902G	HD64336902G (***) FH	LQFP-32 (F
	version		HD64336902G (***) TP	SOP-32 (FI
H8/36901	Masked ROM	HD64336901G	HD64336901G (***) FH	LQFP-32 (F
	version		HD64336901G (***) TP	SOP-32 (FI
H8/36900	Masked ROM	HD64336900G	HD64336900G (***) FH	LQFP-32 (F
	version		HD64336900G (***) TP	SOP-32 (FI
[Logond]				

[Legend]

(***): ROM code

Renesas

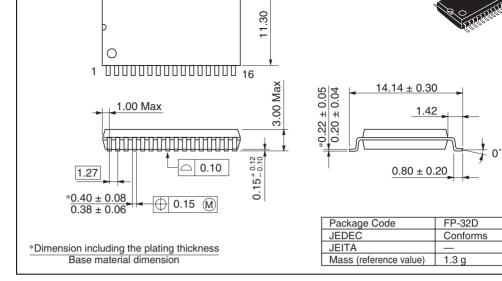


Figure D.1 FP-32D Package Dimensions

Rev. 3.00 Sep. 14, 2006 Page 396 of 408 REJ09B0105-0300

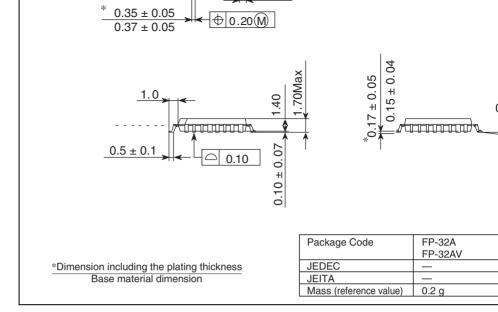


Figure D.2 FP-32A Package Dimension

Rev. 3.00 Sep. 14, 2006 Pag

REJ09

RENESAS

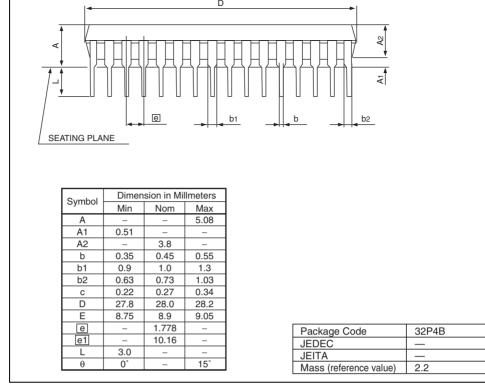


Figure D.3 32P4B Package Dimension

Rev. 3.00 Sep. 14, 2006 Page 398 of 408 REJ09B0105-0300

RENESAS

		either available address break	e to the user or fo is are set as being	ress breaks can b r use by the E7 or g used by the E7 o must not be acces
		5.When the E7 c drain in output		Ī is an input/output
1.1 Features	1	On-chip mem	iory	
		Product Classifi	ication	Remarks
		Masked ROM version	H8/36912	Under planning
			H8/36911	Under planning
			H8/36902	Under planning
			H8/36901	Under planning
			H8/36900	Under planning
	2	On-chip oscillator Frequency accurac (Flash memory ver	rsion): 8MHz ±3%	Vcc = 5.0 V, Ta = 25°C Vcc = 4.0 to 5.0 V, Ta =
	2	— Frequency accurac (Flash memory ver	rsion): 8MHz ±3% 10MHz ±4% (Typ.)	
		 Frequency accurac 	rsion): 8MHz ±3%	Vcc = 4.0 to 5.0 V, Ta =
		 Frequency accurac (Flash memory ver Package 	rsion): 8MHz ±3% 10MHz ±4% (Typ.) Code	Vcc = 4.0 to 5.0 V, Ta =
		 Frequency accurac (Flash memory ver Package LQFP-32 	rsion): 8MHz ±3% 10MHz ±4% (Typ.) Code FP-32A	Vcc = 4.0 to 5.0 V, Ta =
		- Frequency accurac (Flash memory ver Package LQFP-32 SOP-32	rsion): 8MHz ±3% 10MHz ±4% (Typ.) Code FP-32A FP-32D 32P4B	Vcc = 4.0 to 5.0 V, Ta =
	2	- Frequency accurac (Flash memory ver Package LQFP-32 SOP-32 SDIP-32	rsion): 8MHz ±3% 10MHz ±4% (Typ.) Code FP-32A FP-32D 32P4B	Vcc = 4.0 to 5.0 V, Ta =
	2	Frequency accurac (Flash memory ver LQFP-32 SOP-32 SDIP-32 SDIP-32 Compact pact	rsion): 8MHz ±3% 10MHz ±4% (Typ.) Code FP-32A FP-32D 32P4B	Vcc = 4.0 to 5.0 V, Ta =
	2	Frequency accurac (Flash memory ver LQFP-32 SOP-32 SDIP-32 Compact pack Package	rsion): 8MHz ±3% 10MHz ±4% (Typ.) Code FP-32A FP-32D 32P4B	Vcc = 4.0 to 5.0 V, Ta =
	2	Frequency accurac (Flash memory ver Package LQFP-32 SOP-32 SDIP-32 Compact pack Package LQFP-32	rsion): 8MHz ±3% 10MHz ±4% (Typ.) Code FP-32A FP-32D 32P4B	Vcc = 4.0 to 5.0 V, Ta =

of H8/36912 Group (FP-32A) Figure 1.4 Pin Arrangement of H8/36902 Group (FP-32A)				PB3/AN3/ExtU [PB2/AN2/ExtD [PB1/AN1 [PB0/AN0 [29 30 31 32 +	Vcc 2 RES 3 TEST 4 1)		12 11 10 9 Var 0 8 Var 0 8	E10T_0*
				Note: * Can also	be used fo	r the E7 or E8 em	ulator.		
Figure 1.5 Pin Arrangement of H8/36912 Group (FP-32D, 32P4B), Figure 1.6 Pin Arrangement of H8/36902 Group (FP-32D, 32P4B)	7, 8				T_1*	15 16 sed for the E7	or E8 emula	18 17 ator.] Por
Table 1.1 Pin Functions	9, 10					P	in No.		I
		Т	уре	Symbol	FP	-32D, 32	P4B	FP-32	A Funct
		E	7, E8	E10T_0, E10T_1, E10T_2	15,	, 16, 17		11, 12 13	, Interfa for the emula
Section 2 CPU	11	•	-	speed op III frequen			ctions	execute	e in two or
Figure 2.1 Memory Map (1)	12			H00001 H10004 H1FFI H1FFI H2000 H2FFF	E7 or prog (4 (E7 or E for flas prog	A36912F (36902F amory version) amory version) amory version rupt vector rupt vector rupt vector rupt vector tage v		H0/263 (Masked ROV (masked ROV (masked ROV) (masked ROV (masked ROV) (masked ROV) (vector

Rev. 3.00 Sep. 14, 2006 Page 400 of 408 REJ09B0105-0300

Note: * Available for the H8/36912 Group only.

Figure 5.1 Block Diagram of Clock Pulse Generators	69			DSC1 System clock oscillator
				On-chip oscillator
5.2.1 RC Control Register (RCCR)	71	Bit	Bit Name	Description
		1	RCPSC1	Division Ratio Select for On-chip Oscilla
		0	RCPSC0	The division ratio of \mathbf{R}_{osc} changes right a rewriting this bit.
				These bits can be written to only when t bit in CKCSR is 0.
				0X: R _{osc} (not divided)
				10: R _{osc} /2
				11: R _{osc} /4
5.2.2 RC Trimming Data Protect Register	73	Bit	Bit Name	Description
(RCTRMDPR)		4	TRMDRWE	Trimming Date Register Write Enable
				This register can be written to when the bit is 0 and this bit is 1.
				[Setting condition]
				 When writing 0 to the WRI bit while the TRMDRWE bit while the PRWE
				[Clearing conditions]
				Reset
				When writing 0 to the WRI bit and w the TRMDRWE bit while the PRWE

Renesas

				l
5.2.4 Clock Control/Status Register (CKCSR)	74	Bit	Bit Name	Description
····g····· (-·····,		7	PMRC1	Port C Function Select 1 and 0
		6	PMRC0	
Figure 5.5 Timing Chart of Switching On-chip Oscillator Clock to External Clock	78	Note:		of the ϕ_{osc} clock after six clock cycles
Table 5.1 Crystal Resonator Parameters	82		equency (MF , (Max.)	Hz) 12 50 Ω
Section 7 ROM	97	contro	l program area	2-kbyte (including 4 kbytes as the E7 a) flash memory built into the HD64F3 are summarized below.
Figure 7.1 Flash Memory Block Configuration	98	← Pro	gramming unit	:: 64 k bytes →
Table 7.3 System Clock Frequencies for which	105	Но	ost Bit Rate	System Clock Frequency Range o
Automatic Adjustment of LSI		96	00bps	8 MHz (on-chip oscillator clock)
Bit Rate is Possible		48	00bps	8 MHz (on-chip oscillator clock)
		24	00bps	8 MHz (on-chip oscillator clock)
Figure 7.4 Erase/Erase- Verify Flowchart	111		Increment addr	Verify data
Section 8 RAM	115	Note:	* When the E not be acce	7 or E8 is used, area H'F980 to H'FD essed.
Rev. 3.00 Sep. 14, 2006 Page 4	02 of 40)8		

Rev. 3.00 Sep. 14, 2006 Page 402 of 408 REJ09B0105-0300

RENESAS

Register (ICSR)		Bit Bit Name Description
0 ()		3 STOP Stop Condition Detection Flag
		[Setting conditions]
		 In master mode, when a stop con- detected after frame transfer
		 In slave mode, when a stop condidetected after the general call address the first byte slave address, next to detection of start condition, accordaddress set in SAR
Figure 15.15 Receive Mode Operation Timing	265	SCL
		MST
15.7 Usage Notes	272	Added
16.3.1 A/D Data Registers A	276	There are four 16-bit read-only ADDR registers;
to D (ADDRA to ADDRD)		Therefore, byte access to ADDR should be done by read upper byte first then the lower one. ADDR is initialized to
Figure 17.2 Block Diagram of Power-On Reset Circuit and Low-Voltage Detection Circuit	287	
20.3 Electrical	331	20.3 Electrical Characteristics (Masked ROM Version) [Preli
Characteristics (Masked ROM Version)		The guarantee value for the electrical characteristics of mas version is preliminary.
		20.3.1 Power Supply Voltage and Operating Ranges
		-

Appendix C Product Code 395		Product Ty	ype	Mode	Model Marking Pac		age Code
Lineup		H8/36912	Flash memory	HD64	F36912GFH	LQFF	P-32 (FP-32
			version	HD64	F36912GTP	SOP	-32 (FP-32D
				HD64	F36912GP	SDIP	-32 (32P4B
			Masked ROM version	HD64	336912G(***) FH	LQFF	P-32 (FP-32
			Version	HD64	336912G(***) TP	SOP	·32 (FP-32D
				HD64	336912G(***) P	SDIP	-32 (32P4B
		H8/36911	1 Masked ROM version	HD64	336911G(***) FH	LQFF	P-32 (FP-32
				HD64	336911G(***) TP	SOP	·32 (FP-32D
				HD64	336911G(***) P	SDIP	-32 (32P4B
	H8/36902 Flash memory version	HD64	F36902GFH	LQFF	P-32 (FP-32		
			version	HD64	HD64F36902GTP SC		-32 (FP-32D
				HD64	F36902GP	SDIP	-32 (32P4B
			Masked ROM version	HD64	336902G(***) FH	LQFF	P-32 (FP-32
			Version	HD64	336902G(***) TP	SOP	-32 (FP-32D
				HD64	336902G(***) P	SDIP	-32 (32P4B
		H8/36901	Masked ROM version	HD64	336901G(***) FH	LQFF	P-32 (FP-32
			Version	HD64	336901G(***) TP	SOP	-32 (FP-32D
			HD64	336901G(***) P	SDIP	-32 (32P4B	
		H8/36900	Masked ROM version	HD64	336900G(***) FH	LQFF	P-32 (FP-32
			Version	HD64	336900G(***) TP	SOP	·32 (FP-32D
				HD64	336900G(***) P	SDIP	-32 (32P4B
Figure D.3 32P4B Package	308						
Dimension	000	Package	Code		32P4B		I
		JEDEC			<u> </u>		I
		JEITA			-		l
		Mass (re	eference valu	e)	2.2		l

Rev. 3.00 Sep. 14, 2006 Page 404 of 408 REJ09B0105-0300

B

Bit Synchronous Circuit 271	1
-----------------------------	---

С

Clock pulse generators	
System Prescaler S	83
Clocked Synchronous Serial Format 2	63
Condition field	31
Condition-code register (CCR)	16
CPU	11

E

Effective address	35
Effective address extension	31

Boot mode
Boot program
Erase/erase-verify
Erasing units
Error protection
Hardware protection
Program/program-verify
Programming units
Programming/erasing in user pr
mode
Software protection

G

General	registers	 	
00000	1001010	 	 •••

I

Renesas

1
I/O ports
I/O port block diagrams
I ² C Bus Format
I ² C Bus Interface 2 (IIC2)
Instruction set
Arithmetic operations instruction
Bit Manipulation instructions
Block data transfer instructions
Branch instructions
Data Transfer instructions
Logic Operations instructions

L

Low-voltage detection circuit	
LVDI	293, 295
LVDI (interrupt by low voltage d	letect)
circuit	293, 295
LVDR	292
LVDR (reset by low voltage dete	ect)
circuit	292

Μ

Memory map	12
Module standby function	95

Ν

Noise Canceler

0

On-board programming modes	102
Operation field	30

Р

Package	2
Package dimensions	5

Rev. 3.00 Sep. 14, 2006 Page 406 of 408 REJ09B0105-0300

RENESAS

R

Register	
ABRKCR	
ABRKSR	
ADCR	
ADCSR	
ADDRA	
ADDRB	
ADDRC	
ADDRD	
BARH	
BARL	
BDRH	
BDRL	
BRR	206, 303
EBR1	101, 303
FENR	101, 303
FLMCR1	
FLMCR2	100, 303
GRA	171, 303
GRB	
GRC	171, 303
GRD	171, 303
ICCR1	
ICCR2	
ICDRR	
ICDRS	
ICDRT	
ICIER	

PCR1	119, 304, 308, 311
PCR2	122, 304, 308, 311
PCR5	125, 304, 308, 311
PCR7	
PCR8	131, 304, 308, 311
PDR1	119, 304, 308, 310
PDR2	122, 304, 308, 310
PDR5	126, 304, 308, 310
PDR7	129, 304, 308, 310
PDR8	131, 304, 308, 310
PDRB	134, 304, 308, 310
PMR1	118, 304, 308, 311
PMR5	125, 304, 308, 311
PUCR1	120, 304, 308, 310
PUCR5	126, 304, 308, 310
RDR	200, 303, 307, 310
RSR	
SAR	252, 302, 306, 309
SCR3	202, 303, 307, 310
SMR	201, 303, 307, 310
SPMR	211, 303, 307, 310
SSR	204, 303, 307, 310
SYSCR1	86, 304, 308, 311
SYSCR2	88, 304, 308, 311
ТСВ1	141, 302, 306, 309
TCNT	171, 306, 309
TCNTV	147, 303, 307, 310
TCORA	148, 303, 307, 310

TLB1	
TMB1	
TMRW	
TMWD	
TSR	
TSRW	166, 30
Register field	

S

Serial communication interface 3
(SCI3)
Asynchronous mode
Bit rate
Break
Clocked synchronous mode
Framing error
Multiprocessor communication
function
Overrun error
Parity error
Slave address
Stack pointer (SP)
Start condition
Stop condition
System clocks
5

Rev. 3.00 Sep. 14, 2006 Page 408 of 408 REJ09B0105-0300

Renesas 16-Bit Single-Chip Microcomputer Hardware Manual H8/36912 Group, H8/36902 Group

Publication Date:	Rev.1.00, Nov. 07, 2003
	Rev.3.00, Sep. 14, 2006
Published by:	Sales Strategic Planning Div.
	Renesas Technology Corp.
Edited by:	Customer Support Department
	Global Strategic Communication Div.
	Renesas Solutions Corp.

© 2006. Renesas Technology Corp., All rights reserved. Printed in Japan.

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, J

RENESAS SALES OFFICES

http://www.rei

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: ≺86≻ (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd.

10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <655 < 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82- (2) 796-3115, Fax: <82- (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Tel: <603> 7955-9300, Fax: <603> 7955-9510

H8/36912 Group, H8/36902 Group Hardware Manual

Renesas Electronics Corporation 1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

REJ09B0105-0300

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for 16-bit Microcontrollers - MCU category:

Click to view products by Renesas manufacturer:

Other Similar products are found below :

MB90F036APMC-GSE1 MB90F342CASPMC-GSE1 MB90F345CESPMC-GE1 MB90F349CAPFR-GSE1 MB90F428GCPFR-GSE1 MB90F462APFM-GE1 MB90F462APMC-G-SNE1 MB90F497GPF-GE1 MB90F546GSPFR-GE1 MB90F947APFR-GS-SPE1 MB96F346RSBPMC-GS-N2E2 MB96F683RBPMC-GSAE1 R5F11BGEAFB#30 DF3026XBL25V S912ZVFP64F1VLL R4F24268NVRFQV R5F107DEGSP#X0 R5F11B7EANA#U0 R5F21172DSP#U0 M30622F8PGP#U3C MB90092PF-G-BNDE1 MB90F335APMC1-G-SPE1 MB90F342CASPFR-GS-N2E1 MB90F345CAPFR-GSE1 MB90F543GPF-GE1 MB90F546GSPF-GE1 MB90F568PMCR-GE1 MB90F594APFR-GE1 MB90F882ASPMC-GE1 MB96F346RSAPQCR-GS-N2E2 MB96F387RSBPMC-GSE2 MB96F387RSBPMC-GS-N2E2 MB96F395RSAPMC-GSE2 MB96F623RBPMC1-GSE1 MB96F646RBPMC-GSE1 XE167F96F66LACFXUMA1 MB96F696RBPMC-GSAE1 MB96F018RBPMC-GSE1 MB90F962SPMCR-GE1 MB90F867ASPFR-GE1 MB90F543GPF-G-FLE1 MB90F345CESPF-GE1 M30290FCHP#U3A DF2239FA20IV HD64F3672FPV R5F104AEASP#V0 R5F100BCANA#U0 R5F100BFANA#U0 S9S12H256J2VFVER R5F100ACASP#V0