Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- 2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

32

SH7125 Group, SH7124 Group

Hardware Manual

Renesas 32-Bit RISC Microcomputer SuperH™ RISC engine Family

> SH7125 R5F7125 SH7124 R5F7124

addullielli, biedse dollillil tile idtest biddudt illidillidtloll. With a Hellesds sales dilide. Alsd. biedse bay i and careful attention to additional and different information to be disclosed by Renesas such as that disc through our website. (http://www.renesas.com)

(1) artificial life support devices or systems

damages arising out of such applications.

(2) surgical implantations

system manufactured by you.

approval from Renesas.

Rev. 5.00 Mar. 06, 2009 Page ii of xviii

REJ09B0243-0500

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the inform included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the informatio

malfunction of which may cause a direct threat to human life or create a risk of human injury or which reespecially high quality and reliability such as safety systems, or equipment or systems for transportation traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea commur transmission. If you are considering the use of our products for such purposes, please contact a Renesa sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth abo Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed

Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Re Technology Corp., its affiliated companies and their officers, directors, and employees against any and a

9. You should use the products described herein within the range specified by Renesas, especially with res to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunct

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have spec characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical inju injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final produ

11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is high. You should implement safety measures so that Renesas products may not be easily detached from

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior writte

13. Please contact a Renesas sales office if you have any questions regarding the information contained in

RENESAS

light of the total system before deciding about the applicability of such information to the intended applica-Renesas makes no representations, warranties or guaranties regarding the suitability of its products for

particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or

(3) healthcare intervention (e.g., excision, administration of medication, etc.)

damages arising out of the use of Renesas products beyond such specified ranges.

products. Renesas shall have no liability for damages arising out of such detachment.

document, Renesas semiconductor products, or if you have any other inquiries.

(4) any other purposes that pose a direct threat to human life

are in their open states, intermediate levels are induced by noise in the vicinity, through current flows internally, and a malfunction may occur.

3. Processing before Initialization

Note: When power is first supplied, the product's state is undefined.

The states of internal circuits are undefined until full power is supplied through

chip and a low level is input on the reset pin. During the period where the states undefined, the register settings and the output state of each pin are also undefined your system so that it does not malfunction because of processing while it is in tundefined state. For those products which have a reset function, reset the LSI in after the power supply has been turned on.

4. Prohibition of Access to Undefined or Reserved Addresses

Note: Access to undefined or reserved addresses is prohibited

e: Access to undefined or reserved addresses is prohibited.

The undefined or reserved addresses may be used to expand functions, or test re may have been be allocated to these addresses. Do not access these registers; the operation is not guaranteed if they are accessed.

- CPU and System-Control Modules
 - On-Chip Peripheral Modules

The configuration of the functional description of each module differs according to module. However, the generic style includes the following items:

- i) Feature
- ii) Input/Output Pin
- iii) Register Description
- iv) Operation
- v) Usage Note

When designing an application system that includes this LSI, take notes into account. Each includes notes in relation to the descriptions given, and usage notes are given, as required final part of each section.

- 7. List of Registers
- 8. Electrical Characteristics
- 9. Appendix
- 10. Main Revisions and Additions in this Edition (only for revised versions)

The list of revisions is a summary of points that have been revised or added to earlier ver This does not include all of the revised contents. For details, see the actual locations in the manual.

11. Index

Rev. 5.00 Mar. 06, 2009 Page iv of xviii

REJ09B0243-0500

Objective: This manual was written to explain the hardware functions and electrical characteristics of the SH7125 Group and SH7124 Group to the target user Refer to the SH-1/SH-2/SH-DSP Software Manual for a detailed descripting instruction set.

Notes on reading this manual:

- In order to understand the overall functions of the chip
- Read the manual according to the contents. This manual can be roughly categorized
- on the CPU, system control functions, peripheral functions and electrical characteris • In order to understand the details of the CPU's functions
- Read the SH-1/SH-2/SH-DSP Software Manual.
- In order to understand the details of a register when its name is known
 - Read the index that is the final part of the manual to find the page number of the ent register. The addresses, bits, and initial values of the registers are summarized in sec
 - List of Registers.

Examples:

Related Manuals:

similar function, e.g. serial communication interf implemented on more than one channel: XXX_N (XXX is the register name and N is the number)

Bit order:

Register name:

Number notation:

The MSB is on the left and the LSB is on the right

Binary is B'xxxx, hexadecimal is H'xxxx, decima An overbar is added to a low-active signal: xxxx

The following notation is used for cases when the

Signal notation:

The latest versions of all related manuals are available from our we

Please ensure you have the latest versions of all documents you rec http://www.renesas.com/

RENESAS

Rev. 5.00 Mar. 06, 2009 P REJ09

SuperH™ RISC engine High-performance Embedded Workshop 3 User's Manual	REJ10B002
SuperH RISC engine High-Performance Embedded Workshop 3 Tutorial	REJ10B002
Application note:	

_

Document Title	Document	
SuperH RISC engine C/C++ Compiler Package Application Note	REJ05B046	

Rev. 5.00 Mar. 06, 2009 Page vi of xviii

REJ09B0243-0500

RENESAS

All trademarks and registered trademarks are the property of their respective owners.

	2.2.1	General Registers (Rn)
	2.2.2	Control Registers
	2.2.3	System Registers
	2.2.4	Initial Values of Registers
2.3	Data F	Formats
	2.3.1	Register Data Format
	2.3.2	Memory Data Formats
	2.3.3	Immediate Data Formats
2.4	Featur	es of Instructions
	2.4.1	RISC Type
	2.4.2	Addressing Modes
	2.4.3	Instruction Formats
2.5	Instruc	ction Set
	2.5.1	Instruction Set by Type
	2.5.2	Data Transfer Instructions
	2.5.3	Arithmetic Operation Instructions
	2.5.4	Logic Operation Instructions
	2.5.5	Shift Instructions
	2.5.6	Branch Instructions
	2.5.7	System Control Instructions
2.6	Proces	ssing States
C	2 N	ACIT Ou and in a Market
		MCU Operating Modes
3.1		ion of Operating Modes
3.2		Output Pins
3.3	-	ting Modes
	3.3.1	Mode 3 (Single Chip Mode)

2.2

Register Configuration....

4.6	Oscilla	ator		
	4.6.1	Connecting Crystal Resonator		
	4.6.2	External Clock Input Method		
4.7	Functi	on for Detecting Oscillator Stop		
4.8	Usage	Notes		
	4.8.1	Note on Crystal Resonator		
	4.8.2	Notes on Board Design		
Sect	ion 5 E	Exception Handling		
5.1	Overv	iew		
	5.1.1	Types of Exception Handling and Priority		
	5.1.2	Exception Handling Operations		
	5.1.3	Exception Handling Vector Table		
5.2				
	5.2.1	Types of Resets		
	5.2.2	Power-On Reset		
	5.2.3	Manual Reset		
5.3	Address Errors			
	5.3.1	Address Error Sources		
	5.3.2	Address Error Exception Source		
5.4	Interru	ıpts		
	5.4.1	Interrupt Sources		
	5.4.2	Interrupt Priority		
	5.4.3	Interrupt Exception Handling		
5.5	Exceptions Triggered by Instructions			
	5.5.1	Types of Exceptions Triggered by Instructions		
	5.5.2	Trap Instructions		
	5.5.3	Illegal Slot Instructions		

RENESAS

Changing Frequency

4.5

REJ09B0243-0500

	6.3.1	Interrupt Control Register 0 (ICR0)	
	6.3.2	IRQ Control Register (IRQCR)	
	6.3.3	IRQ Status register (IRQSR)	
	6.3.4	Interrupt Priority Registers A to F and H to M	
		(IPRA to IPRF and IPRH to IPRM)	
6.4	Interrup	ot Sources	
	6.4.1	External Interrupts	
	6.4.2	On-Chip Peripheral Module Interrupts	
	6.4.3	User Break Interrupt	
6.5	Interrup	ot Exception Handling Vector Table	
6.6	Interrupt Operation		
	6.6.1	Interrupt Sequence	
	6.6.2	Stack after Interrupt Exception Handling	
6.7	Interrup	ot Response Time	
6.8	Usage N	Note	
	6.8.1	Clearing Interrupt Source Flags	
	6.8.2	NMI Not Used	
Case	i 7 II.	can Ducals Controllar (LDC)	
		ser Break Controller (UBC)	
7.1		S	
7.2	Register	r Descriptions	
	7.2.1	Break Address Register A (BARA)	

Input/Output Pins.....

Register Descriptions

6.2 6.3

7.2.2

7.2.3 7.2.4

7.2.5 7.2.6

Break Address Mask Register A (BAMRA)..... Break Bus Cycle Register A (BBRA).....

Break Data Register A (BDRA) Break Data Mask Register A (BDMRA)

Break Address Register B (BARB)

Rev. 5.00 Mar. 06, 2009 Pa

Secti	on 9 M	Iulti-Function Timer Pulse Unit 2 (MTU2)
9.1	Feature	s
9.2		Output Pins
9.3		r Descriptions
	9.3.1	Timer Control Register (TCR)
	9.3.2	Timer Mode Register (TMDR)
	9.3.3	Timer I/O Control Register (TIOR)
	9.3.4	Timer Compare Match Clear Register (TCNTCMPCLR)
	9.3.5	Timer Interrupt Enable Register (TIER)
	9.3.6	Timer Status Register (TSR)
	9.3.7	Timer Buffer Operation Transfer Mode Register (TBTM)
	9.3.8	Timer Input Capture Control Register (TICCR)
	9.3.9	Timer A/D Converter Start Request Control Register (TADCR)
	9.3.10	Timer A/D Converter Start Request Cycle Set Registers
		(TADCORA_4 and TADCORB_4)
Rev. 5	.00 Mar.	06, 2009 Page x of xviii

7.3.3 7.3.4

7.3.5

7.3.6

7.3.7

REJ09B0243-0500

7.4

8.1 8.2

8.3

Break on Data Access Cycle....

Sequential Break

Value of Saved Program Counter.....

PC Trace

Usage Examples.....

Usage Notes.....

Address Map.....

Access to on-chip FLASH and on-chip RAM

RENESAS

	9.3.23	Timer Dead Time Data Register (TDDR)
	9.3.24	Timer Cycle Data Register (TCDR)
	9.3.25	Timer Cycle Buffer Register (TCBR)
	9.3.26	Timer Interrupt Skipping Set Register (TITCR)
	9.3.27	Timer Interrupt Skipping Counter (TITCNT)
	9.3.28	Timer Buffer Transfer Set Register (TBTER)
	9.3.29	Timer Dead Time Enable Register (TDER)
	9.3.30	Timer Waveform Control Register (TWCR)
	9.3.31	Bus Master Interface
9.4	Operati	ion
	9.4.1	Basic Functions
	9.4.2	Synchronous Operation
	9.4.3	Buffer Operation
	9.4.4	Cascaded Operation
	9.4.5	PWM Modes
	9.4.6	Phase Counting Mode
	9.4.7	Reset-Synchronized PWM Mode
	9.4.8	Complementary PWM Mode
	9.4.9	A/D Converter Start Request Delaying Function
	9.4.10	External Pulse Width Measurement
	9.4.11	Dead Time Compensation
	9.4.12	TCNT Capture at Crest and/or Trough in Complementary PWM Operation
9.5	Interru	pt Sources
	9.5.1	Interrupt Sources and Priorities
	9.5.2	A/D Converter Activation
9.6	Operati	ion Timing
	9.6.1	Input/Output Timing
-		Rev. 5.00 Mar. 06, 2009 Page 1

REJ09

9.3.21 Timer Gate Control Register (TGCR) 9.3.22 Timer Subcounter (TCNTS).....

9.7.12	2 TCNT_2 Write and Overflow/Underflow Contention in Cascade Connecti
9.7.13	3 Counter Value during Complementary PWM Mode Stop
9.7.14	Buffer Operation Setting in Complementary PWM Mode
9.7.1	Reset Sync PWM Mode Buffer Operation and Compare Match Flag
9.7.10	Overflow Flags in Reset Synchronous PWM Mode
9.7.1	Contention between Overflow/Underflow and Counter Clearing
9.7.18	Contention between TCNT Write and Overflow/Underflow
9.7.19	Cautions on Transition from Normal Operation or PWM Mode 1
	to Reset-Synchronized PWM Mode
9.7.20	Output Level in Complementary PWM Mode
	and Reset-Synchronized PWM Mode
9.7.2	Interrupts in Module Standby Mode
9.7.22	2 Simultaneous Capture of TCNT_1 and TCNT_2 in Cascade Connection
9.8 MTU	2 Output Pin Initialization
9.8.1	Operating Modes
9.8.2	Reset Start Operation
9.8.3	Operation in Case of Re-Setting Due to Error During Operation, etc.

Overview of Initialization Procedures

9.8.4

REJ09B0243-0500

Rev. 5.00 Mar. 06, 2009 Page xii of xviii

10.2

10.3

9.7.10 Contention between TGR Write and Input Capture.....9.7.11 Contention between Buffer Register Write and Input Capture.....

and Mode Transitions in Case of Error during Operation, etc.....

Input/Output Pins.....

RENESAS

11.3	Register Descriptions				
	11.3.1 Watchdog Timer Counter (WTCNT)				
	11.3.2 Watchdog Timer Control/Status Register (WTCSR)				
	11.3.3 Notes on Register Access				
11.4	Operation				
	11.4.1 Canceling Software Standbys				
	11.4.2 Using Watchdog Timer Mode				
	11.4.3 Using Interval Timer Mode				
11.5	Usage Note				
	11.5.1 Overflow				
	11.5.2 WDTOVF Signal Connection				
	•				
Secti	on 12 Serial Communication Interface (SCI)				
12.1	Features				
12.2	Input/Output Pins				
	Register Descriptions				
	· · · · · · · · · · · · · · · · · · ·				

Section 11 Watchdog Timer (WDT) Features..... Input/Output Pin for WDT.....

Rev. 5.00 Mar. 06, 2009 Pa

REJ09

12.3.1 Receive Shift Register (SCRSR) 12.3.2 Receive Data Register (SCRDR)..... 12.3.3 Transmit Shift Register (SCTSR)..... 12.3.4 Transmit Data Register (SCTDR)..... 12.3.5 Serial Mode Register (SCSMR)..... 12.3.6 Serial Control Register (SCSCR)..... 12.3.7 Serial Status Register (SCSSR) 12.3.8 Serial Port Register (SCSPTR) 12.3.9 Serial Direction Control Register (SCSDCR)...... 12.3.10 Bit Rate Register (SCBRR)

	10.50 5 1.50 1.50 1.50 1.50 1.50 1.50 1.
	12.7.3 Break Detection and Processing
	12.7.4 Sending a Break Signal
	12.7.5 Receive Data Sampling Timing and Receive Margin (Asynchronous Mode
	12.7.6 Note on Using External Clock in Clock Synchronous Mode
	12.7.7 Module Standby Mode Setting
Sect	ion 13 A/D Converter (ADC)
13.1	Features
13.2	Input/Output Pins
	Register Descriptions
10.0	13.3.1 A/D Data Registers 0 to 7 (ADDR0 to ADDR7)
	13.3.2 A/D Control/Status Registers_0 and _1 (ADCSR_0 and ADCSR_1)
	13.3.3 A/D Control Registers_0 and _1 (ADCR_0 and ADCR_1)
	13.3.4 A/D Trigger Select Register_0 (ADTSR_0)
13.4	Operation
	13.4.1 Single Mode
	13.4.2 Continuous Scan Mode
	13.4.3 Single-Cycle Scan Mode
	13.4.4 Input Sampling and A/D Conversion Time
	13.4.5 A/D Converter Activation by MTU2
	13.4.6 External Trigger Input Timing
	13.4.7 2-Channel Scanning
13.5	Interrupt Sources
13.6	Definitions of A/D Conversion Accuracy
	•
13.7	Usage Notes
	13.7.1 Module Standby Mode Setting

Rev. 5.00 Mar. 06, 2009 Page xiv of xviii

REJ09B0243-0500

12.7.2 Multiple Receive Error Occurrence.....

13.7.2 Permissible Signal Source Impedance13.7.3 Influences on Absolute Accuracy

RENESAS

14.4	Interrupts
	14.4.1 CMT Interrupt Sources
	14.4.2 Timing of Setting Compare Match Flag
	14.4.3 Timing of Clearing Compare Match Flag
14.5	Usage Notes
	14.5.1 Module Standby Mode Setting
	14.5.2 Conflict between Write and Compare-Match Processes of CMCNT
	14.5.3 Conflict between Word-Write and Count-Up Processes of CMCNT
	14.5.4 Conflict between Byte-Write and Count-Up Processes of CMCNT
	14.5.5 Compare Match between CMCNT and CMCOR
	•
Secti	on 15 Pin Function Controller (PFC)
	Register Descriptions
	15.1.1 Port A I/O Register L (PAIORL)
	15.1.2 Port A Control Registers L1 to L4 (PACRL1 to PACRL4)
	15.1.3 Port B I/O Registers L and H (PBIORL and PBIORH)
	15.1.4 Port B Control Registers L1, L2, and H1 (PBCRL1, PBCRL2, and PBCF
	15.1.5 Port E I/O Register L (PEIORL)
	15.1.6 Port E Control Registers L1 to L4 (PECRL1 to PECRL4)
	15.1.7 IRQOUT Function Control Register (IFCR)
15.2	Usage Notes
Secti	on 16 I/O Ports
16.1	Port A
	16.1.1 Register Descriptions

14.3 Operation 14.3.1 Interval Count Operation 14.3.2 CMCNT Count Timing.....

REJ09

Rev. 5.00 Mar. 06, 2009 Pa

	16.4.2	Port F Data Register L (PFDRL)		
16.5	Usage l	Notes		
		Handling of Unused Pins		
Secti	ion 17 I	Flash Memory (ROM)		
17.1	Feature	·S		
17.2	Overvie	ew		
	17.2.1	Block Diagram		
	17.2.2	Operating Mode		
	17.2.3	Mode Comparison		
	17.2.4	Flash Memory Configuration.		
	17.2.5	Block Division		
	17.2.6	Programming/Erasing Interface		
17.3	Input/C	Output Pins		
17.4	Registe	r Descriptions		
	17.4.1	Registers		
	17.4.2	Programming/Erasing Interface Registers		
	17.4.3	Programming/Erasing Interface Parameters		
17.5	On-Board Programming Mode			
	17.5.1	Boot Mode		
	17.5.2	User Program Mode		
		(Only in On-Chip 128-Kbyte and 64-Kbyte ROM Version)		
17.6	Protecti	ion		
	17.6.1	Hardware Protection		
	17.6.2	Software Protection		
	17.6.3	Error Protection		
17.7	Usage I	Notes		
		Interrupts during Programming/Erasing		

17.7.2 Other Notes.....

RENESAS

Rev. 5.00 Mar. 06, 2009 Page xvi of xviii

REJ09B0243-0500

	19.1.1 Types of Power-Down Modes				
19.2	Input/Output Pins				
19.3	Register Descriptions				
	19.3.1 Standby Control Register 1 (STBCR1)				
	19.3.2 Standby Control Register 2 (STBCR2)				
	19.3.3 Standby Control Register 3 (STBCR3)				
	19.3.4 Standby Control Register 4 (STBCR4)				
	19.3.5 Standby Control Register 5 (STBCR5)				
	19.3.6 Standby Control Register 6 (STBCR6)				
	19.3.7 RAM Control Register (RAMCR)				
19.4	Sleep Mode				
	19.4.1 Transition to Sleep Mode				
	19.4.2 Canceling Sleep Mode				
19.5	Software Standby Mode				
	19.5.1 Transition to Software Standby Mode				
	19.5.2 Canceling Software Standby Mode				
19.6	Module Standby Mode				
	19.6.1 Transition to Module Standby Mode				
	19.6.2 Canceling Module Standby Function				
19.7	Usage Note				
	19.7.1 Current Consumption while Waiting for Oscillation to be Stabilized				

19.7.2 Executing the SLEEP Instruction

RENESAS

Rev. 5.00 Mar. 06, 2009 Pag

REJ09

Section 20 List of Registers..... Register Address Table (In the Order from Lower Addresses)..... Register Bit List

20.3 Register States in Each Operating Mode

20.2

Section 19 Power-Down Modes

21.4	A/D Converter Characteristics
21.5	Flash Memory Characteristics
	Usage Note
21.0	21.6.1 Notes on Connecting V _{CI} Capacitor
	21011 11000 on commontants
App	endix
	Pin States
B.	Product Code Lineup
C.	Package Dimensions
Mair	n Revisions for This Edition

Index

Rev. 5.00 Mar. 06, 2009 Page xviii of xviii

the 32-bit internal-bus architecture enhances data processing power. With this CPU, it h possible to assemble low-cost, high-performance, and high-functioning systems, even for applications that were previously impossible with microcomputers, such as real-time co which demands high speeds.

In addition, this LSI includes on-chip peripheral functions necessary for system configu such as a ROM, a RAM, timers, a serial communication interface (SCI), an A/D converinterrupt controller (INTC), and I/O ports.

The version of the on-chip ROM is F-ZTAT[™] (Flexible Zero Turn Around Time)* that flash memory. The flash memory can be programmed with a programmer that supports programming of this LSI, and can also be programmed and erased by software. This ena chip to be re-programmed at a user-site while mounted on a board.

The features of this LSI are listed in table 1.1.

Note: * F-ZTATTM is a trademark of Renesas Technology Corp.

- executed in two to five cycles C language-oriented 62 basic instructions Some specifications on slot illegal instruction exception has this LSI differ from those of the conventional SH-2. For de section 5.8.4, Notes on Slot Illegal Instruction Exception F Operating modes Operating modes Single chip mode
 - Operating states Program execution state
 - Exception handling state
 - Power-down modes — Sleep mode

Two break channels

- Software standby mode
- Module standby mode
- Addresses, data values, type of access, and data size can all b break conditions

On-chip multiplier: Multiplication operations (32 bits \times 32 bits \rightarrow

- Supports a sequential break function
- 128 kbytes (SH71253, SH71243) 64 kbytes (SH71252, SH71242)
- 32 kbytes (SH71251A, SH71241A)
- 16 kbytes (SH71250A, SH71240A)
- 8 kbytes (SH71253, SH71243, SH71252, SH71242, SH71251A
- 4 kbytes (SH71250A, SH71240A)

SH71241A)

User break controller •

(UBC)*

On-chip ROM

On-chip RAM

generator (CPG)		resonator		
		Four types of clocks generated:		
		— CPU clock: Maximum 50 MHz		
		 Bus clock: Maximum 40 MHz 		
		 Peripheral clock: Maximum 40 MHz 		
		— MTU2 clock: Maximum 40 MHz		
Watchdog timer	•	On-chip one-channel watchdog timer		
(WDT)	•	Interrupt generation is supported.		

Toggle, PWM, complementary PWM, and reset-synchronized modes Synchronization of multiple counters · Complementary PWM output mode Non-overlapping waveforms output for 6-phase inverter co

Automatic dead time setting

— 0% to 100% PWM duty cycle specifiable

Output suppression

A/D conversion delaying function

Dead time compensation

Interrupt skipping at crest or trough

Reset-synchronized PWM mode

Three-phase PWM waveforms in positive and negative phase output with a required duty cycle

Phase counting mode

Two-phase encoder pulse counting available

Port output enable (POE)

(CMT)

Compare match timer

MTU2

16-bit counters

Compare match interrupts can be generated

High-impedance control of waveform output pins and channel

Serial communication Clock synchronous or asynchronous mode interface (SCI) Three channels

- LQFP-48 (0.65 pitch) (SH7124) VQFN-64 (0.4 pitch) (SH7125)
 - VQFN-52 (0.4 pitch) (SH7124)
- Power supply voltage Vcc: 4.0 to 5.5 V
- AVcc: 4.0 to 5.5 V
- The 32 Kbyte (SH71251A and SH71241A) and 16 Kbyte (SH71250A and SH Note:

versions are not supported.

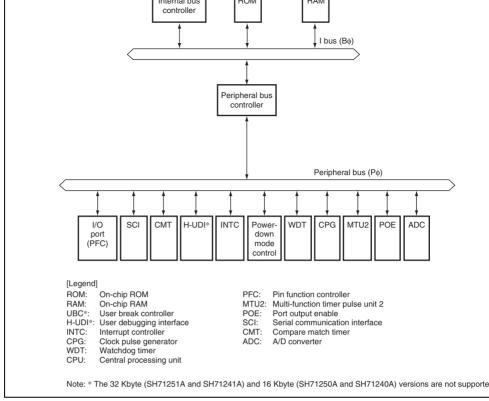


Figure 1.1 Block Diagram

Rev. 5.00 Mar. 06, 2009 Page 6 of 770 REJ09B0243-0500

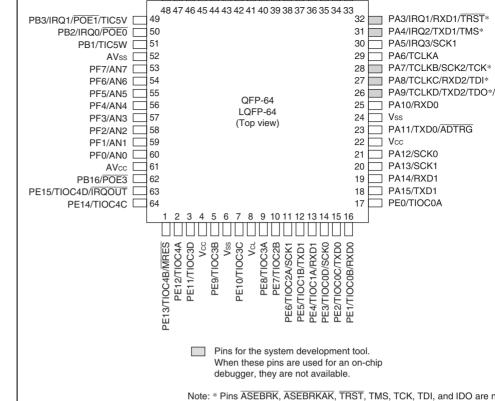


Figure 1.2 (1) Pin Assignments of SH7125

on the 32 Kbyte version (SH71251A) and 16 Kbyte version (SH712

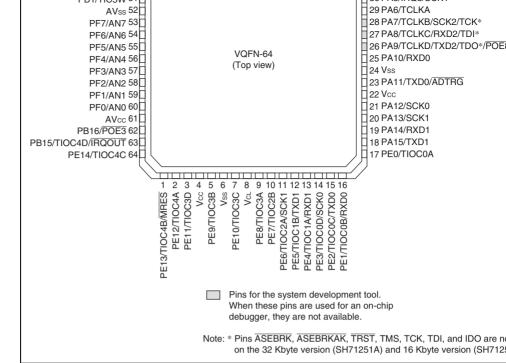


Figure 1.2 (2) Pin Assignments of SH7125

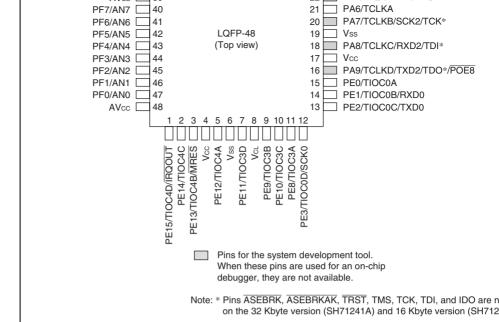


Figure 1.3 (1) Pin Assignments of SH7124

RENESAS

Rev. 5.00 Mar. 06, 2009 P

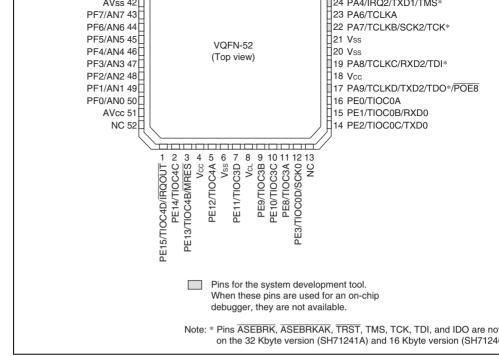


Figure 1.3 (2) Pin Assignments of SH7124

Rev. 5.00 Mar. 06, 2009 Page 10 of 770

REJ09B0243-0500

RENESAS

			internal power- down
Clock	PLLVss	1	PLL ground
	EXTAL	ı	External clock
	XTAL	0	Crystal
Operating mode control	MD1	I	Mode set
	FWE	I	Flash memory write enable

I

0

Ground

Power supply for

Vss

VCL

Ground pin

the pins).

oscillator

operation.

Connect all Vss pins to the power supply (0V). There operation if any pins are o

External capacitance pins power-down power supply Connect these pins to Vss to 0.47 µF capacitor (place

Ground pin for the on-chip

Connected to a crystal res An external clock signal m input to the EXTAL pin. Connected to a crystal res

Sets the operating mode. I

change values on this pin

Rev. 5.00 Mar. 06, 2009 Pa

REJ09

Pin for flash memory Flash memory can be prot against programming or er

through this pin.

	IRQ3 to IRQ1 (SH7124)			input. The rising edge, fallin and both edges are selecta edges.
	IRQOUT	0	Interrupt request output	Shows that an interrupt cau occurred. The interrupt cause recognized even in the bus state.
Multi function timer- pulse unit 2 (MTU2)	TCLKA, TCLKB, TCLKC, TCLKD	I	MTU2 timer clock input	External clock input pins for
	TIOCOA, TIOCOB, TIOCOC, TIOCOD	I/O	MTU2 input capture/output compare (channel 0)	The TGRA_0 to TGRD_0 in capture input/output compa output/PWM output pins
	TIOC1A, TIOC1B (only in SH7125)	I/O	MTU2 input capture/output compare (channel 1)	The TGRA_1 to TGRB_1 in capture input/output compa output/PWM output pins
	TIOC2A, TIOC2B (only in	I/O	MTU2 input capture/output compare	The TGRA_2 to TGRB_2 in capture input/output compa output/PWM output pins

SH7125)

IRQ3 to IRQ0 I

(SH7125)

interrupt

3 to 0

Fix to high or low level whe

Selectable as level input or

use.

Interrupt requests Maskable interrupt request

(channel 2)

Rev. 5.00 Mar. 06, 2009 Page 12 of 770

	POE8, POE1,			state.
	POE0 (SH7124)			In the SH7125, while POE is selected in the PFC, the pulled up inside this LSI if are input to them.
erial ommunication	TXD2 to TXD0	0	Transmit data	Transmit data output pins
interface (SCI)	RXD2 to RXD0	I	Receive data	Receive data input pins
	SCK2 to SCK0 (SH7125)	I/O	Serial clock	Clock input/output pins
	SCK2, SCK0 (SH7124)			
A/D converter	AN7 to AN0	Į	Analog input pins	Analog input pins
ADC)	ADTRG (only in SH7125)	I	A/D conversion trigger input	External trigger input pin t A/D conversion
	AVcc	I	Analog power supply	Power supply pin for the A converter
				Connect all AVcc pins to t

Port output

enable

Request signal input to pla

waveform output pins and

pins of MTU2 in high impe

power supply (Vcc) when to converter is not used.

Rev. 5.00 Mar. 06, 2009 Pa

REJ09

POE8, POE3, I

POE1, POE0

(SH7125)

Port output enable

(POE)

	(SH7125)		
	PB5, PB3, PB1 (SH7124)		
	PE15 to PE0 (SH7125)	I/O	General port
	PE15 to PE8, PE3 to PE0 (SH7124)		
	PF7 to PF0	I	General port
User debugging	TCK	I	Test clock
interface (H-UDI)*1	TMS	I	Test mode select
(11 021)	TDI	I	Test data input
	TDO	0	Test data output
	TRST	I	Test reset

(SH7124) PB16, PB5,

PB3 to PB1

I/O

General port

5-bit input/output port pins

3-bit input/output port pins

16-bit input/output port pins

12-bit input/output port pins

Inputs the test-mode select

Serial input pin for instruction

Serial output pin for instruct

Initialization-signal input pin

8-bit input port pins

Test-clock input pin

data

data

Rev. 5.00 Mar. 06, 2009 Page 14 of 770

ASEBRK*2 I	Break request	E10A emulator break input
ASEBRKAK*2 O	Break mode	Indicates that the E10A en
	acknowledge	entered its break mode.

[Legend]: The WDTOVF pin should not be pulled down. When absolutely necessary, po through a resistor of 1 M Ω or larger.

Notes: *1 This pin function is not supported on the 32 Kbyte (SH71251A and SH71241 Kbyte (SH71250A and SH71240A) versions.

*2 On 32 Kbyte versions (SH71251A, SH71241A) and 16 Kbyte versions (SH71 SH71240A), connect $\overline{\text{ASEMD0}}$ to V_{cc} via a resistor and fix it high. Note that the versions do not support ASEBRK and ASEBRKAK.

If only normal mode will be up the pin by connecting a

Rev. 5.00 Mar. 06, 2009 Page 16 of 770 REJ09B0243-0500

Post-increment register indirect (@Rn+)

Pre-decrement register indirect (@-Rn)

Register indirect with displacement (@disp:4, Rn)

Index register indirect (@R0, Rn)

GBR indirect with displacement (@disp:8, GBR)

Index GBR indirect (@R0, GBR)

PC relative with displacement (@disp:8, PC)

PC relative (disp:8/disp:12/Rn)

Immediate (#imm:8)

Rev. 5.00 Mar. 06, 2009 Pa REJ09

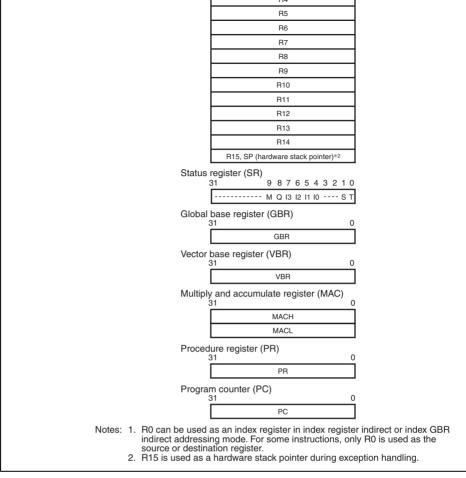


Figure 2.1 CPU Internal Register Configuration

Rev. 5.00 Mar. 06, 2009 Page 18 of 770

REJ09B0243-0500

(GBR), and vector base register (VBR). SR indicates a processing state. GBR is used as address in GBR indirect addressing mode for data transfer of on-chip peripheral module VBR is used as a base address of the exception handling (including interrupts) vector ta

• Status register (SR)

	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
R/W:	R	R	R	R	R	R	R	R	R	R	R	R	R	R	
Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	
	-	-	-	-	-	-	М	Q		1[3	:0]		-	-	
Initial value:	0	Λ	Λ	Λ	Λ	0			1	1	1	1	0	0	

R/W:	R	R	0 R	R	R	R	R/W	R/W	R/W	R/W	I R/W	I R/W	R	0 R
Bit	Bi na	it ame	Defa	ıult	_	Read/ Vrite	Des	script	ion					
31 to 10	_	-	All 0		F	3	Res	servec	t					
								ese bit ould al		,	/s read	d as 0	. The	write v
9	М		Unde	efined	F	R/W	Use	ed by t	the DI	V0U,	DIVOS	S, and	I DIV1	1 instru
8	Q		Unde	efined	F	R/W	Use	ed by t	the DI	V0U,	DIVOS	S, and	I DIV1	1 instru
7 to 4	I[3	3:0]	1111		F	R/W	Inte	errupt	Mask					
3, 2		_	All 0		F	7	Res	servec	t					
							The	ese bit	s are	alway	s read	d as 0	. The	write v

should always be 0.

Rev. 5.00 Mar. 06, 2009 Pa

- Global-base register (GBR)
 - This register indicates a base address in GBR indirect addressing mode. The GBR indiaddressing mode is used for data transfer of the on-chip peripheral module registers a operations.
- Vector-base register (VBR)
 This register indicates the base address of the exception handling vector table.

Rev. 5.00 Mar. 06, 2009 Page 20 of 770

REJ09B0243-0500

The PC indicates the point which is four bytes (two instructions) after the current ex instruction.

2.2.4 Initial Values of Registers

Table 2.1 lists the initial values of registers after a reset.

Table 2.1 Initial Values of Registers

Type of register	Register	Default
General register	R0 to R14	Undefined
	R15 (SP)	SP value set in the exception handling vect
Control register	SR	l3 to l0: 1111 (H'F)
		Reserved bits: 0
		Other bits: Undefined
	GBR	Undefined
	VBR	H'00000000
System register	MACH, MACL, PR	Undefined
	PC	PC value set in the exception handling vect

Figure 2.2 Register Data Format

2.3.2 Memory Data Formats

Memory data formats are classified into bytes, words, and longwords. Byte data can be as from any address. Locate, however, word data at an address 2n, longword data at 4n. Oth an address error will occur if an attempt is made to access word data starting from an add than 2n or longword data starting from an address other than 4n. In such cases, the data a cannot be guaranteed. The hardware stack area, pointed by the hardware stack pointer (Sluses only longword data starting from address 4n because this area holds the program constatus register.

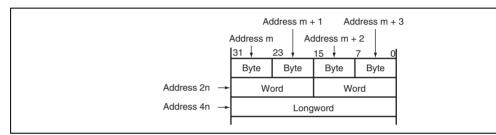


Figure 2.3 Memory Data Format

Rev. 5.00 Mar. 06, 2009 Page 22 of 770

REJ09B0243-0500

relative addressing mode with displacement.

Features of Instructions 2.4

2.4.1 **RISC Type**

The instructions are RISC-type instructions with the following features:

Fixed 16-Bit Length: All instructions have a fixed length of 16 bits. This improves pro efficiency.

One Instruction per Cycle: Since pipelining is used, basic instructions can be executed cycle.

Data Size: The basic data size for operations is longword. Byte, word, or longword can selected as the memory access size. Byte or word data in memory is sign-extended to lo and then calculated. Immediate data is sign-extended to longword for arithmetic operatizero-extended to longword size for logical operations.

Table 2.2 **Word Data Sign Extension**

CPU in this LSI		Description	Example of Other (
MOV.W	@(disp,PC),R1	, ,,			
ADD	R1,R0	becomes H'00001234, and is then operated on by the ADD			
		instruction.			
.DATA.W	H'1234				
Note: *	Immediate data is a	ccessed by @(disp,PC).			

Rev. 5.00 Mar. 06, 2009 Pa

Multi	alv/Multinly-and	-Accumulate Operations: A $16 \times 16 \rightarrow 32$ mu	ltinly one	ration is
ADD	R1,R0		BRA	TRGE
BRA	TRGET	ADD is executed before branch to TRGET.	ADD.W	R1,R0

Example of Oth

Description

executed in one to two cycles, and a $16 \times 16 + 64 \rightarrow 64$ multiply-and-accumulate operation to three cycles. A $32 \times 32 \rightarrow 64$ multiply operation and a $32 \times 32 + 64 \rightarrow 64$ multiply-an accumulate operation are each executed in two to four cycles.

T Bit: The result of a comparison is indicated by the T bit in SR, and a conditional branc performed according to whether the result is True or False. Processing speed has been im by keeping the number of instructions that modify the T bit to a minimum.

Table 2.4 T Bit

CPU in this LSI

CPU in th	is LSI	Description	Example	e of Oth
CMP/GE	R1,R0	When $R0 \ge R1$, the T bit is set.	CMP.W	R1,R0
BT	TRGET0	When R0 \geq R1, a branch is made to TRGET0.	BGE	TRGET
BF	TRGET1	When $R0 < R1$, a branch is made to TRGET1.	BLT	TRGET
ADD	₩1,R0	The T bit is not changed by ADD.	SUB.W	#1,R0
CMP/EQ	#0,R0	When $R0 = 0$, the T bit is set.	BEQ	TRGET
BT	TRGET	A branch is made when $R0 = 0$.		

Immediate Data: 8-bit immediate data is placed in the instruction code. Word and longwimmediate data is not placed in the instruction code. It is placed in a table in memory. The memory is accessed with the MOV immediate data instruction using PC relative addressing with displacement.

REJ09B0243-0500

Note: Immediate data is accessed by @(disp,PC).

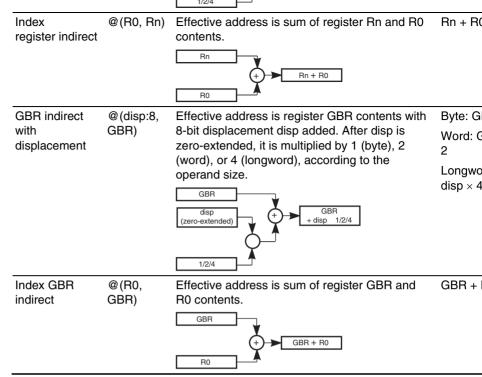
Absolute Addresses: When data is accessed by absolute address, place the absolute add in a table in memory beforehand. The absolute address value is transferred to a register method whereby immediate data is loaded when an instruction is executed, and the data accessed using the register indirect addressing mode.

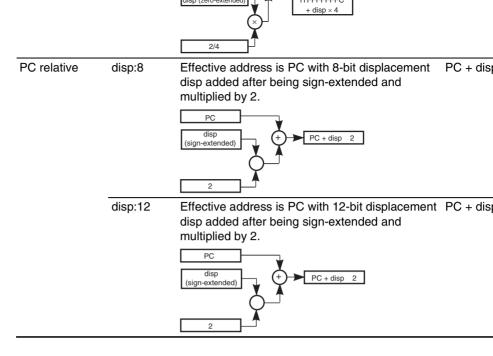
Table 2.6 Access to Absolute Address

Туре		CPU in t	his LSI		Example	e of Oth
Absolute a	address	MOV.L	@(disp,PC),R1		MOV.B	@H'12
		MOV.B	@R1,R0			
		.DATA.L	H'12345678			
Note: *	Immediate	data is refer	enced by @(disp,PC)	•		

16-Bit/32-Bit Displacement: When data is accessed using the 16- or 32-bit displacement addressing mode, the displacement value is placed in a table in memory beforehand. Us method whereby immediate data is loaded when an instruction is executed, this value is transferred to a register and the data is accessed using index register indirect addressing

Table 2.8 lists addressing modes and effective address calculation methods.


Table 2.8 Addressing Modes and Effective Addresses


Addressing Mode	Instruction Format	Effective Address Calculation Method	Calculat Formula
Register	Rn	Effective address is register Rn.	_
direct		(Operand is register Rn contents.)	
Register	@Rn	Effective address is register Rn contents.	Rn
indirect		Rn Rn	
Register	@Rn+	Effective address is register Rn contents. A	Rn
indirect with post-increment		constant is added to Rn after instruction execution: 1 for a byte operand, 2 for a word operand, 4 for a longword operand.	After inst execution
		Bn Bn Bn	Byte: Rn
		Rn + 1/2/4	Word: Rr
		1/2/4	Longword → Rn
Register	@-Rn	Effective address is register Rn contents,	Byte: Rn
indirect with		decremented by a constant beforehand: 1 for a byte operand, 2 for a word operand, 4 for a	Word: Rr
pre-decrement		longword operand.	Longword → Rn
		Rn - 1/2/4	(Instruction executed after calc

Rev. 5.00 Mar. 06, 2009 Page 26 of 770

REJ09B0243-0500

Rev. 5.00 Mar. 06, 2009 Page 28 of 770 REJ09B0243-0500

RENESAS

2.4.3 **Instruction Formats**

This section describes the instruction formats, and the meaning of the source and destinate operands. The meaning of the operands depends on the instruction code. The following are used in the table.

xxxx: Instruction code

mmmm: Source register

nnnn: Destination register

iiii: Immediate data

dddd: Displacement

	Control register or system register	nnnn: pre- decrement i indirect
m type	mmmm: register direct	Control regi system regi
xxxxx mmmm xxxxx xxxxx	mmmm: post- increment register indirect	Control regi system regi
	mmmm: register	_

indirect

Rm

PC relative using

RENESAS

SIC.L SH,@-F

JMP @Rm

BRAF Rm

decrement register

system register

system register

Control register or LDC Rm,SR

Control register or LDC.L @Rm+,

Rev. 5.00 Mar. 06, 2009 Page 30 of 770

	nnnn: * post- increment register indirect (multiply- and-accumulate operation)	
	mmmm: post- increment register indirect	nnnn: registe direct
	mmmm: register direct	nnnn: pre- decrement re indirect
	mmmm: register direct	nnnn: index register indir
nd type O CXXX XXXX mmmm dddd	mmmmdddd: register indirect with displacement	R0 (register
d4 type	R0 (register direct)	nnnndddd: register indir

nmd type

xxxx nnnn mmmm dddd

RENESAS

mmmm: register

mmmmdddd:

register indirect

with displacement

direct

nnnn: register

nnnn: predecrement register

nnnn: index register indirect

register indirect with displacement

with displacement

nnnn: register

direct

nnnndddd: register indirect

REJ09

MOV.L @Rm-

MOV.L Rm,@

MOV.L Rm,@

MOV.B R0,@

MOV.L Rm,@

MOV.L @(dis

Rev. 5.00 Mar. 06, 2009 Pa

R0 (register direct) MOV.B @(dis

	_	dddddddd: PC relative	BF label
d12 type	_	ddddddddddd:	BRA label
15 0 xxxx dddd dddd dddd	xxxx dddd dddd dddd	PC relative	(label=disp+PC
nd8 type 15 0	ddddddd: PC relative with displacement	nnnn: register direct	MOV.L @(disp
i type	iiiiiiii: immediate	Index GBR indirect	AND.B #imm,@
xxxx xxxx iiii iiii	iiiiiiii: immediate	R0 (register direct)	AND #imm,R0
	iiiiiiii: immediate	_	TRAPA #imm
ni type	iiiiiiii:	nnnn: register	ADD #imm,Rn
15 0 xxxx nnnn iiii iiii	immediate	direct	

Note: * In multiply and accumulate instructions, nnnn is the source register.

Rev. 5.00 Mar. 06, 2009 Page 32 of 770

instructions			Immediate data transfer		
			Peripheral module data transfer		
			Structure data transfer		
		MOVA	Effective address transfer		
		MOVT	T bit transfer	-	
		SWAP	Upper/lower swap		
		XTRCT	Extraction of middle of linked registers	-	
Arithmetic operation instructions	21	ADD	Binary addition	33	
		ADDC	Binary addition with carry	-	
		ADDV	Binary addition with overflow	•	
		CMP/cond	Comparison	•	
		DIV1	Division	-	
		DIV0S	Signed division initialization	-	
		DIV0U	Unsigned division initialization	-	
		DMULS	Signed double-precision multiplication	-	
		DMULU	Unsigned double-precision multiplication	- !	
		DT	Decrement and test	-	
		EXTS	Sign extension	-	
		EXTU	Zero extension	-	
		MAC	Multiply-and-accumulate, double- precision multiply-and-accumulate	-	

MUL

Double-precision multiplication

operation instructions		NOT	Bit inversion	
ii isti uotioris		OR	Logical OR	
		TAS	Memory test and bit setting	
		TST	T bit setting for logical AND	
		XOR	Exclusive logical OR	
Shift instructions	10	ROTL	1-bit left shift	14
		ROTR	1-bit right shift	
		ROTCL	1-bit left shift with T bit	
		ROTCR	1-bit right shift with T bit	
		SHAL	Arithmetic 1-bit left shift	
		SHAR	Arithmetic 1-bit right shift	
		SHLL	Logical 1-bit left shift	
		SHLLn	Logical n-bit left shift	
		SHLR	Logical 1-bit right shift	
		SHLRn	Logical n-bit right shift	

Rev. 5.00 Mar. 06, 2009 Page 34 of 770

RENESAS

		JSR	Branch to subroutine procedure	
		RTS	Return from subroutine procedure	
System control instructions	11	CLRT	T bit clear	3
		CLRMAC	MAC register clear	
		LDC	Load into control register	
		LDS	Load into system register	
		NOP	No operation	
		RTE	Return from exception handling	
		SETT	T bit setting	
		SLEEP	Transition to power-down mode	
		STC	Store from control register	
		STS	Store from system register	
		TRAPA	Trap exception handling	
Total:	62			1

Unconditional branch

JMP

SRC: Source	0000: R0	W/Q/I. Tag bits in on	
DEST: Destination	0001: R1	&: Logical AND of each bit	
Rm: Source register		: Logical OR of each bit	
Rn: Destination	1111: R15	^: Exclusive logical OR of	
register	iiii: Immediate data	each bit	
imm: Immediate data	dddd: Displacement	-: Logical NOT of each bit	
disp: Displacement*2		< <n: left="" n-bit="" shift<="" td=""></n:>	

nnnn: Destination

register

Operation code

Size

Sz:

>>n: n-bit right shift Notes: 1. The table shows the minimum number of execution states. In practice, the number of execution states. instruction execution states will be increased in cases such as the following:

- When there is contention between an instruction fetch and a data access When the destination register of a load instruction (memory \rightarrow register) is by the following instruction
 - Scaled (×1, ×2, or ×4) according to the instruction operand size, etc.
 - For details, see SH-1/SH-2/SH-DSP Software Manual.

(xx):

Memory operand

M/O/T: Flag hits in SR

Rev. 5.00 Mar. 06, 2009 Page 36 of 770

	•	` '	
MOV.L	Rm,@Rn	$Rm \rightarrow (Rn)$	0010nnnnmmmm0010
MOV.B	@Rm,Rn	$(Rm) \rightarrow Sign extension$ $\rightarrow Rn$	0110nnnnmmmm0000
MOV.W	@Rm,Rn	$(Rm) \rightarrow Sign extension$ $\rightarrow Rn$	0110nnnnmmmm0001
MOV.L	@Rm,Rn	$(Rm) \to Rn$	0110nnnnmmmm0010
MOV.B	Rm,@-Rn	$Rn-1 \to Rn,Rm \to (Rn)$	0010nnnnmmmm0100
MOV.W	Rm,@-Rn	$Rn-2 \to Rn,Rm \to (Rn)$	0010nnnnmmmm0101
MOV.L	Rm,@-Rn	$Rn-4 \rightarrow Rn, Rm \rightarrow (Rn)$	0010nnnnmmmm0110
MOV.B	@Rm+,Rn	$(Rm) \rightarrow Sign extension$ $\rightarrow Rn, Rm + 1 \rightarrow Rm$	0110nnnnmmmm0100
MOV.W	@Rm+,Rn	$(Rm) \rightarrow Sign extension$ $\rightarrow Rn, Rm + 2 \rightarrow Rm$	0110nnnnmmmm0101
MOV.L	@Rm+,Rn	$(Rm) \rightarrow Rn, Rm + 4 \rightarrow Rm$	0110nnnnmmmm0110
MOV.B	R0,@(disp,Rn)	$R0 \rightarrow (disp + Rn)$	10000000nnnndddd
MOV.W	R0,@(disp,Rn)	$R0 \rightarrow (disp \times 2 + Rn)$	10000001nnnndddd
MOV.L	Rm,@(disp,Rn)	$Rm \rightarrow (disp \times 4 + Rn)$	0001nnnnmmmmdddd
MOV.B	@(disp,Rm),R0	$(disp + Rm) \rightarrow Sign$ extension $\rightarrow R0$	10000100mmmmdddd
MOV.W	@(disp,Rm),R0	$(disp \times 2 + Rm) \rightarrow Sign$ extension $\rightarrow R0$	10000101mmmmdddd
MOV.L	@(disp,Rm),Rn	$(disp \times 4 + Rm) \rightarrow Rn$	0101nnnnmmmmdddd

 $\mathsf{Rm} \to \mathsf{Rn}$

 $Rm \rightarrow (Rn)$

 $Rm \rightarrow (Rn)$

MOV

MOV.B

Rm, Rn

Rm,@Rn

MOV.W Rm,@Rn

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Rev. 5.00 Mar. 06, 2009 Pa

REJ09

0110nnnnmmmm0011

0010nnnnmmmm0000

0010nnnnmmmm0001

MOVA	@(disp,PC),R0	$disp \times 4 + PC \to R0$	11000111dddddddd
MOVT	Rn	$T\toRn$	0000nnnn00101001
SWAP.B	Rm,Rn	$Rm \rightarrow Swap$ lowest two bytes $\rightarrow Rn$	0110nnnnmmmm1000
SWAP.W	Rm,Rn	$Rm \rightarrow Swap two$ consecutive words $\rightarrow Rn$	0110nnnnmmmm1001
XTRCT	Rm,Rn	Rm: Middle 32 bits of $Rn \rightarrow Rn$	0010nnnnmmm1101

 $R0 \rightarrow (disp + GBR)$

 $R0 \rightarrow (disp \times 2 + GBR)$

 $R0 \rightarrow (disp \times 4 + GBR)$

 $(disp + GBR) \rightarrow Sign$

Sign extension → R0

 $(disp \times 4 + GBR) \rightarrow R0$

extension \rightarrow R0 (disp \times 2 + GBR) \rightarrow

1

1

1

1

1

1

1

1

1

1

1

11000000dddddddd

11000001dddddddd

11000010ddddddd

11000100ddddddd

11000101dddddddd

11000110dddddddd

MOV.B

MOV.W

MOV.L

MOV.B

MOV.W

MOV.L

R0,@(disp,GBR)

R0,@(disp,GBR)

R0,@(disp,GBR)

@(disp,GBR),R0

@(disp,GBR),R0

@(disp,GBR),R0

Rev. 5.00 Mar. 06, 2009 Page 38 of 770

CMP/EO	Rm,Rn	If $Rn = Rm, 1 \rightarrow T$	0011nnnnmmmm0000
	1011 July 1011	1 , 1 / 1	
CMP/HS	Rm,Rn	If Rn ≥ Rm with	0011nnnnmmmm0010
		unsigned data, 1 → T	
CMP/GE	Rm,Rn	If $Rn \ge Rm$ with signed data, $1 \to T$	0011nnnnmmmm0011
CMP/HI	Rm,Rn	If Rn > Rm with unsigned data, $1 \rightarrow T$	0011nnnnmmmm0110
CMP/GT	Rm,Rn	If Rn > Rm with signed data, $1 \rightarrow T$	0011nnnnmmmm0111
CMP/PZ	Rn	If $Rn \ge 0$, $1 \rightarrow T$	0100nnnn00010001
CMP/PL	Rn	If Rn > 0, 1 \rightarrow T	0100nnnn00010101
CMP/STR	Rm,Rn	If Rn and Rm have an equivalent byte, $1 \rightarrow T$	0010nnnnmmmm1100
DIV1	Rm,Rn	Single-step division (Rn/Rm)	0011nnnnmmmm0100
DIV0S	Rm,Rn	MSB of Rn \rightarrow Q, MSB of Rm \rightarrow M, M^ Q \rightarrow T	0010nnnnmmmm0111
DIV0U		$0 \rightarrow M/Q/T$	000000000011001
DMULS.L	Rm,Rn	Signed operation of $Rn \times Rm \rightarrow MACH$,	0011nnnnmmmm1101

Overflow \rightarrow T

If R0 = imm, $1 \rightarrow T$

CMP/EQ #imm,R0

10001000iiiiiii

1

1

1

1

1

1

Rev. 5.00 Mar. 06, 2009 Pa

REJ09

2 to 5*

MACL $32 \times 32 \rightarrow 64$ bits

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$32 \times 32 \rightarrow 32 \text{ bits}$ MULS.W Rm, Rn Signed operation of Rn $ \times \text{Rm} \rightarrow \text{MAC} $ $16 \times 16 \rightarrow 32 \text{ bits}$ MULU.W Rm, Rn Unsigned operation of Rn $ \times \text{Rm} \rightarrow \text{MAC} $ $16 \times 16 \rightarrow 32 \text{ bits}$ MULU.W Rm, Rn Unsigned operation of Rn $ \times \text{Rm} \rightarrow \text{MAC} $ $16 \times 16 \rightarrow 32 \text{ bits}$ NEG Rm, Rn O-Rm $ \rightarrow \text{Rn} $ 0110nnnnmmmm101 NEGC Rm, Rn O-Rm-T $ \rightarrow \text{Rn}, $ 0110nnnnmmmm101
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
NEGC Rm,Rn 0-Rm-T → Rn, 0110nnnnmmmm101
·
SUB Rm, Rn Rn-Rm \rightarrow Rn 0011nnnnmmmm100
SUBC Rm, Rn Rn-Rm-T \rightarrow Rn, 0011nnnnmmmm101 Borrow \rightarrow T
SUBV Rm, Rn Rn-Rm \rightarrow Rn, 0011nnnnmmmm101 Underflow \rightarrow T

A byte in Rm is zero-

A word in Rm is zero-

extended \rightarrow Rn

 $\mathsf{extended} \to \mathsf{Rn}$

0110nnnnmmmm1100 **1**

0110nnnnmmmm1101 **1**

EXTU.B Rm, Rn

EXTU.W Rm,Rn

		(R0 + GBR) & imm; if the result is 0, 1 \rightarrow T	11001100iiiiiiii
R I	Rm,Rn	$Rn \wedge Rm \rightarrow Rn$	0010nnnnmmm1010
R :	#imm,R0	$R0 \land imm \rightarrow R0$	11001010iiiiiii
R.B	#imm,@(R0,GBR)	$(R0 + GBR) \land imm \rightarrow$ (R0 + GBR)	11001110iiiiiii

~niii -> nii

 $Rn \mid Rm \rightarrow Rn$

 $R0 \mid imm \rightarrow R0$

If (Rn) is 0, $1 \rightarrow T$;

 $1 \rightarrow MSB \text{ of (Rn)}$ Rn & Rm; if the result

R0 & imm; if the result

(R0 + GBR)

is 0, $1 \rightarrow T$

is 0, $1 \rightarrow T$

MOT

OR

OR

TST

TST

TAS.B @Rn

KIII, KII

Rm, Rn

Rm, Rn

#imm,R0

#imm,R0

OR.B #imm, @(R0,GBR) (R0 + GBR) | imm \rightarrow

RENESAS

Rev. 5.00 Mar. 06, 2009 Pa

REJ09

0010nnnnmmmm1011 **1**

11001011iiiiiii **1**

11001111iiiiiii **3**

0100nnnn00011011 4

0010nnnnmmmm1000 **1**

11001000iiiiiiii **1**

	1011	1 (1111 ()	01001111111100100000	•
SHAR	Rn	$MSB \to Rn \to T$	0100nnnn00100001	1
SHLL	Rn	$T \leftarrow Rn \leftarrow 0$	0100nnnn00000000	1
SHLR	Rn	$0 \to Rn \to T$	0100nnnn00000001	1
SHLL2	Rn	$Rn \ll 2 \rightarrow Rn$	0100nnnn00001000	1
SHLR2	Rn	$Rn >> 2 \rightarrow Rn$	0100nnnn00001001	1
SHLL8	Rn	$Rn \ll 8 \rightarrow Rn$	0100nnnn00011000	1
SHLR8	Rn	$Rn \gg 8 \rightarrow Rn$	0100nnnn00011001	1
SHLL16	Rn	$Rn \ll 16 \rightarrow Rn$	0100nnnn00101000	1
SHLR16	Rn	$Rn >> 16 \rightarrow Rn$	0100nnnn00101001	1

REJ09B0243-0500

Rev. 5.00 Mar. 06, 2009 Page 42 of 770

RENESAS

BT	label	If T = 1, disp \times 2 + PC \rightarrow 10001001dddddddd PC; if T = 0, nop		3/1*
BT/S	label	Delayed branch, if T = 1, disp \times 2 + PC \rightarrow PC; if T = 0, nop	10001101ddddddd	2/1*
BRA	label	Delayed branch, $\operatorname{disp} \times 2 + \operatorname{PC} \to \operatorname{PC}$	1010dddddddddddd	2
BRAF	Rm	Delayed branch, Rm + PC → PC	0000mmmm00100011	2
BSR	label	Delayed branch, $PC \rightarrow PR$, disp \times 2 + $PC \rightarrow PC$	1011dddddddddddd	2
BSRF	Rm	Delayed branch, $PC \rightarrow PR$, $Rm + PC \rightarrow PC$	0000mmmm0000011	2
JMP	@Rm	Delayed branch, $Rm \rightarrow PC$	0100mmmm00101011	2

Delayed branch, $PC \rightarrow PR$,

Delayed branch, $PR \rightarrow PC$

JSR

RTS

Note:

@Rm

 $\mathsf{Rm} \to \mathsf{PC}$

* One cycle when the branch is not executed.

REJ09

0100mmmm00001011 2

0000000000001011 2

LDS	Rm,MACL	$Rm \to MACL$	0100mmmm00011010
LDS	Rm, PR	$Rm \rightarrow PR$	0100mmmm00101010
LDS.L	@Rm+,MACH	$(Rm) \rightarrow MACH, Rm + 4 \rightarrow Rm$	0100mmmm00000110
LDS.L	@Rm+,MACL	$(Rm) \rightarrow MACL, Rm + 4 \rightarrow Rm$	0100mmmm00010110
LDS.L	@Rm+,PR	$(Rm) \rightarrow PR, Rm + 4 \rightarrow Rm$	0100mmmm00100110
NOP		No operation	0000000000001001
RTE		Delayed branch, Stack area → PC/SR	000000000101011
SETT		1 → T	000000000011000
SLEEP		Sleep	000000000011011
STC	SR,Rn	$SR \to Rn$	0000nnnn00000010
STC	GBR,Rn	$GBR \to Rn$	0000nnnn00010010
STC	VBR,Rn	$VBR \to Rn$	0000nnnn00100010
STC.L	SR,@-Rn	$Rn4 \rightarrow Rn, SR \rightarrow (Rn)$	0100nnnn00000011
STC.L	GBR,@-Rn	Rn–4 \rightarrow Rn, GBR \rightarrow (Rn)	0100nnnn00010011
STC.L	VBR,@-Rn	Rn–4 \rightarrow Rn, VBR \rightarrow (Rn)	0100nnnn00100011
	0 Mar. 06, 2009 Pag 0243-0500	ge 44 of 770	SAS

ICILI, V DIC LDC.L @Rm+, SR

LDC.L @Rm+,GBR

LDC.L @Rm+, VBR

Rm, MACH

LDS

 $(Rm) \rightarrow SR, Rm + 4 \rightarrow Rm$ 0100mmmm00000111

0100mmmm00010111

0100mmmm00100111

0100mmmm00001010

3

3

1

1

1

1

1

1

1

5

1 4*

1 1

1

1

1 1

 $(Rm) \rightarrow GBR, Rm + 4 \rightarrow$

 $(Rm) \rightarrow VBR, Rm + 4 \rightarrow$

Rm

Rm

 $\mathsf{Rm} \to \mathsf{MACH}$

Note: * Number of execution cycles until this LSI enters sleep mode.

About the number of execution cycles:

The table lists the minimum number of execution cycles. In practice, the num

execution cycles will be increased depending on the conditions such as:

When there is a conflict between instruction fetch and data access

• When the destination register of a load instruction (memory → register) is by the instruction immediately after the load instruction.

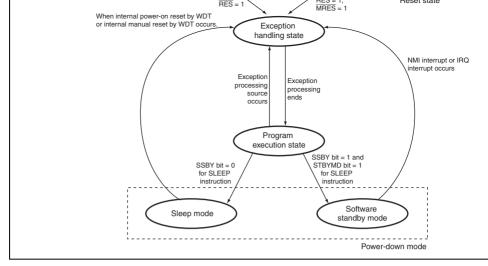


Figure 2.4 Transitions between Processing States

Rev. 5.00 Mar. 06, 2009 Page 46 of 770

REJ09B0243-0500

RENESAS

by SP. The start address of an exception handling routine is fetched from the exception handling vector table and a branch to the address is made to execute a program.

Then the processing state enters the program execution state.

- Program execution state
- The CPU executes programs sequentially.
- Power-down state

The CPU stops to reduce power consumption. The SLEEP instruction makes the CP sleep mode or software standby mode.

Rev. 5.00 Mar. 06, 2009 Page 48 of 770 REJ09B0243-0500

The MCU operating mode can be selected from MCU extension modes 0 to 2 and single mode. For the on-chip flash memory programming mode, boot mode, user boot mode, a program mode, which are on-chip programming modes are available.

Table 3.1 Selection of Operating Modes

	P	in Setting		On-Chip ROM
Mode No.	FWE	MD1	Mode Name	(Flash memory)
Mode 3	0	1	Single chip mode	Active
Mode 4*1	1	0	Boot mode	Active
Mode 6*2	1	1	User program mode	Active

Notes: 1. Flash memory programming mode.

2. Prohibited in SH71251A, SH71250A, SH71241A and SH71240A.

Rev. 5.00 Mar. 06, 2009 Pa

6, 2009 Pa REJ09

3.3 Operating Modes

3.3.1 Mode 3 (Single Chip Mode)

All ports can be used in this mode, however the external address cannot be used.

Rev. 5.00 Mar. 06, 2009 Page 50 of 770

REJ09B0243-0500

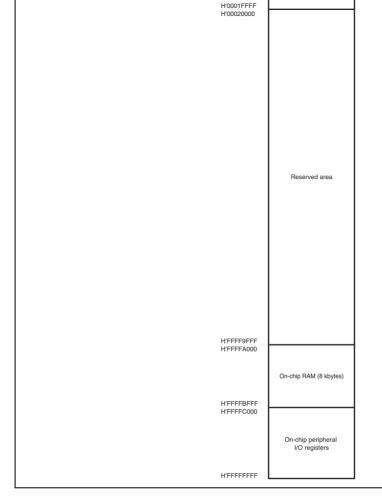


Figure 3.1 Address Map in SH7125, SH7124 (128 Kbytes Flash Memory Ver

Rev. 5.00 Mar. 06, 2009 Pa REJ09

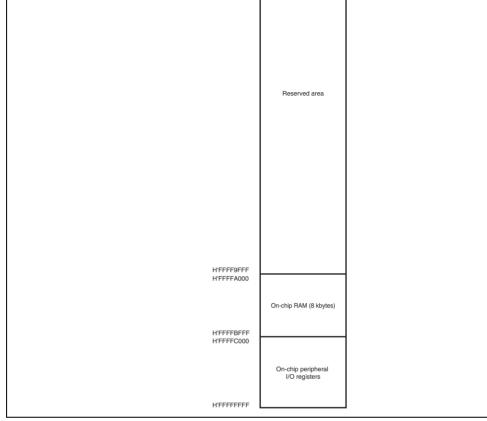


Figure 3.2 Address Map in SH7125, SH7124 (64 Kbytes Flash Memory Versi

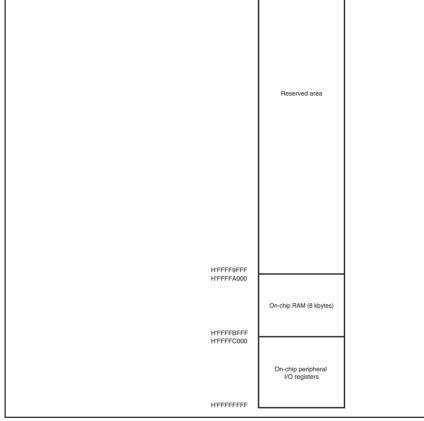


Figure 3.3 Address Map in SH71251A and SH71241A (32 Kbytes Flash Memory

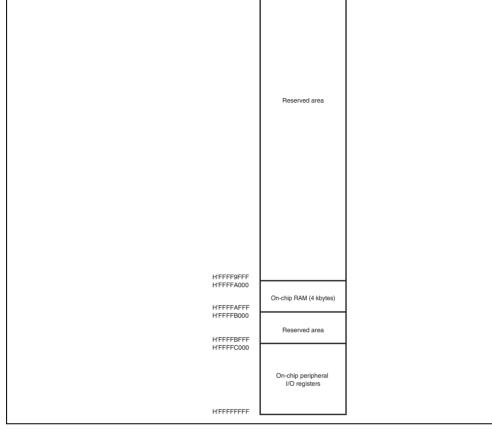


Figure 3.4 Address Map in SH71250A and SH71240A (16 Kbytes Flash Memory Y

REJ09B0243-0500

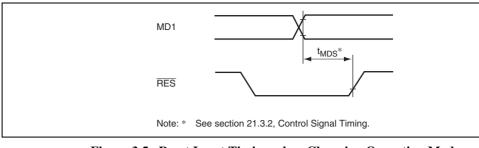


Figure 3.5 Reset Input Timing when Changing Operating Mode

Rev. 5.00 Mar. 06, 2009 Pa

RF.IC

Rev. 5.00 Mar. 06, 2009 Page 56 of 770 REJ09B0243-0500

RENESAS

a bus clock (B ϕ = CK) for the external bus interface; and a MTU2 clock (MP ϕ) for t MTU2 module.

Frequencies of the internal clock ($I\phi$), bus clock ($B\phi$), peripheral clock ($P\phi$), and M7

- Frequency change function
 - (MPφ) can be changed independently using the divider circuit within the CPG. Frequency changed by software using the frequency control register (FRQCR) setting.
- Power-down mode control

The clock can be stopped in sleep mode and standby mode and specific modules can stopped using the module standby function.

- Oscillation stop detection
- If the clock supplied through the clock input pin stops for any reason, the timer pins automatically placed in the high-impedance state.

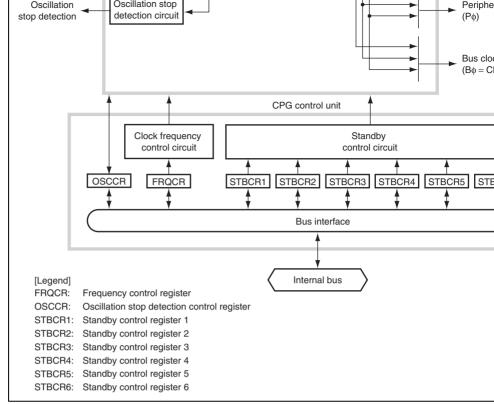


Figure 4.1 Block Diagram of CPG

Rev. 5.00 Mar. 06, 2009 Page 58 of 770

REJ09B0243-0500

from the PLL circuit. The division ratio should be specified in the frequency control reg (FRQCR).

Oscillation Stop Detection Circuit: This circuit detects an abnormal condition in the circuit oscillator.

Clock Frequency Control Circuit: The clock frequency control circuit controls the clo frequency according to the setting in the frequency control register (FRQCR).

Standby Control Circuit: The standby control circuit controls the state of the on-chip of circuit and other modules in sleep or standby mode.

Frequency Control Register (FRQCR): The frequency control register (FRQCR) has bits for the frequency division ratios of the internal clock ($I\phi$), bus clock ($B\phi$), periphera $(P\phi)$, and MTU2 clock $(MP\phi)$.

Oscillation Stop Detection Control Register (OSCCR): The oscillation stop detection register (OSCCR) has an oscillation stop detection flag and a bit for selecting flag status through an external pin.

Standby Control Registers 1 to 6 (STBCR1 to STBCR6): The standby control register (STBCR) has bits for controlling the power-down modes. For details, see section 19, Po Modes.

Note: * The UBC is not supported on 32 Kbyte versions (SH71251A, SH71241A) and versions (SH71250A, SH71240A).

4.2 Input/Output Pins

Table 4.2 shows the CPG pin configuration.

Table 4.2 Pin Configuration

Pin Name	Abbr.	I/O	Description
Crystal input/output	XTAL	Output	Connects a crystal resonator.
pins (clock input pins)	EXTAL	Input	Connects a crystal resonator or an external of

circuit before being supplied to the on-chip modules in this LSI, which eliminates the negenerate a high-frequency clock outside the LSI. Since the input clock frequency rangin MHz to 12.5 MHz can be used, the internal clock (I\phi) frequency ranges from 10 MHz to

Maximum operating frequencies:

 $I\phi = 50 \text{ MHz}$, $B\phi = 40 \text{ MHz}$, $P\phi = 40 \text{ MHz}$, and $MP\phi = 40 \text{ MHz}$

Table 4.4 shows the frequency division ratios that can be specified with FRQCR.

	1/2	1/4	1/4	1/4	4	2
Notes: *	Cloc	ck freq	uencie	es whe	n the i	npu
	The	intern	al cloc	ck (lø) f	reque	ncy
	freq	uency	must	be 10 t	to 40 N	ЛHz
	peri	pheral	clock	(Pφ) fr	equen	су.
1.	The	PLL r	nultipli	cation	ratio is	s fix
	×1/4	. and	$\times 1/8$ for	or each	clock	bv

1/2

1/8

1/8

1/4

1/2

1/8

1/8

1/4

1/2

1/8

1/8

1/4

- 4. The internal clock (Iφ) frequency is the product of the frequency of the input from crystal resonator or EXTAL pin, the multiplication ratio (×8) of the PLL circuit, a
 - division ratio of the divider. The resultant frequency must be a maximum of 50 (maximum operating frequency).
- 3. The input to the divider is always the output from the PLL circuit.

1/2

1/8

1/4

1/4

Rev. 5.00 Mar. 06, 2009 Page 62 of 770

REJ09B0243-0500

1

2

2

4

1

2

2

1

2

2

5. The peripheral clock (P_{ϕ}) frequency is the product of the frequency of the inpu crystal resonator or EXTAL pin, the multiplication ratio (×8) of the PLL circuit, a division ratio of the divider. The resultant frequency must be a maximum of 40 6. When using the MTU2, the MTU2 clock (MPφ) frequency must be equal to or h than the peripheral clock frequency (PΦ). The MTU2 clock (MPΦ) frequency are product of the frequency of the input from the crystal resonator or EXTAL pin. multiplication ratio (×8) of the PLL circuit, and the division ratio of the divider. 7. The frequency of the CK pin is always be equal to the bus clock (Βφ) frequenc 8. The bus clock ($B\phi$) frequency must be equal to the peripheral clock ($P\phi$) frequency

RENESAS

en the input clock frequency is assumed to be the shown

1

2

2

ıυ

12.5

12.5

12.5

12.5

) frequency must be 10 to 50 MHz and the peripheral clos

40

25

25

50

12.5

40

12.5

12.5

25

25

40

12.

12.

25

25

n ratio is fixed at $\times 8$. The division ratio can be selected from each clock by the setting in the frequency control register. 2. The output frequency of the PLL circuit is the product of the frequency of the ir

the crystal resonator or EXTAL pin and the multiplication ratio (×8) of the PLL

|--|

4.4.1 Frequency Control Register (FRQCR)

Ini

FRQCR is a 16-bit readable/writable register that specifies the frequency division ratios internal clock ($I\phi$), bus clock ($B\phi$), peripheral clock ($P\phi$), and MTU2 clock ($MP\phi$). FRQ accessed only in words.

FRQCR is initialized to H'36DB only by a power-on reset (except a power-on reset due overflow).

Before making changes to FRQCR, stop clock supply to each module except the CPU, or ROM, and on-chip-RAM.

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2
	-		IFC[2:0]			BFC[2:0]			PFC[2:0]		-	-	-	ı
itial value:	0	0	1	1	0	1	1	0	1	1	0	1	1	0
R/W:	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

RENESAS

Rev. 5.00 Mar. 06, 2009 Pa

				001: ×1/2
				010: Setting prohibited
				011: ×1/4 (initial value)
				100: ×1/8
				Other than above: Setting prohibited
11 to 9	BFC[2:0]	011	R/W	Bus Clock (Βφ) Frequency Division Ratio
				Specify the division ratio of the bus clock (Bφ) frequency with respect to the output frequency circuit. If a prohibited value is specified, subse operation is not guaranteed.
				000: Setting prohibited
				001: ×1/2
				010: Setting prohibited
				011: ×1/4 (initial value)
				100: ×1/8
				Other than above: Setting prohibited

				100: ×1/8
				Other than above: Setting prohibited
5 to 3	_	011	R/W	Reserved
				These bits are always read as B'011. The wrishould always be B'011.
2 to 0	MPFC[2:0]	011	R/W	MTU2 Clock (MPφ) Frequency Division Ratio
				Specify the division ratio of the MTU2 clock (If frequency with respect to the output frequency circuit. If a prohibited value is specified, subsequentiation is not guaranteed.
				000: Setting prohibited
				001: ×1/2
				010: Setting prohibited
				011: ×1/4 (initial value)
				100: ×1/8

Other than above: Setting prohibited

Rev. 5.00 Mar. 06, 2009 Pa

OSCSTOP	0	R	Oscillation Stop Detection Flag
			[Setting condition]
			When a stop in the clock input is detected of normal operation
			[Clearing condition]
			By a power-on reset input through the RES
_	0	R	Reserved
			This bit is always read as 0. The write value shalways be 0.
OSCERS	0	R/W	Oscillation Stop Detection Flag Output Select
			Selects whether to output the oscillation stop of flag signal through the $\overline{\text{WDTOVF}}$ pin.
			0: Outputs only the WDT overflow signal through WDTOVF pin
			1: Outputs the WDT overflow signal and the ossetop detection flag signal through the $\overline{\text{WDTC}}$

Bit

2

1

7 to 3

Bit Name

Value

All 0

R/W

R

Description

always be 0.

These bits are always read as 0. The write val

Reserved

Rev. 5.00 Mar. 06, 2009 Page 66 of 770

5. Set the desired values in bits in C2 to in C0, birC2 to birC0, firC2 to firC0, and Mir. MPFC0 bits. Since the frequency multiplication ratio in the PLL circuit is fixed at ×1 frequencies are determined only be selecting division ratios. When specifying the fre satisfy the following condition: internal clock $(I\phi) \ge$ bus clock $(B\phi) =$ peripheral clock

When using the MTU2 clock, specify the frequencies to satisfy the following condit

internal clock ($I\phi$) \geq MTU2 clock ($MP\phi$) \geq peripheral clock ($P\phi$). 4. After an instruction to rewrite FRQCR has been issued, the actual clock frequencies change after (1 to 24n) cyc + $11B\phi + 7P\phi$. n: Division ratio specified by the BFC bit in FRQCR (1/2, 1/4, or 1/8)

cyc: Clock obtained by dividing EXTAL by 8 with the PLL.

Note: (1 to 24n) depends on the internal state.

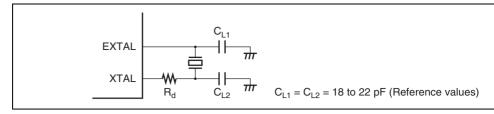


Figure 4.2 Connection of Crystal Resonator (Example)

Table 4.6 Damping Resistance Values (Reference Values)

Frequency (MHz)	10	12.5
$Rd(\Omega)$ (Reference Values)	0	0

Figure 4.3 shows an equivalent circuit of the crystal resonator. Use a crystal resonator wi characteristics listed in table 4.7.

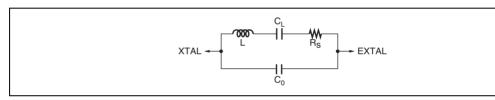


Figure 4.3 Crystal Resonator Equivalent Circuit

REJ09B0243-0500

input clock frequency 10 to 12.5 MHz.

When leaving the XTAL pin open, make sure the parasitic capacitance is less than 10 pl

Even when inputting an external clock, be sure to wait at least the oscillation stabilization power-on sequence or in releasing software standby mode, in order to ensure the PLL st time.

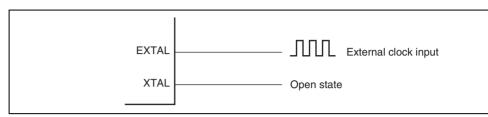


Figure 4.4 Example of External Clock Connection

Rev. 5.00 Mar. 06, 2009 Pa

Even in software standby mode, these pins are always placed in high-impedance state. For refer to appendix A, Pin States. These pins enter the normal state after software standby reanceled. Under an abnormal condition where oscillation stops while the LSI is not in soft standby mode, LSI operations other than the oscillation stop detection function become unpredictable. In this case, even after oscillation is restarted, LSI operations including the high-current pins become unpredictable.

Even while no change is detected in the EXTAL input, the PLL circuit in this LSI continuous oscillating at a frequency range from 100 kHz to 10 MHz (depending on the temperature operating voltage).

Rev. 5.00 Mar. 06, 2009 Page 70 of 770

REJ09B0243-0500

í

to the oscillator pin.

4.8.2 Notes on Board Design

Measures against radiation noise are taken in this LSI. If further reduction in radiation n needed, it is recommended to use a multiple layer board and provide a layer exclusive to system ground.

When using a crystal resonator, place the crystal resonator and its load capacitors as clo possible to the XTAL and EXTAL pins. Do not route any signal lines near the oscillator as shown in figure 4.5. Otherwise, correct oscillation can be interfered by induction.

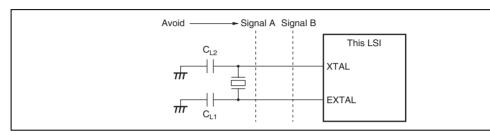


Figure 4.5 Cautions for Oscillator Circuit Board Design

Rev. 5.00 Mar. 06, 2009 Pa

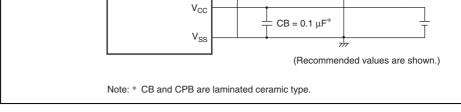


Figure 4.6 Recommended External Circuitry around PLL

Rev. 5.00 Mar. 06, 2009 Page 72 of 770

REJ09B0243-0500

Table 5.1 Types of Exceptions and Priority

Exception Source

Power-on reset Manual reset

Exception

Reset

Interrupt	User break (break before instruction execution)*3
Address error	CPU address error (instruction fetch)
Instruction	General illegal instructions (undefined code)
	Illegal slot instruction (undefined code placed immediately after a delayed branch instruction*¹ or instruction that changes the PC value*
	Trap instruction (TRAPA instruction)
Address error	CPU address error (data access)
Interrupt	User break (break after instruction execution or operand break)*3
	NMI
	IRQ

Notes: 1. Delayed branch instructions: JMP, JSR, BRA, BSR, RTS, RTE, BF/S, BT/S, BRAF. 2. Instructions that change the PC value: JMP, JSR, BRA, BSR, RTS, RTE, BT,

On-chip peripheral modules

- TRAPA, BF/S, BT/S, BSRF, BRAF, LDC Rm,SR, LDC.L @Rm+,SR.
- 3. The user break interrupt is not generated on the 32 Kbyte (SH71251A and SI and 16 Kbyte (SH71250A and SH71240A) versions.

Address error Interrupt		Detected during the instruction decode stage and starte	
		execution of the current instruction is completed.	
Instruction Tr	Trap instruction	Started by the execution of the TRAPA instruction.	
	General illegal instructions	Started when an undefined code placed at other than a d (immediately after a delayed branch instruction) is decode	
	Illegal slot instructions	Started when an undefined code placed at a delay slot (immediately after a delayed branch instruction) or an ins that changes the PC value is detected.	

WDT overflows.

When exception handling starts, the CPU operates

Exception Handling Triggered by Reset: The initial values of the program counter (PC stack pointer (SP) are fetched from the exception handling vector table (PC from the address).

H'00000008 and SP from the address H'0000000C when a manual reset.). For details, see 5.1.3, Exception Handling Vector Table. H'00000000 is then written to the vector base re (VBR), and H'F (B'1111) is written to the interrupt mask bits (I3 to I0) in the status regist. The program starts from the PC address fetched from the exception handling vector table.

Exception Handling Triggered by Address Error, Interrupt, and Instruction: SR an saved to the stack indicated by R15. For interrupt exception handling, the interrupt priori written to the interrupt mask bits (I3 to I0) in SR. For address error and instruction excep handling, bits I3 to I0 are not affected. The start address is then fetched from the exception handling vector table and the program starts from that address.

H'00000000 and SP from the address H'00000004 when a power-on reset. PC from the ad

Table 3.3 shows the vector numbers and vector table address offsets. Table 3.4 shows in table addresses are calculated.

Table 5.3 **Vector Numbers and Vector Table Address Offsets**

CPU address error

Interrupt

(Reserved for system use)

(Reserved for system use)

Trap instruction (user vector)

IMN

User break*1

Exception Handling Source		Vector Number	Vector Table Address Of
Power-on reset	PC	0	H'00000000 to H'0000000
	SP	1	H'00000004 to H'0000000
Manual reset	PC	2	H'00000008 to H'0000000
	SP	3	H'0000000C to H'0000000
General illegal instruction (Reserved for system use) Illegal slot instruction		4	H'00000010 to H'0000001
		5	H'00000014 to H'0000001
		6	H'00000018 to H'0000001
(Reserved for syste	em use)	7	H'0000001C to H'0000001
		8	H'00000020 to H'0000002

9

10

11

12

13 :

31

32

63

H'00000024 to H'0000002

H'0000028 to H'0000002 H'0000002C to H'0000002

H'00000030 to H'0000003

H'0000034 to H'0000003

H'0000007C to H'0000007

H'00000080 to H'0000008

H'00000FC to H'000000F

Rev. 5.00 Mar. 06, 2009 Pa

255 H'000003FC to H'000003FI

- Notes: 1. Reserved on the 32 Kbyte (SH71251A and SH71241A) and 16 Kbyte (SH71251A) SH71240A) versions. 2. For details on the vector numbers and vector table address offsets of on-chip
 - module interrupts, see table 6.3 in section 6, Interrupt Controller (INTC).

Table 5.4 Calculating Exception Handling Vector Table Addresses

Exception Source	Vector Table Address Calculation		
Resets	Vector table address = (vector table address offset)		
	$=$ (vector number) \times 4		
Address errors, interrupts,	Vector table address = VBR + (vector table address offse		
instructions	= VBR + (vector number) × 4		

- Notes: 1. VBR: Vector base register
 - 2. Vector table address offset: See table 5.3.
 - 3. Vector number: See table 5.3.

		Reset State			Internal State	tate
Туре	RES	WDT Overflow	MRES	CPU, INTC	On-Chip Peripheral Module	PO I/O
Power-on reset	Low	_	_	Initialized	Initialized	Initi
	High	Overflow	High	Initialized	Initialized	Initi
Manual reset	High	Not overflowed	Low	Initialized	Not initialized	Not
	High	Overflow	High	Initialized	Not initialized	Not

Conditions for Transition to

5.2.2 Power-On Reset

reset state. To reliably reset this LSI, the RES pin should be kept low for at least the osc settling time when applying the power or when in standby mode (when the clock is halte least 20 tcyc when the clock is operating. During the power-on reset state, CPU internal all registers of on-chip peripheral modules are initialized. See appendix A, Pin States, for status of individual pins during power-on reset mode.

Power-On Reset by RES Pin: When the RES pin is driven low, this LSI enters the pow

In the power-on reset state, power-on reset exception handling starts when driving the \overline{R} high after driving the pin low for the given time. The CPU operates as follows:

- 1. The initial value (execution start address) of the program counter (PC) is fetched fro exception handling vector table.
- 2. The initial value of the stack pointer (SP) is fetched from the exception handling vec
- 3. The vector base register (VBR) is cleared to H'00000000 and the interrupt mask bits of the status register (SR) are set to H'F (B'1111).

Rev. 5.00 Mar. 06, 2009 Pa

initialized by a power-on reset from the RES pin).

If a reset caused by the signal input on the \overline{RES} pin and a reset caused by a WDT overflo simultaneously, the \overline{RES} pin reset has priority, and the WOVF bit in RSTCSR is cleared When the power-on reset exception handling caused by the WDT is started, the CPU ope follows:

- 1. The initial value (execution start address) of the program counter (PC) is fetched from exception handling vector table.
- The initial value of the stack pointer (SP) is fetched from the exception handling vector.
- 3. The vector base register (VBR) is cleared to H'00000000 and the interrupt mask bits (of the status register (SR) are set to H'F (B'1111).
- 4. The values fetched from the exception handling vector table are set in the PC and SP, program starts.

5.2.3 Manual Reset

When the \overline{RES} pin is high and the \overline{MRES} pin is driven low, the LSI becomes to be a man state. To reliably reset the LSI, the \overline{MRES} pin should be kept at low for at least the duration oscillation settling time that is set in WDT when in software standby mode (when the clochalted) or at least 20 t_{cyc} when the clock is operating. During manual reset, the CPU interise initialized. Registers of on-chip peripheral modules are not initialized. See appendix A

States, for the status of individual pins during manual reset mode.

In the manual reset status, manual reset exception processing starts when the MRES pin is kept low for a set period of time and then returned to high. The CPU will then operate in procedures as described for power-on resets.

fetch			
		Instruction fetched from odd address	Address erro
		Instruction fetched from a space other than on-chip peripheral module space	None (norma
		Instruction fetched from on-chip peripheral module space	Address erro
Data	CPU	Word data accessed from even address	None (norma
read/write		Word data accessed from odd address	Address erro
		Longword data accessed from a longword boundary	None (norma
		Longword data accessed from other than a long-word boundary	Address erro
		Byte or word data accessed in on-chip peripheral module space	None (norma
		Longword data accessed in 16-bit on-chip peripheral module space	None (norma

Longword data accessed in 8-bit on-chip

peripheral module space

Instruction fetched from even address

Instruction

CPU

REJ09

Rev. 5.00 Mar. 06, 2009 Pa

None (norma

None (norma

3.	The start address of the exception handling routine is fetched from the exception hand
	vector table that corresponds to the generated address error, and the program starts ex
	from that address. This branch is not a delayed branch.

Rev. 5.00 Mar. 06, 2009 Page 80 of 770 REJ09B0243-0500

RENESAS

User break	k*	User break controller (UBC)	1
IRQ		IRQ0 to IRQ3 pins (external input)	
			3 (SI
On-chip peripheral module		Multi-function timer pulse unit 2 (MTU2)	28
		Watchdog timer (WDT)	1
		A/D converter (A/D_0 and A/D_1)	2
		Compare match timer (CMT_0 and CMT_1)	2
		Serial communication interface (SCI_0, SCI_1, and SCI_2)	12
		Port output enable (POE)	2
Note: *	Note: * The user break interrupt is not generated on the 32 Kbyte (SH71251A and and 16 Kbyte (SH71250A and SH71240A) versions.		

All interrupt sources are given different vector numbers and vector table address offsets

NMI pin (external input)

details on vector numbers and vector table address offsets, see table 6.3 in section 6, Int Controller (INTC).

NMI

REJ09

Rev. 5.00 Mar. 06, 2009 Pa

1

that can be set are 0 to 15. Level 16 cannot be set. For details on IPRA to IPRF, see section Interrupt Priority Registers A to F and H to M (IPRA to IPRF and IPRH to IPRM).

Table 5.8 Interrupt Priority

Type

71.		
NMI	16	Fixed priority level. Cannot be masked
User break*	15	Fixed priority level. Can be masked.
IRQ	0 to 15	Set with interrupt priority registers A to
On-chip peripheral module	to M (IPRA to IPRF and IPF	to M (IPRA to IPRF and IPRH to IPRM

Comment

Priority Level

Note: * The user break interrupt is not generated on the 32 Kbyte (SH71251A and SH and 16 Kbyte (SH71250A and SH71240A) versions.

5.4.3 Interrupt Exception Handling

always accepted, but other interrupts are only accepted if they have a priority level higher priority level set in the interrupt mask bits (I3 to I0) of the status register (SR).

When an interrupt occurs, the interrupt controller (INTC) ascertains its priority level. NM

When an interrupt is accepted, exception handling begins. In interrupt exception handling CPU saves SR and the program counter (PC) to the stack. The priority level of the accept interrupt is written to bits I3 to I0 in SR. Although the priority level of the NMI is 16, the in bits I3 to I0 is H'F (level 15). Next, the start address of the exception handling routine from the exception handling vector table for the accepted interrupt, and program execution branches to that address and the program starts. For details on the interrupt exception hand section 6.6, Interrupt Operation.

RENESAS

	branch instruction (delay slot) or instructions that changes the PC value	BRAF Instructions that changes the PC v JSR, BRA, BSR, RTS, RTE, BT, E BF/S, BT/S, BSRF, BRAF, LDC R LDC.L @Rm+,SR
General illegal	Undefined code anywhere	_
instructions*	besides in a delay slot	
Note: * The o	peration is not guaranteed when un	idefined instructions other than H'F0

Delayed branch instructions: JMP,

BRA, BSR, RTS, RTE, BF/S, BT/S

Undefined code placed

immediately after a delayed

Illegal slot instructions*

5.5.2 **Trap Instructions**

When a TRAPA instruction is executed, the trap instruction exception handling starts. T operates as follows:

1. The status register (SR) is saved to the stack.

H'FFFF are decoded.

- 2. The program counter (PC) is saved to the stack. The PC value saved is the start addr
- instruction to be executed after the TRAPA instruction. 3. The CPU reads the start address of the exception handling routine from the exceptio vector table that corresponds to the vector number specified in the TRAPA instruction program execution branches to that address, and then the program starts. This branch delayed branch.

rewrites the PC.

3. The start address of the exception handling routine is fetched from the exception hand vector table that corresponds to the exception that occurred. Program execution branc that address and the program starts. This branch is not a delayed branch.

5.5.4 **General Illegal Instructions**

When an undefined code placed anywhere other than immediately after a delayed branch instruction (i.e., in a delay slot) is decoded, general illegal instruction exception handling The CPU handles the general illegal instructions in the same procedures as in the illegal s instructions. Unlike processing of illegal slot instructions, however, the program counter is stacked is the start address of the undefined code.

Rev. 5.00 Mar. 06, 2009 Page 84 of 770

REJ09B0243-0500

RENESAS

disable	d ir	nstruction*1			
[Legend	[k				
√: Acce	pte	d			
x: Not a	acce	epted			
—: Doe	—: Does not occur				
Notes:	1.	Interrupt disabled instructions: LDC, LDC.L, STC, STC.L, LDS, LDS.L, STS,			
	2.	An exception is accepted before the execution of a delayed branch instruction			

Illegal

Instruction

Slot Illegal

Instruction

×*2

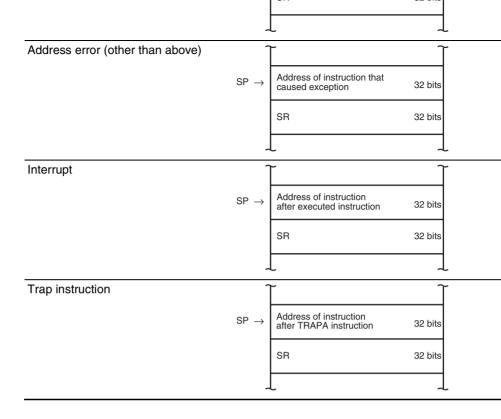
Trap

Instruction

ı

Address

Error


×*2

 $\sqrt{}$

Occurrence Timing

Instruction in delay slot Immediately after interrupt

- However, when an address error or a slot illegal instruction exception occurs delay slot of the RTE instruction, correct operation is not guaranteed. 3. An exception is accepted after a delayed branch (between instructions in the and the branch destination).
- 4. An exception is accepted after the execution of the next instruction of an inte disabled instruction (before the execution two instructions after an interrupt d instruction).

Rev. 5.00 Mar. 06, 2009 Page 86 of 770

REJ09B0243-0500

	SR	32 bits
_		

Rev. 5.00 Mar. 06, 2009 Pa

stack is accessed during exception handling.

5.8.3 Address Errors Caused by Stacking for Address Error Exception Handlin

When the SP value is not a multiple of 4, an address error will occur when stacking for enhandling (interrupts, etc.) and address error exception handling will start after the first exhandling is ended. Address errors will also occur in the stacking for this address error exchandling. To ensure that address error exception handling does not go into an endless loo address errors are accepted at that point. This allows program control to be passed to the routine for address error exception and enables error processing.

When an address error occurs during exception handling stacking, the stacking bus cycle executed. When stacking the SR and PC values, the SP values for both are subtracted by therefore, the SP value is still not a multiple of 4 after the stacking. The address value our during stacking is the SP value whose lower two bits are cleared to 0. So the write data stundefined.

Rev. 5.00 Mar. 06, 2009 Page 88 of 770

REJ09B0243-0500

RENESAS

Compiler

This instruction is not allocated in the delay slot in the compiler V.4 and its subsequent

Real-time OS for µITRON specifications

1. HI7000/4, HI-SH7

This instruction does not exist in the delay slot within the OS.

2. HI7000

This instruction is in part allocated to the delay slot within the OS, which may cause illegal instruction exception handling in this LSI.

3. Others

The slot illegal instruction exception handling may be generated in this LSI in a case instruction is described in assembler or when the middleware of the object is introduced in the compact of the object in the compact of the object is introduced in the compact of the object in the compact of the object is introduced in the compact of the object of the obje

Note that a check-up program (checker) to pick up this instruction is available on our we Download and utilize this checker as needed.

Rev. 5.00 Mar. 06, 2009 Pa

, 2009 Pa REJ09

Rev. 5.00 Mar. 06, 2009 Page 90 of 770 REJ09B0243-0500

Rev. 5.00 Mar. 06, 2009 Pa

REJ09

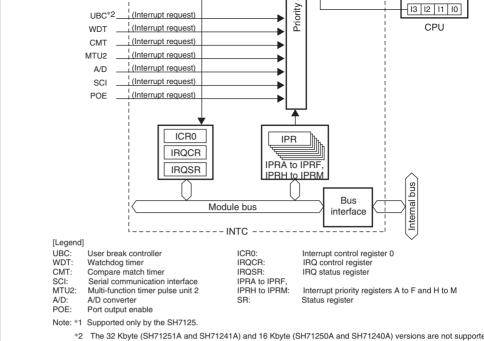


Figure 6.1 Block Diagram of INTC

Rev. 5.00 Mar. 06, 2009 Page 92 of 770 REJ09B0243-0500

REJ09

1 1 7 3			
Interrupt priority register D	IPRD	R/W	H'0000
Interrupt priority register E	IPRE	R/W	H'0000
Interrupt priority register F	IPRF	R/W	H'0000
Interrupt priority register H	IPRH	R/W	H'0000
Interrupt priority register I	IPRI	R/W	H'0000
Interrupt priority register J	IPRJ	R/W	H'0000
Interrupt priority register K	IPRK	R/W	H'0000
Interrupt priority register L	IPRL	R/W	H'0000
Interrupt priority register M	IPRM	R/W	H'0000

IRQSR

IPRA

IPRB

IPRC

R/W

R/W

R/W

R/W

H'Fx00

H'0000

H'0000

H'0000

H'FFFFE904

H'FFFFE906

H'FFFFE908

H'FFFFE980

H'FFFFE982

H'FFFFE984

H'FFFFE986

H'FFFFE98A

H'FFFFE98C

H'FFFFE98E

H'FFFFE990

H'FFFFE992

H'FFFFE994

8, 1

8, 1

8, 1

16

16

16

16

16

16

16

16

16

16

RENESAS

REJ09B0243-0500

IRQ status register

Interrupt priority register A

Interrupt priority register B

Interrupt priority register C

Rev. 5.00 Mar. 06, 2009 Page 94 of 770

15	NMIL	*	R	NMI Input Level
				Indicates the state of the signal input to the N This bit can be read to determine the NMI pin bit cannot be modified.
				0: State of the NMI input is low
				1: State of the NMI input is high
14 to 9	_	All 0	R	Reserved
				These bits are always read as 0. The write value always be 0.
8	NMIE	0	R/W	NMI Edge Select
				Interrupt request is detected on the falling on the MMI input
				 Interrupt request is detected on the rising e NMI input
7 to 0	_	All 0	R	Reserved

Description

Initial Value

Bit Name

Bit

R/W

These bits are always read as 0. The write va

always be 0.

REJ09

IRQ31S	0	R/W	IRQ3 Sense Select
IRQ30S	0	R/W	Set the interrupt request detection mode for p
			00: Interrupt request is detected at the low lev IRQ3
			01: Interrupt request is detected at the falling pin IRQ3
			10: Interrupt request is detected at the rising pin IRQ3
			 Interrupt request is detected at both the farising edges of pin IRQ3
IRQ21S	0	R/W	IRQ2 Sense Select
IRQ20S	0	R/W	Set the interrupt request detection mode for p
			00: Interrupt request is detected at the low lev IRQ2
			01: Interrupt request is detected at the falling pin IRQ2
			10: Interrupt request is detected at the rising pin IRQ2
			 Interrupt request is detected at both the farising edges of pin IRQ2
	IRQ30S	IRQ30S 0	IRQ30S 0 R/W IRQ21S 0 R/W

Bit

7

6

5

4

15 to 8

Bit Name

Value

All 0

R/W

R/W

Description

should always be 0.

These bits are always read as 0. The write va

Reserved

Rev. 5.00 Mar. 06, 2009 Page 96 of 770

0	IRQ00S	0	R/W	Set the interrupt request detection mode for
				00: Interrupt request is detected at the low le
				01: Interrupt request is detected at the falling pin IRQ0
				10: Interrupt request is detected at the rising pin IRQ0
				11: Interrupt request is detected at both the

R/W

IRQ01S

0

1

rising edges of pin IRQ1

rising edges of pin IRQ0

These bits are always read as 0. The write v

Reserved (SH7124)

should always be 0.

IRQ0 Sense Select (SH7125)

REJ09

Bit	Bit Name	Value	R/W	Description
15 to 12	_	All 1	R	Reserved
				These bits are always read as 1.
11	IRQ3L	*	R	Indicates the state of pin IRQ3.
				0: State of pin IRQ3 is low
				1: State of pin IRQ3 is high
10	IRQ2L	*	R	Indicates the state of pin IRQ2.
				0: State of pin IRQ2 is low
				1: State of pin IRQ2 is high
9	IRQ1L	*	R	Indicates the state of pin IRQ1.
				0: State of pin IRQ1 is low
				1: State of pin IRQ1 is high
8	IRQ0L	*	R	Indicates the state of pin IRQ0.
				0: State of pin IRQ0 is low
				1: State of pin IRQ0 is high
7to 4	_	All 0	_	Reserved
				These bits are always read as 0. The write va should always be 0.

Initial

Rev. 5.00 Mar. 06, 2009 Page 98 of 770

- When edge detection mode is selected0: An IRQ3 interrupt has not been detected
- [Clearing conditions]Writing 0 after reading IRQ3F = 1
 - Accepting an IRQ3 interrupt
 - Accepting an IRQ3 interrupt
 IRQ3 interrupt request has been detended
 - An IRQ3 interrupt request has been detecting condition.
 Detecting the specified edge of pin IRQ3

REJ09

				 When edge detection mode is selected
				0: An IRQ2 interrupt has not been detected
				[Clearing conditions]
				— Writing 0 after reading IRQ2F = 1
				 Accepting an IRQ2 interrupt
				1: An IRQ2 interrupt request has been detect
				[Setting condition]
				Detecting the specified edge of pin IRQ2
1	IRQ1F	0	R/W	Indicates the status of an IRQ1 interrupt requ
				When level detection mode is selected
				0: An IRQ1 interrupt has not been detected
				[Clearing condition]
				Driving pin IRQ1 high
				1: An IRQ1 interrupt has been detected
				[Setting condition]

- Accepting an IRQ1 interrupt 1: An IRQ1 interrupt request has been detect [Setting condition] Detecting the specified edge of pin IRQ1

Driving pin IRQ1 low

[Clearing conditions]

• When edge detection mode is selected 0: An IRQ1 interrupt has not been detected

- Writing 0 after reading IRQ1F = 1

Rev. 5.00 Mar. 06, 2009 Page 100 of 770

- When edge detection mode is selected
- 0: An IRQ0 interrupt has not been detected
- [Clearing conditions] - Writing 0 after reading IRQ0F = 1
 - Accepting an IRQ0 interrupt
 - 1: An IRQ0 interrupt request has been detect
 - [Setting condition]

Detecting the specified edge of pin IRQ0 The initial value is 1 when the level on the corresponding IRQ pin is high, and

6.3.4 Interrupt Priority Registers A to F and H to M (IPRA to IPRF and IPRH

the level on the pin is low.

Note:

IPRM)

Interrupt priority registers are twelve 16-bit readable/writable registers that set priority l 0 to 15 for interrupts except NMI. For the correspondence between interrupt request sou IPR, refer to table 6.3. Each of the corresponding interrupt priority ranks are established a value from H'0 to H'F in each of the four-bit groups 15 to 12, 11 to 8, 7 to 4 and 3 to 0 bits that are not assigned should be set H'0 (B'0000).

Bit: 15 14 13 12 11 10 9 8 7 6 5 3 IPR[15:12] IPR[11:8] IPR[7:4] 0 0 0 0 Initial value: 0 0 0 0 0 0 0 0 R/W: R/W R/W

REJ09

2

0

IPR[

			0111: Priority level 7
			•
			1000: Priority level 8
			1001: Priority level 9
			1010: Priority level 10
			1011: Priority level 11
			1100: Priority level 12
			1101: Priority level 13
			1110: Priority level 14
			1111: Priority level 15 (highest)
IPR[11:8]	0000	R/W	Set priority levels for the corresponding inter
			source.
			0000: Priority level 0 (lowest)
			0001: Priority level 1
			0010: Priority level 2
			0011: Priority level 3
			0100: Priority level 4
			0101: Priority level 5
			0110: Priority level 6
			0111: Priority level 7
			1000: Priority level 8
			1001: Priority level 9
			1010: Priority level 10
			1011: Priority level 11
			1100: Priority level 12
			1101: Priority level 13
	IPR[11:8]	IPR[11:8] 0000	IPR[11:8] 0000 R/W

Rev. 5.00 Mar. 06, 2009 Page 102 of 770

1110: Priority level 14

1111: Priority level 15 (highest)

				1001: Priority level 9
				1010: Priority level 10
				1011: Priority level 11
				1100: Priority level 12
				1101: Priority level 13
				1110: Priority level 14
				1111: Priority level 15 (highest)
3 to 0	IPR[3:0]	0000	R/W	Set priority levels for the corresponding into source.
				0000: Priority level 0 (lowest)
				0001: Priority level 1
				0010: Priority level 2
				0011: Priority level 3
				0100: Priority level 4
				0101: Priority level 5
				0110: Priority level 6
				0111: Priority level 7
				1000: Priority level 8
				1001: Priority level 9
				1010: Priority level 10
				1011: Priority level 11
				1100: Priority level 12
				1101: Priority level 13

Note: Name in the tables above is represented by a general name. Name in the list of r on the other hand, represented by a module name.

1110: Priority level 14

1111: Priority level 15 (highest)

0111: Priority level 7 1000: Priority level 8

REJ09

Rev. 5.00 Mar. 06, 2009 Pag

handler, the interrupt mask level bits (I3 to I0) in the status register (SR) are set to level 1

the IRQ sense select bits (IRQ31S, IRQ30S to IRQ01S, and IRQ00S) in the IRQ control (IRQCR) to select the detection mode from low level detection, falling edge detection, ris detection, and both edge detection for each pin. The priority level can be set from 0 to 15 pin using the interrupt priority register A (IPRA).

IRO3 to IRO0 Interrupts: IRO interrupts are requested by input from pins IRO0 to IRO

In the case that the low level detection is selected, an interrupt request signal is sent to the while the IRQ pin is driven low. The interrupt request signal stops to be sent to the INTC IRQ pin becomes high. It is possible to confirm that an interrupt is requested by reading t flags (IRQ3F to IRQ0F) in the IRQ status register (IRQSR).

In the case that the edge detection is selected, an interrupt request signal is sent to the IN the following change on the IRQ pin is detected: from high to low in falling edge detection mode, and from low to high or from high to low to high high to high to high to high to high high high h

edge detection mode. The IRQ interrupt request by detecting the change on the pin is held interrupt request is accepted. It is possible to confirm that an IRQ interrupt request has be detected by reading the IRQ flags (IRQ3F to IRQ0F) in the IRQ status register (IRQSR). interrupt request by detecting the change on the pin can be withdrawn by writing 0 to an after reading 1.

In the IRQ interrupt exception handling, the interrupt mask bits (I3 to I0) in the status reg (SR) are set to the priority level value of the accepted IRQ interrupt. Figure 6.2 shows the diagram of the IRQ3 to IRQ0 interrupts.

RENESAS

Figure 6.2 Block Diagram of IRQ3 to IRQ0 Interrupts Control

6.4.2 On-Chip Peripheral Module Interrupts

On-chip peripheral module interrupts are interrupts generated by the following on-chip pmodules.

Since a different interrupt vector is allocated to each interrupt source, the exception hand routine does not have to decide which interrupt has occurred. Priority levels between 0 as be allocated to individual on-chip peripheral modules in interrupt priority registers C to M (IPRC to IPRF and IPRH to IPRM). On-chip peripheral module interrupt exception has sets the interrupt mask level bits (I3 to I0) in the status register (SR) to the priority level the on-chip peripheral module interrupt that was accepted.

6.4.3 User Break Interrupt*

A user break interrupt has a priority level of 15, and occurs when the break condition se user break controller (UBC) is satisfied. User break interrupt requests are detected by edheld until accepted. User break interrupt exception handling sets the interrupt mask leve to I0) in the status register (SR) to level 15. For more details on the user break interrupt, section 7, User Break Controller (UBC).

Note: * The user break interrupt is not generated on the 32 Kbyte (SH71251A and SI and 16 Kbyte (SH71250A and SH71240A) versions.

Rev. 5.00 Mar. 06, 2009 Pag

REJ09

IRQ interrupts and on-chip peripheral module interrupt priorities can be set freely between and 15 for each pin or module by setting interrupt priority registers A to F and H to M (II IPRF and IPRH to IPRM). However, when interrupt sources whose priority levels are all with the same IPR are requested, the interrupt of the smaller vector number has priority. Priority cannot be changed. Priority levels of IRQ interrupts and on-chip peripheral modulinterrupts are initialized to level 0 at a power-on reset. If the same priority level is allocated or more interrupt sources and interrupts from those sources occur simultaneously, they are processed by the default priority order shown in table 6.3.

Rev. 5.00 Mar. 06, 2009 Page 106 of 770

RENESAS

	TCIV_1	100	H'00000190
	TCIU_1	101	H'00000194
MTU2_2	TGIA_2	104	H'000001A0
	TGIB_2	105	H'000001A4
	TCIV_2	108	H'000001B0
	TCIU_2	109	H'000001B4
MTU2_3	TGIA_3	112	H'000001C0
	TGIB_3	113	H'000001C4
	TGIC_3	114	H'000001C8
	TGID_3	115	H'000001CC
	TCIV_3	116	H'000001D0

MTU2_0

MTU2_1

TGIA_0

TGIB_0

TGIC_0

TGID_0

TCIV_0

TGIE_0

TGIF_0

TGIA_1

TGIB_1

88

89

90

91

92

93

94

96

97

H'00000160

H'00000164

H'00000168

H'0000016C

H'00000170

H'00000174

H'00000178

H'00000180

H'00000184

IPRD15 to IPRD12

IPRD11 to IPRD8

IPRD7 to IPRD4

IPRD3 to IPRD0

IPRE15 to IPRE12

IPRE11 to IPRE8

REJ09

Rev. 5.00 Mar. 06, 2009 Pag

	OEI3	133	H'00000214	
CMT_0	CMI_0	184	H'000002E0	IPRJ15 to IPRJ12
CMT_1	CMI_1	188	H'000002F0	IPRJ11 to IPRJ8
WDT	ITI	196	H'00000310	IPRJ3 to IPRJ0
A/D_0 and	ADI_0	200	H'00000320	IPRK15 to IPRK12
A/D_1	ADI_1	201	H'00000324	
SCI_0	ERI_0	216	H'00000360	IPRL15 to IPRL12
	RXI_0	217	H'00000364	
	TXI_0	218	H'00000368	
	TEI_0	219	H'0000036C	
SCI_1	ERI_1	220	H'00000370	IPRL11 to IPRL8
	RXI_1	221	H'00000374	
	TXI_1	222	H'00000378	
	TEI_1	223	H'0000037C	
SCI_2	ERI_2	224	H'00000380	IPRL7 to IPRL4
	RXI_2	225	H'00000384	
	TXI_2	226	H'00000388	

227

132

H'00000210

IPRF3 to IPRF0

TEI_2

RENESAS

H'0000038C

POE (MTU2)

OEI1

- are ignored*. If interrupts that have the same priority level or interrupts within a sam
 - occur simultaneously, the interrupt with the highest priority is selected according to priority shown in table 6.3. 3. The interrupt controller compares the priority level of the selected interrupt request v interrupt mask bits (I3 to I0) in the status register (SR) of the CPU. If the priority lev
 - selected request is equal to or less than the level set in bits I3 to I0, the request is ign the priority level of the selected request is higher than the level in bits I3 to I0, the ir controller accepts the request and sends an interrupt request signal to the CPU. 4. When the interrupt controller accepts an interrupt, a low level is output from the IRQ
 - 5. The CPU detects the interrupt request sent from the interrupt controller in the decode an instruction to be executed. Instead of executing the decoded instruction, the CPU interrupt exception handling.
 - 6. SR and PC are saved onto the stack.
 - 7. The priority level of the accepted interrupt is copied to bits (I3 to I0) in SR.
 - 8. When the accepted interrupt is sensed by level or is from an on-chip peripheral mode level is output from the IRQOUT pin. When the accepted interrupt is sensed by edge
 - controller accepts an interrupt with a higher priority than the interrupt just to be acce IRQOUT pin holds low level. 9. The CPU reads the start address of the exception handling routine from the exceptio

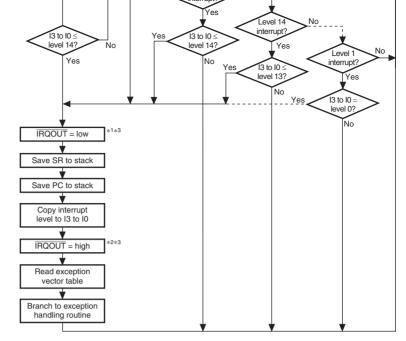

level is output from the IRQOUT pin at the moment when the CPU starts interrupt e processing instead of instruction execution as noted in 5. above. However, if the inte

table for the accepted interrupt, branches to that address, and starts executing the pro-This branch is not a delayed branch.

Rev. 5.00 Mar. 06, 2009 Page 110 of 770

REJ09B0243-0500

Notes: 13 to 10 are interrupt mask bits in the status register (SR) of the CPU

- IRQOUT is the same signal as the interrupt request signal to the CPU (see figure 6.1).
 Therefore, IRQOUT is output when the request priority level is higher than the level in bits I3–I0 of SR.
- 2. When the accepted interrupt is sensed by edge, a high level is output from the IRQOUT pin at the moment wh the CPU starts interrupt exception processing instead of instruction execution (namely, before saving SR to stand the interrupt controller accepts an interrupt with a higher priority than the interrupt just to be accept and has output an interrupt request to the CPU, the IRQOUT pin holds low level.
- The IRQOUT pin change timing depends on a frequency dividing ratio between the internal (Iφ) and bus (Bφ) clocks. This flowchart shows that the frequency dividing ratios of the internal (Iφ) and bus (Bφ) clocks are the s

Figure 6.3 Interrupt Sequence Flowchart

RENESAS

Rev. 5.00 Mar. 06, 2009 Pag

REJ

Notes: 1. PC is the start address of the next instruction (instruction at the return address) after the instruction.

2. Always make sure that SP is a multiple of 4

Figure 6.4 Stack after Interrupt Exception Handling

6.7 Interrupt Response Time

Table 6.4 lists the interrupt response time, which is the time from the occurrence of an in request until the interrupt exception handling starts and fetching of the first instruction of interrupt handling routine begins.

Rev. 5.00 Mar. 06, 2009 Page 112 of 770

REJ09B0243-0500

					be even long
Time from start of interrupt exception handling until fetch of first instruction of exception handling routine starts		8 × lcyc + m1 + m2 + m3	8 × lcyc + m1 + m2 + m3	8 × lcyc + m1 + m2 + m3	Performs the and SR, and address fetch
Interrupt response time	Total:	$9 \times lcyc + 2 \times \\ Pcyc + m1 + m2 \\ + m3 + X$	$9 \times lcyc + 1 \times \\ Pcyc + m1 + m2 \\ + m3 + X$	9 × lcyc + 2 × Pcyc + m1 + m2 + m3 + X	
	Minimum*:	12 × Icyc + 2 × Pcyc	12 × lcyc + 1 × Pcyc	12 × lcyc + 2 × Pcyc	SR, PC, and are all in on-
	Maximum:	$16 \times lcyc + 2 \times Pcyc + 2 \times (m1 + m2 + m3) + m4$	$16 \times lcyc + 1 \times Pcyc + 2$ (m1 + m2 + m3) + m4	16 × lcyc + 2 × Pcyc + 2 (m1 + m2 + m3) + m4	

Notes: * In the case that $m1 = m2 = m3 = m4 = 1 \times lcyc$. m1 to m4 are the number of cycles needed for the following memory accesses

m1: SR save (longword write)
m2: PC save (longword write)

m2: Voctor address road (languard roa

m3: Vector address read (longword read)

m4: Fetch first instruction of interrupt service routine

REJ09

+ m3 + m4). interrupt-mass instruction for however, the

Rev. 5.00 Mar. 06, 2009 Page 114 of 770 RENESAS REJ09B0243-0500

If NMI is not used, connect it to $\boldsymbol{V}_{\scriptscriptstyle CC}$ via a resistor and fix it high.

The UBC has the following features:

but not in the same bus cycle).

1. The following break comparison conditions can be set.

Number of break channels: two channels (channels A and B)

User break can be requested as either the independent or sequential condition on cha and B (sequential break setting: channel A and then channel B match with break con

Address

Comparison bits are maskable in 1-bit units.

One of the two address buses (L-bus address (LAB) and I-bus address (IAB)) can be

• Data

32-bit maskable.

One of the two data buses (L-bus data (LDB) and I-bus data (IDB)) can be selected.

• Bus cycle

Instruction fetch or data access

- · Read/write
- Operand size

Byte, word, and longword

- 2. A user-designed user-break condition interrupt exception processing routine can be
- instruction is executed. 4. Maximum repeat times for the break condition (only for channel B): $2^{12} - 1$ times.

3. In an instruction fetch cycle, it can be selected that a user-break is set before or after

- 5. Four pairs of branch source/destination buffers.

Note: * The user break controller is not supported on the 32 Kbyte (SH71251A and SH71241A) and 16 Kbyte (SH71250A and SH71240A) versions.

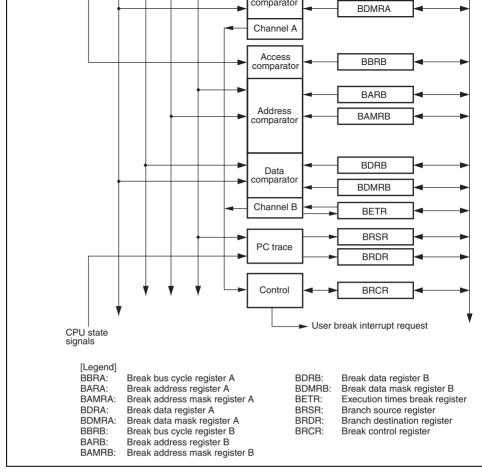


Figure 7.1 Block Diagram of UBC

Rev. 5.00 Mar. 06, 2009 Page 116 of 770

REJ09B0243-0500

BDMRB	R/W	H'00000000	H'FFFFF334
BRCR	R/W	H'00000000	H'FFFFF3C0
BRSR	R	H'0xxxxxxx	H'FFFFF3D0
BRDR	R	H'0xxxxxxx	H'FFFFF3D4
BETR	R/W	H'0000	H'FFFFF3DC
	BRCR BRSR BRDR	BRCR R/W BRSR R BRDR R	BRCR R/W H'00000000 BRSR R H'0xxxxxxx BRDR R H'0xxxxxxx

BBRA

BDRA

BARB

BAMRB

BBRB

BDRB

BDMRA

R/W

R/W

R/W

R/W

R/W

R/W

R/W

H'0000

H'00000000

H'00000000

H'00000000

H'00000000

H'00000000

H'0000

H'FFFFF308

H'FFFFF310

H'FFFFF314

H'FFFFF320

H'FFFFF324

H'FFFFF328

H'FFFFF330

16

32

32

32

32

16

32

32

32

32

16

Break bus cycle register A

Break data mask register A

Break address mask register B

Break address register B

Break bus cycle register B

Break data register B

Break data register A

REJ09

Rev. 5.00 Mar. 06, 2009 Pag

Bit	Bit Name	Initial Value	R/W	Description
31 to 0	BAA31 to	All 0	R/W	Break Address A
	BAA 0			Store the address on the LAB or IAB specifying conditions of channel A.

0

0

R/W

Initial value:

0

0

R/W

0

R/W

0

R/W

7.2.2 Break Address Mask Register A (BAMRA)

BAMRA is a 32-bit readable/writable register. BAMRA specifies bits masked in the brea specified by BARA.

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18
	BAMA31	ВАМА30	BAMA29	BAMA28	BAMA27	BAMA26	BAMA25	BAMA24	BAMA23	BAMA22	BAMA21	BAMA20	BAMA19	BAMA18
Initial value R/W	0 R/W													
Bit	: 15	14	13	12	11	10	9	8	7	6	5	4	3	2
	BAMA15	BAMA14	BAMA13	BAMA12	BAMA11	BAMA10	BAMA9	BAMA8	BAMA7	BAMA6	BAMA5	BAMA4	ВАМАЗ	BAMA2
Initial value		0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

7.2.3 Break Bus Cycle Register A (BBRA)

BBRA is a 16-bit readable/writable register, which specifies (1) bus master for I bus cycle or I bus cycle, (3) instruction fetch or data access, (4) read or write, and (5) or in the break conditions of channel A.

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2
	-	-	-	-	-		CPA[2:0]		CDA	[1:0]	IDA	[1:0]	RWA	A[1:0]
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit	Bit Name	Initial Value	R/W	Description
15 to 11	_	All 0	R	Reserved
				These bits are always read as 0. The write va always be 0.
10 to 8	CPA[2:0]	000	R/W	Bus Master Select A for I Bus
				Select the bus master when the I bus is select bus cycle of the channel A break condition. He when the L bus is selected as the bus cycle, the of the CPA2 to CPA0 bits is disabled.
				000: Condition comparison is not performed
				xx1: The CPU cycle is included in the break co
				x1x: Setting prohibited
				1xx: Setting prohibited

Rev. 5.00 Mar. 06, 2009 Pag REJ09

				00: Condition comparison is not performed
				01: The break condition is the instruction fetch
				10: The break condition is the data access cycl
				11: The break condition is the instruction fetch data access cycle
3, 2	RWA[1:0]	00	R/W	Read/Write Select A
				Select the read cycle or write cycle as the bus of the channel A break condition.
				00: Condition comparison is not performed
				01: The break condition is the read cycle
				10: The break condition is the write cycle
				11: The break condition is the read cycle or write
1, 0	SZA[1:0]	00	R/W	Operand Size Select A

Select the instruction fetch cycle or data access the bus cycle of the channel A break condition.

Select the operand size of the bus cycle for the

00: The break condition does not include opera

When specifying the operand size, specifying the address boun

01: The break condition is byte access10: The break condition is word access11: The break condition is longword access

[Legend]
x: Don't care.

Rev. 5.00 Mar. 06, 2009 Page 120 of 770

RENESAS

A break condition.

REJ09B0243-0500

Initial value: 0 0			0	U	U	U	U	U	U	U
R/W: R/W R/W	R/W R/	N R/W R/	W R/W	R/W						
	Initial									

R/W

Bit

Bit Name

Value

31 to 0	BDA31 to	All 0	R/W	Break Data Bit A
	BDA0			Stores data, which specifies a break condition channel A.
				If the I bus is selected in BBRA, the break data set in BDA31 to BDA0.
				If the L bus is selected in BBRA, the break data is set in BDA31 to BDA0.

Description

Notes: 1. Specify an operand size when including the value of the data bus in the break 2. When the byte size is selected as a break condition, the same byte data must bits 15 to 8 and 7 to 0 in BDRA as the break data.

Bit	Bit Name	Initial Value	R/W	Description
31 to 0	BDMA31 to	All 0	R/W	Break Data Mask A
	BDMA 0			Specifies bits masked in the break data of char specified by BDRA (BDA31 to BDA0).
				0: Break data BDAn of channel A is included in

0

0

0

0

0

break condition

1: Break data BDAn of channel A is masked an included in the break condition

Note: n = 31 to 0

0

0

0

0

R/W

0

R/W

0

R/W

0

R/W

Notes: 1. Specify an operand size when including the value of the data bus in the break
2. When the byte size is selected as a break condition, the same byte data must bits 15 to 8 and 7 to 0 in BDMRA as the break mask data in BDRA.

Rev. 5.00 Mar. 06, 2009 Page 122 of 770

Initial value:

0

Initial value	e: 0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	: R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
		Ini	tial											
D.:														
Bit	Bit Name		Value		R/W		Description							
31 to 0	BAB	31 to	All	0	R/V	/	Break	Addr	ess B					

BAB15 BAB14 BAB13 BAB12 BAB11 BAB10 BAB9 BAB8 BAB7 BAB6

BAB 0

BAB2

BAB3

BAB5

Stores an address, which specifies a break co

If the I bus or L bus is selected in BBRB, an IA address is set in BAB31 to BAB0.

BAB4

Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	F
			lni	itial											
Bit	Bit N	Name	Va	lue	R/W	٧	Desc	riptio	'n						
		1B31 to) All	0	R/W	V	Break	(Addı	ress M	/lask E	3				
	BAM	IB 0							oits ma y BAR					ess o	f c

break condition

Note: n = 31 to 0

0: Break address BABn of channel B is include

1: Break address BABn of channel B is masked not included in the break condition

Rev. 5.00 Mar. 06, 2009 Page 124 of 770

Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
			Init	Hal										
			11111	uai										

Description

R/W

bits 15 to 8 and 7 to 0 in BDRB as the break data.

Bit

Bit Name

Value

31 to 0	BDB31 to	All 0	R/W	Break Data Bit B
	BDB0			Stores data which specifies a break condition B.
				If the I bus is selected in BBRB, the break data set in BDB31 to BDB0.
				If the L bus is selected in BBRB, the break dat is set in BDB31 to BDB0.

Notes: 1. Specify an operand size when including the value of the data bus in the breat 2. When the byte size is selected as a break condition, the same byte data mus

Rev. 5.00 Mar. 06, 2009 Pag

Bit	Bit Name	Initial Value	R/W	Description
31 to 0	BDMB31 to	All 0	R/W	Break Data Mask B
	BDMB 0			Specifies bits masked in the break data of char specified by BDRB (BDB31 to BDB0).
				0: Break data BDBn of channel B is included in break condition

0

0

0

0

0

0

0

0

0

R/W

1: Break data BDBn of channel B is masked an

0

R/W

0

R/W

0

R/W

 $\label{eq:Note:n} \mbox{Note: } n = 31 \mbox{ to } 0$ Notes: 1. Specify an operand size when including the value of the data bus in the break

 Specify an operand size when including the value of the data bus in the break
 When the byte size is selected as a break condition, the same byte data must bits 15 to 8 and 7 to 0 in BDMRB as the break mask data in BDRB.

Rev. 5.00 Mar. 06, 2009 Page 126 of 770

Initial value:

0

10 to 8	CPB[2:0]	000	R/W	Bus Master Select B for I Bus
				Select the bus master when the I bus is sele the bus cycle of the channel B break condition However, when the L bus is selected as the the setting of the CPB2 to CPB0 bits is disable.
				000: Condition comparison is not performed
				xx1: The CPU cycle is included in the break
				x1x: Setting prohibited
				1xx: Setting prohibited
7, 6	CDB[1:0]	00	R/W	L Bus Cycle/I Bus Cycle Select B
				Select the L bus cycle or I bus cycle as the b of the channel B break condition.
				00: Condition comparison is not performed
				01: The break condition is the L bus cycle
				10: The break condition is the I bus cycle
				11: The break condition is the L bus cycle

Initial

Value

All 0

Bit Name

R/W

R

Description

should always be 0.

These bits are always read as 0. The write v

Reserved

Bit

15 to 11

RENESAS

REJ09

Rev. 5.00 Mar. 06, 2009 Pag

3, 2	RWB[1:0]	00	R/W	Read/Write Select B							
				Select the read cycle or write cycle as the bus the channel B break condition.							
				00: Condition comparison is not performed							
				01: The break condition is the read cycle							
				10: The break condition is the write cycle							
				11: The break condition is the read cycle or w							
1, 0	SZB[1:0]	0	R/W	Operand Size Select B							
				Select the operand size of the bus cycle for the channel B break condition.							
				00: The break condition does not include ope							
				01: The break condition is byte access							
				10: The break condition is word access							
				11: The break condition is longword access							
				Note: When specifying the operand size, s size which matches the address bou							

[Legend]

x:

Don't care.

Don't c

REJ09B0243-0500

Rev. 5.00 Mar. 06, 2009 Page 128 of 770

RENESAS

5. Enable PC trace	ce.
--------------------	-----

6. Specify whether to request the user break interrupt when channels A and B match w comparison conditions.

BRCR is a 32-bit readable/writable register that has break conditions match flags and bit setting a variety of break conditions.

DIL.	31	30	29	20	21	20	25	24	23	22	21	20	19	10			
	-	-	-	-	-	-	-	-	-	-	-	-	UBIDB	-			
Initial value: R/W:	0 R	0 R	0 R	0 R	0 R	0 R	0 R	0 R	0 R	0 R	0 R	0 R	0 R/W	0 R			
Bit:		14	13	12	11	10	9	8	7	6	5	4	3	2			
[SCM FCA	SCM FCB	SCM FDA	SCM FDB	PCTE	PCBA	-	-	DBEA	PCBB	DBEB	-	SEQ	-			
Initial value: R/W:	-	0 R/W	0 R/W	0 R/W	0 R/W	0 R/W	0 R	0 R	0 R/W	0 R/W	0 R/W	0 R	0 R/W	0 R			
Bit	Bit	Name		nitial 'alue	R/	w	Des	cripti	on					R			
31 to 20			Α	II O	R		Res	erved									
	9 UBIDB 0 R/W			These bits are always read as 0. The write v should always be 0.													
19			W	Use	r Brea	ık Disa	able E	3									
							Enables or disables the user break interrupt										

conditions are satisfied

conditions are satisfied

when the channel B break conditions are sat 0: User break interrupt request is enabled wi

1: User break interrupt request is disabled w

Rev. 5.00 Mar. 06, 2009 Pag

				conditions are satisfied
16	_	0	R	Reserved
				This bit is always read as 0. The write value s always be 0.
15	SCMFCA	0	R/W	L Bus Cycle Condition Match Flag A
				When the L bus cycle condition in the break c set for channel A is satisfied, this flag is set to order to clear this flag, write 0 into this bit.
				0: The L bus cycle condition for channel A do match
				1: The L bus cycle condition for channel A ma
14	SCMFCB	0	R/W	L Bus Cycle Condition Match Flag B
				When the L bus cycle condition in the break c set for channel B is satisfied, this flag is set to order to clear this flag, write 0 into this bit.

R/W

match 1: The I bus cycle condition for channel A mat

0

RENESAS

match

0: The L bus cycle condition for channel B doe

1: The L bus cycle condition for channel B ma

When the I bus cycle condition in the break co set for channel A is satisfied, this flag is set to order to clear this flag, write 0 into this bit. 0: The I bus cycle condition for channel A doe

I Bus Cycle Condition Match Flag A

13

Rev. 5.00 Mar. 06, 2009 Page 130 of 770

SCMFDA

				Selects the break timing of the instruction fet for channel A as before or after instruction ex
				 PC break of channel A is set before instru execution
				 PC break of channel A is set after instruct execution
9, 8	_	All 0	R	Reserved
				These bits are always read as 0. The write vishould always be 0.
7	DBEA	0	R/W	Data Break Enable A
				Selects whether or not the data bus condition included in the break condition of channel A.
				No data bus condition is included in the conchannel A
				The data bus condition is included in the condition is included in the condition.
6	PCBB	0	R/W	PC Break Select B

R/W

10

PCBA

0

1: Enables PC trace

PC Break Select A

execution

execution

Selects the break timing of the instruction fet for channel B as before or after instruction ex 0: PC break of channel B is set before instru

1: PC break of channel B is set after instruct

Rev. 5.00 Mar. 06, 2009 Pag

3	SEQ	0	R/W	Sequence Condition Select
				Selects two conditions of channels A and B as independent or sequential conditions.
				 Channels A and B are compared under ind conditions
				Channels A and B are compared under sec conditions (channel A, then channel B)
2, 1	_	All 0	R	Reserved
				These bits are always read as 0. The write va should always be 0.
0	ETBE	0	R/W	Number of Execution Times Break Enable
				Enables the execution-times break condition of channel B. If this bit is 1 (break enable), a use requested when the number of break condition matches with the number of execution times to specified by BETR.
				0: The execution-times break condition is disa

always be 0.

This bit is always read as of the write value s

1: The execution-times break condition is ena

REJ09B0243-0500

RENESAS

channel B

channel B

Rev. 5.00 Mar. 06, 2009 Page 132 of 770

Bit	Bit Name	Initial Value	R/W	Description
15 to 12	_	All 0	R	Reserved
				These bits are always read as 0. The write vishould always be 0.
11 to 0	BET[11:0]	All 0	R/W	Number of Execution Times

Initial value:	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
R/W:	R	R	R	R	R	R	R	R	R	R	R	R	R	R	
Bit	Bit	Name		nitial alue		R/W	Des	cripti	ion						
-		•					•								
31	SVI	_	U			п	DH	n va	iliu Fia	ıg					
							Indicates whether the branch source This flag bit is set to 1 when a branc is cleared to 0 when BRSR is read, the enable PC trace is made, or BRSR in power-on reset.						anch ad, the	occurs. e setting	
							0: T	he va	alue of BRSR register is invalid						
							1: T	he va	lue of	BRSI	R regi	ster is	valid		
30 to 28	_		Α	II O		R	Res	erved							
									s are a ways l	-	s reac	l as 0.	. The	write va	
27 to 0	BSA	127 to	U	Indefin	ed	R	Brar	nch S	ource	Addr	ess				

R

3

BSA3

6

BSA6

BSA7

5

BSA5

Store bits 27 to 0 of the branch source address

4

BSA4

R

BSA2 B

BSA0

R/W: R

Bit: 15

12

13 BSA15 BSA14 BSA13 BSA12 BSA11 BSA10

11

10

BSA9

BSA8

	R/W:	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit		Bit I	Name		nitial alue	ı	R/W	Des	cripti	on					
31		DVF		0		ı	7	BRE	R Va	lid Fla	ıg				
								stor This setti	ed. The flag in th	nis flaç s clea	g bit is red to e PC	set to 0 wh trace	o 1 when BF	nen a RDR is	n addre branch s read, BRDF
								0: T	he val	lue of	BRDF	R regi	ster is	inval	id
								1: T	he val	lue of	BRDF	R regi	ster is	valid	
30 to	28	_		Α	II O	I	7	Res	erved						
								The	se bits	s are a	alway	s reac	l as 0.	The	write v

10

9

8

BDA8

R

7

BDA7

R

BDA6

R

5

BDA5

BDA4

BDA3

R

2

BDA2

R/W: R

Bit: 15

Initial value:

27 to 0

BDA27 to

BDA0

BDA15

R

14

13

12

Undefined R

11 BDA14 BDA13 BDA12 BDA11 BDA10 BDA9

should always be 0.

Branch Destination Address

Store bits 27 to 0 of the branch destination a

instruction fetch/data access select, and read/write select) are each set. No user break generated if even one of these groups is set with B'00. The respective conditions are s bits of the break control register (BRCR). Make sure to set all registers related to brea setting BBRA or BBRB.

2. When the break conditions are satisfied, the UBC sends a user break interrupt request CPU and sets the L bus condition match flag (SCMFCA or SCMFCB) and the I bus c match flag (SCMFDA or SCMFDB) for the appropriate channel.

registers (DDKA of DDKD). Three groups of DDKA of DDKD (L bus cycle/1 bus cycl

- 3. The appropriate condition match flags (SCMFCA, SCMFDA, SCMFCB, and SCMFI be used to check if the set conditions match or not. The matching of the conditions se but they are not reset. Before using them again, 0 must first be written to them and the flags.
 - 4. There may be an occasion when a break condition match occurs both in channels A at around the same time. In this case, the flags for both conditions matches will be set ev though only one user-break interrupt request is issued to the CPU.
 - 5. When selecting the I bus as the break condition, note the following:
 - The CPU is connected to the I bus. The UBC monitors bus cycles generated by all masters that are selected by the CPA2 to CPA0 bits in BBRA or the CPB2 to CPE
 - BBRB, and compares the condition match. — I bus cycles (including read fill cycles) resulting from instruction fetches on the L
 - the CPU are defined as instruction fetch cycles on the I bus, while other bus cycle defined as data access cycles. — If a break condition is specified for the I bus, even when the condition matches in cycle resulting from an instruction executed by the CPU, at which instruction the
 - break is to be accepted cannot be clearly defined.

Rev. 5.00 Mar. 06, 2009 Page 136 of 770

REJ09B0243-0500

fetched by overrun (instructions fetched at a branch or during an interrupt transition, be executed). When this kind of break is set for the delay slot of a delayed branch in the break is generated prior to execution of the delayed branch instruction.

If a branch does not occur at a delay condition branch instruction, the subsection instruction is not recognized as a delay slot.

has been fetched and will be executed. This means this feature cannot be used on his

- 3. When the condition is specified to be occur after execution, the instruction set with t condition is executed and then the break is generated prior to the execution of the ne instruction. As with pre-execution breaks, this cannot be used with overrun fetch ins When this kind of break is set for a delayed branch instruction and its delay slot, a br generated until the first instruction at the branch destination.
 - 4. When an instruction fetch cycle is set, the break data register (BDRA or BDRB) is in Therefore, break data cannot be set for the break of the instruction fetch cycle. 5. If the I bus is set for a break of an instruction fetch cycle, the condition is determined
 - instruction fetch cycles on the I bus. For details, see 5 in section 7.3.1, Flow of the U Operation.

7.3.3 **Break on Data Access Cycle**

- 1. If the L bus is specified as a break condition for data access break, condition compared performed for the address (and data) accessed by the executed instructions, and a broadening if the condition is satisfied. If the I bus is specified as a break condition, condition or is performed for the addresses (and data) of the data access cycles that are issued on by all bus masters including the CPU, and a break occurs if the condition is satisfied
- Break Operation.
 - 2. The relationship between the data access cycle address and the comparison condition operand size is listed in table 7.2.

details on the CPU bus cycles issued on the I bus, see 5 in section 7.3.1, Flow of the

Longword access at H'00001000

Word access at H'00001002

Byte access at H'00001003

3. When the data value is included in the break conditions:

When the data value is included in the break conditions, either longword, word, or by

specified as the operand size of the break bus cycle register (BBRA or BBRB). When values are included in break conditions, a break is generated when the address conditions

data conditions both match. To specify byte data for this case, set the same data in tw bits 15 to 8 and bits 7 to 0 of the break data register (BDRA or BDRB) and break data

register (BDMRA or BDMRB). When word or byte is set, bits 31 to 16 of BDRA or I

and BDMRA or BDMRB are ignored.

until the first instruction at the branch destination.

4. If the L bus is selected, a break occurs on ending execution of the instruction that mat break condition, and immediately before the next instruction is executed. However, w is also specified as the break condition, the break may occur on ending execution of the

instruction following the instruction that matches the break condition. If the I bus is so the instruction at which the break will occur cannot be determined. When this kind of occurs at a delayed branch instruction or its delay slot, the break may not actually take

Rev. 5.00 Mar. 06, 2009 Page 138 of 770

RENESAS

condition can be also specified. For example, when the execution times break condispecified, the break condition is satisfied when a channel B condition matches with H'0001 after a channel A condition has matched.

7.3.5 Value of Saved Program Counter

When a break occurs, the address of the instruction from where execution is to be resum saved in the stack, and the exception handling state is entered. If the L bus is specified a condition, the instruction at which the break should occur can be clearly determined (ex when data is included in the break condition). If the I bus is specified as a break condition instruction at which the break should occur cannot be clearly determined.

- 1. When instruction fetch (before instruction execution) is specified as a break condition The address of the instruction that matched the break condition is saved in the stack. instruction that matched the condition is not executed, and the break occurs before it when a delay slot instruction matches the condition, the address of the delayed branch instruction is saved in the stack.
- 2. When instruction fetch (after instruction execution) is specified as a break condition The address of the instruction following the instruction that matched the break condisaved in the stack. The instruction that matches the condition is executed, and the br before the next instruction is executed. However, when a delayed branch instruction slot matches the condition, these instructions are executed, and the branch destinatio is saved in the stack.
- 3. When data access (address only) is specified as a break condition: The address of the instruction immediately after the instruction that matched the bre-

matches the condition, the branch destination address is saved in the stack.

condition is saved in the stack. The instruction that matches the condition is execute break occurs before the next instruction is executed. However when a delay slot inst

- 1. Setting PCTE in BRCR to 1 enables PC traces. When branch (branch instruction, and exception) is generated, the branch source address and branch destination address are
- 2. The values stored in BRSR and BRDR are as given below due to the kind of branch.

BRSR and BRDR, respectively.

- If a branch occurs due to a branch instruction, the address of the branch instruction in BRSR and the address of the branch destination instruction is saved in BRDR.
- If a branch occurs due to an interrupt or exception, the value saved in stack due to exception occurrence is saved in BRSR and the start address of the exception hand routine is saved in BRDR.
- 3. BRSR and BRDR have four pairs of queue structures. The top of queues is read first v address stored in the PC trace register is read. BRSR and BRDR share the read pointed BRSR and BRDR in order, the queue only shifts after BRDR is read. After switching PCTE bit (in BRCR) off and on, the values in the queues are invalid.

<Channel A>

Address: H'00000404, Address mask: H'00000000

Data: H'00000000, Data mask: H'00000000

Bus cycle: L bus/instruction fetch (after instruction execution)/read (operand size is included in the condition)

<Channel B>

Address: H'00008010, Address mask: H'00000006

Data: H'00000000, Data mask: H'00000000

Bus cycle: L bus/instruction fetch (before instruction execution)/read (operand size included in the condition)

A user break occurs after an instruction of address H'00000404 is executed or before instructions of addresses H'00008010 to H'00008016 are executed.

(Example 1-2)

• Register specifications

BARA = H'00037226, BAMRA = H'00000000, BBRA = H'0056, BDRA = H'00000 BDMRA = H'00000000, BARB = H'0003722E, BAMRB = H'00000000, BBRB = H BDRB = H'00000000, BDMRB = H'00000000, BRCR = H'00000008

Specified conditions: Channel A/channel B sequential mode

<Channel A>
Address: H'00037226, Address mask: H'00000000

Address: H'00037226, Address mask: H'00000000 Data: H'00000000, Data mask: H'00000000

Bus cycle: L bus/instruction fetch (before instruction execution)/read/word

BDMRA = H'000000000, BARB = H'00031415, BAMRB = H'000000000, BBRB = H'00000000

BDRB = H'00000000, BDMRB = H'00000000, BRCR = H'00000000

Specified conditions: Channel A/channel B independent mode

<Channel A> Address: H'00027128, Address mask: H'00000000

H'00000000. Data mask: H'00000000 Data:

Bus cycle: L bus/instruction fetch (before instruction execution)/write/word <Channel B>

Address: H'00031415, Address mask: H'00000000

Data: H'00000000, Data mask: H'00000000

Bus cycle: L bus/instruction fetch (before instruction execution)/read (operand size i

included in the condition) On channel A, no user break occurs since instruction fetch is not a write cycle. On ch

no user break occurs since instruction fetch is performed for an even address.

(Example 1-4)

Register specifications

BARA = H'00037226, BAMRA = H'00000000, BBRA = H'005A, BDRA = H'00000 BDMRA = H'00000000, BARB = H'0003722E, BAMRB = H'00000000, BBRB = H'

BDRB = H'00000000, BDMRB = H'00000000, BRCR = H'00000008 Specified conditions: Channel A/channel B sequential mode

<Channel A> Address: H'00037226, Address mask: H'00000000

H'00000000, Data mask: H'00000000 Data:

Rev. 5.00 Mar. 06, 2009 Page 142 of 770

Bus cycle: L bus/instruction fetch (before instruction execution)/write/word

RENESAS

BDMRA = H'000000000, BARB = H'00001000, BAMRB = H'000000000, BBRB = H BDRB = H'00000000, BDMRB = H'00000000, BRCR = H'00000001, BETR = H'00

Specified conditions: Channel A/channel B independent mode

Address: H'00000500, Address mask: H'00000000

H'00000000, Data mask: H'00000000 Data:

Bus cycle: L bus/instruction fetch (before instruction execution)/read/longword

The number of execution-times break enable (5 times)

<Channel B> Address: H'00001000, Address mask: H'00000000

Data: H'00000000, Data mask: H'00000000

Bus cycle: L bus/instruction fetch (before instruction execution)/read/longword

On channel A, a user break occurs after the instruction of address H'00000500 is exe times and before the fifth time.

On channel B, a user break occurs before an instruction of address H'00001000 is ex

(Example 1-6)

<Channel A>

Register specifications

BARA = H'00008404, BAMRA = H'00000FFF, BBRA = H'0054, BDRA = H'00000

BDMRA = H'00000000, BARB = H'00008010, BAMRB = H'00000006, BBRB = H

BDRB = H'00000000, BDMRB = H'00000000, BRCR = H'00000400

Specified conditions: Channel A/channel B independent mode

<Channel A>

Address: H'00008404, Address mask: H'00000FFF

H'00000000, Data mask: H'00000000 Data:

break Condition Specified for L bus Data Access Cycle:

(Example 2-1)

Register specifications

BARA = H'00123456, BAMRA = H'00000000, BBRA = H'0064, BDRA = H'123456 BDMRA = H'FFFFFFF, BARB = H'000ABCDE, BAMRB = H'000000FF, BBRB =

Specified conditions: Channel A/channel B independent mode

BDRB = H'0000A512, BDMRB = H'00000000, BRCR = H'00000080

<Channel A>

Address: H'00123456, Address mask: H'00000000 H'12345678, Data mask: H'FFFFFFF

Bus cycle: L bus/data access/read (operand size is not included in the condition)

<Channel B>

Data:

Address: H'000ABCDE, Address mask: H'000000FF

Data: H'0000A512, Data mask: H'00000000

Bus cycle: L bus/data access/write/word

On channel A, a user break occurs with longword read from address H'00123454, wo from address H'00123456, or byte read from address H'00123456. On channel B, a us occurs when word H'A512 is written in addresses H'000ABC00 to H'000ABCFE.

Data: H'12345678, Data mask: H'FFFFFFF

Bus cycle: I bus (CPU cycle)/instruction fetch/read (operand size is not included in condition)

<Channel B>

Address: H'00055555, Address mask: H'00000000

H'00000078, Data mask: H'0000000F Data:

Bus cycle: I bus (CPU cycle)/data access/write/byte

On channel A, a user break occurs when instruction fetch is performed for address F

in the external memory space. On channel B, a user break occurs when byte data H'7x is written in address H'0005. external memory space by the CPU.

Rev. 5.00 Mar. 06, 2009 Pag

match occurs in another bus cycle in sequential break setting. Therefore, no break occ if a bus cycle, in which an A-channel match and a channel B match occur simultaneous set.

priority is determined according to the priority levels defined in table 5.1 in section 5. Exception Handling. If an exception with higher priority occurs, the user break is not generated.

— Pre-execution break has the highest priority.

4. When a user break and another exception occur at the same instruction, which has high

- When a post-execution break or data access break occurs simultaneously with a re
- execution-type exception (including pre-execution break) that has higher priority, execution-type exception is accepted, and the condition match flag is not set (see exception in the following note). The break will occur and the condition match flag set only after the exception source of the re-execution-type exception has been cleen the exception handling routine and re-execution of the same instruction has ended.

 When a post-execution break or data access break occurs simultaneously with a

completion-type exception (TRAPA) that has higher priority, though a break does

- occur, the condition match flag is set.

 5. Note the following exception for the above note.
- 3. Ivote the following exception for the doore how

If a post-execution break or data access break is satisfied by an instruction that general CPU address error by data access, the CPU address error is given priority to the break

that the UBC condition match flag is set in this case.

- 6. Note the following when a break occurs in a delay slot.
- If a pre-execution break is set at the delay slot instruction of the RTE instruction, the does not occur until the branch destination of the RTE instruction.
- 7. User breaks are disabled during UBC module standby mode. Do not read from or wri UBC registers during UBC module standby mode; the values are not guaranteed.

Rev. 5.00 Mar. 06, 2009 Pag

Rev. 5.00 Mar. 06, 2009 Page 148 of 770

REJ09B0243-0500

8.2 Address Map

The address map is listed in table 8.1.

Table 8.1 Address Map

		Size							
Address	Type of Memory	128 Kbytes Version	64 Kbytes Version	32 Kbytes Version	16 Kby Versio				
H'00000000 to H'00003FFF	On-chip	128 Kbytes	64 Kbytes	32 Kbytes	16 Kby				
H'00004000 to H'00007FFF	FLASH				Reserv				
H'00008000 to H'0000FFFF	=			Reserved					
H'00010000 to H'0001FFFF	=		Reserved	=					
H'00020000 to H'FFFF9FFF	Reserved	_	_	_	_				
H'FFFFA000 to H'FFFFAFFF	On-chip	8 Kbytes	8 Kbytes	8 Kbytes	8 Kbyt				
H'FFFB000 to H'FFFBFFF	RAM				Reserv				
H'FFFFC000 to H'FFFFFFF	On-chip peripheral I/O	128 Kbytes	64 Kbytes	64 Kbytes	64 Kby				

8.3 Access to on-chip FLASH and on-chip RAM

Access to the on-chip FLASH for read is synchronized with I ϕ clock and is executed in cycle. For details on programming and erasing, see section 17, Flash Memory.

Access to the on-chip RAM for read/write is synchronized with I ϕ clock and is execute clock cycle. For details, see section 18, RAM.

Rev. 5.00 Mar. 06, 2009 Pag REJ09

Cycles	-	Read	$(3+n) \times lclk + (1+m) \times Bclk + 2 \times Pclk + 2 \times lclk$
Note:	When n	n = 0 to	3, Bclk:Pclk = 4:1
	When n	= 0 to	3, lclk:Bclk = 4:1
	When n	n = 0, 1	, Bclk:Pclk = 2:1
	When n	= 0, 1,	lclk:Bclk = 2:1

When m = 0, Bclk:Pclk = 1:1 When n = 0, lclk:Bclk = 1:1

Number of

This LSI adopts synchronous logic, and data of each bus is input and output in synchroni with the rising edge of the corresponding clock. The L bus access takes one Iclk cycle, I l access takes one Bclk cycle, and peripheral bus access takes two Pclk cycles. When the operipheral I/O register is accessed by the CPU, the period required for preparation for dat to the I bus is a period of 3 Iclk cycles.

Write $(3 + n) \times lclk + (1 + m) \times Bclk + 2 \times Pclk$

Figure 8.1 shows an example of timing of write access to the peripheral bus when Iclk:Bd 4:1:1. From the L bus, to which the CPU is connected, data is output in synchronization of Since there are four Iclk cycles in a single Bclk cycle when Iclk:Bclk = 4:1, data can be conto the L bus in four possible timings within one Bclk cycle. Accordingly, a maximum of Iclk cycles of period (four Iclk cycles in the example shown in the figure) is required before rising edge of Bclk, on which data is transferred from the L bus to the I bus. Because of the state of the st

is transferred from the L bus to the I bus in a period of $(3 + n) \times Iclk$ (n = 0 to 3) when Ic. 4:1. The relation of the timing of data output to the L bus and the rising edge of Bclk depthe state of program execution. In the case shown in figure 8.1, where Bclk = Pclk = 1:1,

period required for access by the CPU is $(3 + n) \times Iclk + 1 \times Bclk + 2 \times Pclk$.

Rev. 5.00 Mar. 06, 2009 Page 150 of 770

4:4:1. From the L bus, to which the CPU is connected, data is output in synchronization When Iclk:Bclk = 1:1, a period of 3 Iclk + Bclk is required to transfer data from the L b bus. In data transfer from the I bus to the peripheral bus, there are four BIclk cycles in a Pclk cycle when Bclk:Pclk = 4:1, and data can therefore be output onto the peripheral bus possible timings within one Pclk cycle. Accordingly, a maximum of four Bclk cycles of (four Bclk cycles in the example shown in the figure) is required before the rising edge which data is transferred from the I bus to the peripheral bus. Because of this, data is trafform the I bus to the peripheral bus in a period of (1 + m) × Bclk (m = 0 to 3) when Bcll 4:1. The relation of the timing of data output to the I bus and the rising edge of Pclk dep

the state of program execution. In the case shown in figure 8.2, where Iclk = Bclk = 1:1.

Figure 8.2 shows an example of timing of write access to the peripheral bus when Iclk:

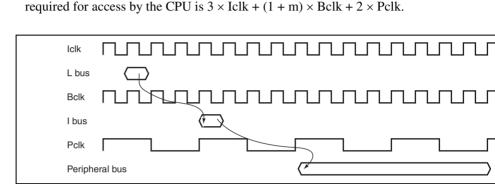


Figure 8.2 Timing of Write Access to the Peripheral Bus (Iclk:Bclk:Pclk = 4

Figure 8.3 shows an example of timing of read access to the peripheral bus when Iclk:B 4:2:1. Transfer from the L bus to the peripheral bus is performed in the same way as for access. In the case of reading, however, values output onto the peripheral bus must be tr to the CPU. Transfers from the external bus to the I bus and from the I bus to the L bus a

performed in synchronization with rising edges of the respective bus clocks. $2 \times Iclk$ cyc

Figure 8.3 Timing of Read Access to the Peripheral Bus (Iclk:Bclk:Pclk = 4:2

Rev. 5.00 Mar. 06, 2009 Page 152 of 770 REJ09B0243-0500

RENESAS

- Waveform output at compare matchInput capture function
- Input capture runction— Counter clear operation
- Multiple timer counters (TCNT) can be written to simultaneously
- Multiple timer counters (TCIVI) can be written to simultaneously
- Simultaneous clearing by compare match and input capture is possible
 Register simultaneous input/output is possible by synchronous counter operation
- A maximum 12-phase PWM output is possible in combination with synchronous
- Buffer operation settable for channels 0, 3, and 4
- Phase counting mode settable independently for each of channels 1 and 2
- Cascade connection operation
- Fast access via internal 16-bit bus
- 28 interrupt sources
- Automatic transfer of register data
- A/D converter start trigger can be generated
- Module standby mode can be settable
- A total of six-phase waveform output, which includes complementary PWM output, positive and negative phases of reset PWM output by interlocking operation of chan 4, is possible.

AC synchronous motor (brushless DC motor) drive mode using complementary PW

- and reset PWM output is settable by interlocking operation of channels 0, 3, and 4, a selection of two types of waveform outputs (chopping and level) is possible.
- Dead time compensation counter available in channel 5
- In complementary PWM mode, interrupts at the crest and trough of the counter valu converter start triggers can be skipped.

	-	TGRC_0 TGRD_0 TGRF_0	_	_	TGRC_3 TGRD_3
I/O pins		TIOCOA TIOCOB TIOCOC TIOCOD	TIOC1A* ¹ TIOC1B* ¹	TIOC2A* ¹ TIOC2B* ¹	TIOC3A TIOC3B TIOC3C TIOC3D
Counter clear function Compare match output 1 output Toggle output Input capture function Synchronous operation PWM mode 1 PWM mode 2 Complementary PWM mode Reset PWM mode AC synchronous	ear	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture
Compare match output	0 output	√	V	√	V
	1 output	√	V	√	V
output		√	√	√	√
Input capti function	ure	V	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
Synchrono operation	ous	V	V	V	V
PWM mod	le 1	√	V	√	V
PWM mod	le 2	√	V	V	_
output Toggle output Input capture function Synchronous operation PWM mode 1 PWM mode 2 Complementary PWM mode Reset PWM mode AC synchronous		_	_	_	$\sqrt{}$
Complementary PWM mode Reset PWM mode		_	_	_	V
AC synchronous motor drive mode		√	_	_	V

TGRB_0

TGRE_0

TGRB_1

TGRB_2

TGRB_3

TGRB_4

TGRC_4

TGRD_4

TIOC4A

TIOC4B

TIOC4C

TIOC4D

compare

match or

input capture

TGR

 $\sqrt{}$ $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

TG

TG

Inp

TIC

TIC

TIC

TG

cor

ma

inp

RENESAS

TGRE_0	TCNT_4
compare	underflow
match	(trough) in
	complemen-
	tary PWM
	mode

	•	1			
	0B	1B* ²	2B*2	3B	4B
•	Compare • match or input capture OC	Overflow • Underflow •	Overflow • Underflow	Compare • match or input capture 3C	Compare • match or input capture 4C
•	Compare match or input capture OD		•	Compare • match or input capture 3D	Compare match or input capture 4D
•	Compare match 0E Compare match 0F Overflow		•	Overflow •	Overflow or underflow

						request at
						a match
						between
						TADCOR
						B_4 and
						TCNT_4
Interrupt skipping	_	_	_	•	Skips •	Skips -
function TGRA comparatch	TGRA_3	TCIV_4				
					compare	interrupts
					match	
					interrupts	

[Legend]

√. Possible

Not possible

Notes: 1. This pin is supported only by the SH7125.

2. Input capture is supported only by the SH7125.

converter start

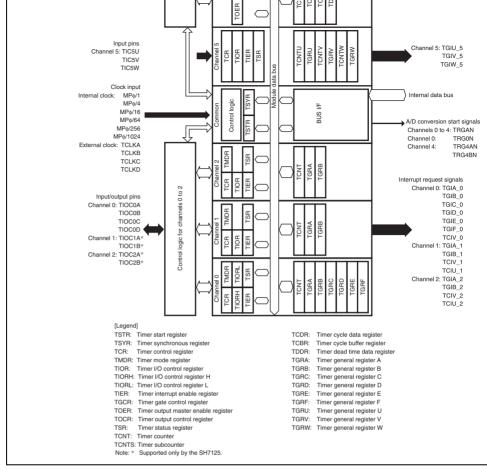


Figure 9.1 Block Diagram of MTU2

Rev. 5.00 Mar. 06, 2009 Page 158 of 770 REJ09B0243-0500

1	TIOC1A*	I/O	TGRA_1 input capture input/output compare output/PWM
	TIOC1B*	I/O	TGRB_1 input capture input/output compare output/PWM
2	TIOC2A*	I/O	TGRA_2 input capture input/output compare output/PWM
	TIOC2B*	I/O	TGRB_2 input capture input/output compare output/PWM
3	TIOC3A	I/O	TGRA_3 input capture input/output compare output/PWM
	TIOC3B	I/O	TGRB_3 input capture input/output compare output/PWM
	TIOC3C	I/O	TGRC_3 input capture input/output compare output/PWM
	TIOC3D	I/O	TGRD_3 input capture input/output compare output/PWM
4	TIOC4A	I/O	TGRA_4 input capture input/output compare output/PWM
	TIOC4B	I/O	TGRB_4 input capture input/output compare output/PWM
	TIOC4C	I/O	TGRC_4 input capture input/output compare output/PWM
	TIOC4D	I/O	TGRD_4 input capture input/output compare output/PWM
5	TIC5U	Input	TGRU_5 input capture input/external pulse input pin
	TIC5V	Input	TGRV_5 input capture input/external pulse input pin
	TIC5W	Input	TGRW_5 input capture input/external pulse input pin
Note: *	Supported	only by	y the SH7125.

Input External clock D input pin

(Channel 2 phase counting mode B phase input)

TGRA_0 input capture input/output compare output/PWM

TGRB 0 input capture input/output compare output/PWM

TGRC_0 input capture input/output compare output/PWM

TGRD_0 input capture input/output compare output/PWM

TCLKD

TIOC0A

TIOC0B

TIOC0C

TIOC0D

I/O

I/O

I/O

I/O

0

Rev. 5.00 Mar. 06, 2009 Pag

					-
Timer mode register_3	TMDR_3	R/W	H'00	H'FFFFC202	8, 1
Timer mode register_4	TMDR_4	R/W	H'00	H'FFFFC203	8
Timer I/O control register H_3	TIORH_3	R/W	H'00	H'FFFFC204	8, 1
Timer I/O control register L_3	TIORL_3	R/W	H'00	H'FFFFC205	8
Timer I/O control register H_4	TIORH_4	R/W	H'00	H'FFFFC206	8, 1
Timer I/O control register L_4	TIORL_4	R/W	H'00	H'FFFFC207	8
Timer interrupt enable register_3	TIER_3	R/W	H'00	H'FFFFC208	8, 1
Timer interrupt enable register_4	TIER_4	R/W	H'00	H'FFFFC209	8
Timer output master enable register	TOER	R/W	H'C0	H'FFFFC20A	8
Timer gate control register	TGCR	R/W	H'80	H'FFFFC20D	8
Timer output control register 1	TOCR1	R/W	H'00	H'FFFFC20E	8, 1
Timer output control register 2	TOCR2	R/W	H'00	H'FFFFC20F	8
Timer counter_3	TCNT_3	R/W	H'0000	H'FFFFC210	16,
Timer counter_4	TCNT_4	R/W	H'0000	H'FFFFC212	16
Timer cycle data register	TCDR	R/W	H'FFFF	H'FFFFC214	16,
Timer dead time data register	TDDR	R/W	H'FFFF	H'FFFFC216	16
Timer general register A_3	TGRA_3	R/W	H'FFFF	H'FFFFC218	16,
Timer general register B_3	TGRB_3	R/W	H'FFFF	H'FFFFC21A	16
Timer general register A_4	TGRA_4	R/W	H'FFFF	H'FFFFC21C	16,
Timer general register B_4	TGRB 4	R/W	H'FFFF	H'FFFFC21E	16

TCR_3

TCR_4

R/W

R/W

RENESAS

H'00

H'00

H'FFFFC200

H'FFFFC201

8, 1

8

Timer control register_3

Timer control register_4

Rev. 5.00 Mar. 06, 2009 Page 160 of 770

REJ09B0243-0500

•				
Timer output level buffer register	TOLBR	R/W	H'00	H'FFFFC236
Timer buffer operation transfer mode register_3	TBTM_3	R/W	H'00	H'FFFFC238
Timer buffer operation transfer mode register_4	TBTM_4	R/W	H'00	H'FFFFC239
Timer A/D converter start request control register	TADCR	R/W	H'0000	H'FFFFC240
Timer A/D converter start request cycle set register A_4	TADCORA_4	R/W	H'FFFF	H'FFFFC244
Timer A/D converter start request cycle set register B_4	TADCORB_4	R/W	H'FFFF	H'FFFFC246
Timer A/D converter start request cycle set buffer register A_4	TADCOBRA_4	R/W	H'FFFF	H'FFFFC248
Timer A/D converter start	TADCOBRB_4	R/W	H'FFFF	H'FFFFC24A

TITCR

TITCNT

TBTER

TDER

R/W

R

R/W

R/W

H'00

H'00

H'00

H'01

Timer interrupt skipping set

Timer interrupt skipping

Timer buffer transfer set

Timer dead time enable

request cycle set buffer

register B_4

register

counter

register

Rev. 5.00 Mar. 06, 2009 Pag

H'FFFFC230

H'FFFFC231

H'FFFFC232

H'FFFFC234

8,

8

8

8

8

8,

8

16

16

16

16

16

Timer interrupt enable register_0	TIER_0	R/W	H'00	H'FFFFC304	8, 1
Timer status register_0	TSR_0	R/W	H'C0	H'FFFFC305	8
Timer counter_0	TCNT_0	R/W	H'0000	H'FFFFC306	16
Timer general register A_0	TGRA_0	R/W	H'FFFF	H'FFFFC308	16,
Timer general register B_0	TGRB_0	R/W	H'FFFF	H'FFFFC30A	16
Timer general register C_0	TGRC_0	R/W	H'FFFF	H'FFFFC30C	16,
Timer general register D_0	TGRD_0	R/W	H'FFFF	H'FFFFC30E	16
Timer general register E_0	TGRE_0	R/W	H'FFFF	H'FFFFC320	16,
Timer general register F_0	TGRF_0	R/W	H'FFFF	H'FFFFC322	16
Timer interrupt enable register 2_0	TIER2_0	R/W	H'00	H'FFFFC324	8, 1
Timer status register 2_0	TSR2_0	R/W	H'C0	H'FFFFC325	8
Timer buffer operation transfer mode register_0	TBTM_0	R/W	H'00	H'FFFFC326	8
Timer control register_1	TCR_1	R/W	H'00	H'FFFFC380	8, 1
Timer mode register_1	TMDR_1	R/W	H'00	H'FFFFC381	8
Timer I/O control register_1	TIOR_1	R/W	H'00	H'FFFFC382	8
Timer interrupt enable register_1	TIER_1	R/W	H'00	H'FFFFC384	8, 1
Timer status register_1	TSR_1	R/W	H'C0	H'FFFFC385	8

TIORH_0

TIORL_0

R/W

R/W

H'00

H'00

H'FFFFC302

H'FFFFC303

8, 1

8

Rev. 5.00 Mar. 06, 2009 Page 162 of 770

Timer I/O control register H_0

Timer I/O control register L_0

RENESAS REJ09B0243-0500

Timer general register A_2	TGRA_2	R/W	H'FFFF	H'FFFFC408	16
Timer general register B_2	TGRB_2	R/W	H'FFFF	H'FFFFC40A	16
Timer counter U_5	TCNTU_5	R/W	H'0000	H'FFFFC480	16
Timer general register U_5	TGRU_5	R/W	H'FFFF	H'FFFFC482	16
Timer control register U_5	TCRU_5	R/W	H'00	H'FFFFC484	8
Timer I/O control register U_5	TIORU_5	R/W	H'00	H'FFFFC486	8
Timer counter V_5	TCNTV_5	R/W	H'0000	H'FFFFC490	16
Timer general register V_5	TGRV_5	R/W	H'FFFF	H'FFFFC492	16
Timer control register V_5	TCRV_5	R/W	H'00	H'FFFFC494	8
Timer I/O control register V_5	TIORV_5	R/W	H'00	H'FFFFC496	8
Timer counter W_5	TCNTW_5	R/W	H'0000	H'FFFFC4A0	16
Timer general register W_5	TGRW_5	R/W	H'FFFF	H'FFFFC4A2	16
Timer control register W_5	TCRW_5	R/W	H'00	H'FFFFC4A4	8
Timer I/O control register W_5	TIORW_5	R/W	H'00	H'FFFFC4A6	8

TSR_5

TIER_5

TSTR_5

TCNTCMPCLR

TIER_2

TSR_2

TCNT 2

R/W

R/W

R/W

H'00

H'C0

H'0000

Timer interrupt enable

Timer status register_2

Timer status register_5

Timer interrupt enable

Timer start register_5

Timer compare match clear

register_5

register

Timer counter 2

register_2

R/W

R/W

R/W

H'00 R/W H'00

H'00

H'00

H'FFFFC4B4

H'FFFFC4B6

Rev. 5.00 Mar. 06, 2009 Pag

H'FFFFC4B0

H'FFFFC4B2

H'FFFFC404

H'FFFFC405

H'FFFFC406

8,

8

16

REJ09

8 8

8 8

		Initial		
Bit	Bit Name	Value	R/W	Description
7 to 5	CCLR[2:0]	000	R/W	Counter Clear 0 to 2
				These bits select the TCNT counter clearing so See tables 9.4 and 9.5 for details.
4, 3	CKEG[1:0]	00	R/W	Clock Edge 0 and 1
				These bits select the input clock edge. When the clock is counted using both edges, the input cloperiod is halved (e.g. MPφ/4 both edges = MPα edge). If phase counting mode is used on charmand 2, this setting is ignored and the phase counted setting has priority. Internal clock edges is valid when the input clock is MPφ/4 or slowe MPφ/1, or the overflow/underflow of another charms selected for the input clock, although values call written, counter operation compiles with the initial clock is the input clock.
				00: Count at rising edge
				01: Count at falling edge
				1x: Count at both edges
2 to 0	TPSC[2:0]	000	R/W	Time Prescaler 0 to 2

[Legend]

x:

Don't care

Rev. 5.00 Mar. 06, 2009 Page 164 of 770

RENESAS

These bits select the TCNT counter clock. The source can be selected independently for each

See tables 9.6 to 9.10 for details.

		1		NT cleared by TGRC compare mat ture* ²
	1	0		NT cleared by TGRD compare mat ture* ²
		1	cha	NT cleared by counter clearing for a nnel performing synchronous clear chronous operation* ¹
Notes: 1.	Synchronous of	peration is se	t by setting the	e SYNC bit in TSYR to 1.
2.	When TGRC or	r TGRD is us	ed as a buffer	register, TCNT is not cleared beca

buffer register setting has priority, and compare match/input capture does no

Description

capture

TCNT clearing disabled

TCNT cleared by TGRA compare ma

0

synchronous operation*

TCNT clearing disabled

Table 9.5 CCLR0 to CCLR2 (Channels 1 and 2)

0

Reserved*2 CCLR1

Bit 6

0

1

Bit 7

0

Channel

1, 2

1	0	TCNT cleared by TGRB compare ma capture
	1	TCNT cleared by counter clearing for channel performing synchronous clear synchronous operation* ¹

Bit 5

0 1

CCLR0

- Notes: 1. Synchronous operation is selected by setting the SYNC bit in TSYR to 1.
 - 2. Bit 7 is reserved in channels 1 and 2. It is always read as 0 and cannot be me

1	0	External clock: counts on TCLKC pin in
	1	External clock: counts on TCLKD pin in

Bit 0

0

TPSC0

Description

Internal clock: counts on MP₀/1

Counts on TCNT_2 overflow/underflow

Table 9.7 TPSC0 to TPSC2 (Channel 1)

0

Bit 1

TPSC1

Bit 2

0

Channel

1

TPSC2

		1	Internal clock: counts on MP\$/4
	1	0	Internal clock: counts on MP
		1	Internal clock: counts on MP\$/64
1	0	0	External clock: counts on TCLKA pin i
		1	External clock: counts on TCLKB pin i
	1	0	Internal clock: counts on MP _{\$\phi\$} /256

Note: This setting is ignored when channel 1 is in phase counting mode.

Rev. 5.00 Mar. 06, 2009 Page 166 of 770 REJ09B0243-0500

1	0	External clock: counts on TCLKC pin i
	1	Internal clock: counts on MP _φ /1024

Note: This setting is ignored when channel 2 is in phase counting mode.

Table 9.9 TPSC0 to TPSC2 (Channels 3 and 4)

Channel	Bit 2 TPSC2	Bit 1 TPSC1	Bit 0 TPSC0	Description
3, 4	0	0	0	Internal clock: counts on MPφ/1
			1	Internal clock: counts on MPφ/4
		1	0	Internal clock: counts on MPφ/16
1			1	Internal clock: counts on MPφ/64
	1	0	0	Internal clock: counts on MPφ/256
			1	Internal clock: counts on MPφ/1024
		1	0	External clock: counts on TCLKA pin
			1	External clock: counts on TCLKB pin

9.3.2 Timer Mode Register (TMDR)

The TMDR registers are 8-bit readable/writable registers that are used to set the operating each channel. The MTU2 has five TMDR registers, one each for channels 0 to 4. TMDR settings should be changed only when TCNT operation is stopped.

Bit:	7	6	5	4	3	2	1	0
	-	BFE	BFB	BFA		MD	[3:0]	
Initial value:	0	0	0	0	0	0	0	0
R/W:	-	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit	Bit Name	Initial Value	R/W	Description
7	_	0	_	Reserved
				This bit is always read as 0. The write value shalways be 0.
6	BFE	0	R/W	Buffer Operation E
				Specifies whether TGRE_0 and TGRF_0 are to in the normal way or to be used together for bu operation.
				When TGRF is used as a buffer register, TGRI compare match is generated.
				In channels 1 to 4, this bit is reserved. It is always 0 and the write value should always be 0.
				0: TGRE_0 and TGRF_0 operate normally
				1: TGRE_0 and TGRF_0 used together for buf operation

Rev. 5.00 Mar. 06, 2009 Page 168 of 770

REJ09B0243-0500

				0: TGRB and TGRD operate normally 1: TGRB and TGRD used together for buffer
4	BFA	0	R/W	Buffer Operation A
				Specifies whether TGRB is to operate in the r way, or TGRB and TGRD are to be used toge buffer operation. When TGRD is used as a buregister, TGRD input capture/output compare take place in modes other than complemental mode, but compare match with TGRD occurs complementary PWM mode. Since the TGFD be set if a compare match occurs during Tb in complementary PWM mode, the TGIED bit in interrupt enable register 3/4 (TIER_3/4) should cleared to 0.

3 to 0

MD[3:0]

0000

R/W

cleared to 0.

Modes 0 to 3

See table 9.11 for details.

interrupt enable register 3/4 (TIER_3/4) shou

In channels 1 and 2, which have no TGRD, b reserved. It is always read as 0 and cannot b

reserved. It is always read as 0 and cannot b

1: TGRA and TGRC used together for buffer

These bits are used to set the timer operating

Rev. 5.00 Mar. 06, 2009 Pag

REJ09

0: TGRA and TGRC operate normally

		1	Phase counting mode 4*2
0	0	0	Reset synchronous PWM mode*3
		1	Setting prohibited
	1	х	Setting prohibited
1	0	0	Setting prohibited
		1	Complementary PWM mode 1 (transmit at crest)*3
	1	0	Complementary PWM mode 2 (transmit at trough)*
		1	Complementary PWM mode 2 (transmit at crest and trough)*3

Phase counting mode 3*2

[Legend]

x: Don't care

Notes: 1. PWM mode 2 cannot be set for channels 3 and 4.

1

0

Phase counting mode cannot be set for channels 0, 3, and 4.
 Reset synchronous PWM mode and complementary PWM mode can only be schannel 3. When channel 3 is set to reset synchronous PWM mode or comple PWM mode, the channel 4 settings become ineffective and automatically confictannel 3 settings. However, do not set channel 4 to reset synchronous PWM complementary PWM mode. Reset synchronous PWM mode and complement mode cannot be set for channels 0, 1, and 2.

Rev. 5.00 Mar. 06, 2009 Page 170 of 770

When TGRC or TGRD is designated for buffer operation, this setting is invalid and the operates as a buffer register.

• TIORH_0, TIOR_1, TIOR_2, TIORH_3, TIORH_4

Bit:	7	6	5	4	3	2	1	0	
		IOB	[3:0]		IOA[3:0]				
Initial value:	0	0	0	0	0	0	0	0	
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Bit	Bit Name	Initial Value	R/W	Description
7 to 4	IOB[3:0]	0000	R/W	I/O Control B0 to B3
				Specify the function of TGRB.
				See the following tables.
				TIORH_0: Table 9.12 TIOR_1: Table 9.14 TIOR_2: Table 9.15 TIORH_3: Table 9.16 TIORH_4: Table 9.18
3 to 0	IOA[3:0]	0000	R/W	I/O Control A0 to A3
				Specify the function of TGRA.
				See the following tables.
				TIORH_0: Table 9.20 TIOR_1: Table 9.22 TIOR_2: Table 9.23 TIORH_3: Table 9.24

TIORH_4: Table 9.26

				TIORL_0: Table 9.13 TIORL_3: Table 9.17 TIORL_4: Table 9.19
3 to 0	IOC[3:0]	0000	R/W	I/O Control C0 to C3
				Specify the function of TGRC.
				See the following tables.
				TIORL_0: Table 9.21

• TIORU_5, TIORV_5, TIORW_5

Bit name:	7	6	5	4	4 3 2 1			0
	-	-	-			IOC[4:0]		
Initial value:	0	0	0	0	0	0	0	0
R/W:	R	R	R	R/W	R/W	R/W	R/W	R/W

TIORL_3: Table 9.25 TIORL_4: Table 9.27

Bit	Bit Name	Initial Value	R/W	Description
7 to 5	_	All 0	R	Reserved
				These bits are always read as 0. The write va
4 to 0	IOC[4:0]	00000	R/W	I/O Control C0 to C4
				Specify the function of TGRU_5, TGRV_5, an TGRW_5.
				For details, see table 9.28.

Rev. 5.00 Mar. 06, 2009 Page 172 of 770

	1	0	0		Output retained
			1	•	Initial output is 1
					0 output at compare match
		1	0	•	Initial output is 1
					1 output at compare match
			1	-	Initial output is 1
					Toggle output at compare match
	0	0	0		Input capture at rising edge
			1	register	Input capture at falling edge
		1	Х	•	Input capture at both edges
	1	Х	Х	•	Capture input source is channel 1/cour Input capture at TCNT_1 count-up/cour
gend	11				

Toggle output at compare match

[Lege

x: Don't care

Note: * After power-on reset, 0 is output until TIOR is set.

RENESAS

		ı		initial output is 0
				Toggle output at compare match
1	0	0	-	Output retained
		1	-	Initial output is 1
				0 output at compare match
	1	0	-	Initial output is 1
				1 output at compare match
		1	-	Initial output is 1
				Toggle output at compare match
0	0	0		Input capture at rising edge
		1	register*2	Input capture at falling edge
	1	Х	_	Input capture at both edges
1	х	Х	-	Capture input source is channel 1/count

[Legend]

x: Don't care

Notes: 1. After power-on reset, 0 is output until TIOR is set.

2. When the BFB bit in TMDR_0 is set to 1 and TGRD_0 is used as a buffer regis setting is invalid and input capture/output compare is not generated.

Input capture at TCNT_1 count-up/count

Rev. 5.00 Mar. 06, 2009 Page 174 of 770

	1	0	0		Output retained
			1		Initial output is 1
					0 output at compare match
		1	0		Initial output is 1
					1 output at compare match
			1		Initial output is 1
					Toggle output at compare match
1	0	0	0		Input capture at rising edge
			1	register	Input capture at falling edge
		1	х		Input capture at both edges
	1	х	Х		Input capture at generation of TGRC_0 match/input capture
[Legen	d]				

Toggle output at compare match

x: Don't care

Notes: 1. After power-on reset, 0 is output until TIOR is set.

2. The TIOC1B pin input/output function is supported only by the SH7125.

			1		Initial output is 0
					Toggle output at compare match
	1	0	0	-	Output retained
			1	-	Initial output is 1
					0 output at compare match
		1	0	-	Initial output is 1
					1 output at compare match
			1	-	Initial output is 1
					Toggle output at compare match
1	х	0	0		Input capture at rising edge
			1	register	Input capture at falling edge
		1	Х	_	Input capture at both edges

[Legend]

x: Don't care

Notes: 1. After power-on reset, 0 is output until TIOR is set.

2. The TIOC2B pin input/output function is supported only by the SH7125.

REJ09B0243-0500

				Toggle output at compare match
1	0	0	•	Output retained
		1	•	Initial output is 1
				0 output at compare match
•	1	0	•	Initial output is 1
				1 output at compare match
		1	•	Initial output is 1
				Toggle output at compare match
х	0	0		Input capture at rising edge
		1	register -	Input capture at falling edge
•	1	х		Input capture at both edges

[Legend]

Don't care

* After power-on reset, 0 is output until TIOR is set. Note:

					l oggle output at compare match
	1	0	0	•	Output retained
			1	•	Initial output is 1
					0 output at compare match
		1	0	•	Initial output is 1
					1 output at compare match
			1	•	Initial output is 1
					Toggle output at compare match
1	х	0	0		Input capture at rising edge
			1	register*2	Input capture at falling edge
	•	1	х	•	Input capture at both edges

[Legend]

x: Don't care

Notes: 1. After power-on reset, 0 is output until TIOR is set.

After power-on reset, 0 is output until 11OH is set.
 When the BFB bit in TMDR_3 is set to 1 and TGRD_3 is used as a buffer regis setting is invalid and input capture/output compare is not generated.

				Toggle output at compare match
1	0	0	•	Output retained
		1	•	Initial output is 1
				0 output at compare match
•	1	0	•	Initial output is 1
				1 output at compare match
		1	•	Initial output is 1
				Toggle output at compare match
х	0	0		Input capture at rising edge
		1	register	Input capture at falling edge
•	1	х	•	Input capture at both edges

[Legend]

Don't care

* After power-on reset, 0 is output until TIOR is set. Note:

					l oggle output at compare match
	1	0	0	•	Output retained
			1		Initial output is 1
					0 output at compare match
		1	0	•	Initial output is 1
					1 output at compare match
			1	•	Initial output is 1
					Toggle output at compare match
1	х	0	0		Input capture at rising edge
			1	register*2	Input capture at falling edge
		1	х	-	Input capture at both edges

[Legend]

x: Don't care

Notes: 1. After power-on reset, 0 is output until TIOR is set.

After power-off reset, o is output until from is set.
 When the BFB bit in TMDR_4 is set to 1 and TGRD_4 is used as a buffer regis setting is invalid and input capture/output compare is not generated.

Rev. 5.00 Mar. 06, 2009 Page 180 of 770

					Toggle output at compare match
	1	0	0	-	Output retained
			1	-	Initial output is 1
					0 output at compare match
		1	0	-	Initial output is 1
					1 output at compare match
			1	-	Initial output is 1
					Toggle output at compare match
1	0	0	0		Input capture at rising edge
			1	register	Input capture at falling edge
		1	Х	-	Input capture at both edges
	1	Х	х	-	Capture input source is channel 1/cour
					Input capture at TCNT_1 count-up/cou
[Leger	nd]				

x: Don't care

Note: * After power-on reset, 0 is output until TIOR is set.

		1		Initial output is 0
				Toggle output at compare match
1	0	0	•	Output retained
		1	•	Initial output is 1
				0 output at compare match
•	1	0	•	Initial output is 1
				1 output at compare match
		1	•	Initial output is 1
				Toggle output at compare match
0	0	0		Input capture at rising edge
		1	register*2	Input capture at falling edge
•	1	х	•	Input capture at both edges
1	х	х	•	Capture input source is channel 1/count

[Legend]

x: Don't care

Notes: 1. After power-on reset, 0 is output until TIOR is set.

 When the BFA bit in TMDR_0 is set to 1 and TGRC_0 is used as a buffer regis setting is invalid and input capture/output compare is not generated.

Input capture at TCNT_1 count-up/count

Rev. 5.00 Mar. 06, 2009 Page 182 of 770

	1	0	0		Output retained
			1	-	Initial output is 1
					0 output at compare match
		1	0	-	Initial output is 1
					1 output at compare match
			1	-	Initial output is 1
					Toggle output at compare match
1	0	0	0		Input capture at rising edge
			1	register	Input capture at falling edge
		1	х	-	Input capture at both edges
	1	х	Х		Input capture at generation of channel compare match/input capture
[Legend	d]				

Toggle output at compare match

Don't care

x:

Notes: 1. After power-on reset, 0 is output until TIOR is set.

2. The TIOC1A pin input/output function is supported only by the SH7125.

			1		Initial output is 0
					Toggle output at compare match
	1	0	0	-	Output retained
			1	-	Initial output is 1
					0 output at compare match
		1	0	-	Initial output is 1
					1 output at compare match
			1	-	Initial output is 1
					Toggle output at compare match
1	х	0	0		Input capture at rising edge
			1	register	Input capture at falling edge
		1	Х	_	Input capture at both edges

[Legend]

x: Don't care

Notes: 1. After power-on reset, 0 is output until TIOR is set.

2. The TIOC2A pin input/output function is supported only by the SH7125.

REJ09B0243-0500

				Toggle output at compare match
1	0	0		Output retained
		1		Initial output is 1
				0 output at compare match
	1	0		Initial output is 1
				1 output at compare match
		1	•	Initial output is 1
				Toggle output at compare match
х	0	0		Input capture at rising edge
		1	register	Input capture at falling edge
	1	х	-	Input capture at both edges

[Legend]

Don't care

* After power-on reset, 0 is output until TIOR is set. Note:

			1		Initial output is 0
					Toggle output at compare match
	1	0	0		Output retained
			1		Initial output is 1
					0 output at compare match
		1	0		Initial output is 1
					1 output at compare match
			1	•	Initial output is 1
					Toggle output at compare match
1	х	0	0		Input capture at rising edge
			1	register*2	Input capture at falling edge
		1	Х		Input capture at both edges

[Legend]

x: Don't care

Notes: 1. After power-on reset, 0 is output until TIOR is set.

When the BFA bit in TMDR_3 is set to 1 and TGRC_3 is used as a buffer regis setting is invalid and input capture/output compare is not generated.

				Toggle output at compare match
1	0	0		Output retained
		1		Initial output is 1
			_	0 output at compare match
	1	0		Initial output is 1
				1 output at compare match
		1	•	Initial output is 1
				Toggle output at compare match
х	0	0	• •	Input capture at rising edge
		1	register	Input capture at falling edge
	1	х	•	Input capture at both edges

[Legend]

Don't care

* After power-on reset, 0 is output until TIOR is set. Note:

			1		Initial output is 0
					Toggle output at compare match
	1	0	0	•	Output retained
			1	•	Initial output is 1
					0 output at compare match
		1	0	•	Initial output is 1
					1 output at compare match
			1	•	Initial output is 1
					Toggle output at compare match
1	х	0	0		Input capture at rising edge
			1	register*2	Input capture at falling edge
		1	Х	•	Input capture at both edges

[Legend]

x: Don't care

Notes: 1. After power-on reset, 0 is output until TIOR is set.

After power-off reset, o is output until from is set.
 When the BFA bit in TMDR_4 is set to 1 and TGRC_4 is used as a buffer regis setting is invalid and input capture/output compare is not generated.

Rev. 5.00 Mar. 06, 2009 Page 188 of 770

				mpar saprais at both sages
	1	Х	Х	Setting prohibited
1	0	0	0	Setting prohibited
			1	Measurement of low pulse width of external
				Capture at trough in complementary PWM r
		1	0	Measurement of low pulse width of external
				Capture at crest in complementary PWM me
			1	Measurement of low pulse width of external
				Capture at crest and trough in complementa mode
	1	0	0	Setting prohibited
			1	Measurement of high pulse width of externa signal
				Capture at trough in complementary PWM r
		1	0	Measurement of high pulse width of externa signal
				Capture at crest in complementary PWM mo
			1	Measurement of high pulse width of externa signal
				Capture at crest and trough in complementa mode

Х

0

1

0

1

1

Input capture

register

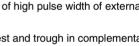
Setting pronibited

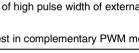
Setting prohibited

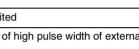
Input capture at rising edge

Input capture at falling edge

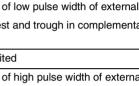
Input capture at both edges






Rev. 5.00 Mar. 06, 2009 Pag

REJ09



				always be 0.
2	CMPCLR5U	0	R/W	TCNT Compare Clear 5U
				Enables or disables requests to clear TCNTU_TGRU_5 compare match or input capture.
				0: Disables TCNTU_5 to be cleared to H'0000 TCNTU_5 and TGRU_5 compare match or i capture
				1: Enables TCNTU_5 to be cleared to H'0000 a TCNTU_5 and TGRU_5 compare match or i capture
1	CMPCLR5V	0	R/W	TCNT Compare Clear 5V
				Enables or disables requests to clear TCNTV_TGRV_5 compare match or input capture.
				0: Disables TCNTV_5 to be cleared to H'0000 TCNTV_5 and TGRV_5 compare match or i

All 0

7 to 3

R

Reserved

These bits are always read as 0. The write val

1: Enables TCNTV_5 to be cleared to H'0000 a TCNTV_5 and TGRV_5 compare match or i

Rev. 5.00 Mar. 06, 2009 Page 190 of 770 REJ09B0243-0500

capture

capture

9.3.5 Timer Interrupt Enable Register (TIER)

The TIER registers are 8-bit readable/writable registers that control enabling or disablin interrupt requests for each channel. The MTU2 has seven TIER registers, two for channone each for channels 1 to 5.

• TIER_0, TIER_1, TIER_2, TIER_3, TIER_4

Bit:	7	6	5	4	3	2	1	0
	TTGE	TTGE2	TCIEU	TCIEV	TGIED	TGIEC	TGIEB	TGIEA
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

		Initial		
Bit	Bit Name	Value	R/W	Description
7	TTGE	0	R/W	A/D Converter Start Request Enable
				Enables or disables generation of A/D conver requests by TGRA input capture/compare ma
				0: A/D converter start request generation disa
				1: A/D converter start request generation ena

Rev. 5.00 Mar. 06, 2009 Pag

5	TCIEU	0	R/W	Underflow Interrupt Enable
				Enables or disables interrupt requests (TCIU) TCFU flag when the TCFU flag in TSR is set to channels 1 and 2.
				In channels 0, 3, and 4, bit 5 is reserved. It is a read as 0 and the write value should always be
				0: Interrupt requests (TCIU) by TCFU disabled
				1: Interrupt requests (TCIU) by TCFU enabled
4	TCIEV	0	R/W	Overflow Interrupt Enable
				Enables or disables interrupt requests (TCIV) I TCFV flag when the TCFV flag in TSR is set to
				0: Interrupt requests (TCIV) by TCFV disabled
				1: Interrupt requests (TCIV) by TCFV enabled
3	TGIED	0	R/W	TGR Interrupt Enable D
				Enables or disables interrupt requests (TGID) TGFD bit when the TGFD bit in TSR is set to 1 channels 0, 3, and 4.
				In channels 1 and 2, bit 3 is reserved. It is always 0 and the write value should always be 0.
				0: Interrupt requests (TGID) by TGFD bit disab

underflow (trough) enabled

REJ09B0243-0500

Rev. 5.00 Mar. 06, 2009 Page 192 of 770

RENESAS

1: Interrupt requests (TGID) by TGFD bit enab

				TGFB bit when the TGFB bit in TSR is set to
				0: Interrupt requests (TGIB) by TGFB bit disa
				1: Interrupt requests (TGIB) by TGFB bit enal
0	TGIEA	0	R/W	TGR Interrupt Enable A
				Enables or disables interrupt requests (TGIA) TGFA bit when the TGFA bit in TSR is set to
				0: Interrupt requests (TGIA) by TGFA bit disa

Enables or disables interrupt requests (TGIB)

1: Interrupt requests (TGIA) by TGFA bit enal

REJ09

Rev. 5.00 Mar. 06, 2009 Pag

				A/D converter start request generation by co match between TCNT_0 and TGRE_0 disable
				 A/D converter start request generation by commatch between TCNT_0 and TGRE_0 enables
6 to 2	_	All 0	R	Reserved
				These bits are always read as 0. The write valual always be 0.
1	TGIEF	0	R/W	TGR Interrupt Enable F
				Enables or disables interrupt requests by compatch between TCNT_0 and TGRF_0.

TGRE_0.

0: Interrupt requests (TGIF) by TGFE bit disab 1: Interrupt requests (TGIF) by TGFE bit enabl

Enables or disables interrupt requests by comp match between TCNT_0 and TGRE_0.

0: Interrupt requests (TGIE) by TGEE bit disab 1: Interrupt requests (TGIE) by TGEE bit enab

TGR Interrupt Enable E

REJ09B0243-0500

0

TGIEE

0

R/W

Rev. 5.00 Mar. 06, 2009 Page 194 of 770

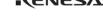
_				
1	TGIE5V	0	R/W	TGR Interrupt Enable 5V
				Enables or disables interrupt requests (TGIV) when the CMFV5 bit in TSR_5 is set to 1.
				0: Interrupt requests (TGIV_5) disabled
				1: Interrupt requests (TGIV_5) enabled
0	TGIE5W	0	R/W	TGR Interrupt Enable 5W
				Enables or disables interrupt requests (TGIW when the CMFW5 bit in TSR_5 is set to 1.
				0: Interrupt requests (TGIW_5) disabled
				1: Interrupt requests (TGIW_5) enabled

R/W

TGR Interrupt Enable 5U

Enables or disables interrupt requests (TGIU when the CMFU5 bit in TSR_5 is set to 1. 0: Interrupt requests (TGIU_5) disabled 1: Interrupt requests (TGIU_5) enabled

2


TGIE5U

0

Rev. 5.00 Mar. 06, 2009 Pag

Bit	Bit Name	Initial Value	R/W	Description
7	TCFD	1	R	Count Direction Flag
				Status flag that shows the direction in which To counts in channels 1 to 4.
				In channel 0, bit 7 is reserved. It is always read and the write value should always be 1.
				0: TCNT counts down
				1: TCNT counts up
6	_	1	R	Reserved
				This bit is always read as 1. The write value shalways be 1.
5	TCFU	0	R/(W)*1	Underflow Flag
				Status flag that indicates that TCNT underflow occurred when channels 1 and 2 are set to phocounting mode. Only 0 can be written, for flag
				In channels 0, 3, and 4, bit 5 is reserved. It is a read as 0 and the write value should always be
				[Setting condition]
				 When the TCNT value underflows (change H'0000 to H'FFFF)
				[Clearing condition]

Note. 1. Writing 0 to this bit after reading it as 1 clears the hag and is the only allowed way.

• When 0 is written to TCFU after reading TC

			 When 0 is written to TCFV after reading 1*²
3	TGFD	0	R/(W)*1 Input Capture/Output Compare Flag D
			Status flag that indicates the occurrence of capture or compare match in channels 0, 3, Only 0 can be written, for flag clearing. In cl and 2, bit 3 is reserved. It is always read as write value should always be 0.

[Clearing condition]

[Setting conditions]

output compare register • When TCNT value is transferred to TGRI

capture signal and TGRD is functioning a capture register [Clearing condition]

• When TCNT = TGRD and TGRD is funct

Rev. 5.00 Mar. 06, 2009 Pag

1*2

				 When TCNT value is transferred to TGRC capture signal and TGRC is functioning as capture register [Clearing condition] When 0 is written to TGFC after reading T 1*²
1	TGFB	0	R/(W)*1	Input Capture/Output Compare Flag B
				Status flag that indicates the occurrence of TO

flag clearing. [Setting conditions]

1*2

capture or compare match. Only 0 can be writ

When TCNT = TGRB and TGRB is function

When 0 is written to TGFB after reading Te

• When TCNT value is transferred to TGRB capture signal and TGRB is functioning as

output compare register

capture register [Clearing condition]

Rev. 5.00 Mar. 06, 2009 Page 198 of 770

capture register

[Clearing condition]

When 0 is written to TGFA after reading

Notes:	1.	Writing 0 to this bit after reading it as 1 clears the flag and is the only allowed
	2.	If another flag setting condition occurs before writing 0 to the bit after reading
		flag will not be cleared by writing 0 to it once. In this case, read the bit as 1 α write 0 to it.

				should always be 0.
1	TGFF	0	R/(W)*1	Compare Match Flag F
				Status flag that indicates the occurrence of comatch between TCNT_0 and TGRF_0.
				[Setting condition]
				 When TCNT_0 = TGRF_0 and TGRF_0 is functioning as compare register
				[Clearing condition]
				 When 0 is written to TGFF after reading T 1*²
0	TGFE	0	R/(W)*1	Compare Match Flag E
				Status flag that indicates the occurrence of comatch between TCNT_0 and TGRE_0.
				[Setting condition]
				 When TCNT_0 = TGRE_0 and TGRE_0 is functioning as compare register
				[Clearing condition]

These bits are always read as 1. The write va

These bits are always read as 0. The write va

· When 0 is written to TGFE after reading T

should always be 1.

Reserved

Rev. 5.00 Mar. 06, 2009 Page 200 of 770 REJ09B0243-0500

write 0 to it.

All 0

5 to 2

R

1*2

2. If another flag setting condition occurs before writing 0 to the bit after reading i flag will not be cleared by writing 0 to it once. In this case, read the bit as 1 aga

Notes: 1. Writing 0 to this bit after reading it as 1 clears the flag and is the only allowed with the second seco

Status flag that indicates the occurrence of TG input capture or compare match. [Setting conditions] • When TCNTU_5 = TGRU_5 and TGRU_5 i functioning as output compare register When TCNTU_5 value is transferred to TG input capture signal and TGRU_5 is functio input capture register When TCNTU_5 value is transferred to TG TGRU_5 is functioning as a register for mea

R/(W)*1

2

CMFU₅

0

always be 0.

These bits are always read as 0. The write valu

pulse width of the external input signal. The timing is specified by the IOC bits in timer I/

When 0 is written to CMFU5 after reading 0

register U_5 (TIORU_5)*2

[Clearing condition]

Compare Match/Input Capture Flag U5

REJ09

Rev. 5.00 Mar. 06, 2009 Pag

- When TCNTV_5 value is transferred to TGR TGRV_5 is functioning as a register for meas
 - pulse width of the external input signal. The timing is specified by the IOC bits in timer I/C register V_5 (TIORV_5)*2

[Clearing condition]

When 0 is written to CMFV5 after reading CM

Rev. 5.00 Mar. 06, 2009 Page 202 of 770 REJ09B0243-0500

- input capture register
- control register W_5 (TIORW_5)*2 [Clearing condition]
- When 0 is written to CMFW5 after reading 0

 When TCNTW_5 value is transferred to TG TGRW_5 is functioning as a register for me the pulse width of the external input signal. transfer timing is specified by the IOC bits in

Writing 0 to this bit after reading it as 1 clears the flag and is the only allowed Notes: 1 2. The transfer timing is specified by the IOC bit in the timer I/O control register U_5/V_5/W_5 (TIORU_5, TIORV_5, TIORW_5).

			always be 0.
TTSE	0	R/W	Timing Select E
			Specifies the timing for transferring data from to TGRE_0 when they are used together for buoperation.
			In channels 3 and 4, bit 2 is reserved. It is always as 0 and the write value should always be 0. We using channel 0 in other than PWM mode, do not this bit to 1.
			0: When compare match E occurs in channel 0
			1: When TCNT_0 is cleared
TTSB	0	R/W	Timing Select B
			Specifies the timing for transferring data from TTGRB in each channel when they are used tog buffer operation. When using channel 0 in othe PWM mode, do not set this bit to 1.
			0: When compare match B occurs in each cha
			1: When TCNT is cleared in each channel

Initial Value

All 0

Bit

2

1

7 to 3

Bit Name

R/W

R

Description

These bits are always read as 0. The write val

Reserved

Rev. 5.00 Mar. 06, 2009 Page 204 of 770

9.3.8 Timer Input Capture Control Register (TICCR)

TICCR is an 8-bit readable/writable register that specifies input capture conditions when and TCNT_2 are cascaded. The MTU2 has one TICCR in channel 1.

Bit:	7	6	5	4	3	2	1	0
	-	-	-	-	I2BE	I2AE	I1BE	I1AE
Initial value:	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R/W	R/W	R/W	R/W

		Initial		
Bit	Bit Name	Value	R/W	Description
7 to 4	_	All 0	R	Reserved
				These bits are always read as 0. The write va always be 0.
3	I2BE	0	R/W	Input Capture Enable
				Specifies whether to include the TIOC2B pin TGRB_1 input capture conditions.
				Does not include the TIOC2B pin in the TG input capture conditions
				1: Includes the TIOC2B pin in the TGRB_1 in capture conditions

Rev. 5.00 Mar. 06, 2009 Pag

				TGRB_2 input capture conditions.
				Does not include the TIOC1B pin in the TGF input capture conditions
				 Includes the TIOC1B pin in the TGRB_2 inp capture conditions
0	I1AE	0	R/W	Input Capture Enable
				Specifies whether to include the TIOC1A pin in

0: Does not include the TIOC1A pin in the TGF input capture conditions
1: Includes the TIOC1A pin in the TGRA_2 inp capture conditions

TGRA_2 input capture conditions.

Note: This function is supported only by the SH7125. In the SH7124, write value should H'00.

REJ09B0243-0500

Rev. 5.00 Mar. 06, 2009 Page 206 of 770

RENESAS

Bit	Bit Name	Value	R/W	Description
15, 14	BF[1:0]	00	R/W	TADCOBRA_4/TADCOBRB_4 Transfer Timii
				Select the timing for transferring data from TADCOBRA_4 and TADCOBRB_4 to TADCO and TADCORB_4.
				For details, see table 9.29.
13 to 8	_	All 0	R	Reserved
				These bits are always read as 0. The write va always be 0.
7	UT4AE	0	R/W	Up-Count TRG4AN Enable
				Enables or disables A/D converter start reque (TRG4AN) during TCNT_4 up-count operatio
				 A/D converter start requests (TRG4AN) dis during TCNT_4 up-count operation
				 A/D converter start requests (TRG4AN) en during TCNT_4 up-count operation
6	DT4AE	0*	R/W	Down-Count TRG4AN Enable
				Enables or disables A/D converter start reque (TRG4AN) during TCNT_4 down-count opera
				A/D converter start requests (TRG4AN) dis during TCNT_4 down-count operation
				A/D converter start requests (TRG4AN) en during TCNT_4 down-count operation

Initial

				(TRG4BN) during TCNT_4 down-count operati
				0: A/D converter start requests (TRG4BN) disa during TCNT_4 down-count operation
				 A/D converter start requests (TRG4BN) ena during TCNT_4 down-count operation
3	ITA3AE	0*	R/W	TGIA_3 Interrupt Skipping Link Enable
				Select whether to link A/D converter start reque (TRG4AN) with TGIA_3 interrupt skipping open
				0: Does not link with TGIA 3 interrupt skipping

R/W

R/W

1: Links with TGIA_3 interrupt skipping

TCIV 4 Interrupt Skipping Link Enable

1: Links with TCIV_4 interrupt skipping

TGIA_3 Interrupt Skipping Link Enable

1: Links with TGIA_3 interrupt skipping

Select whether to link A/D converter start requ (TRG4AN) with TCIV_4 interrupt skipping oper 0: Does not link with TCIV_4 interrupt skipping

Select whether to link A/D converter start requ (TRG4BN) with TGIA_3 interrupt skipping open 0: Does not link with TGIA_3 interrupt skipping

2

1

ITA4VE

ITB3AE

0*

0*

interrupt skipping operation (clear the ITA3AE, ITA4VE, ITB3AE, and ITB4VE timer A/D converter start request control register (TADCR) to 0).

- 3. If link with interrupt skipping is enabled while interrupt skipping is disabled, A converter start requests will not be issued.
- Do not set to 1 when complementary PWM mode is not selected.

Table 9.29 Setting of Transfer Timing by BF1 and BF0 Bits

Bit 7	Bit 6	
BF1	BF0	Description
0	0	Does not transfer data from the cycle set buffer register to to set register.
0	1	Transfers data from the cycle set buffer register to the cycle register at the crest of the TCNT_4 count.*1
1	0	Transfers data from the cycle set buffer register to the cycle register at the trough of the TCNT_4 count.*2
1	1	Transfers data from the cycle set buffer register to the cycle

crest of the TCNT_4 count is reached in complementary PWM mode, when complementary PWM mode, which is provided to the province PWM mode, which is province PWM mode, which i match occurs between TCNT_3 and TGRA_3 in reset-synchronized PWM me when compare match occurs between TCNT_4 and TGRA_4 in PWM mode normal operation mode.

Notes: 1. Data is transferred from the cycle set buffer register to the cycle set register v

2. These settings are prohibited when complementary PWM mode is not selected.

register at the crest and trough of the TCNT_4 count.*2

lote: TADCORA_4 and TADCORB_4 must not be accessed in eight bits; they should always be accessed in 16 b

9.3.11 Timer A/D Converter Start Request Cycle Set Buffer Registers (TADCOB and TADCOBRB 4)

TADCOBRA_4 and TADCOBRB_4 are 16-bit readable/writable registers. When the cre trough of the TCNT_4 count is reached, these register values are transferred to TADCORTADCORB_4, respectively.

TADCOBRA_4 and TADCOBRB_4 are initialized to H'FFFF.

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2
Initial value:	1	1	1	1	1	1	1	1	1	1	1	1	1	1

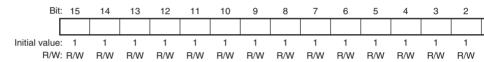
Note: TADCOBRA_4 and TADCOBRB_4 must not be accessed in eight bits; they should always be accessed in 1

Rev. 5.00 Mar. 06, 2009 Page 210 of 770

REJ09B0243-0500

RENESAS

Note: The TCNT counters must not be accessed in eight bits; they should always be accessed in 16 bits.


9.3.13 Timer General Register (TGR)

The TGR registers are 16-bit readable/writable registers. The MTU2 has 21 TGR register channel 0, two each for channels 1 and 2, four each for channels 3 and 4, and three for channels 1 are 2, four each for channels 3 and 4, and three for channels 3 are 4.

TGRA, TGRB, TGRC, and TGRD function as either output compare or input capture re TGRC and TGRD for channels 0, 3, and 4 can also be designated for operation as buffe TGR buffer register combinations are TGRA and TGRC, and TGRB and TGRD.

TGRE_0 and TGRF_0 function as compare registers. When the TCNT_0 count matches TGRE_0 value, an A/D converter start request can be issued. TGRF can also be designated operation as a buffer register. TGR buffer register combination is TGRE and TGRF.

TGRU_5, TGRV_5, and TGRW_5 function as compare match, input capture, or externa width measurement registers.

Note: The TGR registers must not be accessed in eight bits; they should always be accessed in 16 bits. TGR registers are initialized to H'FFFF.

Rev. 5.00 Mar. 06, 2009 Pag

• TSTR

Bit:	7	6	5	4	3	2	1	0
	CST4	CST3	-	-	-	CST2	CST1	CST0
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/W	R/W	R	R	R	R/W	R/W	R/W

Bit	Bit Name	Initial Value	R/W	Description
DIL	DIL INAIIIE	value	IT/ VV	Description
7	CST4	0	R/W	Counter Start 4 and 3
6	CST3	0	R/W	These bits select operation or stoppage for TC
				If 0 is written to the CST bit during operation w TIOC pin designated for output, the counter sto the TIOC pin output compare output level is re TIOR is written to when the CST bit is cleared pin output level will be changed to the set initial value.
				0: TCNT_4 and TCNT_3 count operation is sto
				1: TCNT_4 and TCNT_3 performs count opera
5 to 3	_	All 0	R	Reserved
				These bits are always read as 0. The write valual always be 0.

Rev. 5.00 Mar. 06, 2009 Page 212 of 770

REJ09B0243-0500

• TSTR_5

Bit:	7	6	5	4	3	2	1	0
	-	-	-	-	-	CSTU5	CSTV5	CSTW5
Initial value:	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R/W	R/W	R/W

		Initial		
Bit	Bit Name	Value	R/W	Description
7 to 3	_	All 0	R	Reserved
				These bits are always read as 0. The write values always be 0.
2	CSTU5	0	R/W	Counter Start U5
				Selects operation or stoppage for TCNTU_5.
				0: TCNTU_5 count operation is stopped
				1: TCNTU_5 performs count operation
1	CSTV5	0	R/W	Counter Start V5
				Selects operation or stoppage for TCNTV_5.
				0: TCNTV_5 count operation is stopped
				1: TCNTV_5 performs count operation
0	CSTW5	0	R/W	Counter Start W5
				Selects operation or stoppage for TCNTW_5.
				0: TCNTW_5 count operation is stopped
				1: TCNTW_5 performs count operation

Rev. 5.00 Mar. 06, 2009 Pag REJ09

			TCNT clearing source must also be set by meanity of the court of the c
		(D: TCNT_4 and TCNT_3 operate independent presetting/clearing is unrelated to other char
		-	 TCNT_4 and TCNT_3 performs synchronou operation TCNT synchronous presetting/synchronous is possible
5 to 3 —	All 0	R I	Reserved
			These bits are always read as 0. The write valual ways be 0.

RENESAS

REJ09B0243-0500

Bit

7

6

Bit Name

SYNC4

SYNC3

Value

0

0

R/W

R/W

R/W

Description

channel, are possible.

Timer Synchronous operation 4 and 3

These bits are used to select whether operation independent of or synchronized with other cha When synchronous operation is selected, the synchronous presetting of multiple channels, a synchronous clearing by counter clearing on a

To set synchronous operation, the SYNC bits to least two channels must be set to 1. To set synchronous clearing, in addition to the SYNC

Rev. 5.00 Mar. 06, 2009 Page 214 of 770

TCNT clearing source must also be set by me bits CCLR0 to CCLR2 in TCR.

0: TCNT_2 to TCNT_0 operates independent

is possible

presetting /clearing is unrelated to other ch 1: TCNT_2 to TCNT_0 performs synchronous TCNT synchronous presetting/synchronou

Bit	Bit Name	Value	R/W	Description
7 to 1	_	All 0	R	Reserved
				These bits are always read as 0. The write valual always be 0.
0	RWE	1	R/W	Read/Write Enable
				Enables or disables access to the registers wh write-protection capability against accidental modification.
				0: Disables read/write access to the registers
				1: Enables read/write access to the registers
				[Clearing condition]
				 When 0 is written to the RWE bit after read RWE = 1

Initial

 Registers and counters having write-protection capability against accidental modifica 22 registers: TCR_3, TCR_4, TMDR_3, TMDR_4, TIORH_3, TIORH_4, TIORL_3, TIORL_4, TIER_3, TIER_4, TGRA_3, TGRA_4, TGRB_3, TGRB_4, TOER, TOCR TOCR2, TGCR, TCDR, TDDR, TCNT_3, and TCNT_4.

Rev. 5.00 Mar. 06, 2009 Page 216 of 770

Bit	Bit Name	Value	R/W	Description
7, 6	_	All 1	R	Reserved
				These bits are always read as 1. The write va always be 1.
5	OE4D	0	R/W	Master Enable TIOC4D
				This bit enables/disables the TIOC4D pin MT
				0: MTU2 output is disabled (inactive level)*
				1: MTU2 output is enabled
4	OE4C	0	R/W	Master Enable TIOC4C
				This bit enables/disables the TIOC4C pin MT
				0: MTU2 output is disabled (inactive level)*
				1: MTU2 output is enabled
3	OE3D	0	R/W	Master Enable TIOC3D
				This bit enables/disables the TIOC3D pin MT
				0: MTU2 output is disabled (inactive level)*
				1: MTU2 output is enabled
2	OE4B	0	R/W	Master Enable TIOC4B
				This bit enables/disables the TIOC4B pin MT
				0: MTU2 output is disabled (inactive level)*
				1: MTU2 output is enabled

R/W

REJ09

Initial

1

OE4A

0

Master Enable TIOC4A

1: MTU2 output is enabled

This bit enables/disables the TIOC4A pin MT 0: MTU2 output is disabled (inactive level)*

Rev. 5.00 Mar. 06, 2009 Pag

9.3.18 Timer Output Control Register 1 (TOCR1)

TOCR1 is an 8-bit readable/writable register that enables/disables PWM synchronized to output in complementary PWM mode/reset synchronized PWM mode, and controls output inversion of PWM output.

Bit:	7	6	5	4	3	2	1	0
	-	PSYE	-	-	TOCL	TOCS	OLSN	OLSP
Initial value:	0	0	0	0	0	0	0	0
R/W:	R	R/W	R	R	R/(W)*	R/W	R/W	R/W

Note: * This bit can be set to 1 only once after a power-on reset. After 1 is written, 0 cannot be written to the

		Initial		
Bit	Bit Name	value	R/W	Description
7	_	0	R	Reserved
				This bit is always read as 0. The write value shalways be 0.
6	PSYE	0	R/W	PWM Synchronous Output Enable
				This bit selects the enable/disable of toggle ou synchronized with the PWM period.
				0: Toggle output is disabled
				1: Toggle output is enabled
5, 4	_	All 0	R	Reserved
				These bits are always read as 0. The write valualways be 0.

Rev. 5.00 Mar. 06, 2009 Page 218 of 770

REJ09B0243-0500

				be used for the output level in complementary mode and reset-synchronized PWM mode.
				0: TOCR1 setting is selected
				1: TOCR2 setting is selected
1	OLSN	0	R/W	Output Level Select N*3
				This bit selects the reverse phase output leve synchronized PWM mode/complementary PV See table 9.30.

Output Level Select P*3

Function

This bit selects the positive phase output leve synchronized PWM mode/complementary PV See table 9.31. Notes: 1. This bit can be set to 1 only once after a power on reset. After 1 is written, 0 of

0

written to the bit. 2. Setting the TOCL bit to 1 prevents accidental modification when the CPU goe

OLSP

0

Bit 1

- control.
- 3. Clearing the TOCS bit to 0 makes this bit setting valid.

R/W

Table 9.30 Output Level Select Function

				Compare Match Output
OLSN	Initial Output	Active Level	Up Count	Down Count
0	High level	Low level	High level	Low level
1	Low level	High level	Low level	High level

The reverse phase waveform initial output value changes to active level after elap dead time after count start.

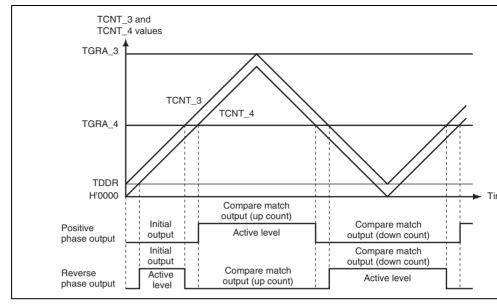


Figure 9.2 Complementary PWM Mode Output Level Example

REJ09B0243-0500

				For details, see table 9.32.
5	OLS3N	0	R/W	Output Level Select 3N*
				This bit selects the output level on TIOC4D in synchronized PWM mode/complementary PV See table 9.33.
4	OLS3P	0	R/W	Output Level Select 3P*
				This bit selects the output level on TIOC4B in synchronized PWM mode/complementary PV See table 9.34.
3	OLS2N	0	R/W	Output Level Select 2N*
				This bit selects the output level on TIOC4C in synchronized PWM mode/complementary PV See table 9.35.
2	OLS2P	0	R/W	Output Level Select 2P*
				This bit selects the output level on TIOC4A in synchronized PWM mode/complementary PV See table 9.36.
1	OLS1N	0	R/W	Output Level Select 1N*
				This bit selects the output level on TIOC3D in synchronized PWM mode/complementary PV

Bit

7, 6

Bit Name

BF[1:0]

value

00

R/W

R/W

Description

TOLBR to TOCR2.

TOLBR Buffer Transfer Timing Select

These bits select the timing for transferring da

Rev. 5.00 Mar. 06, 2009 Pag

REJ09

See table 9.37.

0	Does not transfer data from the buffer register (TOLBR) to TOCR2.	Does not transfer data from buffer register (TOLBR) to
1	Transfers data from the buffer register (TOLBR) to TOCR2 at the crest of the TCNT_4 count.	Transfers data from the buregister (TOLBR) to TOCFTCNT_3/TCNT_4 is cleared
0	Transfers data from the buffer register (TOLBR) to TOCR2 at the trough of the TCNT_4 count.	Setting prohibited
1	Transfers data from the buffer register (TOLBR) to TOCR2 at the crest and trough of the TCNT_4 count.	Setting prohibited

Complementary PWM Mode

Reset-Synchronized PW

Table 9.33 TIOC4D Output Level Select Function

the dead time after count start.

				Compare Match Output
OLS3N	N Initial Output	Active Level	Up Count	Down Count
0	High level	Low level	High level	Low level
1	Low level	High level	Low level	High level
Note:	The reverse phase v	vaveform initial o	utput value cha	nges to the active level after e

Function

BF1

Bit 5

BF0

REJ09B0243-0500

Rev. 5.00 Mar. 06, 2009 Page 222 of 770

0	High level	Low level	High level	Low level
1	Low level	High level	Low level	High level
Note:	The reverse phase the dead time afte		output value changes	to the active level after
Table	9.36 TIOC4A O	utput Level Selec	et Function	

Up Count

High level

Active Level

Compare Match Output

Down Count

Low level

Rev. 5.00 Mar. 06, 2009 Pag

REJ09

Table 9.3	06 110C4A Out	put Level Select	Function	
Bit 2			Function	
			Co	mpare Match Output
OLS2P	Initial Output	Active Level	Up Count	Down Coun
0	High level	Low level	Low level	High level

High level

OLS2N

Initial Output

Low level

Table 9.37 TIOC3D Output Level Select Function

Bit 1	Function

			Com	pare Match Output
OLS1N	Initial Output	Active Level	Up Count	Down Cour
0	High level	Low level	High level	Low level
1	Low lovel	High lovel	Low level	High level

High level Low level High level The reverse phase waveform initial output value changes to the active level after Note: the dead time after count start.

TOLBR is an 8-bit readable/writable register that functions as a buffer for TOCR2 and sp the PWM output level in complementary PWM mode and reset-synchronized PWM mod

Initial

value

R/W

Bit:	7	6	5	4	3	2	1	0
	-	-	OLS3N	OLS3P	OLS2N	OLS2P	OLS1N	OLS1P
Initial value:	0	0	0	0	0	0	0	0
R/W:	R	R	R/W	R/W	R/W	R/W	R/W	R/W

Description

7, 6	_	All 0	R	Reserved
				These bits are always read as 0. The write valualways be 0.
5	OLS3N	0	R/W	Specifies the buffer value to be transferred to t OLS3N bit in TOCR2.
4	OLS3P	0	R/W	Specifies the buffer value to be transferred to t OLS3P bit in TOCR2.
3	OLS2N	0	R/W	Specifies the buffer value to be transferred to t OLS2N bit in TOCR2.
2	OLS2P	0	R/W	Specifies the buffer value to be transferred to t OLS2P bit in TOCR2.
1	OLS1N	0	R/W	Specifies the buffer value to be transferred to t OLS1N bit in TOCR2.
0	OLS1P	0	R/W	Specifies the buffer value to be transferred to t OLS1P bit in TOCR2.

Bit

Bit Name

Figure 9.3 PWM Output Level Setting Procedure in Buffer Operation

9.3.21 Timer Gate Control Register (TGCR)

TGCR is an 8-bit readable/writable register that controls the waveform output necessary brushless DC motor control in reset-synchronized PWM mode/complementary PWM m register settings are ineffective for anything other than complementary PWM mode/rese synchronized PWM mode.

Bit:	7	6	5	4	3	2	1	0
	-	BDC	N	Р	FB	WF	VF	UF
Initial value:	1	0	0	0	0	0	0	0
R/W:	R	R/W						

		Initial		
Bit	Bit Name	value	R/W	Description
7	_	1	R	Reserved
				This bit is always read as 1. The write value s always be 1.
6	BDC	0	R/W	Brushless DC Motor
				This bit selects whether to make the functions register (TGCR) effective or ineffective.
				0: Ordinary output
				1: Functions of this register are made effective

Rev. 5.00 Mar. 06, 2009 Pag REJ09

This bit selects whether the level output or the synchronized PWM/complementary PWM output the positive pin (TIOC3B, TIOC4A, and TIOC4 output.
0: Level output
Reset synchronized PWM/complementary F output
External Feedback Signal Enable
This bit selects whether the switching of the out the positive/reverse phase is carried out autom with the MTU2/channel 0 TGRA, TGRB, TGRO

capture signals or by writing 0 or 1 to bits 2 to

R/W

3

FΒ

0

0: Output switching is external input (Input sou channel 0 TGRA, TGRB, TGRC input captu

TGCR.

1: Output switching is carried out by software (

			UF, VF, WF settings).
WF	0	R/W	Output Phase Switch 2 to 0
VF	0	R/W	These bits set the positive phase/negative pha
UF	0	R/W	— phase on or off state. The setting of these bits only when the FB bit in this register is set to 1. case, the setting of bits 2 to 0 is a substitute for input. See table 9.39.

Rev. 5.00 Mar. 06, 2009 Page 226 of 770

	1	ON	OFF	OFF	OFF	ON
1	0	OFF	OFF	ON	ON	OFF
	1	OFF	OFF	OFF	OFF	OFF

9.3.22 Timer Subcounter (TCNTS)

TCNTS is a 16-bit read-only counter that is used only in complementary PWM mode.

The initial value of TCNTS is H'0000.

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Note: Accessing the TCNTS in 8-bit units is prohibited. Always access in 16-bit units.

Rev. 5.00 Mar. 06, 2009 Pag REJ09 Note: Accessing the TDDR in 8-bit units is prohibited. Always access in 16-bit units.

9.3.24 Timer Cycle Data Register (TCDR)

TCDR is a 16-bit register used only in complementary PWM mode. Set half the PWM ca value as the TCDR register value. This register is constantly compared with the TCNTS complementary PWM mode, and when a match occurs, the TCNTS counter switches directly (decrement to increment).

The initial value of TCDR is H'FFFF.

Bit	: 15	14	13	12	11	10	9	8	7	6	5	4	3	2	
[
Initial value	: 1	1	1	1	1	1	1	1	1	1	1	1	1	1	
R/W	: R/W														

Note: Accessing the TCDR in 8-bit units is prohibited. Always access in 16-bit units.

Rev. 5.00 Mar. 06, 2009 Page 228 of 770

REJ09B0243-0500

Note: Accessing the TCBR in 8-bit units is prohibited. Always access in 16-bit units.

9.3.26 Timer Interrupt Skipping Set Register (TITCR)

TITCR is an 8-bit readable/writable register that enables or disables interrupt skipping a specifies the interrupt skipping count. The MTU2 has one TITCR.

Bit:	7	6	5	4	3	2	1	0
	T3AEN	3/	ACOR[2:	0]	T4VEN	4'	VCOR[2:	0]
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

		Initial		
Bit	Bit Name	value	R/W	Description
7	T3AEN	0	R/W	T3AEN
				Enables or disables TGIA_3 interrupt skipping
				0: TGIA_3 interrupt skipping disabled
				1: TGIA_3 interrupt skipping enabled
6 to 4	3ACOR[2:0]	000	R/W	These bits specify the TGIA_3 interrupt skipp within the range from 0 to 7.*
				For details, see table 9.40.
3	T4VEN	0	R/W	T4VEN
				Enables or disables TCIV_4 interrupt skipping
				0: TCIV_4 interrupt skipping disabled
				1: TCIV_4 interrupt skipping enabled

Rev. 5.00 Mar. 06, 2009 Pag

3ACOR2	3ACOR1	3ACOR0	Description
0	0	0	Does not skip TGIA_3 interrupts.
0	0	1	Sets the TGIA_3 interrupt skipping count to 1.
0	1	0	Sets the TGIA_3 interrupt skipping count to 2.
0	1	1	Sets the TGIA_3 interrupt skipping count to 3.
1	0	0	Sets the TGIA_3 interrupt skipping count to 4.
1	0	1	Sets the TGIA_3 interrupt skipping count to 5.
1	1	0	Sets the TGIA_3 interrupt skipping count to 6.
1	1	1	Sets the TGIA_3 interrupt skipping count to 7.
Table 9 41	Setting	f Intonnunt	Skinning Count by Rits 4VCOR2 to 4VCOR

T

Setting of	f Interrupt	Skipping Count by Bits 4VCOR2 to 4VCOR0
Bit 1	Bit 0	
4VCOR1	4VCOR0	Description
0	0	Does not skip TCIV_4 interrupts.
0	1	Sets the TCIV_4 interrupt skipping count to 1.
1	0	Sets the TCIV_4 interrupt skipping count to 2.
1	1	Sets the TCIV_4 interrupt skipping count to 3.
0	0	Sets the TCIV_4 interrupt skipping count to 4.
0	1	Sets the TCIV_4 interrupt skipping count to 5.
1	0	Sets the TCIV_4 interrupt skipping count to 6.
	Bit 1 4VCOR1 0 1 1 0	Bit 1 Bit 0 4VCOR1 4VCOR0 0 0 0 1 1 0 1 1 0 0 0 1

Sets the TCIV_4 interrupt skipping count to 7.

1

1

Rev. 5.00 Mar. 06, 2009 Page 230 of 770

Bit 6

Bit 5

Bit 4

6 to 4	3ACNT[2:0]	000	R	TGIA_3 Interrupt Counter
				While the T3AEN bit in TITCR is set to 1, the these bits is incremented every time a TGIA_occurs.
				[Clearing conditions]
				 When the 3ACNT2 to 3ACNT0 value in T matches the 3ACOR2 to 3ACOR0 value
				When the T3AEN bit in TITCR is cleared
				When the 3ACOR2 to 3ACOR0 bits in TI cleared to 0
3	_	0	R	Reserved
				This bit is always read as 0.
2 to 0	4VCNT[2:0]	000	R	TCIV_4 Interrupt Counter
				While the T4VEN bit in TITCR is set to 1, the these bits is incremented every time a TCIV_occurs.
				[Clearing conditions]
				 When the 4VCNT2 to 4VCNT0 value in T matches the 4VCOR2 to 4VCOR2 value
				When the T4VEN bit in TITCR is cleared
				 When the 4VCOR2 to 4VCOR2 bits in TI cleared to 0

This bit is always read as 0.

RENESAS

Rev. 5.00 Mar. 06, 2009 Pag

Bit	Bit Name	Value	R/W	Description
7 to 2	_	All 0	R	Reserved
				These bits are always read as 0. The write valual always be 0.
1, 0	BTE[1:0]	00	R/W	These bits enable or disable transfer from the registers* used in complementary PWM mode temporary registers and specify whether to link transfer with interrupt skipping operation.
				For details, see table 9.42.
Note:	• •	buffer reg	•	TCDD 4 and TCDD

TGRC_3, TGRD_3, TGRC_4, TGRD_4, and TCBR

REJ09B0243-0500

Rev. 5.00 Mar. 06, 2009 Page 232 of 770

Twoles. 1. Data is transferred according to the MDS to MDO bit setting in TMD1. For det to section 9.4.8, Complementary PWM Mode.

transfer will not be performed.

2. When interrupt skipping is disabled (the T3AEN and T4VEN bits are cleared timer interrupt skipping set register (TITCR) or the skipping count set bits (3A 4VCOR) in TITCR are cleared to 0)), be sure to disable link of buffer transfer interrupt skipping (clear the BTE1 bit in the timer buffer transfer set register (

0). If link with interrupt skipping is enabled while interrupt skipping is disabled

				•
7 to 1	_	All 0	R	Reserved
				These bits are always read as 0. The write valual always be 0.
0	TDER	1	R/(W)	Dead Time Enable
				Specifies whether to generate dead time.
				0: Does not generate dead time
				1: Generates dead time*
				[Clearing condition]
				When 0 is written to TDER after reading TD
Note:	* TDDR mı	ust be set t	to 1 or a la	rger value.

Description

N

Initial

Value

R/W

Bit

Bit Name

Rev. 5.00 Mar. 06, 2009 Page 234 of 770

Note: * Do not set to 1 when complementary PWM mode is not selected.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	CCE	0*	R/(W)	Compare Match Clear Enable
				Specifies whether to clear counters at TGRA compare match in complementary PWM mod
				0: Does not clear counters at TGRA_3 compa
				1: Clears counters at TGRA_3 compare matc
				[Setting condition]
				When 1 is written to CCE after reading CC
6 to 1	_	All 0	R	Reserved
				These bits are always read as 0. The write value always be 0.

the trough immediately after TCNT_3 and TCN operation.

For the Tb interval at the trough in complemen PWM mode, see figure 9.40.

- 0: Outputs the initial value specified in TOCR
 - 1: Retains the waveform output immediately be synchronous clearing

[Setting condition]

When 1 is written to WRE after reading WF Note: Do not set to 1 when complementary PWM mode is not selected.

9.3.31 **Bus Master Interface**

The timer counters (TCNT), general registers (TGR), timer subcounter (TCNTS), timer of buffer register (TCBR), timer dead time data register (TDDR), timer cycle data register (timer A/D converter start request control register (TADCR), timer A/D converter start red cycle set registers (TADCOR), and timer A/D converter start request cycle set buffer registers (TADCOBR) are 16-bit registers. A 16-bit data bus to the bus master enables 16-bit read. bit read/write is not possible. Always access in 16-bit units.

All registers other than the above registers are 8-bit registers. These are connected to the 16-bit data bus, so 16-bit read/writes and 8-bit read/writes are both possible.

RENESAS

Counter Operation:

When one of bits CST0 to CST4 in TSTR or bits CSTU5, CSTV5, and CSTW5 in TSTI to 1, the TCNT counter for the corresponding channel begins counting. TCNT can opera free-running counter, periodic counter, for example.

1. Example of Count Operation Setting Procedure
Figure 9.4 shows an example of the count operation setting procedure.

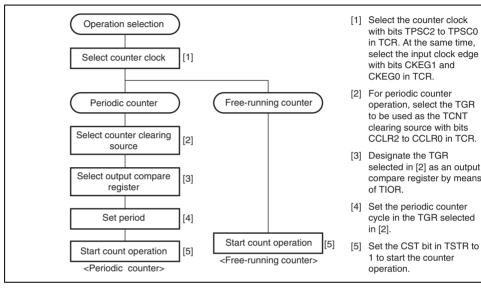


Figure 9.4 Example of Counter Operation Setting Procedure

RENESAS

Rev. 5.00 Mar. 06, 2009 Pag

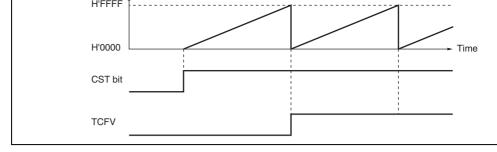


Figure 9.5 Free-Running Counter Operation

When compare match is selected as the TCNT clearing source, the TCNT counter for relevant channel performs periodic count operation. The TGR register for setting the designated as an output compare register, and counter clearing by compare match is s by means of bits CCLR0 to CCLR2 in TCR. After the settings have been made, TCN up-count operation as a periodic counter when the corresponding bit in TSTR is set to the count value matches the value in TGR, the TGF bit in TSR is set to 1 and TCNT is to H'0000.

If the value of the corresponding TGIE bit in TIER is 1 at this point, the MTU2 reque interrupt. After a compare match, TCNT starts counting up again from H'0000.

Figure 9.6 Periodic Counter Operation

Waveform Output by Compare Match:

The MTU2 can perform 0, 1, or toggle output from the corresponding output pin using c match.

Example of Setting Procedure for Waveform Output by Compare Match
Figure 9.7 shows an example of the setting procedure for waveform output by comp

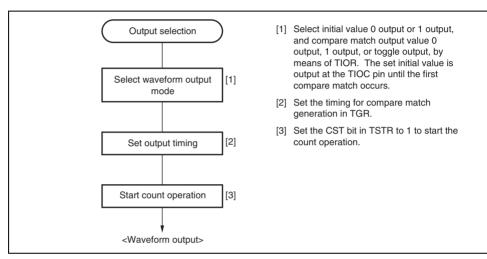


Figure 9.7 Example of Setting Procedure for Waveform Output by Compare

Rev. 5.00 Mar. 06, 2009 Pag

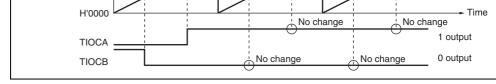


Figure 9.8 Example of 0 Output/1 Output Operation

Figure 9.9 shows an example of toggle output.

In this example, TCNT has been designated as a periodic counter (with counter clearic compare match B), and settings have been made such that the output is toggled by bocompare match A and compare match B.

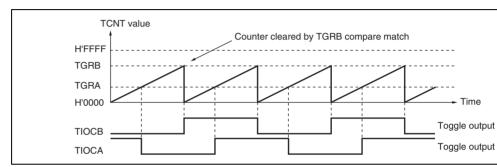


Figure 9.9 Example of Toggle Output Operation

Example of Input Capture Operation Setting Procedure
 Figure 9.10 shows an example of the input capture operation setting procedure.

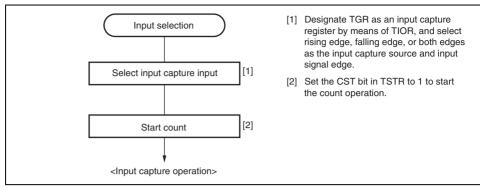


Figure 9.10 Example of Input Capture Operation Setting Procedure

Rev. 5.00 Mar. 06, 2009 Pag REJ09

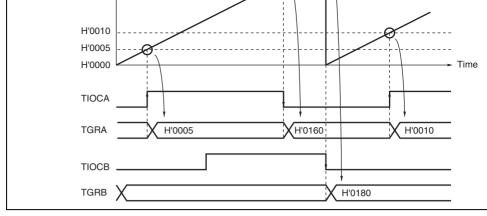
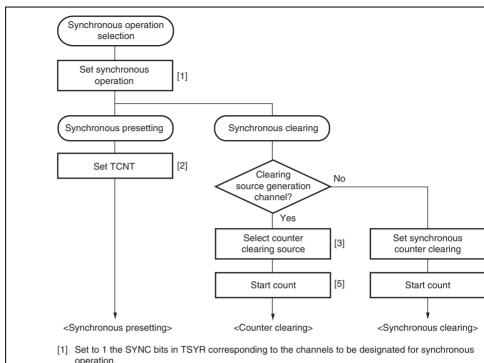



Figure 9.11 Example of Input Capture Operation

Example of Synchronous Operation Setting Procedure:

Figure 9.12 shows an example of the synchronous operation setting procedure.

- operation. [2] When the TCNT counter of any of the channels designated for synchronous operation is written to,
- the same value is simultaneously written to the other TCNT counters. [3] Use bits CCLR2 to CCLR0 in TCR to specify TCNT clearing by input capture/output compare, etc.
- [4] Use bits CCLR2 to CCLR0 in TCR to designate synchronous clearing for the counter clearing source [5] Set to 1 the CST bits in TSTR for the relevant channels, to start the count operation.

Figure 9.12 Example of Synchronous Operation Setting Procedure

Rev. 5.00 Mar. 06, 2009 Pag

,, 010.

For details of PWM modes, see section 9.4.5, PWM Modes.

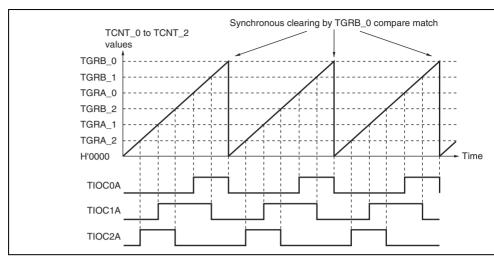


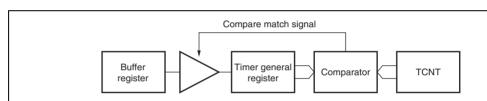
Figure 9.13 Example of Synchronous Operation

Rev. 5.00 Mar. 06, 2009 Page 244 of 770

REJ09B0243-0500

RENESAS

Table 9.43 shows the register combinations used in buffer operation.


 Table 9.43
 Register Combinations in Buffer Operation

Channel	Timer General Register	Buffer Register
0	TGRA_0	TGRC_0
	TGRB_0	TGRD_0
	TGRE_0	TGRF_0
3	TGRA_3	TGRC_3
	TGRB_3	TGRD_3
4	TGRA_4	TGRC_4
	TGRB_4	TGRD_4

• When TGR is an output compare register

When a compare match occurs, the value in the buffer register for the corresponding transferred to the timer general register.

This operation is illustrated in figure 9.14.

Figure 9.14 Compare Match Buffer Operation

Rev. 5.00 Mar. 06, 2009 Pag

Figure 9.15 Input Capture Buffer Operation

Example of Buffer Operation Setting Procedure: Figure 9.16 shows an example of the operation setting procedure.

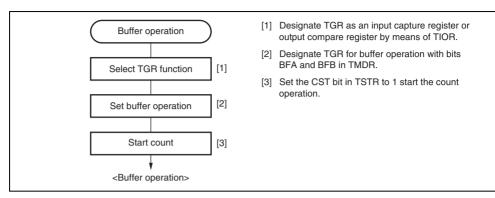


Figure 9.16 Example of Buffer Operation Setting Procedure

Rev. 5.00 Mar. 06, 2009 Page 246 of 770



Figure 9.17 Example of Buffer Operation (1)

2. When TGR is an input capture register

Figure 9.18 shows an operation example in which TGRA has been designated as an capture register, and buffer operation has been designated for TGRA and TGRC.

Counter clearing by TGRA input capture has been set for TCNT, and both rising and edges have been selected as the TIOCA pin input capture input edge.

As buffer operation has been set, when the TCNT value is stored in TGRA upon the occurrence of input capture A, the value previously stored in TGRA is simultaneous transferred to TGRC.

Rev. 5.00 Mar. 06, 2009 Pag

TGRA	X	H'0532	(H'0F07	H'09FB
	1		\	—
TGRC	X		H'0532	H'0F07

Figure 9.18 Example of Buffer Operation (2)

Operation: The timing for transfer from buffer registers to timer general registers can be in PWM mode 1 or 2 for channel 0 or in PWM mode 1 for channels 3 and 4 by setting the operation transfer mode registers (TBTM_0, TBTM_3, and TBTM_4). Either compare m (initial setting) or TCNT clearing can be selected for the transfer timing. TCNT clearing transfer timing is one of the following cases.

Selecting Timing for Transfer from Buffer Registers to Timer General Registers in

- When TCNT overflows (H'FFFF to H'0000)
- When H'0000 is written to TCNT during counting
- When TCNT is cleared to H'0000 under the condition specified in the CCLR2 to CCI in TCR

TBTM must be modified only while TCNT stops.

Figure 9.19 shows an operation example in which PWM mode 1 is designated for channel buffer operation is designated for TGRA_0 and TGRC_0. The settings used in this example. TCNT_0 clearing by compare match B, 1 output at compare match A, and 0 output at conmatch B. The TTSA bit in TBTM 0 is set to 1.

Rev. 5.00 Mar. 06, 2009 Page 248 of 770

Figure 9.19 Example of Buffer Operation When TCNT_0 Clearing is Selected for to TGRA_0 Transfer Timing

9.4.4 Cascaded Operation

In cascaded operation, two 16-bit counters for different channels are used together as a 3 counter.

This function works by counting the channel 1 counter clock upon overflow/underflow TCNT_2 as set in bits TPSC0 to TPSC2 in TCR.

Underflow occurs only when the lower 16-bit TCNT is in phase-counting mode.

Table 9.44 shows the register combinations used in cascaded operation.

Note: When phase counting mode is set for channel 1, the counter clock setting is invacounters operates independently in phase counting mode.

Table 9.44 Cascaded Combinations

Combination	Upper 16 Bits	Lower 16 Bits
Channels 1 and 2	TCNT_1	TCNT_2

For simultaneous input capture of TCNT_1 and TCNT_2 during cascaded operation, ad input capture input pins can be specified by the input capture control register (TICCR). capture in cascade connection, refer to section 9.7.22, Simultaneous Capture of TCNT_TCNT_2 in Cascade Connection.

Rev. 5.00 Mar. 06, 2009 Pag

		TIAE DIL = 1	HOCZA, HOCTA
	–	I1BE bit = 0 (initial value)	TIOC2B
TGRB	TGRB_2	I1BE bit = 1	TIOC2B, TIOC1B
			·

Example of Cascaded Operation Setting Procedure: Figure 9.20 shows an example of setting procedure for cascaded operation.

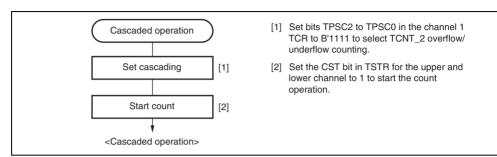


Figure 9.20 Cascaded Operation Setting Procedure

Cascaded Operation Example (a): Figure 9.21 illustrates the operation when TCNT_2 overflow/underflow counting has been set for TCNT_1 and phase counting mode has been designated for channel 2.

 $TCNT_1$ is incremented by $TCNT_2$ overflow and decremented by $TCNT_2$ underflow.

TCNT_1 and TCNT_2 have been cascaded and the I2AE bit in TICCR has been set to 1 the TIOC2A pin in the TGRA_1 input capture conditions. In this example, the IOA0 to in TIOR_1 have selected the TIOC1A rising edge for the input capture timing while the IOA3 bits in TIOR_2 have selected the TIOC2A rising edge for the input capture timing

Under these conditions, the rising edge of both TIOC1A and TIOC2A is used for the TO input capture condition. For the TGRA_2 input capture condition, the TIOC2A rising edge of both TIOC1A and TIOC2A rising edge of both TIOC1A rising edge of both TIOC

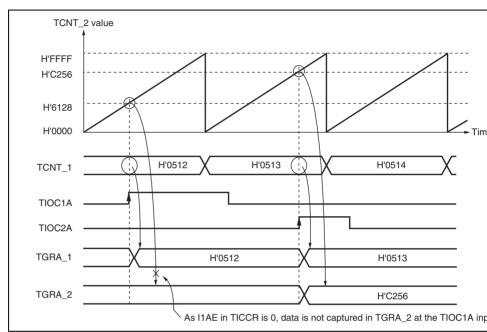


Figure 9.22 Cascaded Operation Example (b)

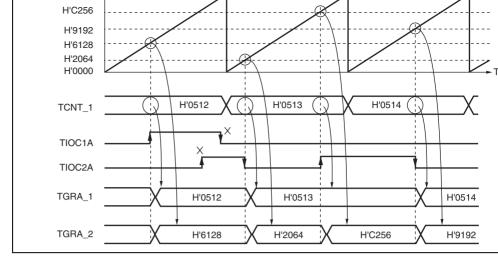


Figure 9.23 Cascaded Operation Example (c)

Cascaded Operation Example (d) in SH7125: Figure 9.24 illustrates the operation whe TCNT_1 and TCNT_2 have been cascaded and the I2AE bit in TICCR has been set to 1 the TIOC2A pin in the TGRA_1 input capture conditions. In this example, the IOA0 to I0 in TIOR_1 have selected TGRA_0 compare match or input capture occurrence for the injury capture timing while the IOA0 to IOA3 bits in TIOR_2 have selected the TIOC2A rising the input capture timing.

Under these conditions, as TIOR_1 has selected TGRA_0 compare match or input captur occurrence for the input capture timing, the TIOC2A edge is not used for TGRA_1 input condition although the I2AE bit in TICCR has been set to 1.

Rev. 5.00 Mar. 06, 2009 Page 252 of 770

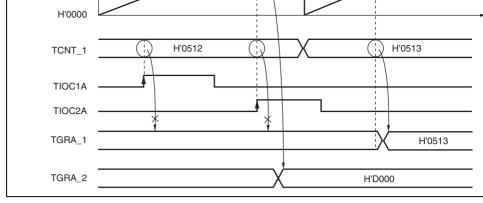


Figure 9.24 Cascaded Operation Example (d)

There are two PWM modes, as described below.

1. PWM mode 1

TGRC with TGRD. The output specified by bits IOA0 to IOA3 and IOC0 to IOC3 in output from the TIOCA and TIOCC pins at compare matches A and C, and the output specified by bits IOB0 to IOB3 and IOD0 to IOD3 in TIOR is output at compare match and D. The initial output value is the value set in TGRA or TGRC. If the set values of TGRs are identical, the output value does not change when a compare match occurs.

PWM output is generated from the TIOCA and TIOCC pins by pairing TGRA with T

2. PWM mode 2

PWM output is generated using one TGR as the cycle register and the others as duty of the output specified in TIOR is performed by means of compare matches. Upon cour clearing by a synchronization register compare match, the output value of each pin is value set in TIOR. If the set values of the cycle and duty registers are identical, the output does not change when a compare match occurs.

In PWM mode 2, a maximum 8-phase PWM output is possible in combination use wis synchronous operation.

The correspondence between PWM output pins and registers is shown in table 9.46.

In PWM mode 1, a maximum 8-phase PWM output is possible.

3	TGRA_3	TIOC3A	Cannot be set
	TGRB_3		Cannot be set
	TGRC_3	TIOC3C	Cannot be set
	TGRD_3		Cannot be set
4	TGRA_4	TIOC4A	Cannot be set
	TGRB_4		Cannot be set
	TGRC_4	TIOC4C	Cannot be set
	TGRD_4		Cannot be set
Notes: In PWM	I mode 2, PWM output is n	ot possible for the TGR	register in which the pe

TIOC2A*

* Supported only by the SH7125.

TGRA_2

TGRB_2

2

3

REJ09

Rev. 5.00 Mar. 06, 2009 Pag

TIOC2A*

TIOC2B*

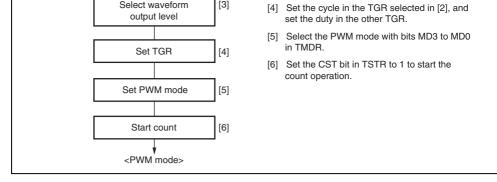


Figure 9.25 Example of PWM Mode Setting Procedure

Examples of PWM Mode Operation: Figure 9.26 shows an example of PWM mode 1 of In this example, TGRA compare match is set as the TCNT clearing source, 0 is set for the

initial output value and output value, and 1 is set as the TGRB output value.

In this case, the value set in TGRA is used as the period, and the values set in the TGRB are used as the duty levels.

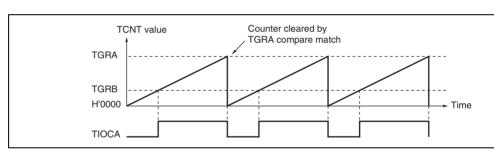


Figure 9.26 Example of PWM Mode Operation (1)

Rev. 5.00 Mar. 06, 2009 Page 256 of 770 REJ09B0243-0500

RENESAS

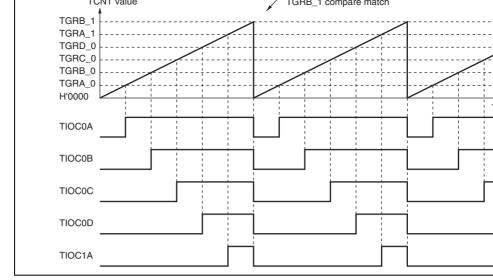


Figure 9.27 Example of PWM Mode Operation (2)

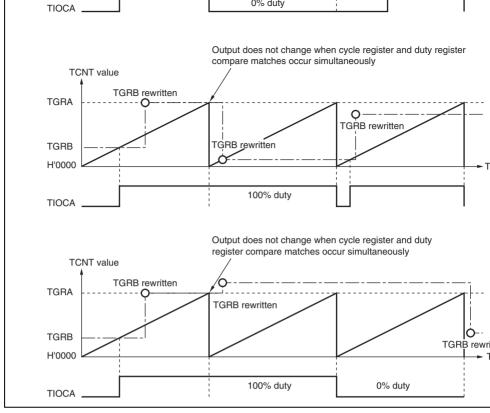


Figure 9.28 Example of PWM Mode Operation (3)

Rev. 5.00 Mar. 06, 2009 Page 258 of 770

This can be used for two-phase encoder pulse input.

If overflow occurs when TCNT is counting up, the TCFV flag in TSR is set; if underflo when TCNT is counting down, the TCFU flag is set.

The TCFD bit in TSR is the count direction flag. Reading the TCFD flag reveals whether counting up or down.

Table 9.47 shows the correspondence between external clock pins and channels.

Table 9.47 Phase Counting Mode Clock Input Pins

	External Clock Pins		
Channels	A-Phase	B-Phase	
When channel 1 is set to phase counting mode	TCLKA	TCLKB	
When channel 2 is set to phase counting mode	TCLKC	TCLKD	

Example of Phase Counting Mode Setting Procedure: Figure 9.29 shows an example phase counting mode setting procedure.

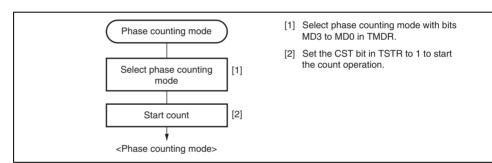


Figure 9.29 Example of Phase Counting Mode Setting Procedure

Rev. 5.00 Mar. 06, 2009 Pag REJ09

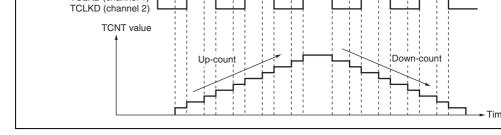


Figure 9.30 Example of Phase Counting Mode 1 Operation

Table 9.48 Up/Down-Count Conditions in Phase Counting Mode 1

TCLKA (Channel 1) TCLKC (Channel 2)	TCLKB (Channel 1) TCLKD (Channel 2)	Operation
High level		Up-count
Low level	T L	
<u></u>	Low level	
<u></u>	High level	
High level	T	Down-count
Low level		
<u></u>	High level	
<u> </u>	Low level	
[Legend]		

Rising edge

Ţ: Falling edge

Rev. 5.00 Mar. 06, 2009 Page 260 of 770

Figure 9.31 Example of Phase Counting Mode 2 Operation

Table 9.49 Up/Down-Count Conditions in Phase Counting Mode 2

TCLKA (Channel 1) TCLKC (Channel 2)	TCLKB (Channel 1) TCLKD (Channel 2)	Operation
High level		Don't care
Low level	T_	Don't care
	Low level	Don't care
7_	High level	Up-count
High level		Don't care
Low level		Don't care
	High level	Don't care
7_	Low level	Down-count
[Legend]		

[Legend]

Rising edge

Falling edge

Rev. 5.00 Mar. 06, 2009 Pag

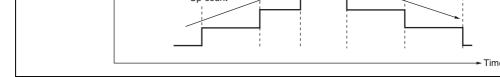


Figure 9.32 Example of Phase Counting Mode 3 Operation

Table 9.50 Up/Down-Count Conditions in Phase Counting Mode 3

TCLKA (Channel 1) TCLKC (Channel 2)	TCLKB (Channel 1) TCLKD (Channel 2)	Operation
High level	_	Don't care
Low level	T_	Don't care
	Low level	Don't care
7_	High level	Up-count
High level	Ŧ_	Down-count
Low level	_	Don't care
	High level	Don't care
7_	Low level	Don't care

[Legend]

T: Falling edge

Table 9.51 Up/Down-Count Conditions in Phase Counting Mode 4

TCLKA (Channel 1) TCLKC (Channel 2)	TCLKB (Channel 1) TCLKD (Channel 2)	Operation
High level	_F	Up-count
Low level	T.	
	Low level	Don't care
<u> </u>	High level	
High level	T_	Down-count
Low level		
<u>_</u>	High level	Don't care
<u> </u>	Low level	
[Legend]		

L: Falling edge

source, and the pulse widths of 2-phase encoder 4-multiplication pulses are detected.

TGRA_1 and TGRB_1 for channel 1 are designated for input capture, and channel 0 TGl TGRC_0 compare matches are selected as the input capture source and store the up/down values for the control periods.

This procedure enables the accurate detection of position and speed.

Rev. 5.00 Mar. 06, 2009 Page 264 of 770 REJ09B0243-0500

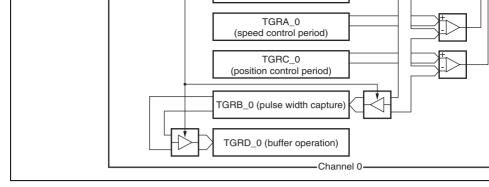


Figure 9.34 Phase Counting Mode Application Example

Rev. 5.00 Mar. 06, 2009 Pag

Table 9.52 Output Pins for Reset-Synchronized PWM Mode

Description

Output Pin

3	TIOC3B	PWM output pin 1			
	TIOC3D	PWM output pin 1' (negative-phase waveform of PWM ou			
4	TIOC4A	PWM output pin 2			
	TIOC4C	PWM output pin 2' (negative-phase waveform of PWM ou			
	TIOC4B	PWM output pin 3			
	TIOC4D	PWM output pin 3' (negative-phase waveform of PWM ou			
Table 9.53	Register Set	tings for Reset-Synchronized PWM Mode			
Register	Description of Setting				
TCNT_3	Initial setting	of H'0000			

Ta

Initial setting of H'0000

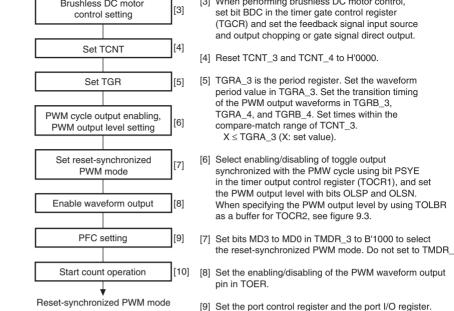
Set count cycle for TCNT_3

Sets the turning point for PWM waveform output by the TIOC3B and TIOC3

Sets the turning point for PWM waveform output by the TIOC4A and TIOC4

Sets the turning point for PWM waveform output by the TIOC4B and TIOC4

Channel


TCNT_4

TGRA_3

TGRB_3 TGRA_4

TGRB_4

Rev. 5.00 Mar. 06, 2009 Page 266 of 770

Note: The output waveform starts to toggle operation at the point of TCNT 3 = TGRA 3 = X by setting X = TGRA, i.e., cycle = duty.

[10] Set the CST3 bit in the TSTR to 1 to start the count

Figure 9.35 Procedure for Selecting Reset-Synchronized PWM Mode

operation.

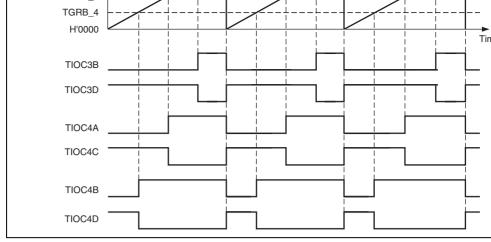


Figure 9.36 Reset-Synchronized PWM Mode Operation Example (When TOCR's OLSN = 1 and OLSP = 1)

Rev. 5.00 Mar. 06, 2009 Page 268 of 770

A function to directly cut off the PWM output by using an external signal is supported a function.

Table 9.54 Output Pins for Complementary PWM Mode

TIOC4D

Channel	Output Pin	Description
3	TIOC3A	Toggle output synchronized with PWM period (or I/C
	TIOC3B	PWM output pin 1
	TIOC3C	I/O port*
	TIOC3D	PWM output pin 1' (non-overlapping negative-phase waveform of PWM PWM output without non-overlapping interval is also
4	TIOC4A	PWM output pin 2
	TIOC4B	PWM output pin 3
	TIOC4C	PWM output pin 2' (non-overlapping negative-phase waveform of PWM

PWM output without non-overlapping interval is also Note: Avoid setting the TIOC3C pin as a timer I/O pin in the complementary PWM r

PWM output pin 3'

PWM output without non-overlapping interval is also

(non-overlapping negative-phase waveform of PWM

TGRA_4	PWM output 2 compare register	Maskable by TRW setting*
TGRB_4	PWM output 3 compare register	Maskable by TRW setting*
TGRC_4	PWM output 2/TGRA_4 buffer register	Always readable/v
TGRD_4	PWM output 3/TGRB_4 buffer register	Always readable/v
Timer dead time data register (TDDR)	Set TCNT_4 and TCNT_3 offset value (dead time value)	Maskable by TRW setting*
Timer cycle data register (TCDR)	Set TCNT_4 upper limit value (1/2 carrier cycle)	Maskable by TRW setting*
Timer cycle buffer register (TCBR)	TCDR buffer register	Always readable/v
Subcounter (TCNTS)	Subcounter for dead time generation	Read-only
Temporary register 1 (TEMP1)	PWM output 1/TGRB_3 temporary register	Not readable/write
Temporary register 2 (TEMP2)	PWM output 2/TGRA_4 temporary register	Not readable/writa
Temporary register 3 (TEMP3)	PWM output 3/TGRB_4 temporary register	Not readable/writa
Note: * Access can be enable (timer read/write enable	ed or disabled according to the settin ble register).	g of bit 0 (RWE) in T

register

H'0000

Up-count start, initialized to

Maskable by TRW

setting*

TCNT_4

4

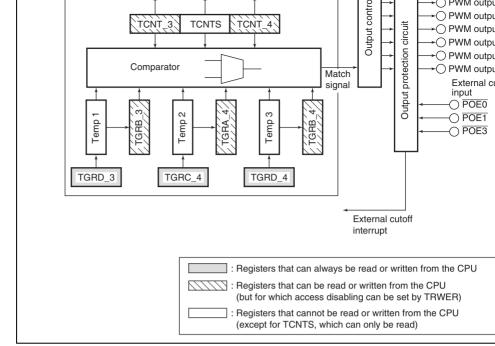


Figure 9.37 Block Diagram of Channels 3 and 4 in Complementary PWM M

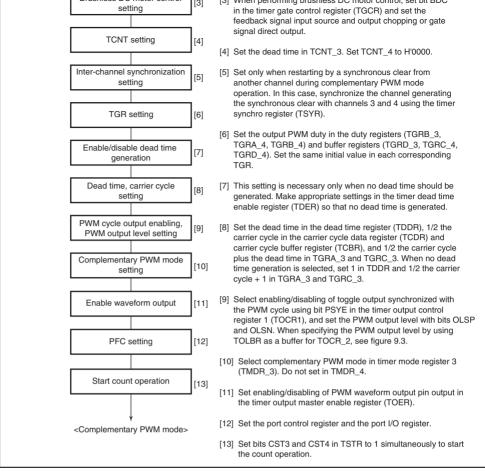


Figure 9.38 Example of Complementary PWM Mode Setting Procedure

Rev. 5.00 Mar. 06, 2009 Page 272 of 770

When the CST bit is set to 1, TCNT_3 counts up to the value set in TGRA_3, then s down-counting when it matches TGRA_3. When the TCNT3 value matches TDDR, counter switches to up-counting, and the operation is repeated in this way.

TCNT 4 is initialized to H'0000.

When the CST bit is set to 1, TCNT_4 counts up in synchronization with TCNT_3, switches to down-counting when it matches TCDR. On reaching H'0000, TCNT4 swup-counting, and the operation is repeated in this way.

TCNTS is a read-only counter. It need not be initialized.

When TCNT_3 matches TCDR during TCNT_3 and TCNT_4 up/down-counting, do counting is started, and when TCNTS matches TCDR, the operation switches to up-When TCNTS matches TGRA_3, it is cleared to H'0000.

When TCNT_4 matches TDDR during TCNT_3 and TCNT_4 down-counting, up-c started, and when TCNTS matches TDDR, the operation switches to down-counting TCNTS reaches H'0000, it is set with the value in TGRA_3.

TCNTS is compared with the compare register and temporary register in which the lis set during the count operation only.

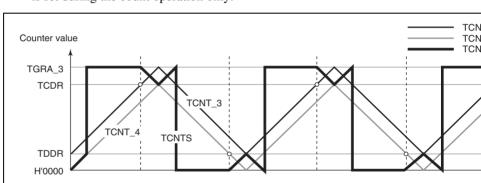


Figure 9.39 Complementary PWM Mode Counter Operation

Rev. 5.00 Mar. 06, 2009 Pag

Data in a compare register is changed by writing the new data to the corresponding but register. The buffer registers can be read or written at any time.

The data written to a buffer register is constantly transferred to the temporary register interval. Data is not transferred to the temporary register in the Tb interval. Data writt buffer register in this interval is transferred to the temporary register at the end of the interval.

The value transferred to a temporary register is transferred to the compare register wh TCNTS for which the Tb interval ends matches TGRA 3 when counting up, or H'000 counting down. The timing for transfer from the temporary register to the compare re be selected with bits MD3 to MD0 in the timer mode register (TMDR). Figure 9.40 sl example in which the mode is selected in which the change is made in the trough.

In the Tb interval (Tb1 in figure 9.40) in which data transfer to the temporary register performed, the temporary register has the same function as the compare register, and compared with the counter. In this interval, therefore, there are two compare match re for one-phase output, with the compare register containing the pre-change data, and the temporary register containing the new data. In this interval, the three counters—TCN

TCNT_4, and TCNTS—and two registers—compare register and temporary registercompared, and PWM output controlled accordingly.

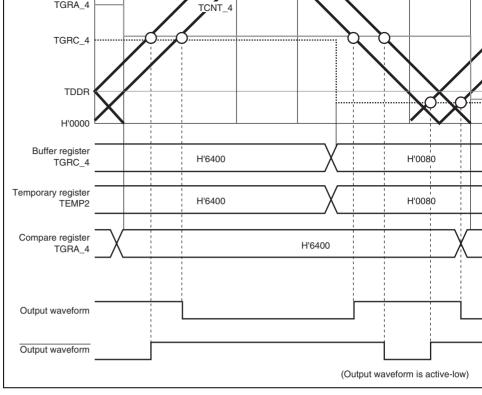


Figure 9.40 Example of Complementary PWM Mode Operation

when dead time is not needed, the IDER bit in the timer dead time enable register (I should be cleared to 0, TGRC_3 and TGRA_3 should be set to 1/2 the PWM carrier of and TDDR should be set to 1.

Set the respective initial PWM duty values in buffer registers TGRD 3, TGRC 4, and TGRD 4. The values set in the five buffer registers excluding TDDR are transferred simultaneo

the corresponding compare registers when complementary PWM mode is set. Set TCNT 4 to H'0000 before setting complementary PWM mode.

Table 9.56 Registers and Counters Requiring Initialization

Register/Counter	Set Value
TGRC_3	1/2 PWM carrier cycle + dead time Td
	(1/2 PWM carrier cycle $+$ 1 when dead time φ is disabled by TDER)
TDDR	Dead time Td (1 when dead time generation disabled by TDER)
TCBR	1/2 PWM carrier cycle
TGRD_3, TGRC_4, TGRD_4	Initial PWM duty value for each phase
TCNT_4	H'0000

Note: The TGRC 3 set value must be the sum of 1/2 the PWM carrier cycle set in TCBF dead time Td set in TDDR. When dead time generation is disabled by TDER, TGF must be set to 1/2 the PWM carrier cycle + 1.

Rev. 5.00 Mar. 06, 2009 Page 276 of 770 REJ09B0243-0500

The non-overlap time is set in the timer dead time data register (TDDR). The value s TDDR is used as the TCNT_3 counter start value, and creates non-overlap between and TCNT_4. Complementary PWM mode should be cleared before changing the co TDDR.

6. Dead Time Suppressing

register (TDER) to 0. TDER can be cleared to 0 only when 0 is written to it after rea TDER = 1.

Dead time generation is suppressed by clearing the TDER bit in the timer dead time

TGRA_3 and TGRC_3 should be set to 1/2 PWM carrier cycle + 1 and the timer dea data register (TDDR) should be set to 1.

By the above settings, PWM waveforms without dead time can be obtained. Figure 9 an example of operation without dead time.

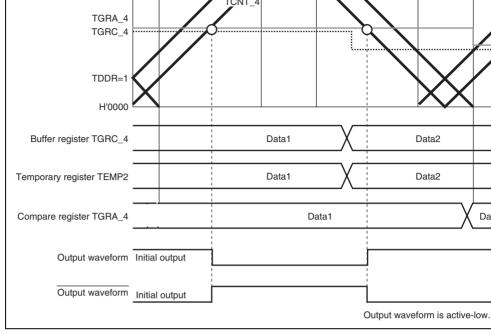


Figure 9.41 Example of Operation without Dead Time

Rev. 5.00 Mar. 06, 2009 Page 278 of 770

and TCDR in accordance with the transfer timing selected with bits MD3 to MD0 in mode register (TMDR).

The updated PWM cycle is reflected from the next cycle when the data update is per the crest, and from the current cycle when performed in the trough. Figure 9.42 illus operation when the PWM cycle is updated at the crest.

See the following section, Register Data Updating, for the method of updating the data buffer register.

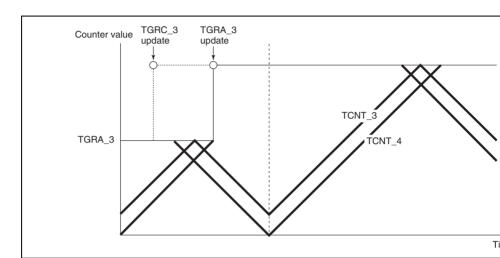


Figure 9.42 Example of PWM Cycle Updating

data updating in complementary PWM mode. This example shows the mode in which updating is performed at both the counter crest and trough.

When rewriting buffer register data, a write to TGRD_4 must be performed at the end

simultaneously for all five registers after the write to TGRD_4. A write to TGRD_4 must be performed after writing data to the registers to be update when not updating all five registers, or when updating the TGRD_4 data. In this case, written to TGRD_4 should be the same as the data prior to the write operation.

update. Data transfer from the buffer registers to the temporary registers is performed

Rev. 5.00 Mar. 06, 2009 Page 280 of 770

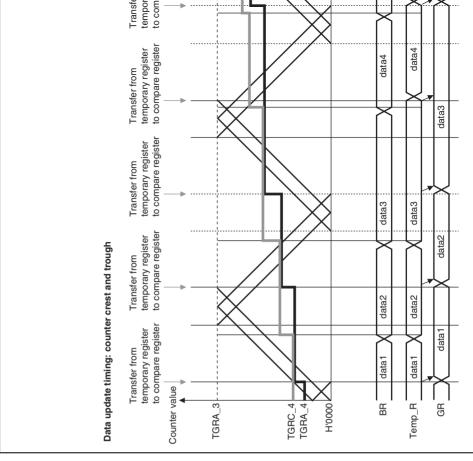


Figure 9.43 Example of Data Update in Complementary PWM Mode

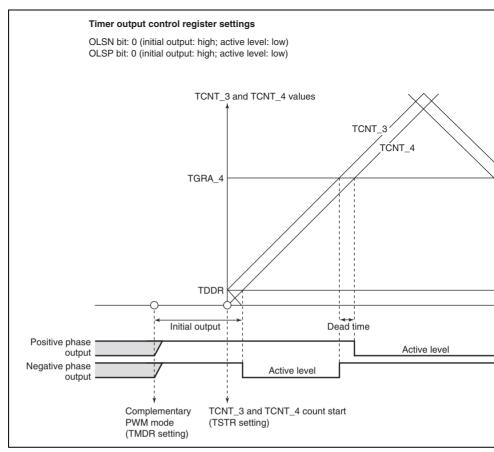


Figure 9.44 Example of Initial Output in Complementary PWM Mode (1)

Rev. 5.00 Mar. 06, 2009 Page 282 of 770

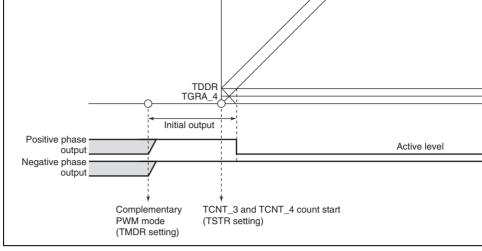


Figure 9.45 Example of Initial Output in Complementary PWM Mode (2

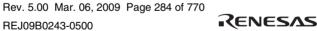
Rev. 5.00 Mar. 06, 2009 Pag

mode.

The positive phase/negative phase off timing is generated by a compare-match with the line counter, and the on timing by a compare-match with the dotted-line counter operation. a delay of the dead time behind the solid-line counter. In the T1 period, compare-mate

turns off the negative phase has the highest priority, and compare-matches occurring are ignored. In the T2 period, compare-match c that turns off the positive phase has the

priority, and compare-matches occurring prior to c are ignored. In normal cases, compare-matches occur in the order $\mathbf{a} \to \mathbf{b} \to \mathbf{c} \to \mathbf{d}$ (or $\mathbf{c} \to \mathbf{d} \to \mathbf{a}$ as shown in figure 9.46.


If compare-matches deviate from the $\mathbf{a} \to \mathbf{b} \to \mathbf{c} \to \mathbf{d}$ order, since the time for which negative phase is off is less than twice the dead time, the figure shows the positive ph being turned on. If compare-matches deviate from the $c \to d \to a' \to b'$ order, since to for which the positive phase is off is less than twice the dead time, the figure shows the negative phase is not being turned on.

If compare-match c occurs first following compare-match a, as shown in figure 9.47,

match \mathbf{b} is ignored, and the negative phase is turned off by compare-match \mathbf{d} . This is turning off of the positive phase has priority due to the occurrence of compare-match (positive phase off timing) before compare-match **b** (positive phase on timing) (conse the waveform does not change since the positive phase goes from off to off). Similarly, in the example in figure 9.48, compare-match a' with the new data in the te

register occurs before compare-match c, but other compare-matches occurring up to c turns off the positive phase, are ignored. As a result, the negative phase is not turned of

Thus, in complementary PWM mode, compare-matches at turn-off timings take prece and turn-on timing compare-matches that occur before a turn-off timing compare-mat

ignored.

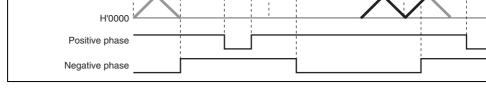


Figure 9.46 Example of Complementary PWM Mode Waveform Output (

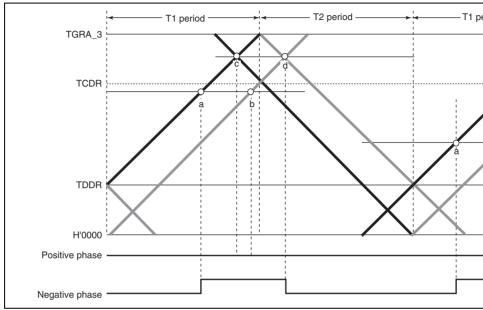


Figure 9.47 Example of Complementary PWM Mode Waveform Output

Figure 9.48 Example of Complementary PWM Mode Waveform Output (3

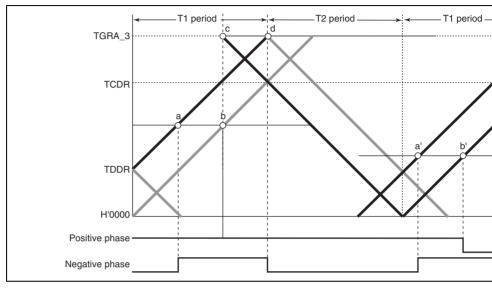


Figure 9.49 Example of Complementary PWM Mode 0% and 100% Waveform O

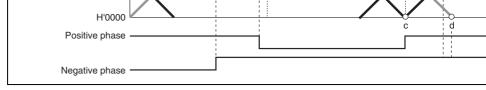


Figure 9.50 Example of Complementary PWM Mode 0 % and 100 % Waveform 0

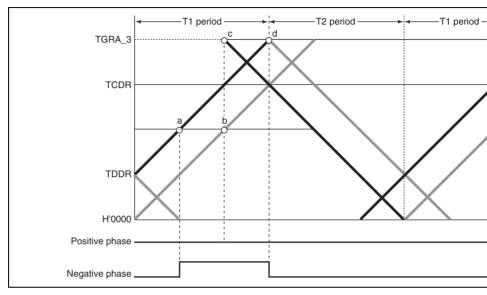


Figure 9.51 Example of Complementary PWM Mode $0\,\%$ and $100\,\%$ Waveform (

Rev. 5.00 Mar. 06, 2009 Pag

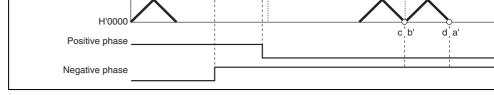


Figure 9.52 Example of Complementary PWM Mode 0% and 100% Waveform O

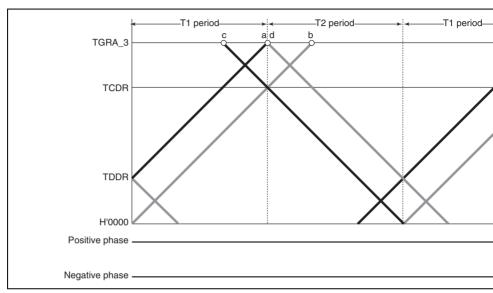


Figure 9.53 Example of Complementary PWM Mode $0\,\%$ and $100\,\%$ Waveform O

12. Toggie Output Synchronized with PWIM Cycle

In complementary PWM mode, toggle output can be performed in synchronization v PWM carrier cycle by setting the PSYE bit to 1 in the timer output control register (

An example of a toggle output waveform is shown in figure 9.54.

This output is toggled by a compare-match between TCNT_3 and TGRA_3 and a compare-match between TCNT_3 and TGRA_3 are compare-match.

match between TCNT4 and H'0000.

The output pin for this toggle output is the TIOC3A pin. The initial output is 1.

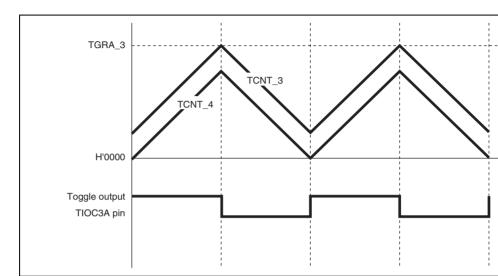


Figure 9.54 Example of Toggle Output Waveform Synchronized with PWM C

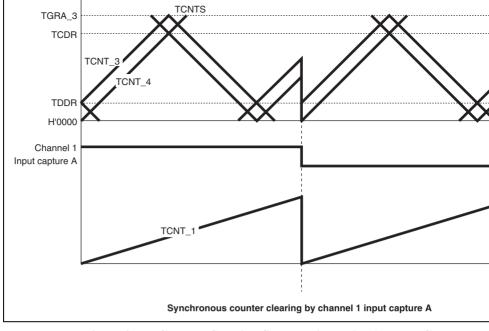


Figure 9.55 Counter Clearing Synchronized with Another Channel

counter clearing.

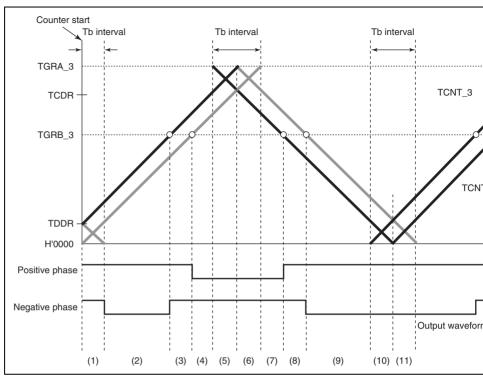


Figure 9.56 Timing for Synchronous Counter Clearing

Rev. 5.00 Mar. 06, 2009 Pag

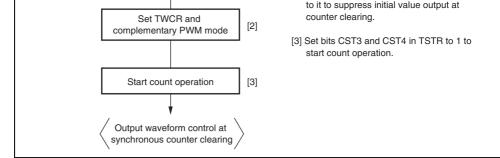


Figure 9.57 Example of Procedure for Setting Output Waveform Control at Sync Counter Clearing in Complementary PWM Mode

 Examples of Output Waveform Control at Synchronous Counter Clearing in Complementary PWM Mode

Figures 9.58 to 9.61 show examples of output waveform control in which the MTO operates in complementary PWM mode and synchronous counter clearing is generable while the WRE bit in TWCR is set to 1. In the examples shown in figures 9.58 to synchronous counter clearing occurs at timing (3), (6), (8), and (11) shown in figures pectively.

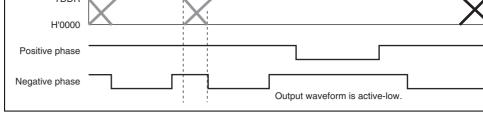


Figure 9.58 Example of Synchronous Clearing in Dead Time during Up-Cou (Timing (3) in Figure 9.56; Bit WRE of TWCR in MTU2 is 1)

Rev. 5.00 Mar. 06, 2009 Pag

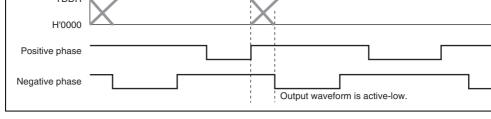


Figure 9.59 Example of Synchronous Clearing in Interval Tb at Crest (Timing (6) in Figure 9.56; Bit WRE of TWCR in MTU2 is 1)

Rev. 5.00 Mar. 06, 2009 Page 294 of 770

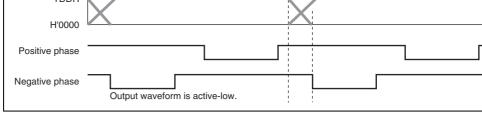


Figure 9.60 Example of Synchronous Clearing in Dead Time during Down-Co (Timing (8) in Figure 9.56; Bit WRE of TWCR is 1)

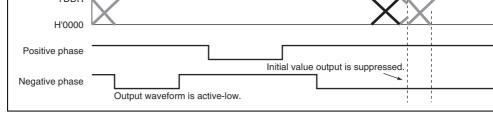


Figure 9.61 Example of Synchronous Clearing in Interval Tb at Trough (Timing (11) in Figure 9.56; Bit WRE of TWCR is 1)

Rev. 5.00 Mar. 06, 2009 Page 296 of 770

- 3. Do not set the PWM duty value to H'0000.
- 4. Do not set the PSYE bit in timer output control register 1 (TOCR1) to 1.

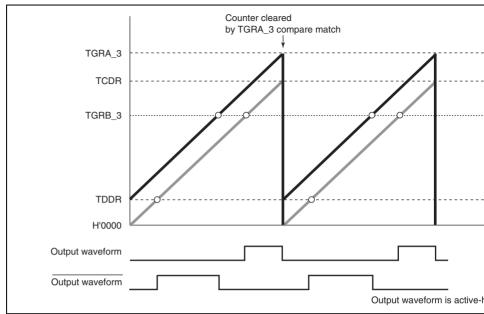


Figure 9.62 Example of Counter Clearing Operation by TGRA_3 Compare M

Rev. 5.00 Mar. 06, 2009 Pag

The drive waveforms are output from the complementary PWM mode 6-phase output

With this 6-phase output, in the case of on output, it is possible to use complementary mode output and perform chopping output by setting the N bit or P bit to 1. When the P bit is 0, level output is selected.

The 6-phase output active level (on output level) can be set with the OLSN and OLSF the timer output control register (TOCR) regardless of the setting of the N and P bits.

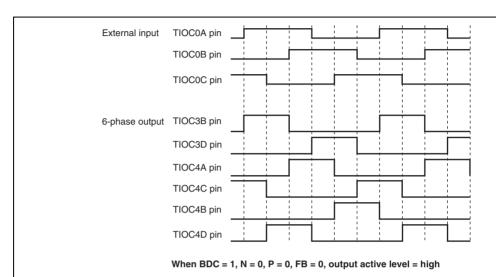


Figure 9.63 Example of Output Phase Switching by External Input (1)

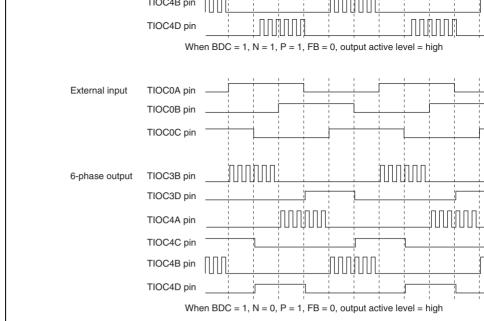


Figure 9.64 Example of Output Phase Switching by External Input (2)

TIOC4B pin

TIOC4D pin

When BDC = 1, N = 0, P = 0, FB = 1, output active level = high

Figure 9.65 Example of Output Phase Switching by Means of UF, VF, WF Bit Set

Rev. 5.00 Mar. 06, 2009 Page 300 of 770

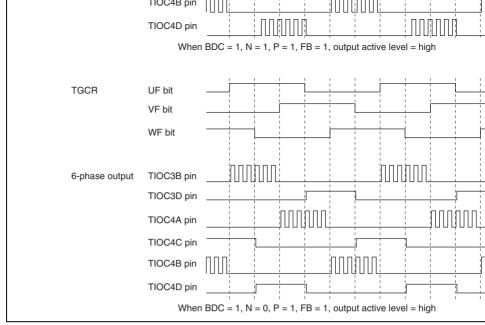


Figure 9.66 Example of Output Phase Switching by Means of UF, VF, WF Bit Se

Interrupts TGIA_3 (at the crest) and TCIV_4 (at the trough) in channels 3 and 4 can be sl to seven times by making settings in the timer interrupt skipping set register (TITCR).

Transfers from a buffer register to a temporary register or a compare register can be skipp

Transfers from a buffer register to a temporary register or a compare register can be skipp coordination with interrupt skipping by making settings in the timer buffer transfer regist (TBTER). For the linkage with buffer registers, refer to description 3, Buffer Transfer Co

A/D converter start requests generated by the A/D converter start request delaying functionalso be skipped in coordination with interrupt skipping by making settings in the timer A converter request control register (TADCR). For the linkage with the A/D converter start delaying function, refer to section 9.4.9, A/D Converter Start Request Delaying Function

The setting of the timer interrupt skipping setting register (TITCR) must be done while the TGIA_3 and TCIV_4 interrupt requests are disabled by the settings of registers TIER_3 TIER_4 along with under the conditions in which TGFA_3 and TCFV_4 flag settings by match never occur. Before changing the skipping count, be sure to clear the T3AEN and bits to 0 to clear the skipping counter.

Example of Interrupt Skipping Operation Setting Procedure
 Figure 9.67 shows an example of the interrupt skipping operation setting procedure. Figure 9.67 shows an example of the interrupt skipping operation setting procedure.

Figure 9.67 shows an example of the interrupt skipping operation setting procedure 9.68 shows the periods during which interrupt skipping count can be changed.

Linked with Interrupt Skipping, below.

Before changing the skipping count, be sure to clear the T3AEN and T4VEN bits to 0 to clear the skipping counter.

Figure 9.67 Example of Interrupt Skipping Operation Setting Procedure

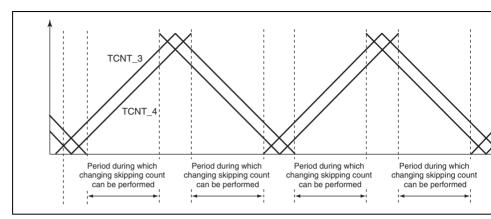


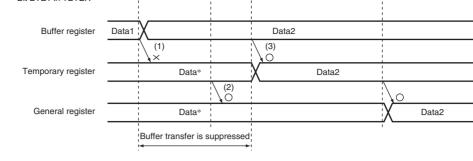
Figure 9.68 Periods during which Interrupt Skipping Count can be Chang

2. Example of Interrupt Skipping Operation

Figure 9.69 shows an example of TGIA_3 interrupt skipping in which the interrupt scount is set to three by the 3ACOR bit and the T3AEN bit is set to 1 in the timer into skipping set register (TITCR).

Rev. 5.00 Mar. 06, 2009 Pag

Rev. 5.00 Mar. 06, 2009 Page 304 of 770


and from the temporary register to the buffer register. These timings depend on a protiming to the buffer register after an interrupt is generated.

Note that the buffer transfer-enabled period depends on the T3AEN and T4VEN bit the timer interrupt skipping set register (TITCR). Figure 9.72 shows the relationship the T3AEN and T4VEN bit settings in TITCR and buffer transfer-enabled period.

Note: This function must always be used in combination with interrupt skipping.

When interrupt skipping is disabled (the T3AEN and T4VEN bits in the timer in skipping set register (TITCR) are cleared to 0 or the skipping count set bits (3A 4VCOR) in TITCR are cleared to 0), make sure that buffer transfer is not linked interrupt skipping (clear the BTE1 bit in the timer buffer transfer set register (TI 0). If buffer transfer is linked with interrupt skipping while interrupt skipping is

buffer transfer is never performed.

[Legend]

- (1) No data is transferred from the buffer register to the temporary register in the buffer transfer-disabled period (bits BTE1 and BTE0 in TBTER are set to 0 and 1, respectively).
- (2) Data is transferred from the temporary register to the general register even in the buffer transfer-disabled period.
- (3) After buffer transfer is enabled, data is transferred from the buffer register to the temporary register.

Note: * When buffer transfer at the crest is selected.

Figure 9.70 Example of Operation when Buffer Transfer is Suppressed $(BTE1=0 \ and \ BTE0=1)$

Rev. 5.00 Mar. 06, 2009 Page 306 of 770

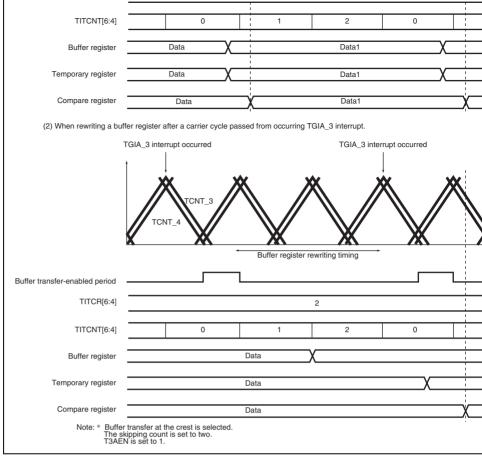


Figure 9.71 Example of Operation when Buffer Transfer is Linked with Interrup (BTE1 = 1 and BTE0 = 0)

RENESAS

Rev. 5.00 Mar. 06, 2009 Pag

Buffer transfer-enabled period
(T4VEN is set to 1)

Buffer transfer-enabled period
(T3AEN and T4VEN are set to 1)

Note: * The skipping count is set to three.

Figure 9.72 Relationship between Bits T3AEN and T4VEN in TITCR and Buffer T Enabled Period

Rev. 5.00 Mar. 06, 2009 Page 308 of 770

TIORL_4, TIER_3 and TIER_4, TCNT_3 and TCNT_4, TGRA_3 and TGRA_4 and TGRB_4, TOER, TOCR, TGCR, TCDR, and TDDR.

This function enables miswriting due to CPU runaway to be prevented by disabling access to the mode registers, control registers, and counters. When the applicable reg read in the access-disabled state, undefined values are returned. Writing to these reg ignored.

2. Halting of PWM output by external signal

is restarted.

- The 6-phase PWM output pins can be set automatically to the high-impedance state inputting specified external signals. There are four external signal input pins.
 - See section 10, Port Output Enable (POE), for details.
- 3. Halting of PWM output when oscillator is stopped

If it is detected that the clock input to this LSI has stopped, the 6-phase PWM output automatically go to the high-impedance state. The pin states are not guaranteed whe

See section 4.7, Function for Detecting Oscillator Stop.

A/D converter start requests (TRG4AN and TRG4BN) can be skipped in coordination wi interrupt skipping by making settings in the ITA3AE, ITA4VE, ITB3AE, and ITB4VE by TADCR.

 Example of Procedure for Specifying A/D Converter Start Request Delaying Function Figure 9.73 shows an example of procedure for specifying the A/D converter start requested delaying function.

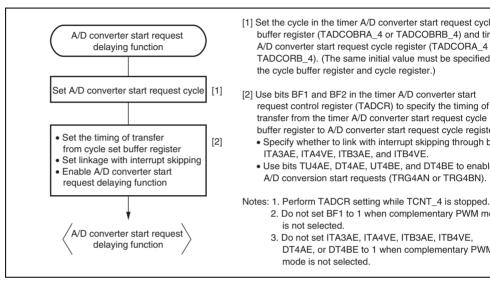


Figure 9.73 Example of Procedure for Specifying A/D Converter Start Request Delaying Function

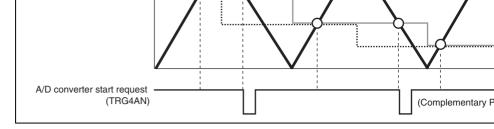


Figure 9.74 Basic Example of A/D Converter Start Request Signal (TRG4AN) O

3. Buffer Transfer

The data in the timer A/D converter start request cycle set registers (TADCORA_4 a TADCORB_4) is updated by writing data to the timer A/D converter start request cybuffer registers (TADCOBRA_4 and TADCOBRB_4). Data is transferred from the registers to the respective cycle set registers at the timing selected with the BF1 and

4. A/D Converter Start Request Delaying Function Linked with Interrupt Skipping A/D converter start requests (TRG4AN and TRG4BN) can be issued in coordinatior interrupt skipping by making settings in the ITA3AE, ITA4VE, ITB3AE, and ITB4V the timer A/D converter start request control register (TADCR).

in the timer A/D converter start request control register (TADCR 4).

Figure 9.75 shows an example of A/D converter start request signal (TRG4AN) open when TRG4AN output is enabled during TCNT_4 up-counting and down-counting a converter start requests are linked with interrupt skipping.

Figure 9.76 shows another example of A/D converter start request signal (TRG4AN when TRG4AN output is enabled during TCNT_4 up-counting and A/D converter strequests are linked with interrupt skipping.

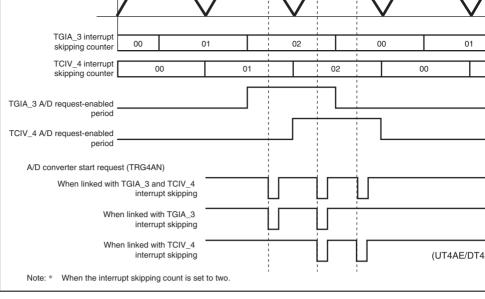


Figure 9.75 Example of A/D Converter Start Request Signal (TRG4AN) Operation with Interrupt Skipping

Rev. 5.00 Mar. 06, 2009 Page 312 of 770

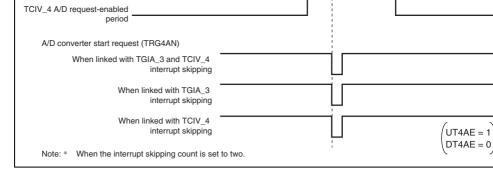


Figure 9.76 Example of A/D Converter Start Request Signal (TRG4AN) Operation with Interrupt Skipping

Rev. 5.00 Mar. 06, 2009 Pag

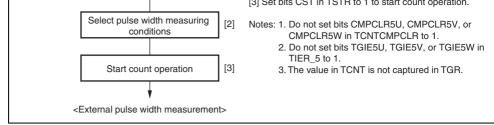


Figure 9.77 Example of External Pulse Width Measurement Setting Procedu

Example of External Pulse Width Measurement:

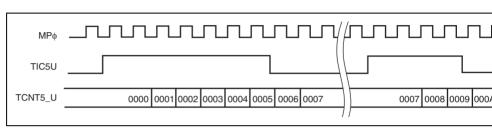


Figure 9.78 Example of External Pulse Width Measurement (Measuring High Pulse Width)

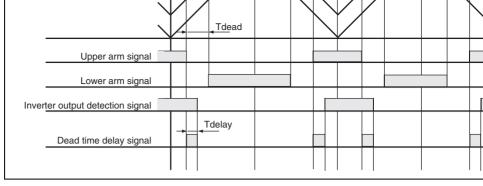


Figure 9.79 Delay in Dead Time in Complementary PWM Operation

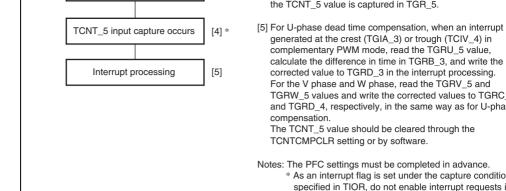


Figure 9.80 Example of Dead Time Compensation Setting Procedure

TIER 5.

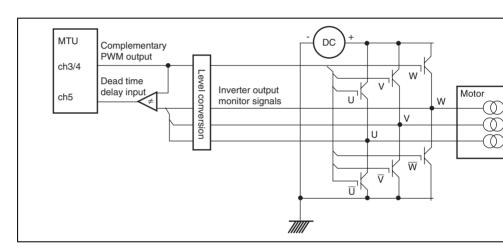


Figure 9.81 Example of Motor Control Circuit Configuration

Rev. 5.00 Mar. 06, 2009 Page 316 of 770

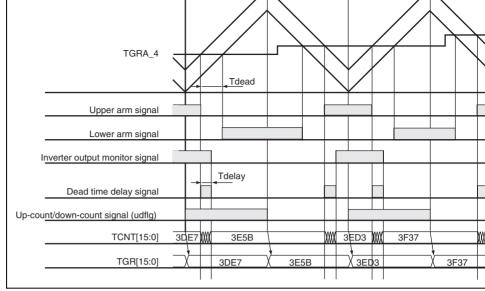


Figure 9.82 TCNT Capturing at Crest and/or Trough in Complementary PWM (

Rev. 5.00 Mar. 06, 2009 Pag

interrupt request is cleared by clearing the status mag to 0.

Relative channel priorities can be changed by the interrupt controller, however the priorit within a channel is fixed. For details, see section 6, Interrupt Controller (INTC).

Table 9.57 lists the MTU2 interrupt sources.

RENESAS

REJ09B0243-0500

Rev. 5.00 Mar. 06, 2009 Page 318 of 770

3	TGIA_3	TGRA_3 input capture/compare match	TGFA_3
	TGIB_3	TGRB_3 input capture/compare match	TGFB_3
	TGIC_3	TGRC_3 input capture/compare match	TGFC_3
	TGID_3	TGRD_3 input capture/compare match	TGFD_3
	TCIV_3	TCNT_3 overflow	TCFV_3
4	TGIA_4	TGRA_4 input capture/compare match	TGFA_4
	TGIB_4	TGRB_4 input capture/compare match	TGFB_4
	TGIC_4	TGRC_4 input capture/compare match	TGFC_4
	TGID_4	TGRD_4 input capture/compare match	TGFD_4
	TCIV_4	TCNT_4 overflow/underflow	TCFV_4
5	TGIU_5	TGRU_5 input capture/compare match	TGFU_5
	TGIV_5	TGRV_5 input capture/compare match	TGFV_5
	TGIW_5	TGRW_5 input capture/compare match	TGFW_5
Note:		hows the initial state immediately after a res nged by the interrupt controller.	set. The relative channel p

TGRA_1 input capture/compare match

TGRB_1 input capture/compare match

TGRA_2 input capture/compare match

TGRB_2 input capture/compare match

TCNT_1 overflow

TCNT_1 underflow

TCNT_2 overflow

TCNT_2 underflow

1

2

TGIA_1

TGIB_1

TCIV_1

TCIU_1

TGIA_2

TGIB_2

TCIV_2

TCIU_2

Rev. 5.00 Mar. 06, 2009 Pag

REJ09

TGFA_1 TGFB_1

TCFV_1

TCFU_1

TGFA_2

TGFB_2

TCFV_2

TCFU_2

Underflow Interrupt: An interrupt is requested if the TCIEU bit in TIER is set to 1 whe TCFU flag in TSR is set to 1 by the occurrence of TCNT underflow on a channel. The in request is cleared by clearing the TCFU flag to 0. The MTU2 has two underflow interrup each for channels 1 and 2.

Rev. 5.00 Mar. 06, 2009 Page 320 of 770

RENESAS

A/D converter start request signal TRGAN is issued to the A/D converter under either of following conditions.

- When the TGFA flag in TSR is set to 1 by the occurrence of a TGRA input capture/match on a particular channel while the TTGE bit in TIER is set to 1
- When the TCNT_4 count reaches the trough (TCNT_4 = H'0000) during complements
 PWM operation while the TTGE2 bit in TIER 4 is set to 1

When either condition is satisfied, if A/D converter start signal TRGAN from the MTU selected as the trigger in the A/D converter, A/D conversion will start.

A/D Converter Activation by Compare Match between TCNT_0 and TGRE_0: The converter can be activated by generating A/D converter start request signal TRG0N who compare match occurs between TCNT_0 and TGRE_0 in channel 0.

When the TGFE flag in TSR2_0 is set to 1 by the occurrence of a compare match betwee TCNT 0 and TGRE 0 in channel 0 while the TTGE2 bit in TIER2 0 is set to 1, A/D co

start request TGR0N is issued to the A/D converter. If A/D converter start signal TGR0. MTU2 is selected as the trigger in the A/D converter, A/D conversion will start.

A/D Converter Activation by A/D Converter Start Request Delaying Function: The

converter Activation by A/D Converter Start Request Delaying Function: In converter can be activated by generating A/D converter start request signal TRG4AN or when the TCNT_4 count matches the TADCORA or TADCORB value if the UT4AE, I UT4BE, or DT4BE bit in the A/D converter start request control register (TADCR) is set

details, refer to section 9.4.9, A/D Converter Start Request Delaying Function.

A/D conversion will start if A/D converter start signal TRG4AN from the MTU2 is sele

trigger in the A/D converter when TRG4AN is generated or if TRG4BN from the MTU selected as the trigger in the A/D converter when TRG4BN is generated.

	,	
TGRE_0 and TCNT_0	Compare match	TRG0N
TADCORA and TCNT_4	-	TRG4AN
TADCORB and TCNT_4		TRG4BN

Rev. 5.00 Mar. 06, 2009 Page 322 of 770 REJ09B0243-0500

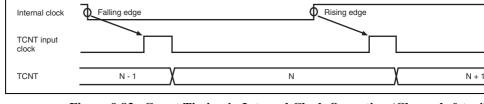


Figure 9.83 Count Timing in Internal Clock Operation (Channels 0 to 4

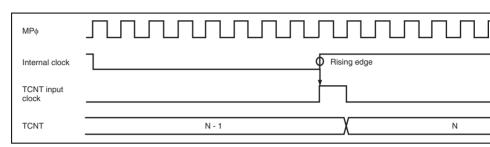


Figure 9.84 Count Timing in Internal Clock Operation (Channel 5)

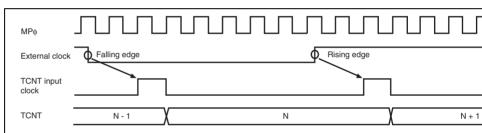


Figure 9.85 Count Timing in External Clock Operation (Channels 0 to 4

which TCNT and TGR match (the point at which the count value matched by TCNT is up. When a compare match signal is generated, the output value set in TIOR is output at the compare output pin (TIOC pin). After a match between TCNT and TGR, the compare massignal is not generated until the TCNT input clock is generated.

Figure 9.87 shows output compare output timing (normal mode and PWM mode) and fig shows output compare output timing (complementary PWM mode and reset synchronous mode).

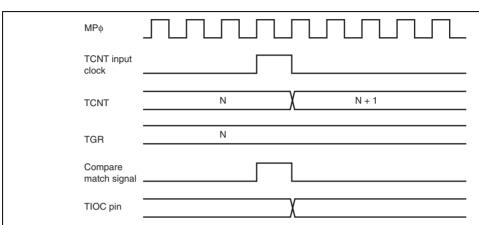


Figure 9.87 Output Compare Output Timing (Normal Mode/PWM Mode)

RENESAS

TIOC pin

Figure 9.88 Output Compare Output Timing (Complementary PWM Mode/Reset Synchronous PWM Mode)

Input Capture Signal Timing: Figure 9.89 shows input capture signal timing.

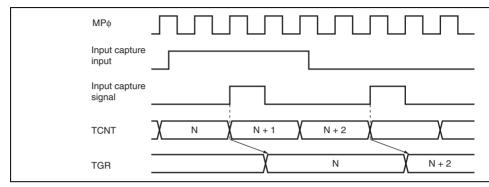


Figure 9.89 Input Capture Input Signal Timing

Rev. 5.00 Mar. 06, 2009 Pag

TCNT	N	H'0000
TGR	N	

Figure 9.90 Counter Clear Timing (Compare Match)

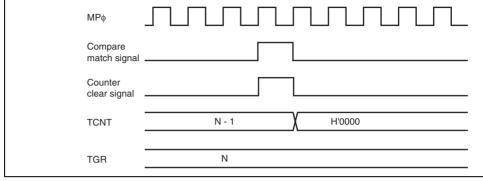
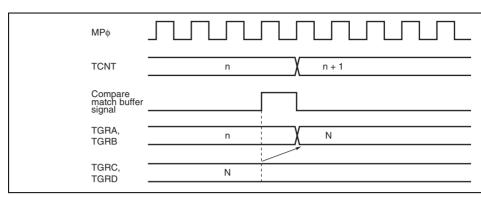
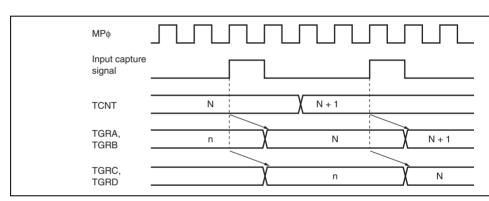



Figure 9.91 Counter Clear Timing (Compare Match) (Channel 5)



rigure 9.92 Counter Clear Timing (Input Capture)

Buffer Operation Timing: Figures 9.93 to 9.95 show the timing in buffer operation.

Figure 9.93 Buffer Operation Timing (Compare Match)

Figure 9.94 Buffer Operation Timing (Input Capture)

RENESAS

Rev. 5.00 Mar. 06, 2009 Pag

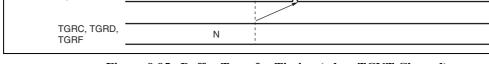


Figure 9.95 Buffer Transfer Timing (when TCNT Cleared)

Buffer Transfer Timing (Complementary PWM Mode): Figures 9.96 to 9.98 show the transfer timing in complementary PWM mode.

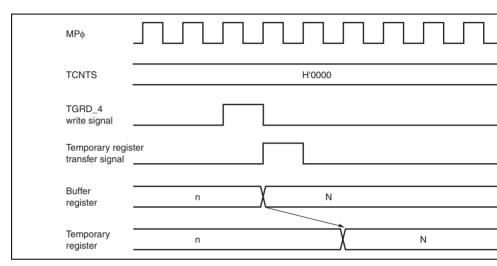
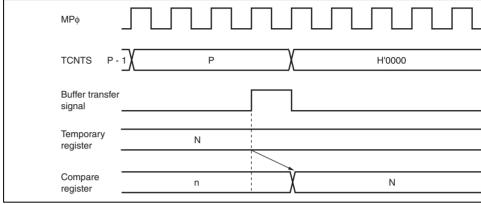
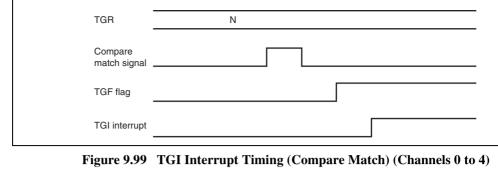



Figure 9.96 Transfer Timing from Buffer Register to Temporary Register (TCN)

Rev. 5.00 Mar. 06, 2009 Page 328 of 770


Figure 9.97 Transfer Timing from Buffer Register to Temporary Register (TCNTS Operating)

register

Figure 9.98 Transfer Timing from Temporary Register to Compare Regis

Rev. 5.00 Mar. 06, 2009 Pag

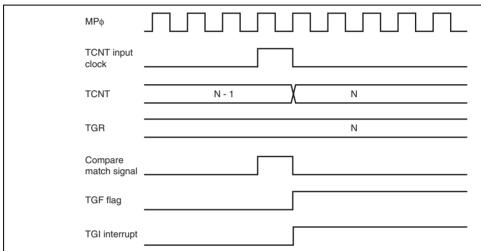
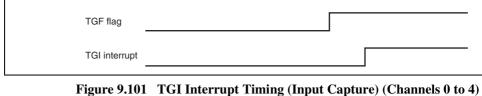



Figure 9.100 TGI Interrupt Timing (Compare Match) (Channel 5)

Rev. 5.00 Mar. 06, 2009 Page 330 of 770 REJ09B0243-0500

RENESAS

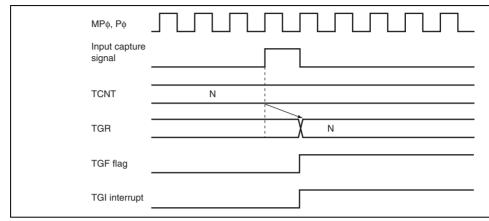


Figure 9.102 TGI Interrupt Timing (Input Capture) (Channel 5)

Rev. 5.00 Mar. 06, 2009 Pag REJ09

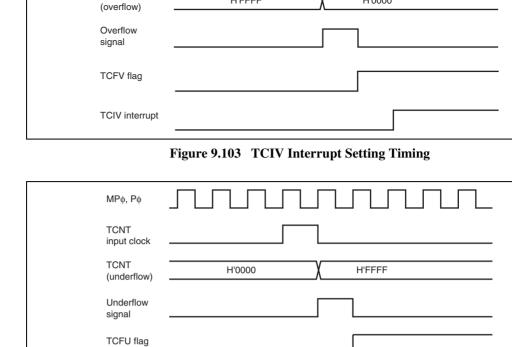


Figure 9.104 TCIU Interrupt Setting Timing

TCIU interrupt

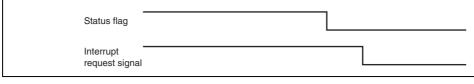


Figure 9.105 Timing for Status Flag Clearing by CPU (Channels 0 to 4)

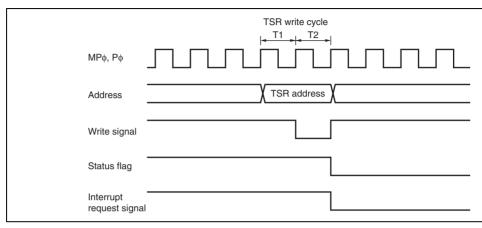


Figure 9.106 Timing for Status Flag Clearing by CPU (Channel 5)

The input clock pulse width must be at least 1.5 states in the case of single-edge detection least 2.5 states in the case of both-edge detection. The MTU2 will not operate properly at pulse widths.

In phase counting mode, the phase difference and overlap between the two input clocks in least 1.5 states, and the pulse width must be at least 2.5 states. Figure 9.107 shows the input conditions in phase counting mode.

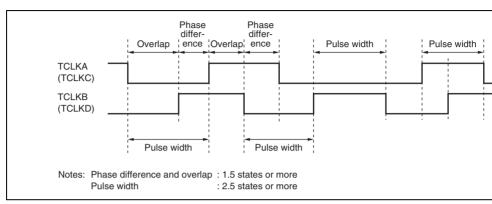


Figure 9.107 Phase Difference, Overlap, and Pulse Width in Phase Counting N

RENESAS

• Channel 5

$$f = \frac{MP\phi}{N}$$

Where f: Counter frequency

MPφ: MTU2 peripheral clock operating frequency

N: TGR set value

9.7.4 Contention between TCNT Write and Clear Operations

If the counter clear signal is generated in the T2 state of a TCNT write cycle, TCNT cle precedence and the TCNT write is not performed.

Figure 9.108 shows the timing in this case.

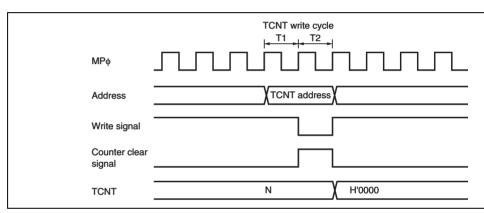


Figure 9.108 Contention between TCNT Write and Clear Operations

Rev. 5.00 Mar. 06, 2009 Pag

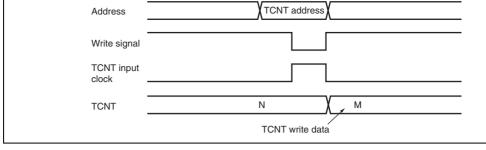


Figure 9.109 Contention between TCNT Write and Increment Operations

Rev. 5.00 Mar. 06, 2009 Page 336 of 770

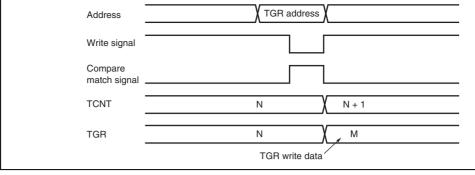


Figure 9.110 Contention between TGR Write and Compare Match

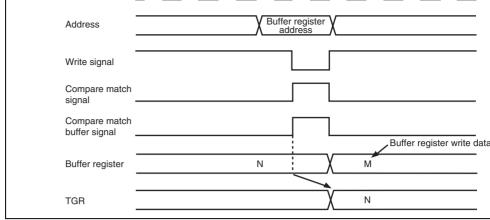


Figure 9.111 Contention between Buffer Register Write and Compare Mato

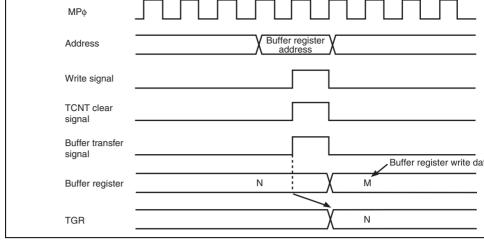


Figure 9.112 Contention between Buffer Register Write and TCNT Clea

Rev. 5.00 Mar. 06, 2009 Pag

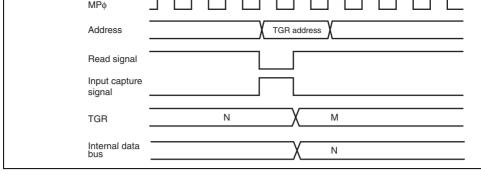


Figure 9.113 Contention between TGR Read and Input Capture (Channels 0

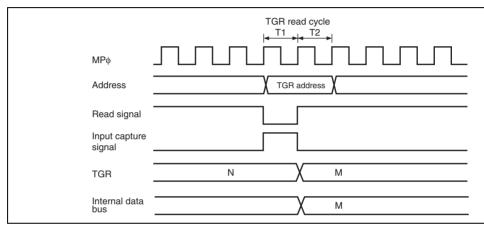


Figure 9.114 Contention between TGR Read and Input Capture (Channel

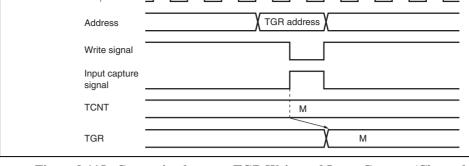


Figure 9.115 Contention between TGR Write and Input Capture (Channels O

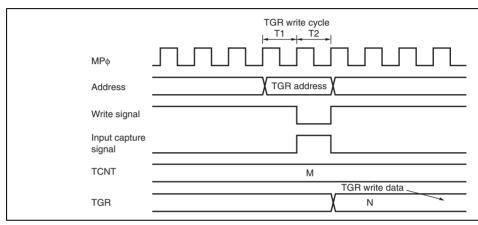


Figure 9.116 Contention between TGR Write and Input Capture (Channe

Rev. 5.00 Mar. 06, 2009 Pag

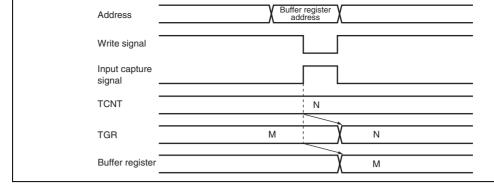


Figure 9.117 Contention between Buffer Register Write and Input Captur

9.7.12 TCNT_2 Write and Overflow/Underflow Contention in Cascade Connection

With timer counters TCNT_1 and TCNT_2 in a cascade connection, when a contention of during TCNT_1 count (during a TCNT_2 overflow/underflow) in the T2 state of the TCN write cycle, the write to TCNT_2 is conducted, and the TCNT_1 count signal is disabled point, if there is match with TGRA_1 and the TCNT_1 value, a compare signal is issued. Furthermore, when the TCNT_1 count clock is selected as the input capture source of characteristic transfer of the TGRA_0 to TGRD_0 carry out the input capture operation. In addition, when the comparematch/input capture is selected as the input capture source of TGRB_1, TGRB_1 carries capture operation. The timing is shown in figure 9.118.

For cascade connections, be sure to synchronize settings for channels 1 and 2 when setting clearing.

RENESAS

Ch2 compare- match signal A/B_	
TCNT_1 input clock _	Disabled
TCNT_1	М
TGRA_1	М
Ch1 compare- match signal A	
TGRB_1	N X M
Ch1 input capture signal B	
TCNT_0	Р
TGRA_0 to TGRD_0	Q P
Ch0 input capture signal A to D	

Figure 9.118 TCNT_2 Write and Overflow/Underflow Contention with Case Connection

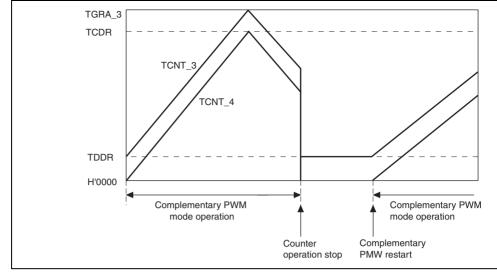


Figure 9.119 Counter Value during Complementary PWM Mode Stop

9.7.14 Buffer Operation Setting in Complementary PWM Mode

In complementary PWM mode, conduct rewrites by buffer operation for the PWM cycle register (TGRA_3), timer cycle data register (TCDR), and duty setting registers (TGRB_TGRA_4, and TGRB_4).

In complementary PWM mode, channel 3 and channel 4 buffers operate in accordance w settings BFA and BFB of TMDR_3. When the BFA bit in TMDR_3 is set to 1, TGRC_3 as a buffer register for TGRA_3. At the same time, TGRC_4 functions as the buffer regist TGRA_4, and TCBR functions as the TCDR's buffer register.

Rev. 5.00 Mar. 06, 2009 Page 344 of 770 REJ09B0243-0500

The TGFC bit and TGFD bit in TSR_3 and TSR_4 are not set when TGRC_3 and TGR operating as buffer registers.

Figure 9.120 shows an example of operations for TGR_3, TGR_4, TIOC3, and TIOC4, TMDR_3's BFA and BFB bits set to 1, and TMDR_4's BFA and BFB bits set to 0.

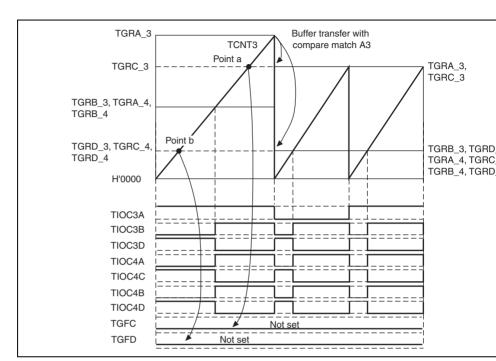


Figure 9.120 Buffer Operation and Compare-Match Flags in Reset Synchronous PWM Mode

Rev. 5.00 Mar. 06, 2009 Pag

Figure 9.121 shows a TCFV bit operation example in reset synchronous PWM mode with value for cycle register TGRA_3 of H'FFFF, when a TGRA_3 compare-match has been swithout synchronous setting for the counter clear source.

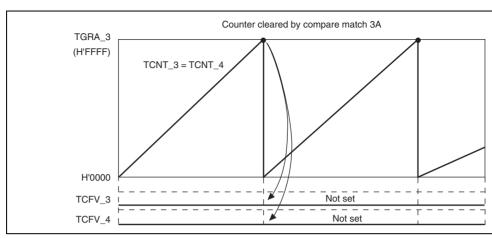


Figure 9.121 Reset Synchronous PWM Mode Overflow Flag

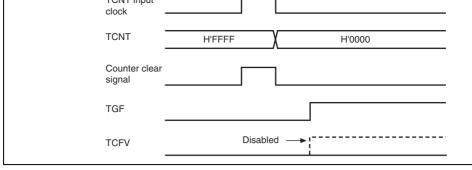


Figure 9.122 Contention between Overflow and Counter Clearing

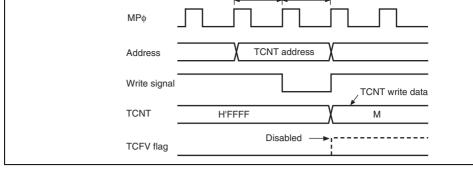


Figure 9.123 Contention between TCNT Write and Overflow

9.7.19 Cautions on Transition from Normal Operation or PWM Mode 1 to Reset Synchronized PWM Mode

When making a transition from channel 3 or 4 normal operation or PWM mode 1 to reset synchronized PWM mode, if the counter is halted with the output pins (TIOC3B, TIOC3, TIOC4A, TIOC4C, TIOC4B, TIOC4D) in the high-level state, followed by the transition synchronized PWM mode and operation in that mode, the initial pin output will not be considered.

When making a transition from normal operation to reset-synchronized PWM mode, writ registers TIORH_3, TIORL_3, TIORH_4, and TIORL_4 to initialize the output pins to lo output, then set an initial register value of H'00 before making the mode transition.

When making a transition from PWM mode 1 to reset-synchronized PWM mode, first sw normal operation, then initialize the output pins to low level output and set an initial regist of H'00 before making the transition to reset-synchronized PWM mode.

Rev. 5.00 Mar. 06, 2009 Page 348 of 770

REJ09B0243-0500

standby mode.

9.7.22 Simultaneous Capture of TCNT_1 and TCNT_2 in Cascade Connection

When timer counters 1 and 2 (TCNT_1 and TCNT_2) are operated as a 32-bit counter is connection, the cascade counter value cannot be captured successfully even if input-cap

is simultaneously done to TIOC1A and TIOC2A or to TIOC1B and TIOC2B. This is be input timing of TIOC1A and TIOC2A or of TIOC1B and TIOC2B may not be the same external input-capture signals to be input into TCNT_1 and TCNT_2 are taken in synch with the internal clock. For example, TCNT_1 (the counter for upper 16 bits) does not count-up value by overflow from TCNT_2 (the counter for lower 16 bits) but captures to value before the count-up. In this case, the values of TCNT_1 = H'FFF1 and TCNT_2 = should be transferred to TGRA_1 and TGRA_2 or to TGRB_1 and TGRB_2, but the value TCNT_1 = H'FFF0 and TCNT_2 = H'0000 are erroneously transferred.

The MTU2 has a new function that allows simultaneous capture of TCNT_1 and TCNT single input-capture input as the trigger. This function allows reading of the 32-bit coun that TCNT_1 and TCNT_2 are captured at the same time.

See section 9.3.8, Timer Input Capture Control Register (TICCR), for details.

- Phase counting modes 1 to 4 (channels 1 and 2)
- Complementary PWM mode (channels 3 and 4)
- Reset-synchronized PWM mode (channels 3 and 4)

The MTU2 output pin initialization method for each of these modes is described in this se

9.8.2 **Reset Start Operation**

The MTU2 output pins (TIOC*) are initialized low by a reset and in standby mode. Since pin function selection is performed by the pin function controller (PFC), when the PFC is MTU2 pin states at that point are output to the ports. When MTU2 output is selected by t immediately after a reset, the MTU2 output initial level, low, is output directly at the port the active level is low, the system will operate at this point, and therefore the PFC setting be made after initialization of the MTU2 output pins is completed.

Channel number and port notation are substituted for *.

Rev. 5.00 Mar. 06, 2009 Page 350 of 770 REJ09B0243-0500

Table 9.59 Mode Transition Combinations

Before	Normal	PWM1	PWM2	PCM	CPWM	RF
Normal	(1)	(2)	(3)	(4)	(5)	(6)
PWM1	(7)	(8)	(9)	(10)	(11)	(12
PWM2	(13)	(14)	(15)	(16)	None	No
PCM	(17)	(18)	(19)	(20)	None	No
CPWM	(21)	(22)	None	None	(23) (24)	(2
RPWM	(26)	(27)	None	None	(28)	(2

After

[Legend]

Normal: Normal mode PWM1: PWM mode 1 PWM2: PWM mode 2

PCM: Phase counting modes 1 to 4
CPWM: Complementary PWM mode
RPWM: Reset-synchronized PWM mode

Rev. 5.00 Mar. 06, 2009 Pag

not initialize the pins. If initialization is required, carry it out in normal mode, then sw PWM mode 2.

- In normal mode or PWM mode 2, if TGRC and TGRD operate as buffer registers, set TIOR will not initialize the buffer register pins. If initialization is required, clear buff carry out initialization, then set buffer mode again.
 In PWM mode 1, if either TGRC or TGRD operates as a buffer register, setting TIOR
- initialize the TGRC pin. To initialize the TGRC pin, clear buffer mode, carry out initialize the set buffer mode again.
 When making a transition to a mode (CPWM, RPWM) in which the pin output level in the set buffer mode again.
- selected by the timer output control register (TOCR) setting, switch to normal mode a perform initialization with TIOR, then restore TIOR to its initial value, and temporari channel 3 and 4 output with the timer output master enable register (TOER). Then op unit in accordance with the mode setting procedure (TOCR setting, TMDR setting, Testing).

Note: Channel number is substituted for * indicated in this article.

Rev. 5.00 Mar. 06, 2009 Page 352 of 770

1100 A							
TIOC*B	-ii 7			<u> </u>	- 	i	
Port output	_		! ! !	<u> </u>			
PEn	High-	Z			4		; ;
PEn	High-	Z					
n = 0 to 15							

Figure 9.124 Error Occurrence in Normal Mode, Recovery in Normal Mo

- 1. After a reset, MTU2 output is low and ports are in the high-impedance state.
- 2. After a reset, the TMDR setting is for normal mode.
- 3. For channels 3 and 4, enable output with TOER before initializing the pins with TIO
- 4. Initialize the pins with TIOR. (The example shows initial high output, with low out compare-match occurrence.)
- 5. Set MTU2 output with the PFC.
- 6. The count operation is started by TSTR.
- 7. Output goes low on compare-match occurrence.
- 8. An error occurs.
- 9. Set port output with the PFC and output the inverse of the active level.
- 10. The count operation is stopped by TSTR.
- 11. Not necessary when restarting in normal mode.
- 12. Initialize the pins with TIOR.
- 13. Set MTU2 output with the PFC.
- 14. Operation is restarted by TSTR.

Rev. 5.00 Mar. 06, 2009 Pag

PEN1	, High-Z	 1		
			1 1	<u></u>
PEn —	High-Z			
		-		
n = 0 to 15				

Figure~9.125~~Error~Occurrence~in~Normal~Mode,~Recovery~in~PWM~Mode

- 11. Set PWM mode 1.
- 12. Initialize the pins with TIOR. (In PWM mode 1, the TIOC*B side is not initialized. I initialization is required, initialize in normal mode, then switch to PWM mode 1.)
- 13. Set MTU2 output with the PFC.
- 14. Operation is restarted by TSTR.

F! 0.106	F 0	. 3.7	116 1 B	
n = 0 to 15				
PEn —	High-Z			
	1 1 1			-

Figure 9.126 Error Occurrence in Normal Mode, Recovery in PWM Mode

- 11. Set PWM mode 2.
- 12. Initialize the pins with TIOR. (In PWM mode 2, the cycle register pins are not initialization is required, initialize in normal mode, then switch to PWM mode 2.)
- 13. Set MTU2 output with the PFC.
- 14. Operation is restarted by TSTR.

Note: PWM mode 2 can only be set for channels 0 to 2, and therefore TOER setting is necessary.

PEn _	High-Z
n = 0 to 15	

Figure 9.127 Error Occurrence in Normal Mode, Recovery in Phase Counting

- 11. Set phase counting mode.
- 12. Initialize the pins with TIOR.
- 13. Set MTU2 output with the PFC.
- 14. Operation is restarted by TSTR.

Note: Phase counting mode can only be set for channels 1 and 2, and therefore TOER so not necessary.

RENESAS

Port output				T		! !	! !	! ! !			1	1
PE8	Hig	h-Z								i	Ī	Ī
PE9	Hig	h-Z			 !			:			1	:
PE11 —	Hig	h-Z			 r							
						•		•				

Figure 9.128 Error Occurrence in Normal Mode, Recovery in Complementary PWM Mode

- 11. Initialize the normal mode waveform generation section with TIOR.
- 12. Disable operation of the normal mode waveform generation section with TIOR.
- 13. Disable channel 3 and 4 output with TOER.
- 14. Select the complementary PWM output level and cyclic output enabling/disabling v TOCR.
- 15. Set complementary PWM.
- 16. Enable channel 3 and 4 output with TOER.
- 17. Set MTU2 output with the PFC.
- 18. Operation is restarted by TSTR.

Rev. 5.00 Mar. 06, 2009 Pag

PE8 High-Z PE9 High-Z PE11 High-Z	Port output		i	į į	i i	i i	i i	1	i i	i i		i	i I	i I	i I	ï
PE9 High-Z PE11 High-Z			ligh-Z	1				F								I
PE11 High-Z		 	ligh-Z		i		i		<u> </u>		_	:	: 	: 		÷
			1	1		<u> </u>						 		 	 	 -
	PE11		ligh-Z	<u> </u>	l	i		<u>: </u>	l			<u>.</u>	<u>.</u>	<u>.</u>	<u> </u>	ļ.,

Figure 9.129 Error Occurrence in Normal Mode, Recovery in Reset-Synchronized PWM Mode

1 to 13 are the same as in figure 9.124.

- 14. Select the reset-synchronized PWM output level and cyclic output enabling/disabling TOCR.
- 15. Set reset-synchronized PWM.
- 16. Enable channel 3 and 4 output with TOER.
- 17. Set MTU2 output with the PFC.
- 18. Operation is restarted by TSTR.

Rev. 5.00 Mar. 06, 2009 Page 358 of 770

REJ09B0243-0500

PEn —	High-Z	<u> </u>	ļ	 			 	į
PEn	High-Z			 	 	 	 	
n = 0 to 15				-				

Figure 9.130 Error Occurrence in PWM Mode 1, Recovery in Normal Mo

- 1. After a reset, MTU2 output is low and ports are in the high-impedance state.
- 2. Set PWM mode 1.
- 3. For channels 3 and 4, enable output with TOER before initializing the pins with TIO
- 4. Initialize the pins with TIOR. (The example shows initial high output, with low ou compare-match occurrence. In PWM mode 1, the TIOC*B side is not initialized.)
- 5. Set MTU2 output with the PFC.
- 6. The count operation is started by TSTR.
- 7. Output goes low on compare-match occurrence.
- 8. An error occurs.
- 9. Set port output with the PFC and output the inverse of the active level.
- 10. The count operation is stopped by TSTR.
- 11. Set normal mode.
- 12. Initialize the pins with TIOR.
- 13. Set MTU2 output with the PFC.
- 14. Operation is restarted by TSTR.

Rev. 5.00 Mar. 06, 2009 Pag

Figure 0 121	Енион Оссиниста	o in DWM Mode 1	Decovery in DWM Mode
n = 0 to 15			
PEn	High-Z		
PEn	HIGH-Z	ļ 	

Figure 9.131 Error Occurrence in PWM Mode 1, Recovery in PWM Mode

- 11. Not necessary when restarting in PWM mode 1.
- 12. Initialize the pins with TIOR. (In PWM mode 1, the TIOC*B side is not initialized.)
- 13. Set MTU2 output with the PFC.
- 14. Operation is restarted by TSTR.

RENESAS

PEn	High-Z	1	İ	 	} !
n = 0 to 15					

Figure 9.132 Error Occurrence in PWM Mode 1, Recovery in PWM Mode

11. Set PWM mode 2.

necessary.

12. Initialize the pins with TIOR. (In PWM mode 2, the cycle register pins are not initial

Note: PWM mode 2 can only be set for channels 0 to 2, and therefore TOER setting is

- 13. Set MTU2 output with the PFC.
- 14. Operation is restarted by TSTR.

E' 0 122	E	·	D11/1/1 1 1	. J. 1 D		- DI	C	4 • .	
n = 0 to 15									
PEn	High-Z								
	- +	- i	-			-;			
PEn —	High-Z	-							

Figure 9.133 Error Occurrence in PWM Mode 1, Recovery in Phase Counting

- 11. Set phase counting mode.
- 12. Initialize the pins with TIOR.
- 13. Set MTU2 output with the PFC.
- 14. Operation is restarted by TSTR.

Note: Phase counting mode can only be set for channels 1 and 2, and therefore TOER s not necessary.

Rev. 5.00 Mar. 06, 2009 Page 362 of 770 REJ09B0243-0500

RENESAS

Т	Fort output				1					ī	
- [PE8 —	¦ High-Z ¦	i	L			 	<u></u>		L	
- 1	100		1		T	 	 				
	PE9 —	High-Z	1	1	1					1	
	113			T	1	1	 i		1		1
	PE11 —	High-Z		1	ī					1	
		 				 	 				,

Figure 9.134 Error Occurrence in PWM Mode 1, Recovery in Complementary PWM Mode

- 11. Set normal mode for initialization of the normal mode waveform generation section
- 12. Initialize the PWM mode 1 waveform generation section with TIOR.
- 13. Disable operation of the PWM mode 1 waveform generation section with TIOR.
- 14. Disable channel 3 and 4 output with TOER.
- 15. Select the complementary PWM output level and cyclic output enabling/disabling v TOCR.
- 16. Set complementary PWM.
- 17. Enable channel 3 and 4 output with TOER.
- 18. Set MTU2 output with the PFC.
- 19. Operation is restarted by TSTR.

Rev. 5.00 Mar. 06, 2009 Pag

Fort output	1 1 1			 		1	1	
PE8	¦ High-Z			 		1	L	Ī
		_1						
PE9 —	High-Z	- 1		1 1	- 1	1	1	
1 223	1 1 1				,	<u> </u>		1
PE11 —	High-Z	1			- 1	-	!	

Figure 9.135 Error Occurrence in PWM Mode 1, Recovery in Reset-Synchronized PWM Mode

1 to 14 are the same as in figure 9.134.

- 15. Select the reset-synchronized PWM output level and cyclic output enabling/disabling TOCR.
- 16. Set reset-synchronized PWM.
- 17. Enable channel 3 and 4 output with TOER.
- 18. Set MTU2 output with the PFC.
- 19. Operation is restarted by TSTR.

Rev. 5.00 Mar. 06, 2009 Page 364 of 770

REJ09B0243-0500

PEn	High-Z		ļ¦	·
PEn —	High-Z	 		· · · · · · · · · · · · · · · · · · ·
n = 0 to 15				

Figure 9.136 Error Occurrence in PWM Mode 2, Recovery in Normal Mo

- 1. After a reset, MTU2 output is low and ports are in the high-impedance state.
- 2. Set PWM mode 2.
- 3. Initialize the pins with TIOR. (The example shows initial high output, with low ou compare-match occurrence. In PWM mode 2, the cycle register pins are not initialize example, TIOC *A is the cycle register.)
- 4. Set MTU2 output with the PFC.
- 5. The count operation is started by TSTR.
- 6. Output goes low on compare-match occurrence.
- 7. An error occurs.
- 8. Set port output with the PFC and output the inverse of the active level.
- 9. The count operation is stopped by TSTR.
- 10. Set normal mode.
- 11. Initialize the pins with TIOR.
- 12. Set MTU2 output with the PFC.
- 13. Operation is restarted by TSTR.

PEn	¦High-Z¦					
 		 		-	+ + +	
PEn	¡High-Zị	l .	!	1		
	÷					
n = 0 to 15						
11 = 0.15.15						

Figure 9.137 Error Occurrence in PWM Mode 2, Recovery in PWM Mode

- 10. Set PWM mode 1.
- 11. Initialize the pins with TIOR. (In PWM mode 1, the TIOC*B side is not initialized.)
- 12. Set MTU2 output with the PFC.
- 13. Operation is restarted by TSTR.

REJ09B0243-0500

PEn	¦Hign-Z¦			I	i i	
	1 1	· ·	<u> </u>		1	
PEn	High-Z	l		J		
n = 0 to 15						

Figure 9.138 Error Occurrence in PWM Mode 2, Recovery in PWM Mod

- 10. Not necessary when restarting in PWM mode 2.
- 11. Initialize the pins with TIOR. (In PWM mode 2, the cycle register pins are not initial
- 12. Set MTU2 output with the PFC.
- 13. Operation is restarted by TSTR.

Rev. 5.00 Mar. 06, 2009 Pag REJ09

E! 0 120	T7		: DX	171 / 1 1	1.1.2	ъ.	 . : D	1	G	4
n = 0 to 15										
				-!	-		 			
PEn	_	High-Z		!						
				1	· · · · ·		 			
PEn		High-Z		-						

Figure 9.139 Error Occurrence in PWM Mode 2, Recovery in Phase Counting

- 10. Set phase counting mode.
- 11. Initialize the pins with TIOR.
- 12. Set MTU2 output with the PFC.
- 13. Operation is restarted by TSTR.

PEn —	¦High-Z¦	lJ		J		
			<u> </u>		77 7 7	
PEn	High-Z	l		J		
n = 0 to 15						

Figure 9.140 Error Occurrence in Phase Counting Mode, Recovery in Normal

- 1. After a reset, MTU2 output is low and ports are in the high-impedance state.
- 2. Set phase counting mode.
- 3. Initialize the pins with TIOR. (The example shows initial high output, with low our compare-match occurrence.)
- 4. Set MTU2 output with the PFC.
- 5. The count operation is started by TSTR.
- 6. Output goes low on compare-match occurrence.
- 7. An error occurs.
- 8. Set port output with the PFC and output the inverse of the active level.
- 9. The count operation is stopped by TSTR.
- 10. Set in normal mode.
- 11. Initialize the pins with TIOR.
- 12. Set MTU2 output with the PFC.
- 13. Operation is restarted by TSTR.

n	= 0 to 15							
	PEn	High-Z	L]			L
	- ::: :		 		<u> </u>		1	ΪI
	PEn 💳	¦High-∠¦	- 1	- 1	1 :	- 1		1

Figure 9.141 Error Occurrence in Phase Counting Mode, Recovery in PWM M

- 10. Set PWM mode 1.
- 11. Initialize the pins with TIOR. (In PWM mode 1, the TIOC *B side is not initialized.)
- 12. Set MTU2 output with the PFC.
- 13. Operation is restarted by TSTR.

PEn —	¦Hign-Z¦	1		Ji		
PEn	High-Z		j		1 1	! !
n = 0 to 15	· · · · · · · · · · · · · · · · · · ·	! !		<u></u>	-! !	

Figure 9.142 Error Occurrence in Phase Counting Mode, Recovery in PWM

- 10. Set PWM mode 2.
- 11. Initialize the pins with TIOR. (In PWM mode 2, the cycle register pins are not initial
- 12. Set MTU2 output with the PFC.
- 13. Operation is restarted by TSTR.

Port output

PEn High-Z

PEn High-Z

n = 0 to 15

Figure 9.143 Error Occurrence in Phase Counting Mode, Recovery in Phase Counting Mode

1 to 9 are the same as in figure 9.140.

- 10. Not necessary when restarting in phase counting mode.
- 11. Initialize the pins with TIOR.
- 12. Set MTU2 output with the PFC.
- 13. Operation is restarted by TSTR.

Rev. 5.00 Mar. 06, 2009 Page 372 of 770

REJ09B0243-0500

TIOC3D			
Port output			
PE8	High-Z		
PE9	High-Z		
PE11	High-Z		

Figure 9.144 Error Occurrence in Complementary PWM Mode, **Recovery in Normal Mode**

- After a reset, MTU2 output is low and ports are in the high-impedance state.
- 2. Select the complementary PWM output level and cyclic output enabling/disabling v TOCR.
- 3. Set complementary PWM.
- 4. Enable channel 3 and 4 output with TOER.
- 5. Set MTU2 output with the PFC.
- 6. The count operation is started by TSTR.
- 7. The complementary PWM waveform is output on compare-match occurrence.
- 8. An error occurs.
- 9. Set port output with the PFC and output the inverse of the active level.
- 10. The count operation is stopped by TSTR. (MTU2 output becomes the complementa output initial value.)
- 11. Set normal mode. (MTU2 output goes low.)
- 12. Initialize the pins with TIOR.
- 13. Set MTU2 output with the PFC.
- 14. Operation is restarted by TSTR.

Rev. 5.00 Mar. 06, 2009 Pag

TIOC3D —		1 1	1 1	 ●Not ir	nitializ
Port output					
PE8	High-Z			 	. ļ
PE9	High-Z		<u> </u>	 <u> </u>	<u> </u>
PE11 —	High-Z				1

Figure 9.145 Error Occurrence in Complementary PWM Mode, Recovery in PWM Mode 1

- 11. Set PWM mode 1. (MTU2 output goes low.)
- 12. Initialize the pins with TIOR. (In PWM mode 1, the TIOC *B side is not initialized.)
- 13. Set MTU2 output with the PFC.
- 14. Operation is restarted by TSTR.

Rev. 5.00 Mar. 06, 2009 Page 374 of 770

REJ09B0243-0500

RENESAS

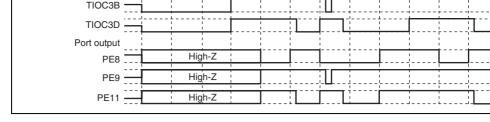


Figure 9.146 Error Occurrence in Complementary PWM Mode, Recovery in Complementary PWM Mode

- 11. Set MTU2 output with the PFC.
- 12. Operation is restarted by TSTR.
- 13. The complementary PWM waveform is output on compare-match occurrence.

RENESAS

Rev. 5.00 Mar. 06, 2009 Pag

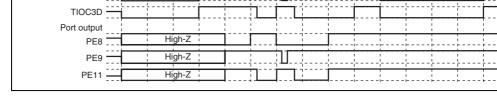


Figure 9.147 Error Occurrence in Complementary PWM Mode, Recovery in Complementary PWM Mode

- 11. Set normal mode and make new settings. (MTU2 output goes low.)
- 12. Disable channel 3 and 4 output with TOER.
- 13. Select the complementary PWM mode output level and cyclic output enabling/disable TOCR.
- 14. Set complementary PWM.
- 15. Enable channel 3 and 4 output with TOER.
- 16. Set MTU2 output with the PFC.
- 17. Operation is restarted by TSTR.

Rev. 5.00 Mar. 06, 2009 Page 376 of 770

REJ09B0243-0500

Port output		 		-	1		 	1 1	 		; ;
PE8	High-Z										
PE9	High-Z			Ш						ļ	
PE11	High-Z		1								
	 	,		,		,					

Figure 9.148 Error Occurrence in Complementary PWM Mode, Recovery in Reset-Synchronized PWM Mode

1 to 10 are the same as in figure 9.144.

- 11. Set normal mode. (MTU2 output goes low.)
- 12. Disable channel 3 and 4 output with TOER.
- 13. Select the reset-synchronized PWM mode output level and cyclic output enabling/d with TOCR.
- 14. Set reset-synchronized PWM.
- 15. Enable channel 3 and 4 output with TOER.
- 16. Set MTU2 output with the PFC.
- 17. Operation is restarted by TSTR.

Rev. 5.00 Mar. 06, 2009 Pag

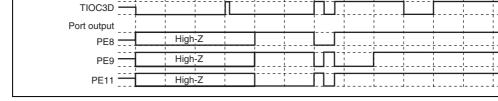


Figure 9.149 Error Occurrence in Reset-Synchronized PWM Mode, **Recovery in Normal Mode**

- 1. After a reset, MTU2 output is low and ports are in the high-impedance state.
- 2. Select the reset-synchronized PWM output level and cyclic output enabling/disabling TOCR.
- 3. Set reset-synchronized PWM.
- 4. Enable channel 3 and 4 output with TOER.
- 5. Set MTU2 output with the PFC.
- 6. The count operation is started by TSTR.
- 7. The reset-synchronized PWM waveform is output on compare-match occurrence.
- 8. An error occurs.
- 9. Set port output with the PFC and output the inverse of the active level.
- 10. The count operation is stopped by TSTR. (MTU2 output becomes the reset-synchron PWM output initial value.)
- 11. Set normal mode. (MTU2 positive phase output is low, and negative phase output is
- 12. Initialize the pins with TIOR.
- 13. Set MTU2 output with the PFC.
- 14. Operation is restarted by TSTR.

RENESAS

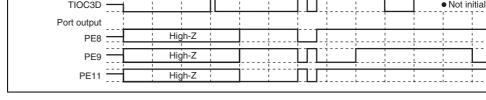


Figure 9.150 Error Occurrence in Reset-Synchronized PWM Mode, Recovery in PWM Mode 1

1 to 10 are the same as in figure 9.149.

- 11. Set PWM mode 1. (MTU2 positive phase output is low, and negative phase output
- 12. Initialize the pins with TIOR. (In PWM mode 1, the TIOC *B side is not initialized
- 13. Set MTU2 output with the PFC.
- 14. Operation is restarted by TSTR.

Rev. 5.00 Mar. 06, 2009 Pag



Figure 9.151 Error Occurrence in Reset-Synchronized PWM Mode, Recovery in Complementary PWM Mode

1 to 10 are the same as in figure 9.149.

- 11. Disable channel 3 and 4 output with TOER.
- 12. Select the complementary PWM output level and cyclic output enabling/disabling w TOCR.
- 13. Set complementary PWM. (The MTU2 cyclic output pin goes low.)
- 14. Enable channel 3 and 4 output with TOER.
- 15. Set MTU2 output with the PFC.
- 16. Operation is restarted by TSTR.

Rev. 5.00 Mar. 06, 2009 Page 380 of 770

TIOC3D -											
Port output	<u> </u>		! !	į						į	
PE8 =		High-Z					I				
PE9		High-Z				Ш	L		<u> </u>	<u> </u>	
PE11 -		High-Z			; :	П		-		i	!

Figure 9.152 Error Occurrence in Reset-Synchronized PWM Mode, Recovery in Reset-Synchronized PWM Mode

1 to 10 are the same as in figure 9.149.

- 11. Set MTU2 output with the PFC.
- 12. Operation is restarted by TSTR.
- 13. The reset-synchronized PWM waveform is output on compare-match occurrence.

Rev. 5.00 Mar. 06, 2009 Pag

Rev. 5.00 Mar. 06, 2009 Page 382 of 770

- Each of the POE0, POE1, POE3*, and POE8 input pins can be set for falling edge, I $P\phi/16 \times 16$, or $P\phi/128 \times 16$ low-level sampling.
- High-current pins and the pins for channel 0 of the MTU2 can be placed in high-imp
- state by POE0, POE1, POE3*, and POE8 pin falling-edge or low-level sampling. • High-current pins can be placed in high-impedance state when the high-current pin of
- levels are compared and simultaneous active-level output continues for one cycle or
- High-current pins and the pins for channel 0 of the MTU2 can be placed in high-imp state by modifying the POE register settings.
- Interrupts can be generated by input-level sampling or output-level comparison result The POE has input level detection circuits, output level comparison circuits, and a high-

request/interrupt request generating circuit as shown in figure 10.1, Block Diagram of P In addition to control by the POE, high-current pins can be placed in high-impedance sta the oscillator stops or in software standby state. For details, refer to appendix A, Pin Sta

Note: * The POE3 pin is supported only by the SH7125.

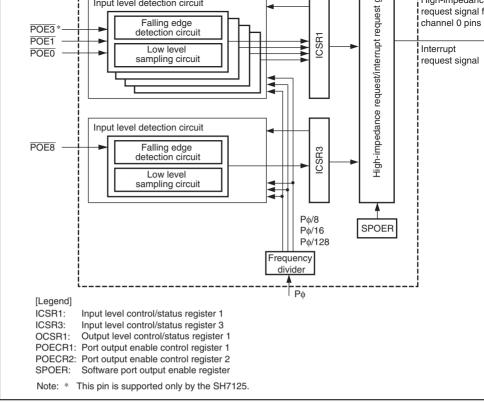


Figure 10.1 Block Diagram of POE

Rev. 5.00 Mar. 06, 2009 Page 384 of 770

Note: * When the POE3 function is selected in the PFC, the pin is pulled up inside th nothing is input to it. The POE3 pin is supported only by the SH7125.

I/O

Table 10.2 shows output-level comparisons with pin combinations.

Table 10.2 Pin Combinations

Pin Combination

		· · · · • • · · · · · · · · · · · · · ·
PE9/TIOC3B and PE11/TIOC3D	Output	The high-current pins for the MTU2 are p
PE12/TIOC4A and PE14/TIOC4C		high-impedance state when the pins simultaneously output an active level (lov
PE13/TIOC4B and PE15/TIOC4D	_	when the output level select P (OLSP) bitimer output control register (TOCR) in the 0 or high level when the bit is 1) for one cycles of the peripheral clock $(P\phi)$.
		This active level comparison is done who MTU2 output function or general output f selected in the pin function controller. If a function is selected, the output level is no checked.
		Pin combinations for output comparison

Description

registers.

impedance control can be selected by Pe

SPOER	R/W	H'00
POECR1	R/W	H'00
POECR2	R/W	H'7700
	POECR1	POECR1 R/W

OCSR1

ICSR3

R/W

R/W

H'0000

H'0000

H'FFFFD002

H'FFFFD008

H'FFFFD00A

H'FFFFD00B

H'FFFFD00C

8, 1

8, 1

8

8

8, 1

Rev. 5.00 Mar. 06, 2009 Page 386 of 770

Output level control/status

Input level control/status

register 1

register 3

		Initial		
Bit	Bit Name	value	R/W	Description
15	POE3F	0	R/(W)*1	POE3 Flag
				(Supported only by the SH7125.)
				This flag indicates that a high impedance requebeen input to the POE3 pin.
				[Clearing conditions]
				 By writing 0 to POE3F after reading POE3F (when the falling edge is selected by bits 7 a ICSR1)
				 By writing 0 to POE3F after reading POE3F a high level input to POE3 is sampled at Pφ or Pφ/128 clock (when low-level sampling is by bits 7 and 6 in ICSR1) [Setting condition]
				[Setting Condition]
				 When the input set by ICSR1 bits 7 and 6 o the POE3 pin
14	_	0	R/(W)*1	Reserved
				This bit is always read as 0. The write value she always be 0.

				or by	r Pφ/128 clock (when low-level sampling is s y bits 3 and 2 in ICSR1) ng condition]
					Then the input set by ICSR1 bits 3 and 2 oc the $\overline{POE1}$ pin
12	POE0F	0	R/(W)*1	POE) Flag
					flag indicates that a high impedance reques input to the POE0 pin.
				[Clea	ring conditions]
					y writing 0 to POE0F after reading POE0F : when the falling edge is selected by bits 1 a

- ICSR1)
- By writing 0 to POE0F after reading POE0F a high level input to POE0 is sampled at Po/8
- or Pφ/128 clock (when low-level sampling is by bits 1 and 0 in ICSR1)
- [Setting condition] When the input set by ICSR1 bits 1 and 0 oc
- the POE0 pin Reserved

always be 0.

These bits are always read as 0. The write value

11 to 9 —

All 0

R

10: Accept request when POE3 input has been for 16 Pb/16 clock pulses and all are low lever the second 11: Accept reguest when POE3 input has been for 16 Pb/128 clock pulses and all are low le R/W*2 5, 4 All 0 Reserved These bits are always read as 0. The write value always be 0. R/W*2 3, 2 POE1M[1:0] 00 POE1 mode 1, 0 These bits select the input mode of the POE1 p 00: Accept request on falling edge of POE1 inp

These bits select the input mode of the POE3 p 00: Accept request on falling edge of POE3 inp 01: Accept request when POE3 input has been for 16 P\u00f6/8 clock pulses and all are low leve

01: Accept request when POE1 input has been for 16 Ph/8 clock pulses and all are low level 10: Accept request when POE1 input has been

for 16 Pb/128 clock pulses and all are low I

Rev. 5.00 Mar. 06, 2009 Pag

- Notes: 1. Writing 0 to this bit after reading it as 1 clears the flag and is the only allowed v
 - 2. Can be modified only once after a power-on reset.

10.3.2 Output Level Control/Status Register 1 (OCSR1)

OCSR1 is a 16-bit readable/writable register that controls the enable/disable of both outp comparison and interrupts, and indicates status.

Bit: 15	14	13	12	11	10	9	8	7	6	5	4	3	2
OSF1	-	-	-	-	-	OCE1	OIE1	-	-	-	-	-	-
Initial value: 0	0	0	0	0	0	0	0	0	0	0	0	0	0
₽/\\/.D//\\/\:	k1 ₪	D	D	D	D	D/M/*2	D/M	D	D	D	D	D	D

Notes: 1. Writing 0 to this bit after reading it as 1 clears the flag and is the only allowed way.

2. Can be modified only once after a power-on reset.

Initial

Bit	Bit Name	value	K/W	Description
15	OSF1	0	R/(W)*1	Output Short Flag 1
				This flag indicates that any one of the three pair MTU2 2-phase outputs to be compared has simultaneously become an active level.
				[Clearing condition]
				• By writing 0 to OSF1 after reading OSF1 =

[Setting condition]

RENESAS

When any one of the three pairs of 2-phase has simultaneously become an active level

770

Rev. 5.00 Mar. 06, 2009 Page 390 of 770

8	OIE1	0	R/W	Output Short Interrupt Enable 1
				This bit enables or disables interrupt requests vOSF1 bit in OCSR is set to 1.
				0: Interrupt requests disabled
				1: Interrupt requests enabled
7 to 0	_	All 0	R	Reserved
				These bits are always read as 0. The write valualways be 0.

Notes: 1. Writing 0 to this bit after reading it as 1 clears the flag and is the only allowed 2. Can be modified only once after a power-on reset.

10.3.3 Input Level Control/Status Register 3 (ICSR3)

ICSR3 is a 16-bit readable/writable register that selects the POE8 pin input mode, control

enable/disable of interrupts, and indicates status.

Bit	: 15	14	13	12	11	10	9	8	7	6	5	4	3	2
	-	-	-	POE8F	-	-	POE8E	PIE3	-	-	-	-	-	-
Initial value	: 0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	R	R	R	R/(W)*1	R	R	R/W*2	R/W	R	R	R	R	R	R

Notes: 1. Writing 0 to this bit after reading it as 1 clears the flag and is the only allowed way.

2. Can be modified only once after a power-on reset.

				 (when the failing edge is selected by bits 1 a ICSR3). By writing 0 to POE8F after reading POE8F a high level input to POE8 is sampled at Pf/or Pf/128 clock (when low-level sampling is by bits 1 and 0 in ICSR3) [Setting condition]
				When the input condition set by bits 1 and 0 ICSR3 occurs at the POE8 pin
11, 10	_	All 0	R	Reserved
				These bits are always read as 0. The write valualways be 0.
9	POE8E	0	R/W* ²	POE8 High-Impedance Enable
				This bit specifies whether to place the pins in hi impedance state when the POE8F bit in ICSR3 to 1.
				0: Does not place the pins in high-impedance s
				1: Places the pins in high-impedance state
8	PIE3	0	R/W	Port Interrupt Enable 3
				(Supported only by the SH7125. Write 0 to this SH7124.)

Rev. 5.00 Mar. 06, 2009 Page 392 of 770 REJ09B0243-0500

RENESAS

This bit enables or disables interrupt requests v POE8 bit in ICSR3 is set to 1.

0: Interrupt requests disabled1: Interrupt requests enabled

- 10: Accept request when POE8 input has bee for 16 Pφ/16 clock pulses and all are low le
 - 11: Accept request when POE8 input has bee
- for 16 P₀/128 clock pulses and all are low Notes: 1. Writing 0 to this bit after reading it as 1 clears the flag and is the only allowed

10.3.4 **Software Port Output Enable Register (SPOER)**

2. Can be modified only once after a power-on reset.

SPOER is an 8-bit readable/writable register that controls high-impedance state of the p

Bit:	7	6	5	4	3	2	1	0
[-	-	-	-	-	-	MTU2 CH0HIZ	MTU2 CH34HIZ
Initial value:	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R/W	R/W	R/W

Bit	Bit Name	Initial value	R/W	Description
7 to 3	_	All 0	R	Reserved
				These bits are always read as 0. The write should always be 0.
2	_	0	R/W	Reserved
				This bit is always read as 0. The write valualways be 0.

		By writing 1 to MTU2CH0HIZ
MTU2CH34HIZ 0	R/W	MTU2 Channel 3 and 4 Output High-Impeda
		This bit specifies whether to place the high-c pins for the MTU2 in high-impedance state.
		0: Does not place the pins in high-impedance
		[Clearing conditions]
		Power-on reset
		 By writing 0 to MTU2CH34HIZ after read MTU2CH34HIZ = 1

[Setting condition]

[Setting condition]

1: Places the pins in high-impedance state

1: Places the pins in high-impedance state

By writing 1 to MTU2CH34HIZ

Rev. 5.00 Mar. 06, 2009 Page 394 of 770

0

3	MTU2PE3ZE	0	R/W*	MTU2 PE3 High-Impedance Enable
				This bit specifies whether to place the PE3, pin for channel 0 in the MTU2 in high-imperstate when either POE8F or MTU2CH0HIZ to 1.
				0: Does not place the pin in high-impedanc
				1: Places the pin in high-impedance state
2	MTU2PE2ZE	0	R/W*	MTU2 PE2 High-Impedance Enable
				This bit specifies whether to place the PE2/pin for channel 0 in the MTU2 in high-imperstate when either POE8F or MTU2CH0HIZ to 1.
				0: Does not place the pin in high-impedance
				1: Places the pin in high-impedance state
1	MTU2PE1ZE	0	R/W*	MTU2 PE1 High-Impedance Enable
				This bit specifies whether to place the PE1/pin for channel 0 in the MTU2 in high-imperstate when either POE8F or MTU2CH0HIZ to 1.
				0: Does not place the pin in high-impedance
				1: Places the pin in high-impedance state

R/W

R

value

All 0

Description

should always be 0.

These bits are always read as 0. The write

Reserved

Bit

7 to 4

Bit Name

Rev. 5.00 Mar. 06, 2009 Pag

10.3.6 Port Output Enable Control Register 2 (POECR2)

POECR2 is a 16-bit readable/writable register that controls high-impedance state of the p

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	
	-	MTU2 P1CZE	MTU2 P2CZE	MTU2 P3CZE	-	-	-	-	-	-	1	-	-	-	
Initial value:	0	1	1	1	0	1	1	1	0	0	0	0	0	0	
R/W:	R	R/W*	R/W*	R/W*	R	R/W*	R/W*	R/W*	R	R	R	R	R	R	

Note: * Can be modified only once after a power-on reset.

Bit	Bit Name	Initial value	R/W	Description
15	_	0	R	Reserved
				This bit is always read as 0. The write value always be 0.
14	MTU2P1CZE	1	R/W*	MTU2 Port 1 Output Comparison/High-Imped Enable
				This bit specifies whether to compare output the MTU2 high-current PE9/TIOC3B and PE11/TIOC3D pins and to place them in high impedance state when the OSF1 bit is set to the OEC1 bit is 1 or when any one of the POPOE1F, POE3F, and MTU2CH34HIZ bits is a set of the POE1F.
				0: Does not compare output levels or place the high-impedance state
				1: Compares output levels and places the pir high-impedance state
				9p

Rev. 5.00 Mar. 06, 2009 Page 396 of 770

12	MTU2P3CZE	1	R/W*	MTU2 Port 3 Output Comparison/High-Impe Enable
				This bit specifies whether to compare output the MTU2 high-current PE13/TIOC4B and PE15/TIOC4D pins and to place them in high impedance state when the OSF1 bit is set to the OEC1 bit is 1 or when any one of the POE1F, POE3F, and MTU2CH34HIZ bits is
				Does not compare output levels or place high-impedance state
				Compares output levels and places the p high-impedance state
11	_	0	R	Reserved
				This bit is always read as 0. The write value always be 0.

R/W*

R

1: Compares output levels and places the p

These bits are always read as 1. The write

These bits are always read as 0. The write

high-impedance state

Note: Can be modified only once after a power-on reset.

All 1

0

10 to 8 —

7 to 0

Reserved

Reserved

should always be 1.

should always be 0.

REJ09

Rev. 5.00 Mar. 06, 2009 Pag

(PE12/TIOC4A and PE14/TIOC4C) SPOER setting

MTU2 high-current pins (PE13/TIOC4B and PE15/TIOC4D) SPOER setting

MTU2 channel 0 pin (PE0/TIOC0A) SPOER setting

WITOE HIGH CONCIN PINS

(PE0/TIOC0A)SPOER setting((POE8F • POE8E) + (MTU2CHMTU2 channel 0 pinInput level detection or
SPOER settingMTU2PE1ZE
((POE8F • POE8E) + (MTU2CHMTU2 channel 0 pinInput level detection or
(PE2/TIOC0C)MTU2PE2ZE
((POE8F • POE8E) + (MTU2CH

imput icver acteditori,

Input level detection or

If the input conditions set by ICSR1 occur on the POE0, POE1, POE3*, and POE8 pins, current pins and the pins for channel 0 of the MTU2 are placed in high-impedance state.

SPOER setting

W 1 0 2 1 2 0 2 L 3

MTU2P3CZE •

MTU2PE0ZE

MTU2PE3ZE

((POE3F + POE1F + POE0F) +

(OSF1 • OCE1) + (MTU2CH34F

((POE3F + POE1F + POE0F) +

((POE8F • POE8E) + (MTU2CH

OCE1) + (MTU2CH34HIZ))

10.4.1 Input Level Detection Operation

however, that these high-current and MTU2 pins enter high-impedance state only when g

MTU2 channel 0 pin

(PE3/TIOC0D)

input/output function or MTU2 function is selected for these pins.(1) Falling Edge Detection

(1) Tuning Euge Dete

When a change from a high to low level is input to the $\overline{POE0}$, $\overline{POE1}$, $\overline{POE3}$ *, and $\overline{POE8}$ high-current pins and the pins for channel 0 of the MTU2 are placed in high-impedance so Figure 10.2 shows a sample timing after the level changes in input to the $\overline{POE0}$, $\overline{POE1}$, $\overline{POE2}$, $\overline{POE1}$, $\overline{POE2}$, $\overline{POE1}$, $\overline{POE2}$, $\overline{POE2}$, $\overline{POE3}$

Rev. 5.00 Mar. 06, 2009 Page 398 of 770

Note: * This pin is supported only by the SH7125.

and POE8 pins until the respective pins enter high-impedance state.

RENESAS

Note: * The other high-current pins also enter the high-impedance state in the similar timing.

Figure 10.2 Falling Edge Detection

(2) Low-Level Detection

Figure 10.3 shows the low-level detection operation. Sixteen continuous low levels are swith the sampling clock selected by ICSR1. If even one high level is detected during this the low level is not accepted.

The timing when the high-current pins enter the high-impedance state after the sampling input is the same in both falling-edge detection and in low-level detection.

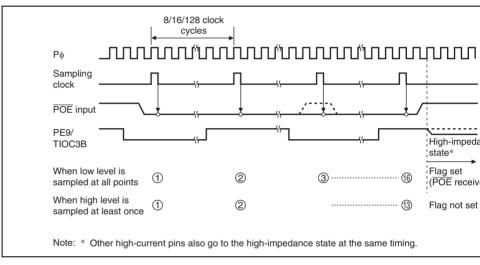


Figure 10.3 Low-Level Detection Operation

Rev. 5.00 Mar. 06, 2009 Pag

mign impedance state

Figure 10.4 Output-Level Compare Operation

10.4.3 Release from High-Impedance State

High-current pins that have entered high-impedance state due to input-level detection car released either by returning them to their initial state with a power-on reset, or by clearing the flags in bits 12 to 15 (POE0F to POE3F and POE8F) in ICSR1. However, note that w level sampling is selected by bits 0 to 7 in ICSR1, just writing 0 to a flag is ignored (the f cleared); flags can be cleared by writing 0 to it only after a high level is input to the POE is sampled.

High-current pins that have entered high-impedance state due to output-level detection careleased either by returning them to their initial state with a power-on reset, or by clearing in bit 15 (OCF1) in OCSR1. However, note that just writing 0 to a flag is ignored (the flacleared); flags can be cleared only after an inactive level is output from the high-current plactive-level outputs can be achieved by setting the MTU2 internal registers.

Rev. 5.00 Mar. 06, 2009 Page 400 of 770

high impedance due to short-circuit detection by the MTU2.

Figure 10.5 shows the state of a pin for which the POE input has selected high impedance handling with the timer output selected when a power-on reset is issued from the WDT.

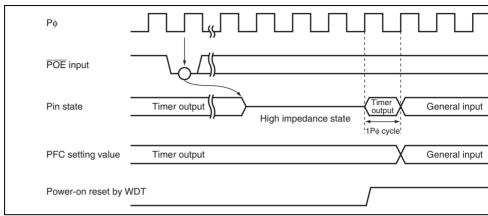


Figure 10.5 Pin State when a Power-On Reset is Issued from the Watchdog Ti

11.1 **Features**

- Can be used to ensure the clock settling time: Use the WDT to revoke software stand
- Can switch between watchdog timer mode and interval timer mode.
- Generates internal resets in watchdog timer mode: Internal resets occur after counter
- An interrupt is generated in interval timer mode

An interval timer interrupt is generated when the counter overflows.

- Choice of eight counter input clocks
 - Eight clocks (×1 to ×1/4096) that are obtained by dividing the peripheral clock can be
- Choice of two resets

Power-on reset and manual reset are available.

Rev. 5.00 Mar. 06, 2009 Pag REJ09

WDTS300B_000020030200

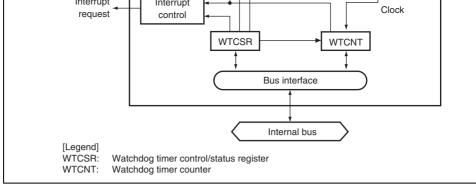


Figure 11.1 Block Diagram of WDT

Rev. 5.00 Mar. 06, 2009 Page 404 of 770

RENESAS

Rev. 5.00 Mar. 06, 2009 Pag

11.3.1 Watchdog Timer Counter (WTCNT)

WTCNT is an 8-bit readable/writable register that increments on the selected clock. Whe overflow occurs, it generates a reset in watchdog timer mode and an interrupt in interval mode. The WTCNT counter is not initialized by an internal reset due to the WDT overflow WTCNT counter is initialized to H'00 only by a power-on reset using the RES pin. Use a access to write to the WTCNT counter, with H'5A in the upper byte. Use a byte access to WTCNT.

Note: WTCNT differs from other registers in that it is more difficult to write to. See sec 11.3.3, Notes on Register Access, for details.

Bit:	7	6	5	4	3	2	1	0
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/W							

Rev. 5.00 Mar. 06, 2009 Page 406 of 770

WTCSR differs from other registers in that it is more difficult to write to. See se 11.3.3, Notes on Register Access, for details.

Bit:		6	5	4		2	1	0
	TME	WT/IT	RSTS	WOVF	IOVF		CKS[2:0]	
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

		Initial		
Bit	Bit Name	Value	R/W	Description
7	TME	0	R/W	Timer Enable
				Starts and stops timer operation. Clear this bit tusing the WDT to revoke software standby mod
				Timer disabled: Count-up stops and WTCNT retained
				1: Timer enabled
6	WT/IT	0	R/W	Timer Mode Select
				Selects whether to use the WDT as a watchdoo an interval timer.
				0: Interval timer mode
				1: Watchdog timer mode
				Note: If WT/IT is modified when the WDT is o the up-count may not be performed corr

				O. INO OVERHOW
				1: WTCNT has overflowed in watchdog timer mo
3	IOVF	0	R/W	Interval Timer Overflow
				Indicates that the WTCNT has overflowed in inte mode. This bit is not set in watchdog timer mode
				0: No overflow
				1: WTCNT has overflowed in interval timer mode
2 to 0	CKS[2:0]	000	R/W	Clock Select 2 to 0
				These bits select the clock to be used for the W count from the eight types obtainable by dividing peripheral clock $(P\phi)$. The overflow period that is inside the parenthesis in the table is the value w

0. No overflow

peripheral clock (P\phi) is 40 MHz.

Note: If bits CKS2 to CKS0 are modified when

000: Ρφ (6.4 μs) 001: $P_{\phi}/4$ (25.6 µs) 010: Pφ/16 (102.4 μs) 011: Pφ/32 (204.8 μs) 100: Pφ/64 (409.6 μs) 101: P\psi/256 (1.64 ms) 110: P\(\phi / 1024 \) (6.55 ms) 111: P\(\phi /4096 \) (26.21 ms)

is operating, the up-count may not be pe correctly. Ensure that these bits are mod when the WDT is not operating. Rev. 5.00 Mar. 06, 2009 Page 408 of 770

WTCNT write	15 8	7
Address: H'FFFFE810	H'5A	Write data
WTCSR write	- 1 <u>5</u> 8	7
Address: H'FFFFE812	H'A5	Write data

Figure 11.2 Writing to WTCNT and WTCSR

Rev. 5.00 Mar. 06, 2009 Pag

- Set the type of count clock used in the CKS2 to CKS0 bits in WTCSR and the initial
 the counter in the WTCNT counter. These values should ensure that the time till coun
 overflow is longer than the clock oscillation settling time.
 Transition to software standby mode by executing a SLEEP instruction to stop the clo
- 3. Transition to software standby mode by executing a SLEEP instruction to stop the clo4. The WDT starts counting by detecting a change in the level input to the NMI or IRQ
 - When the WDT count overflows, the CPG starts supplying the clock and the LSI resu operation. The WOVF flag in WTCSR is not set when this happens.

11.4.2 Using Watchdog Timer Mode

While operating in watchdog timer mode, the WDT generates an internal reset of the type specified by the RSTS bit in WTCSR and asserts a signal through the WDTOVF pin even the counter overflows.

clock in the CKS2 to CKS0 bits, and set the initial value of the counter in the WTCN' counter.

1. Set the WT/IT bit in WTCSR to 1, set the reset type in the RSTS bit, set the type of co

- 2. Set the TME bit in WTCSR to 1 to start the count in watchdog timer mode.
- 3. While operating in watchdog timer mode, rewrite the counter periodically to prevent counter from overflowing.
- 4. When the counter overflows, the WDT sets the WOVF flag in WTCSR to 1, asserts a through the WDTOVF pin for one cycle of the count clock specified by the CKS2 to bits, and generates a reset of the type specified by the RSTS bit. The counter then rest counting.

Rev. 5.00 Mar. 06, 2009 Page 410 of 770

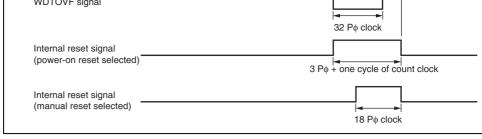


Figure 11.3 Operation in Watchdog Timer Mode (When WTCNT Count Clock is Specified to Pφ/32 by CKS2 to CKS0)

11.4.3 Using Interval Timer Mode

When operating in interval timer mode, interval timer interrupts are generated at every of the counter. This enables interrupts to be generated at set periods.

- 1. Clear the WT/IT bit in WTCSR to 0, set the type of count clock in the CKS2 to CKS set the initial value of the counter in the WTCNT counter.
- 2. Set the TME bit in WTCSR to 1 to start the count in interval timer mode.
- 3. When the counter overflows, the WDT sets the IOVF flag in WTCSR to 1 and an in timer interrupt request is sent to the INTC. The counter then resumes counting.

Rev. 5.00 Mar. 06, 2009 Pag

11.5.2 WDTOVF Signal Connection

If \overline{WDTOVF} is not used, leave the pin open. Do not pull down the \overline{WDTOVF} pin. When absolutely necessary, pull it down through a resistor of 1 M Ω or larger.

Rev. 5.00 Mar. 06, 2009 Page 412 of 770

- Choice of asynchronous or clock synchronous serial communication mode
- Asynchronous mode (channels 0 to 2 in the SH7125, channels 0 to 2 in the SH7124)
 - Serial data communication is performed by start-stop in character units. The SCI communicate with a universal asynchronous receiver/transmitter (UART), an asy communication interface adapter (ACIA), or any other communications chip that a standard asynchronous serial system. There are twelve selectable serial data
 - Data length: 7 or 8 bits
 - Stop bit length: 1 or 2 bits
 - Parity: Even, odd, or none
 - Multiprocessor communications

communication formats.

- Receive error detection: Parity, overrun, and framing errors
- Break detection: Break is detected by reading the RXD pin level directly when a
- error occurs. • Clock synchronous mode (channels 0 to 2 in the SH7125, channels 0 and 2 in the SH — Serial data communication is synchronized with a clock signal. The SCIF can co

with other chips having a clock synchronous communication function.

- Data length: 8 bits
- Receive error detection: Overrun errors
- Full duplex communication: The transmitting and receiving sections are independen SCI can transmit and receive simultaneously. Both sections use double buffering, so speed continuous data transfer is possible in both transmit and receive directions.
- On-chip baud rate generator with selectable bit rates
- Internal or external transmit/receive clock source: From either baud rate generator (i clock) or SCK pin (external clock)
- Choice of LSB-first or MSB-first data transfer (except for 7-bit data in asynchronous

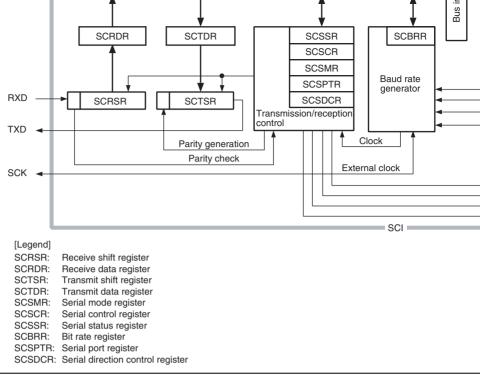


Figure 12.1 Block Diagram of SCI

	RXD1	Input	SCI1 receive data input			
	TXD1	Output	SCI1 transmit data output			
2	SCK2	I/O	SCI2 clock input/output			
	RXD2	Input	SCI2 receive data input			
	TXD2	Output	SCI2 transmit data output			
Notes: 1. Pin names SCK, RXD, and TXD are used in the description for all channels,						

30N1"

the channel designation. 2. This pin is supported only by the SH7125. Channel 1 in the SH7124 is only for asynchronous mode.

SCIT Clock input/output SCI1 receive data input

1/0

	Serial status register_0	SCSSR_0	R/W	H'84	H'FFFFC008	8
	Receive data register_0	SCRDR_0	_	_	H'FFFFC00A	8
	Serial direction control register_0	SCSDCR_0	R/W	H'F2	H'FFFFC00C	8
	Serial port register_0	SCSPTR_0	R/W	H'0x	H'FFFFC00E	8
1	Serial mode register_1	SCSMR_1	R/W	H'00	H'FFFFC080	8
	Bit rate register_1	SCBRR_1	R/W	H'FF	H'FFFFC082	8
	Serial control register_1	SCSCR_1	R/W	H'00	H'FFFFC084	8
	Transmit data register_1	SCTDR_1	_	_	H'FFFFC086	8
	Serial status register_1	SCSSR_1	R/W	H'84	H'FFFFC088	8
	Receive data register_1	SCRDR_1	_	_	H'FFFFC08A	8
	Serial direction control register_1	SCSDCR_1	R/W	H'F2	H'FFFFC08C	8
	Serial port register_1	SCSPTR_1	R/W	H'0x	H'FFFFC08E	8
2	Serial mode register_2	SCSMR_2	R/W	H'00	H'FFFFC100	8
	Bit rate register_2	SCBRR_2	R/W	H'FF	H'FFFFC102	8
	Serial control register_2	SCSCR_2	R/W	H'00	H'FFFFC104	8
	Transmit data register_2	SCTDR_2	_	_	H'FFFFC106	8
	Serial status register_2	SCSSR_2	R/W	H'84	H'FFFFC108	8
	Receive data register_2	SCRDR_2	_	_	H'FFFFC10A	8
	Serial direction control register_2	SCSDCR_2	R/W	H'F2	H'FFFFC10C	8
	Serial port register_2	SCSPTR_2	R/W	H'0x	H'FFFFC10E	8

SCSCR_0

SCTDR_0

H'00

H'FFFFC004

H'FFFFC006

8

8

R/W

RENESAS

Serial control register_0

Transmit data register_0

Rev. 5.00 Mar. 06, 2009 Page 416 of 770

REJ09B0243-0500

12.3.2 Receive Data Register (SCRDR)

SCRDR is a register that stores serial receive data. After receiving one byte of serial dat transfers the received data from the receive shift register (SCRSR) into SCRDR for store completes operation. After that, SCRSR is ready to receive data.

Since SCRSR and SCRDR work as a double buffer in this way, data can be received con

SCRDR is a read-only register and cannot be written to by the CPU.

12.3.3 Transmit Shift Register (SCTSR)

into SCTSR, and then transmits the data serially from the TXD pin, LSB (bit 0) first. At transmitting one data byte, the SCI automatically loads the next transmit data from SCT SCTSR and starts transmitting again. If the TDRE flag in the serial status register (SCSS to 1, the SCI does not transfer data from SCTDR to SCTSR. The CPU cannot read or w SCTSR directly.

SCTSR transmits serial data. The SCI loads transmit data from the transmit data register

RENESAS

Rev. 5.00 Mar. 06, 2009 Pag

1000 1000 1000 1000 1000 1000 1000

12.3.5 Serial Mode Register (SCSMR)

SCSMR is an 8-bit register that specifies the SCI serial communication format and select clock source for the baud rate generator.

The CPU can always read and write to SCSMR.

Initial

Bit:	7	6	5	4	3	2	1	0
	C/Ā	CHR	PE	O/E	STOP	MP	CKS	6[1:0]
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit	Bit Name	value	R/W	Description
7	C/A	0	R/W	Communication Mode
				Selects whether the SCI operates in asynchror clock synchronous mode.
				0: Asynchronous mode
				1: Clock synchronous mode (Channel 1 in the is not available.)

Rev. 5.00 Mar. 06, 2009 Page 418 of 770

REJ09B0243-0500

				added nor checked, regardless of the PE sett 0: Parity bit not added or checked 1: Parity bit added and checked* Note: * When PE is set to 1, an even or odd is added to transmit data, depending parity mode (O/E) setting. Receive da is checked according to the even/odd mode setting.
4	O/E	0	R/W	Parity mode
				Selects even or odd parity when parity bits ar and checked. The O/Ē setting is used only in asynchronous mode and only when the parity (PE) is set to 1 to enable parity addition and of the O/Ē setting is ignored in clock synchronous

Selects whether to add a parity bit to transmit to check the parity of receive data, in asynchi mode. In clock synchronous mode, a parity b

or in asynchronous mode when parity addition

If even parity is selected, the parity bit is adde transmit data to make an even number of 1s transmitted character and parity bit combined data is checked to see if it has an even numb the received character and parity bit combine

checking is disabled. 0: Even parity 1: Odd parity

If odd parity is selected, the parity bit is added transmit data to make an odd number of 1s ir transmitted character and parity bit combined data is checked to see if it has an odd number the received character and parity bit combine

REJ09

Rev. 5.00 Mar. 06, 2009 Pag

				bit is 1, it is treated as a stop bit, but if the second bit is 0, it is treated as the start bit of the next in character.
				Notes: 1. When transmitting, a single 1-bit is a the end of each transmitted characte
				When transmitting, two 1 bits are add end of each transmitted character.
2	MP	0	R/W	Multiprocessor Mode (only in asynchronous mo
				Enables or disables multiprocessor mode. The O/E bit settings are ignored in multiprocessor r
				0: Multiprocessor mode disabled
				1: Multiprocessor mode enabled
1, 0	CKS[1:0]	00	R/W	Clock Select 1 and 0
				Select the internal clock source of the on-chip generator. Four clock sources are available. Pop/16 and Pop/64. For further information on the

00: Pφ 01: Pφ/4 10: Pφ/16 11: Pφ/64

Note: Pø: Peripheral clock

source, bit rate register settings, and baud rate section 12.3.10, Bit Rate Register (SCBRR).

REJ09B0243-0500

Rev. 5.00 Mar. 06, 2009 Page 420 of 770

			status register (SCSSR) is set to 1 after seria data is sent from the transmit data register (S the transmit shift register (SCTSR).
			TXI can be canceled by clearing the TDRE fla after reading TDRE = 1 or by clearing the TIE
			Transmit-data-empty interrupt request (TXI disabled
			Transmit-data-empty interrupt request (TXI enabled
RIE	0	R/W	Receive Interrupt Enable
			Enables or disables a receive-data-full interru and a receive error interrupt (ERI) to be issue the RDRF flag in SCSSR is set to 1 after the received is transferred from the receive shift r (SCRSR) to the receive data register (SCRDF
			RXI can be canceled by clearing the RDRF flareading RDRF =1. ERI can be canceled by cl FER, PER, or ORER flag to 0 after reading 1 flag. Both RXI and ERI can also be canceled clearing the RIE bit to 0.
			Receive-data-full interrupt (RXI) and receiv interrupt (ERI) requests are disabled
			Receive-data-full interrupt (RXI) and receiv interrupt (ERI) requests are enabled

Initial

value

0

Bit Name

TIE

R/W

R/W

Description

Transmit Interrupt Enable

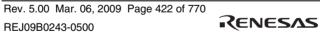
Enables or disables a transmit-data-empty int (TXI) to be issued when the TDRE flag in the

Bit

7

6

REJ09


Rev. 5.00 Mar. 06, 2009 Pag

				format in the serial mode register (S before setting TE to 1.
4	RE	0	R/W	Receive Enable
				Enables or disables the SCI serial receiver.
				0: Receiver disabled*1
				1: Receiver enabled*2
				Notes: 1. Clearing RE to 0 does not affect the flags (RDRF, FER, PER, and OREF flags retain their previous values.
				 Serial reception starts when a start detected in asynchronous mode, or synchronous clock input is detected synchronous mode. Select the rece format in SCSMR before setting RE
3	MPIE	0	R/W	Multiprocessor Interrupt Enable (only when MF SCSMR in asynchronous mode)
				When this bit is set to 1, receive data in which multiprocessor bit is 0 is skipped and setting of

RDRF, FER, and ORER status flags in SCSSF prohibited. On receiving data in which the multiprocessor bit is 1, this bit is automatically to 0 and normal receiving operation is resumed details, see section 12.4.4, Multiprocessor

Communication Function.

REJ09B0243-0500

1, 0	CKE[1:0]	00	R/W	Clock Enable 1 and 0
				Select the SCI clock source and enable or dis- output from the SCK pin. Depending on the combination of CKE1 and CKE0, the SCK pir used for serial clock output or serial clock inp
				When selecting the clock output in clock sync mode, set the C/\overline{A} bit in SCSMR to 1 and the CKE1 and CKE0. For details on clock source see table 12.14 in section 12.4, Operation.
				Asynchronous mode
				00: Internal clock, SCK pin used for input pin signal is ignored.)
				01: Internal clock, SCK pin used for clock out
				10: External clock, SCK pin used for clock inp
				11: External clock, SCK pin used for clock inp
				Clock synchronous mode
				00: Internal clock, SCK pin used for synchron output
				01: Internal clock, SCK pin used for synchron output
				10: External clock, SCK pin used for synchro

REJ09

11: External clock, SCK pin used for synchron

Notes: 1. The output clock frequency is 16 ti

2. The input clock frequency is 16 tim

Rev. 5.00 Mar. 06, 2009 Pag

bit rate.

rate.

Bit	Bit Name	Initial value	R/W	Description
7	TDRE	1	R/(W)*	Transmit Data Register Empty
				Indicates whether data has been transferred transmit data register (SCTDR) to the transmit register (SCTSR) and SCTDR has become ribe written with next serial transmit data.
				0: Indicates that SCTDR holds valid transmit
				[Clearing condition]
				When 0 is written to TDRE after reading?
				1: Indicates that SCTDR does not hold valid data
				[Setting conditions]
				By a power-on reset or in standby mode
				• When the TE bit in SCSCR is 0
				 When data is transferred from SCTDR to and data can be written to SCTDR
·	·			·

Rev. 5.00 Mar. 06, 2009 Page 424 of 770

1: Indicates that valid received data is store SCRDR

[Setting condition]

lost.

 When serial reception ends normally an data is transferred from SCRSR to SCR

Note: SCRDR and the RDRF flag are not at retain their previous states even if an detected during data reception or if the serial control register (SCSCR) is

the serial control register (SCSCR) is
0. If reception of the next data is comp
while the RDRF flag is still set to 1, ar
error will occur and the received data

1: Indicates that an overrun error occurred de reception*2

[Setting condition]

- When the next serial reception is comple
- RDRF = 1

 Notes: 1. The ORER flag is not affected an
 - its previous value when the RE b SCSCR is cleared to 0.

 2. The receive data prior to the over is retained in SCRDR, and the dareceived subsequently is lost. Su serial reception cannot be continued.

the ORER flag is set to 1.

1: Indicates that a framing error occurred du

reception

[Setting condition] When the SCI founds that the stop bit a

of the received data is 0 after completing

reception*2

Notes: 1. The FER flag is not affected and its previous value when the RE SCSCR is cleared to 0.

2. In 2-stop-bit mode, only the first checked for a value to 1; the see bit is not checked. If a framing e occurs, the receive data is trans

SCRDR but the RDRF flag is no Subsequent serial reception car

continued while the FER flag is

- 1: Indicates that a parity error occurred durin
 - reception*2
 - [Setting condition]
 - When the number of 1s in the received d parity does not match the even or odd pa specified by the O/E bit in the serial mode
 - (SCSMR). Notes: 1. The PER flag is not affected and its previous value when the RE b
 - SCSCR is cleared to 0.
 - 2. If a parity error occurs, the receiv transferred to SCRDR but the RD is not set. Subsequent serial rece cannot be continued while the PE set to 1.

				1: Indicates that transmission has ended
				[Setting conditions]
				By a power-on reset or in standby mode
				When the TE bit in SCSCR is 0
				• When TDRE = 1 during transmission of
				of a 1-byte serial transmit character
1	MPB	0	R	Multiprocessor Bit

				Stores the multiprocessor bit found in the red data. When the RE bit in SCSCR is cleared previous state is retained.
0	MPBT	0	R/W	Multiprocessor Bit Transfer
				Specifies the multiprocessor bit value to be the transmit frame.

Note: * Writing 0 to this bit after reading it as 1 clears the flag and is the only allowed

					1 1		l .				1
		Initial value:	0	0	0	0	0	Undefined	0	1	1
		R/W:	R/W	-	-	-	R/W	W	-	W	
Bit	Bit Name	Initial value	ı	R/W	Desc	riptio	n				
						•		nlv			
1	EIO	0	r	R/W	Error	men	upi O	riiy			
					set to	1, the	e SCI		not re	quest	. While the an RXI into o 1.
					0: Th	e RIE	bit er	nables	or dis	ables	RXI and E

R/W

	Does not output the SPB1DT bit value throu SCK pin.
	1: Outputs the SPB1DT bit value through the S
5.00 Mar 06 2009 Page 430 of 770	

All 0

0

SPB1IO

interrupts. While the RIE bit is 1, RXI and El

1: While the RIE bit is 1, only the ERI interrupt

These bits are always read as 0. The write val-

Specifies the input/output direction of the SCK serial port. To output the data specified in the 5 bit through the SCK pin as a port output pin, so bit in SCSMR and the CKE1 and CKE0 bits in

interrupts are sent to the INTC.

Clock Port Input/Output in Serial Port

the INTC.

Reserved

to 0.

always be 0.

REJ09B0243-0500

6 to 4

3

				This bit is a always be	•	l as 0. The write value s
0	SPB0DT	1	W	Serial Port	Break Data	a
				Controls th SCSCR.	ne TXD pins	together with the TE bi
				•	•	function should be sele roller (PFC).
				This bit is	write-only b	it. Undefined value is re
				Setting value of TE bit in SCSCR	Setting value of SPB0DT bit	TXD pin state
				0	0	Low output
				0	1	High output (initial state)

Note:

* Don't care

Transmit data output in with serial core logic.

			always be 1.
DIR	0	R/W	Data Transfer Direction
			Selects the serial/parallel conversion format. V an 8-bit transmit/receive format.
			 SCTDR contents are transmitted in LSB-firs Receive data is stored in SCRDR in LSB-firs
			 SCTDR contents are transmitted in MSB-firs Receive data is stored in SCRDR in MSB-fir
_	0	R	Reserved
			This bit is always read as 0. The write value sh always be 0.
_	1	R	Reserved
			This bit is always read as 1. The write value sh always be 1.
_	0	R	Reserved
			This bit is always read as 0. The write value sh always be 0.

R/W

R

Description

These bits are always read as 1. The write val

Reserved

Initial

Value

All 1

Bit

3

2

7 to 4

Bit Name

Rev. 5.00 Mar. 06, 2009 Page 432 of 770

• Asynchronous mode:

$$N = \frac{P\phi}{64 \times 2^{2n-1} \times B} \times 10^6 - 1$$

• Clock synchronous mode:

$$N = \frac{P\phi}{8 \times 2^{2n-1} \times B} \times 10^6 - 1$$

B: Bit rate (bits/s)

N: SCBRR setting for baud rate generator ($0 \le N \le 255$) (The setting value should satisfy the electrical characteristics.)

Pφ: Operating frequency for peripheral modules (MHz)

n: Baud rate generator clock source (n = 0, 1, 2, 3) (for the clock sources and n, see table 12.3.)

Error (%) =
$$\left\{ \frac{P\phi \times 10^6}{(N+1) \times B \times 64 \times 2^{2n-1}} - 1 \right\} \times 100$$

Rev. 5.00 Mar. 06, 2009 Page 434 of 770

REJ09B0243-0500

28800	0	10	-1.36	0	12	0.16	0	14	1.27	0	16	2.12	0	19
31250	0	9	0.00	0	11	0.00	0	13	0.00	0	15	0.00	0	17
38400	0	7	1.73	0	9	-2.34	0	10	3.57	0	12	0.16	0	14

600

1200

2400

4800

9600

14400

19200

2 64

1 129

1 64

0

0

0

0 15

129

64

32

21

0.16

0.16

0.16

0.16

0.16

-1.36

-1.36

1.73

2 77

1 155

77

155

77

38

25

1

0

0

0

0 19

0.16

0.16

0.16

0.16

0.16

0.16

0.16

-2.34

2 90

1 181

1 90

0 181

0

0

0 22

90

29

0 45

0.16

0.16

0.16

0.16

0.16

-0.93

1.27

-0.93

2 103

1

1 103

0

0

0

0

207

207

103

51

34

0 25

0.16

0.16

0.16

0.16

0.16

0.16

-0.79

0.16

2 116

1 233

1 116

0

0

0

0 38

0 28

233

116

58

0.16

0.16

0.16

0.16

0.16

-0.69

0.16

1.02

-2.34

0.00

-2.34

2

1

2 6

1 6

0 -

0 6

0 4

0 3

0 2

0 -

0 -

Rev. 5.00 Mar. 06, 2009 Pag

38400 0	17	-0.54	0	19	-2.34	0	20	0.76	0	22

10

10

68

51

1

1

0 20

0

0 34

REJ09B0243-0500

Rev. 5.00 Mar. 06, 2009 Page 436 of 770

1200

2400

4800

9600

14400

19200

28800

31250

142 0.16

-0.54

0.16

-0.54

-0.54

-0.54

-0.54

0.00

71

71

21

1

0 142

0 47

0 35

0 23

0

1

1

0 51

0 38

0 25

0

155

77

0 155

77

23

0.16

0.16

0.16

0.16

0.16

0.16

0.16

0.00

0.16

-0.43

0.16

-0.43

0.76

0.76

0.76

0.00

168

84

0 168

0 55

0 41

0 27

0 25

1

0 84 1 181

0 181

0 60

0 45

0 29

0 27

1 90

0 90 0.16

0.16

0.16

0.16

-0.39

-0.93

1.27

0.00

-0.93

194

1 97

0 194

0 97

0 64

0

0 32

0 29

0 23

48

0.16

-0.35

0.16

-0.35

0.16

-0.35

-1.36

0.00

1.73

	0	220	0.16	0	233	0.16	0	246	0.16	1
	0	110	-0.29	0	116	0.16	0	123	-0.24	0
)	0	73	-0.29	0	77	0.16	0	81	0.57	0
)	0	54	0.62	0	58	-0.69	0	61	-0.24	0
)	0	36	-0.29	0	38	0.16	0	40	0.57	0
)	0	33	0.00	0	35	0.00	0	37	0.00	0
)	0	27	-1.18	0	28	1.02	0	30	-0.24	0

0.16

0.16

0.16

-0.24

0.16

-0.29

10000	0	249	1	74	1	87	1	99	1	112	1
25000	0	99	0	119	0	139	0	159	0	179	0
50000	0	49	0	59	0	69	0	79	0	89	0
100000	0	24	0	29	0	34	0	39	0	44	0
250000	0	9	0	11	0	13	0	15	0	17	0
500000	0	4	0	5	0	6	0	7	0	8	0
1000000	_	_	0	2	_	_	0	3	_	_	0
2500000	0	0*	_		_	_	_		_	_	0
5000000			_	_	_	_	_	_	_	_	0

Rev. 5.00 Mar. 06, 2009 Page 438 of 770

100000	0	54	0	59	0	64	0	69	0
250000	0	21	0	23	0	25	0	27	0
500000	0	10	0	11	0	12	0	13	0
1000000	_	_	0	5	_	_	0	6	
2500000			_		_	_			0
5000000	_	_	_	_	_	_	_	_	

10000	1	212	1	224	1	237	1	
25000	1	84	1	89	1	94	1	
50000	0	169	0	179	0	189	0	
100000	0	84	0	89	0	94	0	
250000	0	33	0	35	0	37	0	,
500000	0	16	0	17	0	18	0	
1000000		_	0	8	_	_	0	
2500000	_	_	_	_	_	_	0	
5000000	_	_	_	_	_	_	0	

[Legend]

Blank: No setting possible

-: Setting possible, but error occurs

: Continuous transmission/reception is disabled.

Note: Settings with an error of 1% or less are recommended.

Rev. 5.00 Mar. 06, 2009 Page 440 of 770

16	500000	0	0
18	562500	0	0
20	625000	0	0
22	687500	0	0
24	750000	0	0
26	812500	0	0
28	875000	0	0
30	937500	0	0
32	1000000	0	0
34	1062500	0	0
36	1125000	0	0
38	1187500	0	0
40	1250000	0	0

24	6.0000	375000
26	6.5000	406250
28	7.0000	437500
30	7.5000	468750
32	8.0000	500000
34	8.5000	531250
36	9.0000	562500
38	9.5000	593750
40	10.0000	625000

26	4.3333	4333333.3
28	4.6667	4666666.7
30	5.0000	5000000.0
32	5.3333	5333333.3
34	5.6667	5666666.7
36	6.0000	6000000.0
38	6.3333	6333333.3
40	6.6667	6666666.7

4.0000

24

REJ09

4000000.0

(SCSCR) as shown in table 12.14.

(1) Asynchronous Mode (Channels 0 to 2 in the SH7125, Channels 0 to 2 in the SH

- Data length is selectable: 7 or 8 bits.
- Parity bit is selectable. So is the stop bit length (1 or 2 bits). The combination of the p selections constitutes the communication format and character length.
 - In receiving, it is possible to detect framing errors, parity errors, overrun errors, and b
 - An internal or external clock can be selected as the SCI clock source.
 When an internal clock is selected, the SCI operates using the clock supplied by the
 - chip baud rate generator and can output a clock with a frequency 16 times the bit

Clock Synchronous Mode (Channels 0 to 2 in the SH7125, Channels 0 and 2 in

When an external clock is selected, the external clock input must have a frequency the bit rate. (The on-chip baud rate generator is not used.)

SH7124)

- The transmission/reception format has a fixed 8-bit data length.
- In receiving, it is possible to detect overrun errors.
- An internal or external clock can be selected as the SCI clock source.
 - When an internal clock is selected, the SCI operates using the on-chip baud rate g and outputs a serial clock signal to external devices.
 - When an external clock is selected, the SCI operates on the input serial clock. The baud rate generator is not used.

		1	0	_		Set 1 bit
			1	_		2 bits
1	х	х	х	Clock synchronous	8-bit	Not set None
[Leg	end]					
x:	Doi	n't care				
			MR and S	O	s and SCI	Clock Source Selection
Bit 7	7 B	it 1	Bit 0	_	Clock	
C/Ā	C	KE1	CKE0	Mode	Source	SCK Pin Function
0	0		0	Asynchronous	Internal	SCI does not use the SCK pin.
			•	,	micoma	oor dood not doo the cort pin.

SCSMR	SCSCR Settings					
Bit 7 C/Ā	Bit 1 CKE1	Bit 0 CKE0	Mode	Clock Source	SCK Pin Function	
0	0	0	Asynchronous	Internal	SCI does not use the SCK pin.	
		1			Clock with a frequency 16 times is output.	
	1	0	=	External		
		1			bit rate.	
1	0	• • • • • • • • • • • • • • • • • • • •		Internal	Serial clock is output.	
		1	synchronous			
	1	0	-	External	Input the serial clock.	
		1	<u>-</u> '			

2 bits

monitors the line and starts serial communication when the line goes to the space (low) stindicating a start bit. One serial character consists of a start bit (low), data (LSB first), pa (high or low), and stop bit (high), in that order.

When receiving in asynchronous mode, the SCI synchronizes at the falling edge of the st. The SCI samples each data bit on the eighth pulse of a clock with a frequency 16 times the Receive data is latched at the center of each bit.

Figure 12.2 Example of Data Format in Asynchronous Communication (8-Bit Data with Parity and Two Stop Bits)

0	1	0	1	S	8-bit data	Р	STOP	
1	0	0	0	S	7-bit data	STOP		
1	0	0	1	S	7-bit data	STOP	STOP	-
1	1	0	0	S	7-bit data	Р	STOP	-
1	1	0	1	S	7-bit data	Р	STOP	STOR
0	х	1	0	S	8-bit data		MPB	STOF
0	х	1	1	S	8-bit data		MPB	STOF
1	х	1	0	S	7-bit data	MPB	STOP	-
1	х	1	1	S	7-bit data	MPB	STOP	STOF

S

S

8-bit data

8-bit data

1

0

0

1

STOP: Stop bit
P: Parity bit
MPB: Multiprocessor bit
x: Don't care

0

0

0

0

STOP STOP

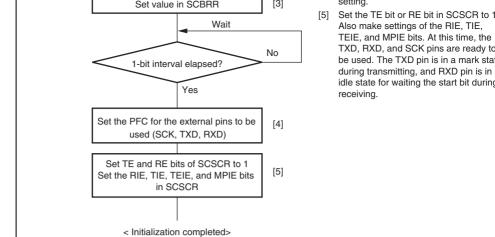
P STOR

Rev. 5.00 Mar. 06, 2009 Pag

1.....

(3) Transmitting and Receiving Data

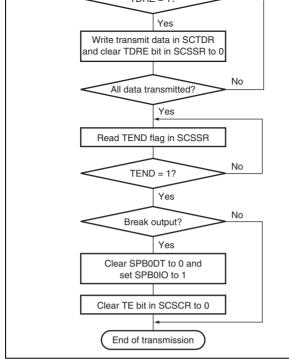
SCI Initialization (Asynchronous Mode):


Before transmitting or receiving, clear the TE and RE bits to 0 in the serial control register (SCSCR), then initialize the SCI as follows.

When changing the operation mode or the communication format, always clear the TE are to 0 before following the procedure given below. Clearing the TE bit to 0 sets the TDRE and initializes the transmit shift register (SCTSR). Clearing the RE bit to 0, however, does initialize the RDRF, PER, FER, and ORER flags or receives data register (SCRDR), which their previous contents.

When an external clock is used, the clock should not be stopped during initialization or stoperation. SCI operation becomes unreliable if the clock is stopped.

Rev. 5.00 Mar. 06, 2009 Page 448 of 770 REJ09B0243-0500


RENESAS

ote: * In simultaneous transmit/receive operation, the TE and RE bits must be cleared to 0 or set to simultaneously.

Figure 12.3 Sample Flowchart for SCI Initialization

- the TDRE flag to 0.
 [2] Serial transmission continuation
- procedure:

 To continue serial transmission, read
 1 from the TDRE flag to confirm that
 writing is possible, then write data to
 SCTDR, and then clear the TDRE
 - [3] Break output at the end of serial transmission:

flag to 0.

To output a break in serial transmission, clear the SPB0DT bit to 0 and set the SPB0IO bit to 1 in SCSPTR, then clear the TE bit in SCSCR to 0.

Figure 12.4 Sample Flowchart for Transmitting Serial Data

- B. Transmit data: 8-bit or 7-bit data is output in LSB-first order.
 - C. Parity bit or multiprocessor bit: One parity bit (even or odd parity) or one multip bit is output. (A format in which neither parity nor multiprocessor bit is output ca selected.)
 - D. Stop bit(s): One or two 1 bits (stop bits) are output.
 - E. Mark state: 1 is output continuously until the start bit that starts the next transmis sent.
- 3. The SCI checks the TDRE flag at the timing for sending the stop bit. If the TDRE flag is 0, the data is transferred from SCTDR to SCTSR, the stop bit is

then serial transmission of the next frame is started. If the TDRE flag is 1, the TEND flag in SCSSR is set to 1, the stop bit is sent, and the "mark state" is entered in which 1 is output. If the TEIE bit in SCSCR is set to 1 at the TEI interrupt request is generated.

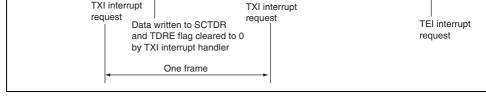


Figure 12.5 Example of Transmission in Asynchronous Mode (8-Bit Data, Parity, One Stop Bit)

Rev. 5.00 Mar. 06, 2009 Page 452 of 770

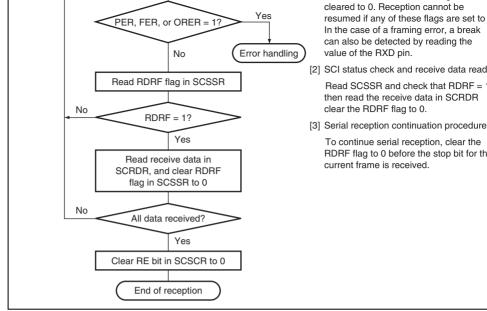


Figure 12.6 Sample Flowchart for Receiving Serial Data

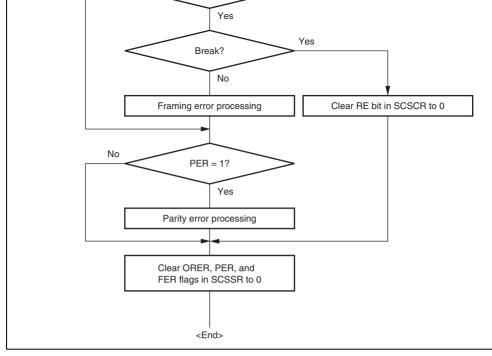


Figure 12.6 Sample Flowchart for Receiving Serial Data (cont)

first is checked.

C. Status shooks The SCI shooks whether the DDRE flow is 0 and the received of

C. Status check: The SCI checks whether the RDRF flag is 0 and the received data of transferred from the receive shift register (SCRSR) to SCRDR.

If all the above checks are passed, the RDRF flag is set to 1 and the received data is

SCRDR. If a receive error is detected, the SCI operates as shown in table 12.16.

Note: When a receive error occurs, subsequent reception cannot be continued. In a the RDRF flag will not be set to 1 after reception; be sure to clear the error f

4. If the EIO bit in SCSPTR is cleared to 0 and the RIE bit in SCSCR is set to 1 when the flag changes to 1, a receive-data-full interrupt (RXI) request is generated. If the RIE SCSCR is set to 1 when the ORER, PER, or FER flag changes to 1, a receive error in

Table 12.16 Receive Errors and Error Conditions

(ERI) request is generated.

Receive Error	Abbreviation	Error Condition	Data Transfer
Overrun error	ORER	When the next data reception is completed while the RDRF flag in SCSSR is set to 1	The received data is transferred from SC SCRDR.
Framing error	FER	When the stop bit is 0	The received data is transferred from SC SCRDR.
Parity error	PER	When the received data does	The received data is

not match the even or odd

parity specified in SCSMR

REJ09

transferred from SC

SCRDR.

Figure 12.7 Example of SCI Receive Operation (8-Bit Data, Parity, One Stop Bit)

12.4.3 Clock Synchronous Mode (Channel 1 in the SH7124 is not Available)

In clock synchronous mode, the SCIF transmits and receives data in synchronization with pulses. This mode is suitable for high-speed serial communication.

The SCI transmitter and receiver are independent, so full-duplex communication is possil sharing the same clock. Both the transmitter and receiver have a double-buffered structur data can be read or written during transmission or reception, enabling continuous data tra

Figure 12.8 shows the general format in clock synchronous serial communication.

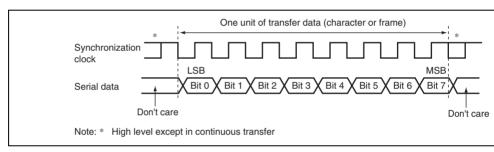


Figure 12.8 Data Format in Clock Synchronous Communication

Rev. 5.00 Mar. 06, 2009 Page 456 of 770

(2) 6.00.

An internal clock generated by the on-chip baud rate generator or an external clock inpu SCK pin can be selected as the SCI transmit/receive clock. For selection of the SCI clock see table 12.14.

When the SCI operates on an internal clock, it outputs the clock signal at the SCK pin. It pulses are output per transmitted or received character. When the SCI is not transmitting receiving, the clock signal remains in the high state. When only reception is performed, synchronous clock continues to be output until an overrun error occurs or the RE bit is confident to the reception of n characters, select the external clock as the clock source. If the it clock has to be used, set RE and TE to 1, then transmit n characters of dummy data at the time as receiving the n characters of data.

(3) Transmitting and Receiving Data

SCI Initialization (Clock Synchronous Mode):

Before transmitting, receiving, or changing the mode or communication format, the soft clear the TE and RE bits to 0 in the serial control register (SCSCR), then initialize the S Clearing TE to 0 sets the TDRE flag to 1 and initializes the transmit shift register (SCTS Clearing RE to 0, however, does not initialize the RDRF, PER, FER, and ORER flags a data register (SCRDR), which retain their previous contents.

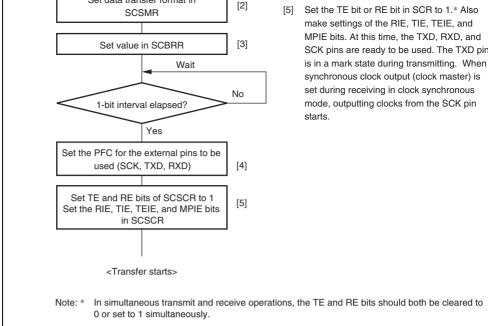


Figure 12.9 Sample Flowchart for SCI Initialization

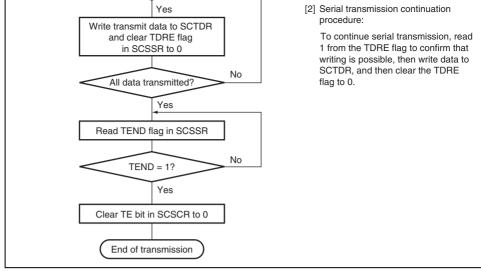


Figure 12.10 Sample Flowchart for Transmitting Serial Data

RENESAS

Rev. 5.00 Mar. 06, 2009 Pag

3. The SCI checks the TDRE flag at the timing for sending the MSB (bit 7). If the TDRI 0, the data is transferred from SCTDR to SCTSR and serial transmission of the next f

started, If the TDRE flag is 1, the TEND flag in SCSSR is set to 1, the MSB (bit 7) is

If the TEIE bit in SCSCR is set to 1 at this time, a TEI interrupt request is generated. 4. After the end of serial transmission, the SCK pin is held in the high state.

Figure 12.11 shows an example of SCI transmit operation.

then the TXD pin holds the states.

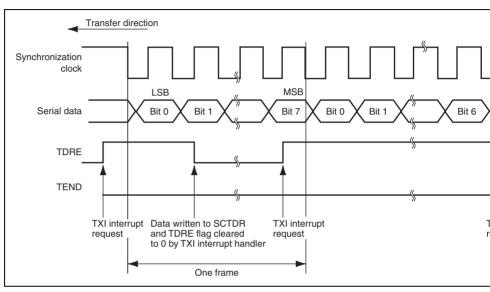


Figure 12.11 Example of SCI Transmit Operation

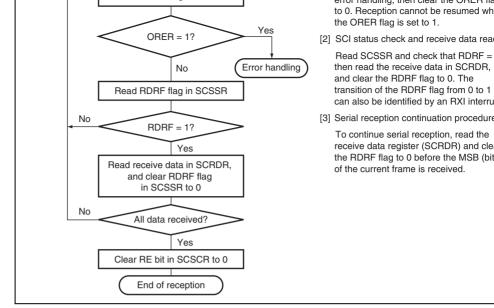


Figure 12.12 Sample Flowchart for Receiving Serial Data (1)

Figure 12.12 Sample Flowchart for Receiving Serial Data (2)

In receiving, the SCI operates as follows:

- 1. The SCI synchronizes with serial clock input or output and initializes internally. 2. Receive data is shifted into SCRSR in order from the LSB to the MSB. After receiving
- data, the SCI checks whether the RDRF flag is 0 and the receive data can be transferr SCRSR to SCRDR. If this check is passed, the SCI sets the RDRF flag to 1 and stores received data in SCRDR. If a receive error is detected, the SCI operates as shown in t 12.16. In this state, subsequent reception cannot be continued. In addition, the RDRF not be set to 1 after reception; be sure to clear the RDRF flag to 0.
- 3. After setting RDRF to 1, if the receive-data-full interrupt enable bit (RIE) is set to 1 in SCSCR, the SCI requests a receive-data-full interrupt (RXI). If the ORER bit is set to RIE bit in SCSCR is also set to 1, the SCI requests a receive error interrupt (ERI).

RENESAS

Rev. 5.00 Mar. 06, 2009 Page 462 of 770

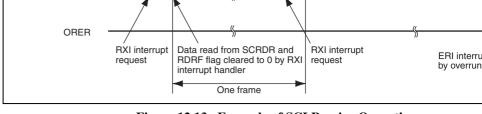


Figure 12.13 Example of SCI Receive Operation

Transmitting and Receiving Serial Data Simultaneously (Clock Synchronous Mode 12.14 shows a sample flowchart for transmitting and receiving serial data simultaneously

Use the following procedure for serial data transmission and reception after enabling the transmission and reception.

Rev. 5.00 Mar. 06, 2009 Pag

BEJO



Figure 12.14 Sample Flowchart for Transmitting/Receiving Serial Data

inter-processor communication using the multiprocessor format. The transmitting station sends the ID code of the receiving station with which it wants to perform serial commun data with a 1 multiprocessor bit added. It then sends transmit data as data with a 0 multi bit added. The receiving station skips data until data with a 1 multiprocessor bit is sent. with a 1 multiprocessor bit is received, the receiving station compares that data with its The station whose ID matches then receives the data sent next. Stations whose ID does in continue to skip data until data with a 1 multiprocessor bit is again received.

multiprocessor our is 0, the cycle is a data transmission cycle. I iguie 12.13 shows an ex

flags, RDRF, FER, and OER to 1 are inhibited until data with a 1 multiprocessor bit is r On reception of receive character with a 1 multiprocessor bit, the MPB bit in SCSSR is and the MPIE bit is automatically cleared, thus normal reception is resumed. If the RIE SCSCR is set to 1 at this time, an RXI interrupt is generated.

The SCI uses the MPIE bit in SCSCR to implement this function. When the MPIE bit is transfer of receive data from SCRSR to SCRDR, error flag detection, and setting the SC

When the multiprocessor format is selected, the parity bit setting is invalid. All other bit are the same as those in normal asynchronous mode. The clock used for multiprocessor communication is the same as that in normal asynchronous mode.

ID transmission cycle = receiving station specification

Data transmission cycle = Data transmission to receiving station specified by ID

[Legend]

MPB: Multiprocessor bit

Figure 12.15 Example of Communication Using Multiprocessor Format (Transmission of Data H'AA to Receiving Station A)

Rev. 5.00 Mar. 06, 2009 Page 466 of 770

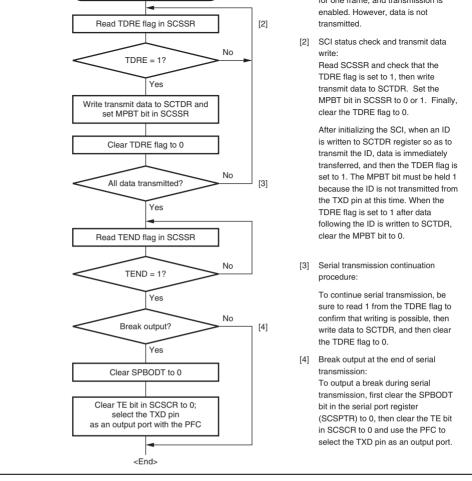


Figure 12.16 Sample Multiprocessor Serial Transmission Flowchart

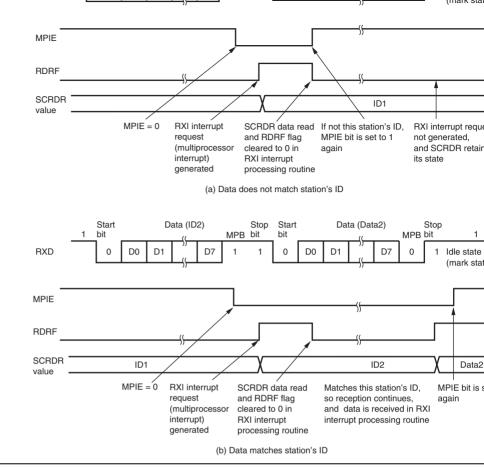


Figure 12.17 Example of SCI Operation in Reception (Example with 8-Bit Data, Multiprocessor Bit, One Stop Bit)

Rev. 5.00 Mar. 06, 2009 Page 468 of 770

Figure 12.18 Sample Multiprocessor Serial Reception Flowchart (1)

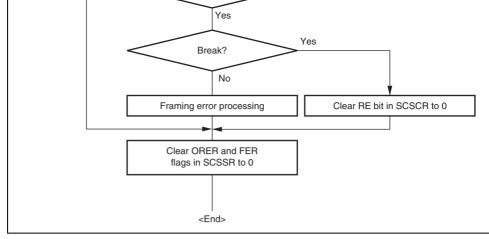


Figure 12.18 Sample Multiprocessor Serial Reception Flowchart (2)

generated. When the ORER, FER, or PER flag in SCSSR is set to 1, an ERI interrupt re generated. When the TEND flag in SCSSR is set to 1, a TEI interrupt request is generated

The TXI interrupt indicates that transmit data can be written, and the TEI interrupt indicates transmission has been completed.

Table 12.17 SCI Interrupt Sources

Interrupt Source	Description
ERI	Interrupt caused by receive error (ORER, FER, or PER)
RXI	Interrupt caused by receive data full (RDRF)
TXI	Interrupt caused by transmit data empty (TDRE)
TEI	Interrupt caused by transmit end (TENT)

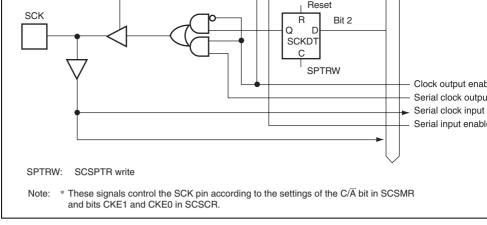


Figure 12.19 SPB1IO bit, SPB1DT bit, and SCK Pin

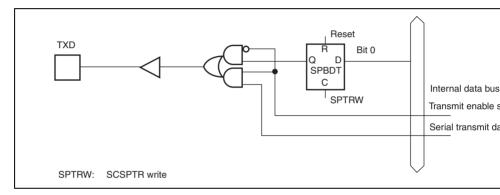


Figure 12.20 SPB0DT bit and TXD Pin

Rev. 5.00 Mar. 06, 2009 Page 472 of 770

lost because the data has not yet been transferred to SCTSR. Before writing transmit dat SCTDR, be sure to check that the TDRE flag is set to 1.

12.7.2 Multiple Receive Error Occurrence

If multiple receive errors occur at the same time, the status flags in SCSSR are set as she table 12.18. When an overrun error occurs, data is not transferred from the receive shift (SCRSR) to the receive data register (SCRDR) and the received data will be lost.

Table 12.18 SCSSR Status Flag Values and Transfer of Received Data

		Trans			
Receive Errors Generated	RDRF	ORER	FER	PER	SCRD
Overrun error	1	1	0	0	Not tra
Framing error	0	0	1	0	Transf
Parity error	0	0	0	1	Transf
Overrun error + framing error	1	1	1	0	Not tra
Overrun error + parity error	1	1	0	1	Not tra
Framing error + parity error	0	0	1	1	Trans
Overrun error + framing error + parity error	1	1	1	1	Not tra

Recei

register (SCSPTR). This readure can be used to send a break signal.

Until TE bit is set to 1 (enabling transmission) after initializing, TXD pin does not work. the period, mark status is performed by SPB0DT bit. Therefore, the SPB0DT bit should be at first (high level output).

To send a break signal during serial transmission, clear the SPB0DT bit to 0 (low level),

the TE bit to 0 (halting transmission). When the TE bit is cleared to 0, the transmitter is it regardless of the current transmission state, and 0 is output from the TXD pin.

12.7.5 Receive Data Sampling Timing and Receive Margin (Asynchronous Mode)

The SCI operates on a base clock with a frequency of 16 times the transfer rate in asynch mode. In reception, the SCI synchronizes internally with the fall of the start bit, which it on the base clock. Receive data is latched at the rising edge of the eighth base clock pulse timing is shown in figure 12.21.

Rev. 5.00 Mar. 06, 2009 Page 474 of 770

Figure 12.21 Receive Data Sampling Timing in Asynchronous Mode

The receive margin in asynchronous mode can therefore be expressed as shown in ed

Equation 1:

$$M = \left| (0.5 - \frac{1}{2N}) - (L - 0.5) F - \frac{|D - 0.5|}{N} (1+F) \right| \times 100 \%$$

Where: M: Receive margin (%)

N: Ratio of bit rate to clock (N = 16)

D: Clock duty (D = 0 to 1.0)

L: Frame length (L = 9 to 12)

F: Absolute deviation of clock frequency

From equation 1, if F = 0 and D = 0.5, the receive margin is 46.875%, as given by each of the second of the s

Equation 2:

When D = 0.5 and F = 0:

$$M = (0.5 - 1/(2 \times 16)) \times 100\%$$
$$= 46.875\%$$

This is a theoretical value. A reasonable margin to allow in system designs is 20% to

details, see section 19, Power-Down Modes.

Rev. 5.00 Mar. 06, 2009 Page 476 of 770

- Three operating modes
 - Single mode: Single-channel A/D conversion
 - Continuous scan mode: Repetitive A/D conversion on up to four channels
 - Single-cycle scan mode: Continuous A/D conversion on up to four channels
- Data registers
 - Conversion results are held in a 16-bit data register for each channel
- Sample-and-hold function
 - Three methods for conversion start
 - Software
 - Conversion start trigger from multifunction timer pulse unit 2 (MTU2)
 - External trigger signal
- Interrupt request
 - An A/D conversion end interrupt request (ADI) can be generated
- Module standby mode can be set

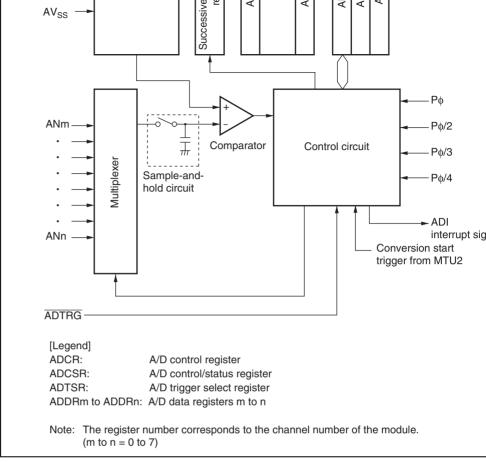


Figure 13.1 Block Diagram of A/D Converter (for One Module)

Rev. 5.00 Mar. 06, 2009 Page 478 of 770

		•	3 1 1
(A/D_0)	AN1	Input	Analog input pin 1
	AN2	Input	Analog input pin 2
	AN3	Input	Analog input pin 3
A/D module 1 (A/D_1)	AN4	Input	Analog input pin 4
	AN5	Input	Analog input pin 5
	AN6	Input	Analog input pin 6
	AN7	Input	Analog input pin 7
Notes: The con-	nected A/E) module di	ffers for each pin. The control registers of each mod

A/D external trigger input pin*

Analog input pin 0

* This pin is supported only by the SH7125.

ADTRG

AN0

A/D module 0

Input

Input

A/D control register_0	ADCR_0	R/W	H'0000	H'FFFFC912
A/D data register 4	ADDR4	R	H'0000	H'FFFFC980
A/D data register 5	ADDR5	R	H'0000	H'FFFFC982
A/D data register 6	ADDR6	R	H'0000	H'FFFFC984
A/D data register 7	ADDR7	R	H'0000	H'FFFFC986
A/D control/status register_1	ADCSR_1	R/W	H'0000	H'FFFFC990
A/D control register_1	ADCR_1	R/W	H'0000	H'FFFFC992
A/D trigger select register_0	ADTSR_0	R/W	H'0000	H'FFFFE890

ADDR2

ADDR3

ADCSR_0

R

R

R/W

H'0000

H'0000

H'0000

H'FFFFC904

H'FFFFC906

H'FFFFC910

16

16

16

16

16

16

16

16

16

16

8, 1

REJ09B0243-0500

Rev. 5.00 Mar. 06, 2009 Page 480 of 770

A/D data register 2

A/D data register 3

A/D control/status register_0

RENESAS

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2
											-	-	-	-
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R	R	R	R	R	R	R	R	R

13.3.2 A/D Control/Status Registers_0 and _1 (ADCSR_0 and ADCSR_1)

ADCSR for each module controls A/D conversion operations.

Initial

Bit	: 15	14	13	12	11	10	9	8	7	6	5	4	3	
	ADF	ADIE	-	-	TRGE	-	CONADF	STC	CKS	L[1:0]	ADN	1[1:0]	ADCS	Ī
Initial value	: 0	0	0	0	0	0	0	0	0	0	0	0	0	

Note: * Writing 0 to this bit after reading it as 1 clears the flag and is the only allowed way.

		IIIIIIai		
Bit	Bit Name	Value	R/W	Description
15	ADF	0	R/(W)*	A/D End Flag
				A status flag that indicates the end of A/D co
				[Setting conditions]
				When A/D conversion ends in single mo
				 When A/D conversion ends on all specific channels in scan mode

[Clearing condition]

Rev. 5.00 Mar. 06, 2009 Pag REJ09

When 0 is written after reading ADF = 1

R/W

			ADTRG and an MTU2 trigger.
			0: A/D conversion triggering is disabled
			1: A/D conversion triggering is enabled
			When changing the operating mode, first clear ADST bit to 0.
_	0	R	Reserved
			This bit is always read as 0. The write value s always be 0.
CONADF	0	R/W	ADF Control
			Controls setting of the ADF bit in 2-channel semode. The setting of this bit is valid only whe triggering of A/D conversion is enabled (TRG 2-channel scan mode. The setting of this bit is in single mode or 4-channel scan mode.
			0: The ADF bit is set when A/D conversion state the group 0 trigger or group 1 trigger has fi
			1: The ADF bit is set when A/D conversion stathe group 0 trigger and A/D conversion stathe group 1 trigger have both finished. Note triggering order has no affect.
	 CONADF		

Enables or disables triggering of A/D convers

When changing the operating mode, first clea

ADST bit to 0.

RENESAS REJ09B0243-0500

Rev. 5.00 Mar. 06, 2009 Page 482 of 770

				•
				10: P ₀ /2
				11: Рф
				When changing the A/D conversion time, fin ADST bit to 0.
				$CKSL[1:0] = B'11 \ can \ be \ set \ while \ P\varphi \leq 25$
5, 4	ADM[1:0]	00	R/W	A/D Mode 1 and 0
				Select the A/D conversion mode.
				00: Single mode
				01: 4-channel scan mode
				10: Setting prohibited
				11: 2-channel scan mode
				When changing the operating mode, first cl ADST bit to 0.
3	ADCS	0	R/W	A/D Continuous Scan
				Selects either single-cycle scan or continuo scan mode. This bit is valid only when scan selected.
				0: Single-cycle scan

Select the A/D conversion time.

00: Ρφ/4 01: Ρφ/3

1: Continuous scan

ADST bit to 0.

When changing the operating mode, first cle

Rev. 5.00 Mar. 06, 2009 Pag

ADCR for each module controls A/D conversion.

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2			
	-	-	ADST	-	-	-	-	-	-	-	-	-	-	-			
Initial value:		0	0	0	0	0	0	0	0	0	0	0	0	0			
R/W:	R	R	R/W	R	R	R	R	R	R	R	R	R	R	R			
			Initi	ial													
Bit	Bit Name		Val		R/	w	Description										
15, 14	_		All ()	R		Res	Reserved									
								ese bit uld al		_	s read	d as 0	. The	write	va		
13	ADS	Т	0		R/	W	A/D Start										
							Starts or stops A/D conversion. When a 1, A/D conversion is started. When this to 0, A/D conversion is stopped and the enters the idle state. In single or single mode, this bit is automatically cleared a conversion ends on the selected single continuous scan mode, A/D conversion performed for the selected channels in this bit is cleared by a software, reset, standby mode or module standby mode.					is bit ine A/E e-cycloto 0 vechalon is considered to 10 vechalon in 10 vechalon is considered to 10 vechalon in 10	is (D c le wh inr ior ue				
12 to 0			All ()	R		Res	servec	ł								
								ese bit uld al		,	s read	d as 0	. The	write	va		

Rev. 5.00 Mar. 06, 2009 Page 484 of 770 REJ09B0243-0500

RENESAS

	1	
1	0	
	1	

Analog Input Channels

Bit 2	Bit 1	Bit 0	2-Channel So	can Mode* (Activated by software)
CH2	CH1	CH0	A/D_0	A/D_1
0	0	0	AN0	AN4
		1	ANO, AN1	AN4, AN5
	1	0	AN2	AN6
		1	AN2, AN3	AN6, AN7
1	0	0	Setting prohibited	Setting prohibited
		1	_	
	1	0	_	
		1	_	

	1	
1	0	
	1	

Note: * Continuous scan mode or single-scan mode can be selected with the ADCS b

Bit	Bit Name	Initial Value	R/W	Description
15 to 12	TRG11S[3:0]	0000	R/W	A/D Trigger 1 Group 1 Select 3 to 0
				Select an external trigger or MTU2 trigger to conversion for group 1 when A/D module 1 is channel scan mode.
				0000: External trigger pin (ADTRG) input
				0001: TRGA input capture/compare match fo MTU2 channel or TCNT_4 underflow (complementary PWM mode (TRGAN)
				0010: MTU2 channel 0 compare match (TRG
				0011: MTU2 A/D conversion start request de (TRG4AN)
				0100: MTU2 A/D conversion start request de (TRG4BN)
				0101: Setting prohibited
				0110: Setting prohibited
				0111: Setting prohibited
				1xxx: Setting prohibited
				When switching the selector, first clear the Al the A/D control register (ADCR) to 0.
				Specify different trigger sources for the group group 1 conversion requests so that a group conversion request is not generated simultan with a group 1 conversion request in 2-channed.

0011: MTU2 A/D conversion start request dela (TRG4AN)

0100: MTU2 A/D conversion start request dela

(TRG4BN) 0101: Setting prohibited

0110: Setting prohibited

0111: Setting prohibited

1xxx: Setting prohibited

When switching the selector, first clear the AD the A/D control register (ADCR) to 0.

Specify different trigger sources for the group of group 1 conversion requests so that a group 0 conversion request is not generated simultane with a group 1 conversion request in 2-channe mode.

0011: MTU2 A/D conversion start request del (TRG4AN)
0100: MTU2 A/D conversion start request del (TRG4BN)
0101: Setting prohibited
0110: Setting prohibited

mode.

0111: Setting prohibited 1xxx: Setting prohibited When switching the selector, first clear the Al

the A/D control register (ADCR) to 0. Specify different trigger sources for the group group 1 conversion requests so that a group conversion request is not generated simultan

with a group 1 conversion request in 2-chann

Rev. 5.00 Mar. 06, 2009 Pag

0011: MTU2 A/D conversion start request dela (TRG4AN)

0100: MTU2 A/D conversion start request dela

(TRG4BN)

0101: Setting prohibited

0110: Setting prohibited

0111: Setting prohibited

1xxx: Setting prohibited

When switching the selector, first clear the AD the A/D control register (ADCR) to 0.

Specify different trigger sources for the group of group 1 conversion requests so that a group 0 conversion request is not generated simultane with a group 1 conversion request in 2-channe mode.

[Legend]

Don't care x:

- 1. A/D conversion is started when the ADST bit in ADCR is set to 1, according to soft MTU2, or external trigger input.
 - 2. When A/D conversion is completed, the result is transferred to the A/D data register corresponding to the channel.
 - 3. On completion of conversion, the ADF bit in ADCSR is set to 1. If the ADIE bit is s this time, an ADI interrupt request is generated.
 - 4. The ADST bit remains set to 1 during A/D conversion. When A/D conversion ends, t bit is automatically cleared to 0 and the A/D converter enters the idle state. When the ADST bit is cleared to 0 during A/D conversion, A/D conversion stops an

13.4.2 **Continuous Scan Mode**

converter enters the idle state.

operations are as follows.

In continuous scan mode, A/D conversion is to be performed sequentially on the specifi channels.

1. When the ADST bit in ADCR is set to 1 by software, MTU2, or external trigger input conversion starts on the channel with the lowest number in the group (ANO, AN1, ...

3. When conversion of all the selected channels is completed, the ADF bit in ADCSR is

- 2. When A/D conversion for each channel is completed, the result is sequentially transthe A/D data register corresponding to each channel.
- If the ADIE bit is set to 1 at this time, an ADI interrupt is requested after A/D conve Conversion of the first channel in the group starts again.
- 4. Steps 2 to 3 are repeated as long as the ADST bit remains set to 1. When the ADST cleared to 0, A/D conversion stops and the A/D converter enters the idle state.

4. After A/D conversion ends, the ADST bit is automatically cleared to 0 and the A/D conversion stops and the A/D conversion tops and the A/D conversion tops and the A/D converter enters the idle state.

13.4.4 Input Sampling and A/D Conversion Time

The A/D converter has a built-in sample-and-hold circuit for each module. The A/D conversions the analog input when the A/D conversion start delay time (t_D) has passed after the bit in ADCR is set to 1, then starts conversion. Figure 13.2 shows the A/D conversion time. Table 13.4 shows the A/D conversion time.

As indicated in figure 13.2, the A/D conversion time (t_{CONV}) includes t_D and the input samp (t_{SPL}). The length of t_D varies depending on the timing of the write access to ADCR. The to conversion time therefore varies within the ranges indicated in table 13.4.

In scan mode, the values given in table 13.4 apply to the first conversion time. The values table 13.5 apply to the second and subsequent conversions.

RENESAS

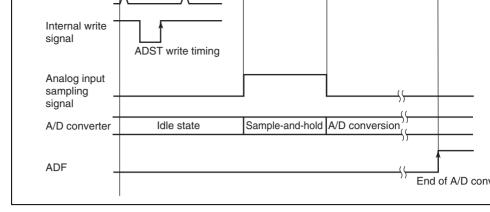


Figure 13.2 A/D Conversion Timing

Rev. 5.00 Mar. 06, 2009 Pag

							STO	C = 1				
				CKS	L1 = 0					CKS	L1 = 1	
		С	KSL0	= 0	С	KSL0	= 1	С	KSL0	= 0	С	KS
Item	Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	٦
A/D conversion start delay time	t _D	2	_	6	2	_	5	2	_	4	2	
Input sampling time	t _{spl}	_	36	_	_	27	_	_	18	_	_	9
A/D conversion time	t _{conv}	258	_	262	194	_	197	130	_	132	66	

Note: All values represent the number of states for Pφ.

Table 13.5 A/D Conversion Time (Scan Mode)

			Conversion Time	Conversion Tir	ne Calculation E
STC	CKSL1	CKSL0	(State)	Pφ = 25 MHz	Pφ = 40 MHz
0	0	0	200 (Fixed)	8 μs	5 μs
		1	150 (Fixed)	6 μs	3.8 µs
	1	0	100 (Fixed)	4 μs	2.5 μs
		1	50 (Fixed)	2 μs	Setting prohi
1	0	0	256 (Fixed)	10.2 μs	6.4 μs
		1	192 (Fixed)	7.7 μs	4.8 μs
	1	0	128 (Fixed)	5.1 μs	3.2 μs
		1	64 (Fixed)	2.6 μs	Setting prohi

Rev. 5.00 Mar. 06, 2009 Page 494 of 770 REJ09B0243-0500

13.4.6 External Trigger Input Timing

(ADCSR) is set to 1 while the TRGS3 to TRGS0 bits in the A/D trigger select register_(ADTSR_0) is set to external trigger input, external trigger input is enabled at the ADTI falling edge of the ADTRG pin sets the ADST bit to 1 in ADCR, starting A/D conversion operations, in both single and scan modes, are the same as when the ADST bit has been software. Figure 13.3 shows the timing.

A/D conversion can be externally triggered. When the TRGE bit in the A/D control/stat

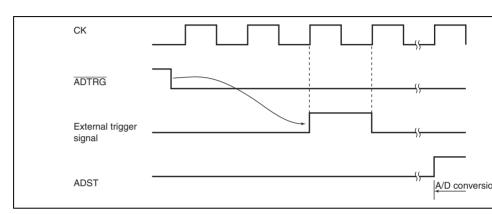


Figure 13.3 External Trigger Input Timing

Rev. 5.00 Mar. 06, 2009 Pag

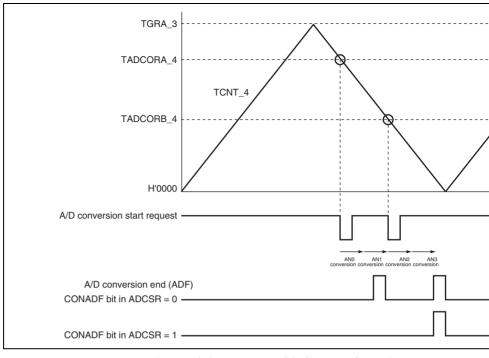


Figure 13.4 Example of 2-Channel Scanning

Rev. 5.00 Mar. 06, 2009 Page 496 of 770

REJ09B0243-0500

RENESAS

Rev. 5.00 Mar. 06, 2009 Pag

when the digital output changes from the minimum voltage value B'0000000000 (H'0 B'0000000001 (H'001) (see figure 13.6).

Full-scale error

The deviation of the analog input voltage value from the ideal A/D conversion charac when the digital output changes from B'11111111110 (H'3FE) to B'11111111111 (H'3F

figure 13.6). • Nonlinearity error

The error with respect to the ideal A/D conversion characteristic between zero voltage full-scale voltage. Does not include offset error, full-scale error, or quantization error

figure 13.6). Absolute accuracy

The deviation between the digital value and the analog input value. Includes offset en

scale error, quantization error, and nonlinearity error.

Rev. 5.00 Mar. 06, 2009 Page 498 of 770

REJ09B0243-0500

RENESAS

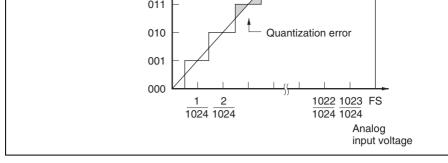


Figure 13.5 Definitions of A/D Conversion Accuracy

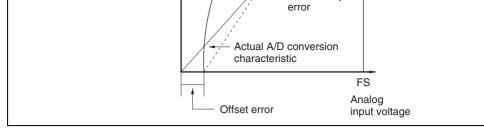


Figure 13.6 Definitions of A/D Conversion Accuracy

REJ09B0243-0500

This LSI's analog input is designed such that conversion accuracy is guaranteed for an in for which the signal source impedance is 1 k Ω or less. This specification is provided to A/D converter's sample-and-hold circuit input capacitance to be charged within the sam if the sensor output impedance exceeds 1 k Ω , charging may be insufficient and it may n possible to guarantee A/D conversion accuracy. However, for A/D conversion in single a large capacitance provided externally, the input load will essentially comprise only the input resistance of $10 \text{ k}\Omega$, and the signal source impedance is ignored. However, as a lo filter effect is obtained in this case, it may not be possible to follow an analog signal with differential coefficient (e.g., 5 mV/µs or greater) (see figure 13.7). When converting a h analog signal or converting in scan mode, a low-impedance buffer should be inserted.

13.7.3 **Influences on Absolute Accuracy**

Adding capacitance results in coupling with GND, and therefore noise in GND may adv affect absolute precision. Be sure to make the connection to an electrically stable GND: AVss.

Care is also required to insure that filter circuits do not interfere in the accuracy by the p circuit digital signals on the mounting board (i.e, acting as antennas).

13.7.4 Range of Analog Power Supply and Other Pin Settings

If the conditions below are not met, the reliability of the device may be adversely affected

- Analog input voltage range
 - The voltage applied to analog input pin ANn during A/D conversion should be in the $AVss \le VAN \le AVref$.
- Relationship between AVcc, AVss and Vcc, Vss
 Set Vcc ≤ AVcc ≤ 5.5V, AVss = Vss for the relationship between AVcc, AVss and V
 If the A/D converter is not used, the AVcc and AVss pins must not be left open.

13.7.5 Notes on Board Design

In board design, digital circuitry and analog circuitry should be as mutually isolated as possible and layout in which digital circuit signal lines and analog circuit signal lines cross or are proximity should be avoided as far as possible. Failure to do so may result in incorrect or of the analog circuitry due to inductance, adversely affecting A/D conversion values. Als circuitry must be isolated from the analog input signals (AN0 to AN7), and analog power (AVcc) by the analog ground (AVss). Also, the analog ground (AVss) should be connect point to a stable ground (Vss) on the board.

Rev. 5.00 Mar. 06, 2009 Page 502 of 770

REJ09B0243-0500

the analog input pin voltage. Careful consideration is therefore required when deciding constants.

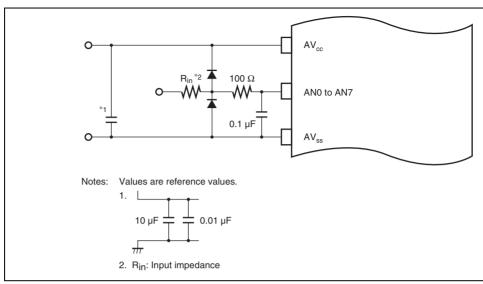


Figure 13.8 Example of Analog Input Protection Circuit

Table 13.7 Analog Pin Specifications

Item	Min.	Max.	Unit	Condition
Analog input capacitance	_	20	pF	_
Permissible signal source impedance	_	3	kΩ	Conversion tim
		1	kΩ	Conversion tim

Rev. 5.00 Mar. 06, 2009 Pag

Rev. 5.00 Mar. 06, 2009 Page 504 of 770

REJ09B0243-0500

- Interrupt request on compare match
- Module standby mode can be set.

Figure 14.1 shows a block diagram of CMT.

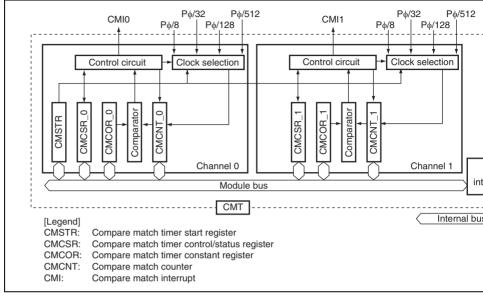


Figure 14.1 Block Diagram of CMT

Rev. 5.00 Mar. 06, 2009 Pag

Compare match timer control/status register_0	CMCSR_0	R/W	H'0000	H'FFFFCE02
Compare match counter_0	CMCNT_0	R/W	H'0000	H'FFFFCE04
Compare match constant register_0	CMCOR_0	R/W	H'FFFF	H'FFFFCE06
Compare match timer control/status register_1	CMCSR_1	R/W	H'0000	H'FFFFCE08
Compare match counter_1	CMCNT_1	R/W	H'0000	H'FFFFCE0A
Compare match constant register_1	CMCOR_1	R/W	H'FFFF	H'FFFFCE0C

8, 1

8, 1

8, 1

8, 1

8, 1

REJ09B0243-0500

Rev. 5.00 Mar. 06, 2009 Page 506 of 770

register

RENESAS

e bits are always read as 0. The write va
-
nt Start 1
oifies whether compare match counter 1 of stopped.
MCNT_1 count is stopped
MCNT_1 count is started
nt Start 0
oifies whether compare match counter 0 of stopped.
MCNT_0 count is stopped
MCNT_0 count is started
C.I

Description

Compare Match Timer Control/Status Register (CMCSR) 14.2.2

Bit

R/W: R

Bit Name

value

CMCSR is a 16-bit register that indicates compare match generation, enables interrupts the counter input clock.

Bit	: 15	14	13	12	11	10	9	8	7	6	5	4	3	2	
	-	-	-	-	-	-	-	-	CMF	CMIE	-	-	-	-	
Initial value	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Note: 1. Writing 0 to this bit after reading it as 1 clears the flag and is the only allowed way.

				 When 0 is written to this bit after reading C
				[Setting condition]
				1: CMCNT and CMCOR values match
6	CMIE	0	R/W	Compare Match Interrupt Enable
				Enables or disables compare match interrupt (generation when CMCNT and CMCOR values (CMF=1).
				0: Compare match interrupt (CMI) disabled
				1: Compare match interrupt (CMI) enabled
5 to 2	_	All 0	R	Reserved
				These bits are always read as 0. The write val always be 0.
1, 0	CKS[1:0]	00	R/W	Clock Select 1 and 0
				Select the clock to be input to CMCNT from fo clocks obtained by dividing the peripheral oper clock (P ϕ). When the STR bit in CMSTR is set

and write 0 to it.

RENESAS

CKS1 and CKS0.

00: Pφ/801: Pφ/3210: Pφ/12811: Pφ/512

Notes: 1. Writing 0 to this bit after reading it as 1 clears the flag and is the only allowed v

2. If another flag setting condition occurs before writing 0 to the bit after reading i flag will not be cleared by simply writing 0 to it. In this case, read the bit as 1 o

CMCNT starts counting on the clock selected v

Initial value: 0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W: R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

14.2.4 Compare Match Constant Register (CMCOR)

CMCOR is a 16-bit register that sets the interval up to a compare match with CMCNT.

The initial value of CMCOR is H'FFFF.

2	3	4	5	6	7	8	9	10	11	12	13	14	Bit: 15	
1	1	1	1	1	1	1	1	1	1	1	1	1	Initial value: 1	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W: R/W	
	1 R/W	1 R/W	1 R/W	1 R/W	•		•	•		1 R/W	1 R/W	1 R/W		

rigure 14.2 shows the operation of the compare match counter.

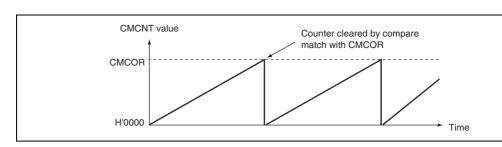


Figure 14.2 Counter Operation

14.3.2 CMCNT Count Timing

One of four internal clocks ($P\phi/8$, $P\phi/32$, $P\phi/128$, and $P\phi/512$) obtained by dividing the P can be selected with bits CKS1 and CKS0 in CMCSR. Figure 14.3 shows the timing.

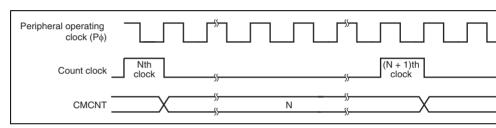


Figure 14.3 Count Timing

Rev. 5.00 Mar. 06, 2009 Page 510 of 770

REJ09B0243-0500

14.4.2 Timing of Setting Compare Match Flag

When CMCOR and CMCNT match, a compare match signal is generated and the CMF CMCSR is set to 1. The compare match signal is generated in the last cycle in which the match (when the CMCNT value is updated to H'0000). That is, after a match between C and CMCNT, the compare match signal is not generated until the next CMCNT counter input. Figure 14.4 shows the timing of CMF bit setting.

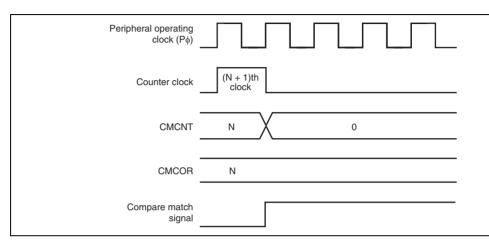


Figure 14.4 Timing of CMF Setting

14.4.3 Timing of Clearing Compare Match Flag

The CMF bit in CMCSR is cleared by reading 1 from this bit, then writing 0.

Rev. 5.00 Mar. 06, 2009 Pag

CMCNT has priority over writing to it. In this case, CMCNT is not written to. Figure 14. the timing to clear the CMCNT counter.

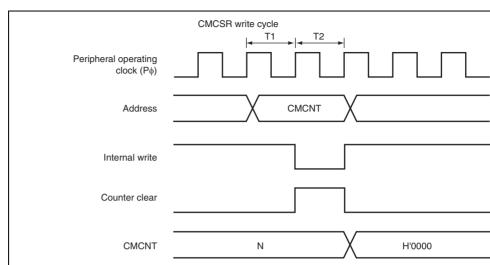


Figure 14.5 Conflict between Write and Compare-Match Processes of CMC

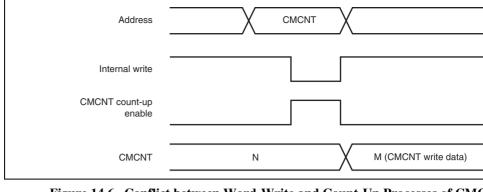


Figure 14.6 Conflict between Word-Write and Count-Up Processes of CMC

Rev. 5.00 Mar. 06, 2009 Pag

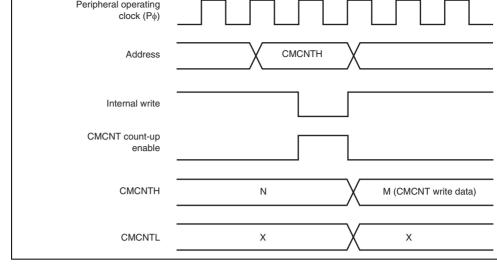


Figure 14.7 Conflict between Byte-Write and Count-Up Processes of CMCN

14.5.5 Compare Match between CMCNT and CMCOR

Do not set the same value in CMCNT and CMCOR while CMCNT is not counting. If set CMF bit in CMCSR is set to 1 and CMCNT is cleared to H'0000.

RENESAS

PA5 I/O (port) IRQ3 input (INTC) SCK1 I/O (SCI) PA6 I/O (port) TCLKA input (MTU2) SCK2 I/O (SCI) TCK input (H-UDI)*2 PA7 I/O (port) TCLKB input (MTU2) PA8 I/O (port) TCLKC input (MTU2) RXD2 input (SCI) TDI input (H-UDI)*2 TXD2 output (SCI) POE8 input (POE) PA9 I/O (port) TCLKD input (MTU2) PA10 I/O (port) RXD0 input (SCI) PA11 I/O (port) TXD0 output (SCI) ADTRG input (A/D) PA12 I/O (port) SCK0 I/O (SCI) PA13 I/O (port) SCK1 I/O (SCI) PA14 I/O (port) RXD1 input (SCI) PA15 I/O (port) TXD1 output (SCI) В TIC5W input (MTU2) PB1 I/O (port) POE0 input (POE) PB2 I/O (port) IRQ0 input (INTC) POE1 input (POE) PB3 I/O (port) IRQ1 input (INTC) TIC5V input (MTU2) PB5 I/O (port) IRQ3 input (INTC) TIC5U input (MTU2) POE3 input (POE) PB16 I/O (port) Rev. 5.00 Mar. 06, 2009 Pag RENESAS

(Related Module)

POE0 input (POE)

POE1 input (POE)

IRQ0 input (INTC)

IRQ1 input (INTC)

IRQ2 input (INTC)

(Related Module)

RXD0 input (SCI)

TXD0 output (SCI)

TXD1 output (SCI)

SCK0 I/O (SCI) RXD1 input (SCI) (Related Module) (Relat

TRST input (H-UDI)*2 -

TDO ou

REJ09

TMS input (H-UDI)*2

Port

Α

(Related Module)

PA0 I/O (port)

PA1 I/O (port)

PA2 I/O (port)

PA3 I/O (port)

PA4 I/O (port)

	PE11 l	/O (port)	TIOC3D I/O (MTU2)	_	_	_
	PE12 l	/O (port)	TIOC4A I/O (MTU2)	_	_	_
	PE13 I	/O (port)	TIOC4B I/O (MTU2)	MRES input (INTC)	_	_
	PE14 l	/O (port)	TIOC4C I/O (MTU2)	_	_	_
	PE15 I	/O (port)	TIOC4D I/O (MTU2)	IRQOUT output (INTC)	_	_
F	PF0 in	put (port)	AN0 input (A/D)	_	_	_
	PF1 in	put (port)	AN1 input (A/D)	_	_	_
	PF2 in	put (port)	AN2 input (A/D)			
	PF3 in	put (port)	AN3 input (A/D)	_	_	_
	PF4 in	put (port)	AN4 input (A/D)	_	_	
	PF5 in	put (port)	AN5 input (A/D)			
	PF6 in	put (port)	AN6 input (A/D)			
	PF7 in	put (port)	AN7 input (A/D)			
Notes:	: 1. [During A/D co	onversion, the AN i	input function is enal	bled.	
	٧			CK, TDI, and TDO) 241A) and 16 Kbyte		

11002D 1/0 (W1102)

TIOC3A I/O (MTU2)

TIOC3B I/O (MTU2)

TIOC3C I/O (MTU2)

REJ09B0243-0500

1 L7 1/O (port)

PE8 I/O (port)

PE9 I/O (port)

PE10 I/O (port)

Rev. 5.00 Mar. 06, 2009 Page 516 of 770

PB3 I/O (port)	IRQ1 input (INTC)	POE1 input (POE)
PB5 I/O (port)	IRQ3 input (INTC)	TIC5U input (MTU2)
PE0 I/O (port)	TIOC0A I/O (MTU2)	_
PE1 I/O (port)	TIOC0B I/O (MTU2)	RXD0 input (SCI)
PE2 I/O (port)	TIOCOC I/O (MTU2)	TXD0 output (SCI)
PE3 I/O (port)	TIOCOD I/O (MTU2)	SCK0 I/O (SCI)
PE8 I/O (port)	TIOC3A I/O (MTU2)	_
PE9 I/O (port)	TIOC3B I/O (MTU2)	_
PE10 I/O (port)	TIOC3C I/O (MTU2)	_
PE11 I/O (port)	TIOC3D I/O (MTU2)	_
PE12 I/O (port)	TIOC4A I/O (MTU2)	_
PE13 I/O (port)	TIOC4B I/O (MTU2)	MRES input (INTC)
PE14 I/O (port)	TIOC4C I/O (MTU2)	_
PE15 I/O (port)	TIOC4D I/O (MTU2)	IRQOUT output (INTC)

TCLKC input (MTU2)

TCLKD input (MTU2)

TIC5W input (MTU2)

PA8 I/O (port)

PA9 I/O (port)

PB1 I/O (port)

В

Е

RXD2 input (SCI)

TXD2 output (SCI)

TDI input (H-UDI)*2

POE8 input (POE)

TIC5V input (MTU2)

TDO ou

AINT IIIPUL (A/D)

Notes: 1. During A/D conversion, the AN input function is enabled.

2. These functions (TRST, TMS, TCK, TDI, and TDO) are not supported on the 3 versions (SH71251A and SH71241A) and 16 Kbyte versions (SH71250A and SH71240A).

RENESAS

Rev. 5.00 Mar. 06, 2009 Page 518 of 770

47	PLLVss	PLLVss
42	EXTAL	EXTAL
41	XTAL	XTAL
46	MD1	MD1
45	FWE/(ASEBRKAK/ ASEBRK*')	FWE
39	RES	RES
40	WDTOVF	WDTOVF
44	NMI	NMI
43	ASEMD0	ĀSEMD0
38	PA0	PA0/POE0/RXD0
36	PA1	PA1/ POE1 /TXD0
34	PA2	PA2/IRQ0/SCK0
32	PA3/(TRST*1)	PA3/IRQ1/RXD1
31	PA4/(TMS*1)	PA4/IRQ2/TXD1
30	PA5	PA5/IRQ3/SCK1
29	PA6	PA6/TCLKA
28	PA7/(TCK*1)	PA7/TCLKB/SCK2
27	PA8/(TDI*1)	PA8/TCLKC/RXD2
26	PA9/(TDO*1)	PA9/TCLKD/TXD2/POE8
25	PA10	PA10/RXD0
23	PA11	PA11/TXD0/ADTRG

PA12/SCK0

PA13/SCK1

21

20

PA12

PA13

REJ09

Rev. 5.00 Mar. 06, 2009 Pag

62	POE3	PB16/POE3	
17	PE0	PE0/TIOC0A	
16	PE1	PE1/TIOC0B/RXD0	
15	PE2	PE2/TIOC0C/TXD0	
14	PE3	PE3/TIOC0D/SCK0	
13	PE4	PE4/TIOC1A/RXD1	
12	PE5	PE5/TIOC1B/TXD1	
11	PE6	PE6/TIOC2A/SCK1	
10	PE7	PE7/TIOC2B	
9	PE8	PE8/TIOC3A	
5	PE9	PE9/TIOC3B	
7	PE10	PE10/TIOC3C	
3	PE11	PE11/TIOC3D	
2	PE12	PE12/TIOC4A	
1	PE13	PE13/TIOC4B/MRES	
64	PE14	PE14/TIOC4C	
63	PE15	PE15/TIOC4D/IRQOUT	
60	PF0/AN0	PF0/AN0	
59	PF1/AN1	PF1/AN1	
58	PF2/AN2	PF2/AN2	
57	PF3/AN3	PF3/AN3	

Rev. 5.00 Mar. 06, 2009 Page 520 of 770

PF4/AN4

PF5/AN5

PF4/AN4

PF5/AN5

56

55

Table 15.4 SH7124 Pin Functions in Each Operating Mode

	Single-Chip Mode (MCU Mode 3)								
Pin No.	Initial Function	PFC Selected Function Possibilities							
4, 17	Vcc	Vcc							
6, 19	Vss	Vss							
8, 25	VCL	VCL							
48	AVcc	AVcc							
39	AVss	AVss							
35	PLLVss	PLLVss							
30	EXTAL	EXTAL							
29	XTAL	XTAL							
34	MD1	MD1							
33	FWE/(ASEBRKAK/ ASEBRK* ¹)	FWE							
27	RES	RES							
28	WDTOVF	WDTOVF							
32	NMI	NMI							
31	ASEMD0	ĀSEMD0							
26	PA0	PA0/POE0/RXD0							
24	PA1	PA1/ POE1 /TXD0							
23	PA3/(TRST*1)	PA3/IRQ1/RXD1							

Pin Name

Rev. 5.00 Mar. 06, 2009 Pag

REJ09

9	PE9	PE9/TIOC3B
10	PE10	PE10/TIOC3C
7	PE11	PE11/TIOC3D
5	PE12	PE12/TIOC4A
3	PE13	PE13/TIOC4B/MRES
2	PE14	PE14/TIOC4C
1	PE15	PE15/TIOC4D/ĪRQOUT
47	PF0/AN0	PF0/AN0
46	PF1/AN1	PF1/AN1
45	PF2/AN2	PF2/AN2
44	PF3/AN3	PF3/AN3
43	PF4/AN4	PF4/AN4
42	PF5/AN5	PF5/AN5
41	PF6/AN6	PF6/AN6
40	PF7/AN7	PF7/AN7
	(in ASEMD0 = 2. E10A cannot b	TRST, TDI, TDO, TCK, and ASEBRKAK/ASEBRK when using low). be used on the 32 Kbyte (SH71251A and SH71241A) and 16 Kind SH71240A) versions.

37

36

15

14

13

12

11

REJ09B0243-0500

PB3

PB5

PE0

PE1

PE2

PE3

PE8

PB3/IRQ1/POE1/TIC5V

PB5/IRQ3/TIC5U

PE1/TIOC0B/RXD0

PE2/TIOC0C/TXD0

PE3/TIOC0D/SCK0

RENESAS

PE0/TIOC0A

PE8/TIOC3A

Port E control register L4	PECRL4	R/W	H'0000
Port E control register L3	PECRL3	R/W	H'0000
Port E control register L2	PECRL2	R/W	H'0000
Port E control register L1	PECRL1	R/W	H'0000
IRQOUT function control register	IFCR	R/W	H'0000

Port A control register L4

Port A control register L3

Port A control register L2

Port A control register L1

Port B control register H1

Port B control register L2

Port B control register L1

Port B I/O register H

Port B I/O register L

Port E I/O register L

R/W

H'0000

PACRL4

PACRL3

PACRL2

PACRL1

PBIORH

PBIORL

PBCRH1

PBCRL2

PBCRL1

PEIORL

REJ09

Rev. 5.00 Mar. 06, 2009 Pag

8,

8,

8,

8,

8,

8,

8,

8,

8,

8,

8,

8,

8,

8,

8,

H'FFFFD110

H'FFFFD112

H'FFFFD114

H'FFFFD116

H'FFFFD184

H'FFFFD186

H'FFFFD18E

H'FFFFD194

H'FFFFD196

H'FFFFD306

H'FFFFD310

H'FFFFD312

H'FFFFD314

H'FFFFD316

H'FFFFD322

The initial value of PAIORL is H'0000.

Bit	: 15	14	13	12	11	10	9	8	7	6	5	4	3	2	
[PA15 IOR	PA14 IOR	PA13 IOR	PA12 IOR	PA11 IOR	PA10 IOR	PA9 IOR	PA8 IOR	PA7 IOR	PA6 IOR	PA5 IOR	PA4 IOR	PA3 IOR	PA2 IOR	
Initial value	: 0	0	0	0	0	0	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	F

15.1.2 Port A Control Registers L1 to L4 (PACRL1 to PACRL4)

PACRL1 to PACRL4 are 16-bit readable/writable registers that are used to select the fun the multiplexed pins on port A.

SH7125:

• Port A Control Register L4 (PACRL4)

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	
	-	PA15 MD2	PA15 MD1	PA15 MD0	-	PA14 MD2	PA14 MD1	PA14 MD0	-	PA13 MD2	PA13 MD1	PA13 MD0	-	PA12 MD2	F
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
R/W:	R	R/W	R/W	R/W	R	R/W	R/W	R/W	R	R/W	R/W	R/W	R	R/W	F

Bit	Bit Name	Initial Value	R/W	Description
15	_	0	R	Reserved
				This bit is always read as 0. The write value salways be 0.

Rev. 5.00 Mar. 06, 2009 Page 524 of 770

REJ09B0243-0500

				110: RXD1 input (SCI)
				Other than above: Setting prohibited
7		0	R	Reserved
				This bit is always read as 0. The write value always be 0.
6	PA13MD2	0	R/W	PA13 Mode
5	PA13MD1	0	R/W	Select the function of the PA13/SCK1 pin.
4	PA13MD0	0	R/W	000: PA13 I/O (port)
				110: SCK1 I/O (SCI)
				Other than above: Setting prohibited
3	_	0	R	Reserved
				This bit is always read as 0. The write value always be 0.

R/W

R/W

R/W

R/W

R/W

R/W

PA14 Mode

000: PA14 I/O (port)

Select the function of the PA14/RXD1 pin.

10

9

8

2

1

0

PA14MD2

PA14MD1

PA14MD0

PA12MD2

PA12MD1

PA12MD0

0

0

0

0

0

0

PA12 Mode

000: PA12 I/O (port) 110: SCK0 I/O (SCI)

Rev. 5.00 Mar. 06, 2009 Pag

REJ09

Other than above: Setting prohibited

Select the function of the PA12/SCK0 pin.

				The state of the s
				010: ADTRG input (A/D)
				110: TXD0 output (SCI)
				Other than above: Setting prohibited
11	_	0	R	Reserved
				This bit is always read as 0. The write value always be 0.
10	PA10MD2	0	R/W	PA10 Mode
9	PA10MD1	0	R/W	Select the function of the PA10/RXD0 pin.
8	PA10MD0	0	R/W	000: PA10 I/O (port)
				110: RXD0 input (SCI)
				Other than above: Setting prohibited
7	_	0	R	Reserved
				This bit is always read as 0. The write value always be 0.

R/W

R/W

R/W

PA11 Mode

000: PA11 I/O (port)

Select the function of the PA11/TXD0/ADTR

PA11MD2

PA11MD1

PA11MD0

0

0

14

13

12

Rev. 5.00 Mar. 06, 2009 Page 526 of 770

_	0	R	Reserved
			This bit is always read as 0. The write value always be 0.
PA8MD2	0	R/W	PA8 Mode
PA8MD1	0	R/W	Select the function of the PA8/TCLKC/RXD
PA8MD0	0	R/W	When the E10A* is in use ($\overline{ASEMD0} = low$) is fixed to TDI input.
			000: PA8 I/O (port)
			001: TCLKC input (MTU2)

111: POE8 input (POE)

Other than above: Setting prohibited

110: RXD2 input (SCI) Other than above: Setting prohibited Note: E10A cannot be used on the 32 Kbyte (SH71251A and SH71241A) and 16 K

(SH71250A and SH71240A) versions.

3

2 1

0

RENESAS

REJ09

Rev. 5.00 Mar. 06, 2009 Pag

13 12	PA7MD1 PA7MD0	0 0	R/W R/W	Select the function of the PA7/TCLKB/SCK2 When the E10A* is in use (ASEMD0 = low)
				is fixed to TCK input. 000: PA7 I/O (port)
				, ,
				001: TCLKB input (MTU2)
				110: SCK2 I/O (SCI)
				Other than above: Setting prohibited
11		0	R	Reserved
				This bit is always read as 0. The write value always be 0.
10	PA6MD2	0	R/W	PA6 Mode
9	PA6MD1	0	R/W	Select the function of the PA6/TCLKA pin.
8	PA6MD0	0	R/W	000: PA6 I/O (port)
				001: TCLKA input (MTU2)
				Other than above: Setting prohibited
7	_	0	R	Reserved
				This bit is always read as 0. The write value always be 0.
6	PA5MD2	0	R/W	PA5 Mode
5	PA5MD1	0	R/W	Select the function of the PA5/IRQ3/SCK1 p
4	PA5MD0	0	R/W	000: PA5 I/O (port)
				001: SCK1 I/O (SCI)
				111: IRQ3 input (INTC)
				Other than above: Setting prohibited

PA7 Mode

R/W

14

PA7MD2

111: IRQ2 input (INTC)

Other than above: Setting prohibited

Note: * E10A cannot be used on the 32 Kbyte (SH71251A and SH71241A) and 16 K (SH71250A and SH71240A) versions.

• Port A Control Register L1 (PACRL1)

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2
	-	PA3 MD2	PA3 MD1	PA3 MD0	-	PA2 MD2	PA2 MD1	PA2 MD0	-	PA1 MD2	PA1 MD1	PA1 MD0	-	PA0 MD2
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R	R/W	R/W	R/W	R	R/W	R/W	R/W	R	R/W	R/W	R/W	R	R/W

Bit	Bit Name	Initial Value	R/W	Description
15	_	0	R	Reserved
				This bit is always read as 0. The write value always be 0.
14	PA3MD2	0	R/W	PA3 Mode
13	PA3MD1	0	R/W	Select the function of the PA3/IRQ1/RXD1/
12	PA3MD0	0	R/W	When the E10A* is in use (ASEMD0 = low) is fixed to \overline{TRST} input.
				000: PA3 I/O (port)
				001: RXD1 input (SCI)
				111: IRQ1 input (INTC)
				Other than above: Setting prohibited

REJ09

				Other than above: Setting prohibited
7	_	0	R	Reserved
				This bit is always read as 0. The write value salways be 0.
6	PA1MD2	0	R/W	PA1 Mode
5	PA1MD1	0	R/W	Select the function of the PA1/POE1/TXD0 p
4	PA1MD0	0	R/W	000: PA1 I/O (port)
				001: TXD0 output (SCI)
				111: POE1 input (POE)
				Other than above: Setting prohibited
3		0	R	Reserved
				This bit is always read as 0. The write value always be 0.

R/W

R/W

R/W

PA0 Mode

E10A cannot be used on the 32 Kbyte (SH71251A and SH71241A) and 16 Kb

000: PA0 I/O (port)

001: RXD0 input (SCI)
111: POE0 input (POE)

Select the function of the PA0/POE0/RXD0 p

Other than above: Setting prohibited

(SH71250A and SH71240A) versions.

0

0

0

RENESAS

Rev. 5.00 Mar. 06, 2009 Page 530 of 770

2

1

0

Note:

PA0MD2

PA0MD1

PA0MD0

6

PA9 MD2

0

5

PA9 MD1

PA9 MD0

3

2

PA8 MD2

0

• Port A Control Register L3 (PACRL3)

0

0

14

0

Bit: 15

Initial value: 0

R/W:	R R	R	R	R	R	R	R	R	R/W	R/W	R/W	R	R/W
Bit	Bit Nam	1e	Initial Value		R/W	De	scrip	tion					
15 to 7	_		All 0	F	R	Re	serve	d					
									e alway s be 0.	,	ıd as C). The	e write v
6	PA9MD2	2	0	F	R/W	PA	9 Mod	de					
5	PA9MD	1	0	F	R/W				ction o	_			
4	PA9MD(0	0	F	R/W	is i							When the s fixed to
						000	D: PA	9 I/O	(port)				
						00	1: TCI	_KD ii	nput (l	MTU2	.)		
						110	D: TXI	D2 ou	tput (S	SCI)			
						11	1: PO	E8 in	put (Po	OE)			
						Oth	ner tha	an ab	ove: S	Setting	g prohi	bited	
3	_		0	F	R	Re	serve	d					
						Thi	s bit i	s alwa	ays re	ad as	0. The	e writ	e value

10

0

0

9

0

8

0

always be 0.

Rev. 5.00 Mar. 06, 2009 Pag

REJ09

Note: * E10A cannot be used on the 32 Kbyte (SH/1251A and SH/1241A) and 16 Kb (SH71250A and SH71240A) versions.

• Port A Control Register L2 (PACRL2)

Bit: 15

		MD2	MD1	MD0		MD2	MD1	MD0						MD2
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R	R/W	R/W	R/W	R	R/W	R/W	R/W	R	R	R	R	R	R/W
Bit	Bi	t Nam	е	Initial Value		R/W	De	script	ion					
15	_			0		R	Re	serve	b					
								is bit is /ays b		ays rea	ad as	0. The	e writ	e value
14	PA	A7MD2	2	0		R/W	PA	7 Moc	le					
13	PA	A7MD1		0		R/W	Se	lect th	e fund	ction o	of the	P <u>A</u> 7/T	CLK	B/SCK2
12	PA	A7MD0)	0		R/W		nen the ixed to				(ASE	MD0	= low)
							000): PA7	' I/O (port)				
							00	1: TCL	.KB ir	nput (N	/ITU2)		
							110	D: SCŁ	(2 I/C	(SCI))			
							Oth	ner tha	an ab	ove: S	etting	j prohi	bited	
11	_			0		R	Re	serve	d					
							Th	is bit is	s alwa	ays rea	ad as	0. The	e writ	e value

Rev. 5.00 Mar. 06, 2009 Page 532 of 770

always be 0.

-	2	PA4MD2	0	R/W	PA4 Mode
	1	PA4MD1	0	R/W	Select the function of the PA4/IRQ2/TXD1/I
	0	PA4MD0	0	R/W	When the E10A* is in use (ASEMD0 = low) is fixed to TMS input.
					000: PA4 I/O (port)
					001: TXD1 output (SCI)
					111: IRQ2 input (INTC)

Note: * E10A cannot be used on the 32 Kbyte (SH71251A and SH71241A) and 16 K (SH71250A and SH71240A) versions.

Other than above: Setting prohibited

Rev. 5.00 Mar. 06, 2009 Pag

REJ09

• Port A Control Register L1 (PACRL1)

Bit	Bi	t Nam	е	Initial Value		R/W	De	scrip	tion					
Initial value: R/W:	-	0 R/W	0 R/W	0 R/W	0 R	0 R	0 R	0 R	0 R	0 R/W	0 R/W	0 R/W	0 R	0 R/W
[-	PA3 MD2	PA3 MD1	PA3 MD0	-	-	-	-	-	PA1 MD2	PA1 MD1	PA1 MD0	-	PA0 MD2
Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2

Bit	Bit Name	Initial Value	R/W	Description
15	_	0	R	Reserved
				This bit is always read as 0. The write value always be 0.

6	PA1MD2	0	R/W	PA1 Mode
5	PA1MD1	0	R/W	Select the function of the PA1/POE1/TXD0 p
4	PA1MD0	0	R/W	000: PA1 I/O (port)
				001: TXD0 output (SCI)
				111: POE1 input (POE)
				Other than above: Setting prohibited
3		0	R	Reserved
				This bit is always read as 0. The write value always be 0.
2	PA0MD2	0	R/W	PA0 Mode
1	PA0MD1	0	R/W	Select the function of the PA0/POE0/RXD0 p
0	PA0MD0	0	R/W	000: PA0 I/O (port)
				001: RXD0 input (SCI)
				100: POE0 output (POE)
				Other than above: Setting prohibited
Note:			sed on the 32 SH71240A) ver	Kbyte (SH71251A and SH71241A) and 16 Kb rsions.

All 0

Reserved

should always be 0.

These bits are always read as 0. The write va

Rev. 5.00 Mar. 06, 2009 Page 534 of 770 REJ09B0243-0500

11 to 7

RENESAS

to 1, and an input pin if the bit is cleared to 0.

read as 0. The write value should always be 0.

However, bit 2 of PBIORL and bit 0 of PBIORH are disabled in SH7124.

Bits 15 to 6, 4, and 0 of PBIORL and bits 15 to 1 of PBIORH are reserved. These bits at

The initial value of PBIORL and PBIORH are H'0000, respectively.

• Port B I/O Register H (PBIORH)

Bit	: 15	14	13	12	11	10	9	8	7	6	5	4	3	2
	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial value	: 0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	: R	R	R	R	R	R	R	R	R	R	R	R	R	R

• Port B I/O Register L (PBIORL)

Bit	: 15	14	13	12	11	10	9	8	7	6	5	4	3	2
	-	-	-	-	-	-	-	-	-	-	PB5 IOR	-	PB3 IOR	PB2 IOR
Initial value	: 0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	. R	R	R	R	R	R	R	R	R	R	R/W	R	R/W	R/W

R/W:	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Note: * After a power-on reset, write can be performed only once.

Bit	Bit Name	Initial Value	R/W	Description
15 to 1	_	All 0	R	Reserved
				These bits are always read as 0. The write vishould always be 0.
0	PB16MD	1	R/W*	PB16 Mode
				Select the function of the PB16/POE3 pin.
				0: PB16 I/O (port)
				1: POE3 input (POE)

• Port B Control Register L2 (PBCRL2)

Bit: 15	14	13	12	11	10	9	8	7	6	5	4	3	2	
-	-	-	-	-	-	-	-	-	PB5 MD2	PB5 MD1	PB5 MD0	-	-	
Initial value: 0	0	0	0	0	0	0	0	0	0	0	0	0	0	
R/W: R	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R	R	

Bit	Bit Name	Initial Value	R/W	Description
15 to 7	_	All 0	R	Reserved
				These bits are always read as 0. The write vashould always be 0.

RENESAS

Rev. 5.00 Mar. 06, 2009 Page 536 of 770

• Port B Control Register L1 (PBCRL1)

Bit:	15	14	13	12	11	10	9	8	/	6	5	4	3	2
	-	PB3 MD2	PB3 MD1	PB3 MD0	-	PB2 MD2	PB2 MD1	PB2 MD0	-	PB1 MD2	PB1 MD1	PB1 MD0	-	-
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R	R/W	R/W	R/W	R	R/W	R/W	R/W	R	R/W	R/W	R/W	R	R

		Initial		
Bit	Bit Name	Value	R/W	Description
15	_	0	R	Reserved
				This bit is always read as 0. The write value always be 0.
14	PB3MD2	0	R/W	PB3 Mode
13	PB3MD1	0	R/W	Select the function of the PB3/IRQ1/POE1/
12	PB3MD0	0	R/W	000: PB3 I/O (port)
				001: IRQ1 input (INTC)
				010: POE1 input (POE)
				011: TIC5V input (MTU2)
				Other than above: Setting prohibited
11	_	0	R	Reserved
				This bit is always read as 0. The write value always be 0.

6	PB1MD2	0	R/W	PB1 Mode
5	PB1MD1	0	R/W	Select the function of the PB1/TIC5W pin.
4	PB1MD0	0	R/W	000: PB1 I/O (port)
				011: TIC5W input (MTU2)
				Other than above: Setting prohibited
3 to 0	_	All 0	R	Reserved
				These bits are always read as 0. The write vashould always be 0.

always be 0.

SH7124:

• Port B Control Register H1 (PBCRH1)

Bit	: 15	14	13	12	11	10	9	8	7	6	5	4	3	2
	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial value	: 0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	: R	R	R	R	R	R	R	R	R	R	R	R	R	R

Bit	Bit Name	Initial Value	R/W	Description
15 to 0	_	All 0	R	Reserved
				These bits are always read as 0. The write should always be 0.

Rev. 5.00 Mar. 06, 2009 Page 538 of 770

4	PB5MD0	0	R/W	000: PB5 I/O (port)
				001: IRQ3 input (INTC)
				011: TIC5U input (MTU2)
				Other than above: Setting prohibited
3 to 0		All 0	R	Reserved
				These bits are always read as 0. The write should always be 0.

PB5 Mode

Select the function of the PB5/IRQ3/TIC5U

This bit is always read as 0. The write value

Rev. 5.00 Mar. 06, 2009 Pag

REJ09

R/W

R/W

• Port B Control Register L1 (PBCRL1) 13 12

PB5MD2

PB5MD1

0

0

6

5

15	_ 0 R		R	Res	serve									
Bit	Bit Name		е	Value R/W		De	Description							
R/W:	R	R/W	R/W	R/W Initial	R	R	R	R	R	R/W	R/W	R/W	R	R
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	-	PB3 MD2	PB3 MD1	PB3 MD0	-	-	-	-	-	PB1 MD2	PB1 MD1	PB1 MD0	-	-
Dit.	10	17	10	12		10	5	O	,	O	9	7	U	_

always be 0.

				These bits are always read as 0. The write vashould always be 0.
6	PB1MD2	0	R/W	PB1 Mode
5	PB1MD1	0	R/W	Select the function of the PB1/TIC5W pin.
4	PB1MD0	0	R/W	000: PB1 I/O (port)
				011: TIC5W input (MTU2)
				Other than above: Setting prohibited
3 to 0	_	All 0	R	Reserved
				These bits are always read as 0. The write vashould always be 0.

Rev. 5.00 Mar. 06, 2009 Page 540 of 770 REJ09B0243-0500

However, bits 7 to 4 of PEIORL are disabled in SH7124.

The initial value of PEIORL is H'0000.

Bit: 15	14	13	12	11	10	9	8	7	6	5	4	3	2
PE15 IOR	PE14 IOR	PE13 IOR	PE12 IOR	PE11 IOR	PE10 IOR	PE9 IOR	PE8 IOR	PE7 IOR	PE6 IOR	PE5 IOR	PE4 IOR	PE3 IOR	PE2 IOR
Initial value: 0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W: R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

15.1.6 Port E Control Registers L1 to L4 (PECRL1 to PECRL4)

PECRL1 to PECRL4, are 16-bit readable/writable registers that are used to select the futhe multiplexed pins on port E.

SH7125:

• Port E Control Register L4 (PECRL4)

				Initial			_		_					
Initial value: R/W:	-	0 R/W	0 R/W	0 R/W	0 R	0 R/W	0 R/W	0 R/W	0 R	0 R	0 R/W	0 R/W	0 R	0 R/W
[-	PE15 MD2	PE15 MD1	PE15 MD0	-	PE14 MD2	PE14 MD1	PE14 MD0	-	-	PE13 MD1	PE13 MD0	-	PE12 MD2
Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2

Bit	Bit Name	Initial Value	R/W	Description
15	_	0	R	Reserved
				This bit is always read as 0. The write value always be 0.

Rev. 5.00 Mar. 06, 2009 Pag REJ09

8	PE14MD0	0	R/W	000: PE14 I/O (port)
				001: TIOC4C I/O (MTU2)
				Other than above: Setting prohibited
7, 6	_	All 0	R	Reserved
				These bits are always read as 0. The write vashould always be 0.
5	PE13MD1	0	R/W	PE13 Mode
4	PE13MD0	0	R/W	Select the function of the PE13/TIOC4B/MRE
				00: PE13 I/O (port)
				01: TIOC4B I/O (MTU2)
				10: MRES input (INTC)
				Other than above: Setting prohibited
3	_	0	R	Reserved
				This bit is always read as 0. The write value salways be 0.
2	PE12MD2	0	R/W	PE12 Mode
1	PE12MD1	0	R/W	Select the function of the PE12/TIOC4A pin.
0	PE12MD0	0	R/W	000: PE12 I/O (port)
				001: TIOC4A I/O (MTU2)

R/W

R/W

10

9

PE14MD2

PE14MD1

0

0

always be 0.

PE14 Mode

Select the function of the PE14/TIOC4C pin.

Other than above: Setting prohibited

				•
12	PE11MD0	0	R/W	000: PE11 I/O (port)
				001: TIOC3D I/O (MTU2)
				Other than above: Setting prohibited
11	_	0	R	Reserved
				This bit is always read as 0. The write value always be 0.
10	PE10MD2	0	R/W	PE10 Mode
9	PE10MD1	0	R/W	Select the function of the PE10/TIOC3C pin
8	PE10MD0	0	R/W	000: PE10 I/O (port)
				001: TIOC3C I/O (MTU2)
				Other than above: Setting prohibited
7	_	0	R	Reserved
				This bit is always read as 0. The write value always be 0.
6	PE9MD2	0	R/W	PE9 Mode
5	PE9MD1	0	R/W	Select the function of the PE9/TIOC3B pin.
4	PE9MD0	0	R/W	000: PE9 I/O (port)
				001: TIOC3B I/O (MTU2)
				Other than above: Setting prohibited
3	_	0	R	Reserved
				This bit is always read as 0. The write value always be 0.

R/W

R/W

PE11 Mode

Select the function of the PE11/TIOC3D pin

14

13

PE11MD2

PE11MD1

0

0

Rev. 5.00 Mar. 06, 2009 Pag

REJ09

Bit	Bit Name	Value	R/W	Description
15	_	0	R	Reserved
				This bit is always read as 0. The write value salways be 0.
14	PE7MD2	0	R/W	PE7 Mode
13	PE7MD1	0	R/W	Select the function of the PE7/TIOC2B pin.
12	PE7MD0	0	R/W	000: PE7 I/O (port)
				001: TIOC2B I/O (MTU2)
				Other than above: Setting prohibited
11	_	0	R	Reserved
				This bit is always read as 0. The write value always be 0.
10	PE6MD2	0	R/W	PE6 Mode
9	PE6MD1	0	R/W	Select the function of the PE6/TIOC2A/SCK1
8	PE6MD0	0	R/W	000: PE6 I/O (port)
				001: TIOC2A I/O (MTU2)
				110: SCK1 I/O (SCI)
				Other than above: Setting prohibited

PE7 MD2

0

R/W

Initial value:

R/W: R

PE7 MD1

0

R/W

PE7 MD0

0

R/W

Initial

0

R

PE6 MD2

0

R/W

PE6 MD1

0

R/W

PE6 MD0

0

R/W

0

R

PE5 MD2

0

R/W

PE5 MD1

0

R/W

PE5 MD0

0

R/W

0

R

PE4 MD2

0

R/W F

Rev. 5.00 Mar. 06, 2009 Page 544 of 770

				Other than above: Setting prohibited
3	_	0	R	Reserved
				This bit is always read as 0. The write value always be 0.
2	PE4MD2	0	R/W	PE4 Mode
1	PE4MD1	0	R/W	Select the function of the PE4/TIOC1A/RXD
0	PE4MD0	0	R/W	000: PE4 I/O (port)
				001: TIOC1A I/O (MTU2)
				110: RXD1 input (SCI)
				Other than above: Setting prohibited

• Port E Control Register L1 (PECRL1)

13

12

11

14

Bit: 15

	1	PE3 MD2	PE3 MD1	PE3 MD0	-	PE2 MD2	PE2 MD1	PE2 MD0	1	PE1 MD2	PE1 MD1	PE1 MD0	1	-
Initial value	: 0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	: R	R/W	R/W	R/W	R	R/W	R/W	R/W	R	R/W	R/W	R/W	R	R

8 7

10

Bit	Bit Name	Initial Value	R/W	Description
15	_	0	R	Reserved
				This bit is always read as 0. The write value always be 0.

REJ09

5

10	PE2MD2	0	R/W	PE2 Mode
9	PE2MD1	0	R/W	Select the function of the PE2/TIOC0C/TXD0
8	PE2MD0	0	R/W	000: PE2 I/O (port)
				001: TIOC0C I/O (MTU2)
				110: TXD0 output (SCI)
				Other than above: Setting prohibited
7	_	0	R	Reserved
				This bit is always read as 0. The write value always be 0.
6	PE1MD2	0	R/W	PE1 Mode
5	PE1MD1	0	R/W	Select the function of the PE1/TIOC0B/RXD0
4	PE1MD0	0	R/W	000: PE1 I/O (port)
				001: TIOC0B I/O (MTU2)
				110: RXD0 input (SCI)
				Other than above: Setting prohibited
3, 2	_	All 0	R	Reserved
				These bits are always read as 0. The write vashould always be 0.
1	PE0MD1	0	R/W	PE0 Mode
0	PE0MD0	0	R/W	Select the function of the PE0/TIOC0A pin.

00: PE0 I/O (port) 01: TIOC0A I/O (MTU2)

Other than above: Setting prohibited

always be 0.

REJ09B0243-0500

Rev. 5.00 Mar. 06, 2009 Page 546 of 770 RENESAS

13	PE15MD1	0	R/W	Select the function of the PE15/TIOC4D/IRC
12	PE15MD0	0	R/W	000: PE15 I/O (port)
				001: TIOC4D I/O (MTU2)
				011: IRQOUT output (INTC)
				Other than above: Setting prohibited
11	_	0	R	Reserved
				This bit is always read as 0. The write value always be 0.
10	PE14MD2	0	R/W	PE14 Mode
9	PE14MD1	0	R/W	Select the function of the PE14/TIOC4C pin
8	PE14MD0	0	R/W	000: PE14 I/O (port)
				001: TIOC4C I/O (MTU2)
				Other than above: Setting prohibited
7, 6	_	All 0	R	Reserved
				These bits are always read as 0. The write vectors should always be 0.

R/W

R/W

R/W

14

5

4

PE15MD2

PE13MD1

PE13MD0

0

0

0

This bit is always read as 0. The write value

Select the function of the PE13/TIOC4B/MF

Rev. 5.00 Mar. 06, 2009 Pag

REJ09

Other than above: Setting prohibited

always be 0.

PE15 Mode

PE13 Mode

00: PE13 I/O (port) 01: TIOC4B I/O (MTU2) 10: MRES input (INTC)

• Port E Control Register L3 (PECRL3)

13

PE11 MD1 12

PE11 MD0 11

10

PE10 MD2 9

PE10 MD1 8

PE10 MD0 7

6

5

PE9 MD1 PE9 MD0 3

2

PE8 MD2

14

PE11 MD2

Bit: 15

			IVIDE	IVIDI	IVIDO		IVIDE	IVIDI	IVIDO		IVIDE	IVIDI	IVIDO		IVIDE	<u> </u>		
Initial	value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
	R/W:	R	R/W	R/W	R/W	R	R/W	R/W	R/W	R	R/W	R/W	R/W	R	R/W	F		
-		- :-			Initial		D.044	_										
Bit		BIT	Nam	<u>e</u>	Value		R/W	De	scripti	ion								
15		_			0		R	Re	served	i								
								This bit is always read as 0. The write va always be 0.										
14		PE	11MC)2	0		R/W	PE	11 Mo	de								
13		PE	11MC)1	0		R/W	Se	lect the	e fund	ction o	of the	PE11/	TIOC	C3D pi	n.		
12		PE	11MD	00	0		R/W	000	000: PE11 I/O (port)									
								00	001: TIOC3D I/O (MTU2)									
								Oth	ner tha	n ab	ove: S	etting	prohil	oited				
11		_			0		R	Re	served	i								
								This bit is always read as 0. The write valualways be 0.								e s		
10		PE	10MD)2	0		R/W	PE	10 Mo	de								
9		PE	10MD)1	0		R/W	Se	lect the	e fund	ction c	of the	PE10/	TIOC	C3C pi	n.		
8		PE	10MD	00	0		R/W	000: PE10 I/O (port)										
								00	1: TIO	СЗС	I/O (M	TU2)						
								Oth	ner tha	n ab	ove: S	etting	prohil	oited				

_	0	R	Reserved
			This bit is always read as 0. The write value always be 0.
PE8MD2	0	R/W	PE8 Mode
PE8MD1	0	R/W	Select the function of the PE8/TIOC3A pin.
PE8MD0	0	R/W	000: PE8 I/O (port)
			001: TIOC3A I/O (MTU2)
			Other than above: Setting prohibited

• Port E Control Register L2 (PECRL2)

3

2 1 0

Initial value	: 0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	: R	R	R	R	R	R	R	R	R	R	R	R	R	R
				1 141 1										
				Initial					_					
Bit	Bit	Nam	е	Value	• •	R/W	De	scrip	tion					

Bit	Bit Name	Initial Value R/W		Description			
15 to 0	_	All 0	R	Reserved			
				These bits are always read as 0. The write should always be 0.			

13	PE3MD1	0	R/W	Select the function of the PE3/TIOC0D/SCK0
12	PE3MD0	0	R/W	000: PE3 I/O (port)
				001: TIOC0D I/O (MTU2)
				110: SCK0 I/O (SCI)
				Other than above: Setting prohibited
11	_	0	R	Reserved
				This bit is always read as 0. The write value salways be 0.
10	PE2MD2	0	R/W	PE2 Mode
9	PE2MD1	0	R/W	Select the function of the PE2/TIOC0C/TXD0
8	PE2MD0	0	R/W	000: PE2 I/O (port)
				001: TIOC0C I/O (MTU2)
				110: TXD0 output (SCI)
				Other than above: Setting prohibited
7	_	0	R	Reserved
				This bit is always read as 0. The write value salways be 0.
6	PE1MD2	0	R/W	PE1 Mode
5	PE1MD1	0	R/W	Select the function of the PE1/TIOC0B/RXD0
4	PE1MD0	0	R/W	000: PE1 I/O (port)
				001: TIOC0B I/O (MTU2)
				110: RXD0 input (SCI)

R/W

PE3 Mode

Other than above: Setting prohibited

PE3MD2

14 13 0

Rev. 5.00 Mar. 06, 2009 Page 550 of 770

15.1.7 IRQOUT Function Control Register (IFCR)

IFCR is a 16-bit readable/writable register that is used to control the IRQOUT pin output is selected as the multiplexed pin function by port E control register L4 (PECRL4). When PECRL4 selects another function, the IFCR setting does not affect the pin function.

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2
	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R	R	R	R	R	R	R	R	R

		Initial		
Bit	Bit Name	Value	R/W	Description
15 to 2	_	All 0	R	Reserved
				These bits are always read as 0. The write should always be 0.
1	IRQMD1	0	R/W	Port E IRQOUT Pin Function Select
0	IRQMD0	0	R/W	Select the $\overline{\text{IRQOUT}}$ pin function when bits 1 (PE15MD2 to PE15MD0) in PECRL4 are set
				00: Interrupt request accept signal output
				Other than above: Always high-level output

RENESAS

Rev. 5.00 Mar. 06, 2009 Pag REJ09 When using one of the functions shown below in multiple pins, use it with care of polarity considering the transmit forms.

Table 15.6 Transmit Forms of Input Functions Allocated to Multiple Pins

OR Type	AND Type
SCK0 to SCK2, RXD0 to RXD2, POE0, POE1,	IRQ0* to IRQ3
7077	

POE3*, POE8

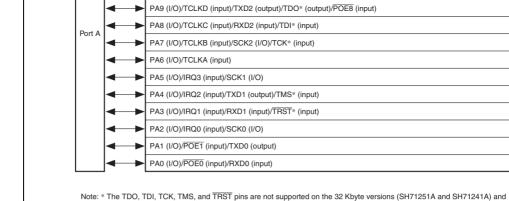
Note: * This pin is supported only by the SH7125.

OR type: Signals input to several pins are formed as one signal through OR log

signal is transmitted into the LSI.

AND type: Signals input to several pins are formed as one signal through AND to

the signal is transmitted into the LSI.


— When the pin function is output

Each selected pin can output the same function.

- 2. When the port input is switched from a low level to the IRQ edge for the pins that are multiplexed with input/output and IRQ, the corresponding edge is detected.
- 3. Do not set functions other than those specified in tables 15.3 and 15.4. Otherwise, corroperation cannot be guaranteed.

RENESAS

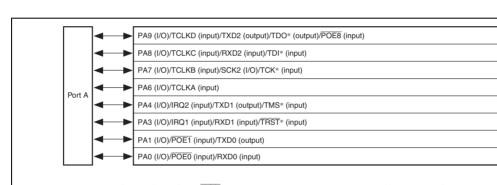

Rev. 5.00 Mar. 06, 2009 Pag REJ09

Figure 16.1 Port A (SH7125)

Port A in the SH7124 is an input/output port with the eight pins shown in figure 16.2.

16 Kbyte versions (SH71250A and SH71240A).

Note: * The TDO, TDI, TCK, TMS, and TRST pins are not supported on the 32 Kbyte versions (SH71251A and SH71241A) and 16 Kbyte versions (SH71250A and SH71240A).

Figure 16.2 Port A (SH7124)

Rev. 5.00 Mar. 06, 2009 Page 554 of 770

RENESAS

REJ09B0243-0500

16.1.2 Port A Data Register L (PADRL)

PADRL is a 16-bit readable/writable register that stores port A data. Bits PA15DR to Pa correspond to pins PA15 to PA0 (multiplexed functions omitted here) in the SH7125. B to PA6DR, PA4DR, PA3DR, PA1DR, and PA0DR correspond to pins PA9 to PA6, PA PA1, and PA0, respectively (multiplexed functions omitted here) in the SH7124.

When a pin function is general output, if a value is written to PADRL, that value is output from the pin, and if PADRL is read, the register value is returned directly regardless of state.

When a pin function is general input, if PADRL is read, the pin state, not the register va returned directly. If a value is written to PADRL, although that value is written into PADRL does not affect the pin state. Table 16.2 summarizes port A data register read/write oper

		-	
12	PA12DR	0	R/W
11	PA11DR	0	R/W
10	PA10DR	0	R/W
9	PA9DR	0	R/W
8	PA8DR	0	R/W
7	PA7DR	0	R/W
6	PA6DR	0	R/W
5	PA5DR	0	R/W
4	PA4DR	0	R/W
3	PA3DR	0	R/W
2	PA2DR	0	R/W
1	PA1DR	0	R/W
0	PA0DR	0	R/W

Rev. 5.00 Mar. 06, 2009 Page 556 of 770 REJ09B0243-0500

PA8DR	0	R/W	_
PA7DR	0	R/W	_
PA6DR	0	R/W	_
_	0	R	Reserved
			This bit is always read as 0. The write value s always be 0.
PA4DR	0	R/W	See table 16.2.
PA3DR	0	R/W	_
_	0	R	Reserved
			This bit is always read as 0. The write value s always be 0.
PA1DR	0	R/W	See table 16.2.
PA0DR	0	R/W	_
	PA7DR PA6DR — PA4DR PA3DR — PA1DR	PA7DR 0 PA6DR 0 0 PA4DR 0 PA3DR 0 0 PA1DR 0	PA7DR 0 R/W PA6DR 0 R/W — 0 R PA4DR 0 R/W PA3DR 0 R/W — 0 R PA1DR 0 R/W

R/W

See table 16.2.

9

PA9DR

0

Rev. 5.00 Mar. 06, 2009 Pag

Rev. 5.00 Mar. 06, 2009 Page 558 of 770

Initial	value:	*	*	*	*	*	*	*	*	*	*	*	*	*	*
	R/W:	R	R	R	R	R	R	R	R	R	R	R	R	R	R
				In	itial										
Bit		Bit	Name		alue	R/\	W	Desc	riptic	n					
15		PA	15PR	Pi	in state	e R								ess of	the PF
14		PA	14PR	Pi	in state	e R		Thes	e bits	cann	ot be	modifi	ed.		
13		PA	13PR	Pi	in state	e R		_							
12		PA	12PR	Pi	in state	e R		_							
11		PA	11PR	Pi	in state	e R		_							
10		PA	10PR	Pi	in state	e R		_							
9		PA	9PR	Pi	in state	e R		_							
8		PA	8PR	Pi	in state	e R		_							
7		PA	7PR	Pi	in state	e R		_							
6		PA	6PR	Pi	in state	e R		_							
5		PA	5PR	Pi	in state	e R		_							
4		PA	4PR	Pi	in state	e R		_							
3		PA	3PR	Pi	in state	e R		_							

PA2PR

PA1PR

PA0PR

2

1

0

Pin state R

Pin state R

Pin state R

Rev. 5.00 Mar. 06, 2009 Pag

9	PA9PR	Pin state	R	The pin state is returned regardless of the PFC
8	PA8PR	Pin state	R	These bits cannot be modified.
7	PA7PR	Pin state	R	
6	PA6PR	Pin state	R	
5	_	0	R	Reserved
				This bit is always read as 0. The write value shalways be 0.
4	PA4PR	Pin state	R	The pin state is returned regardless of the PFC
3	PA3PR	Pin state	R	These bits cannot be modified.
2	_	0	R	Reserved
				This bit is always read as 0. The write value shalways be 0.

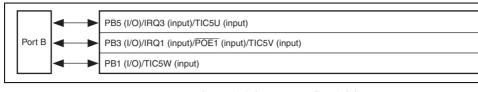
PA1PR

PA0PR

0

Pin state R

Pin state R


The pin state is returned regardless of the PFC

These bits cannot be modified.

Rev. 5.00 Mar. 06, 2009 Page 560 of 770

Figure 16.3 Port B (SH7125)

Port B in the SH7124 is an input/output port with the three pins shown in figure 16.4.

Figure 16.4 Port B (SH7124)

16.2.1 Register Descriptions

Port B is a 5-bit input/output port in the SH7125 and a 3-bit input/output port in the SH7 B has the following register. For details on register addresses and register states during a processing, refer to section 20, List of Registers.

Table 16.3 Register Configuration

Register Name	tion	R/W	Initial Value	Address	A
Port B data register H	PBDRH	R/W	H'0000	H'FFFFD180	8,
Port B data register L	PBDRL	R/W	H'0000	H'FFFFD182	8,
Port B port register H	PBPRH	R	_	H'FFFFD19C	8,
Port B port register L	PBPRL	R	_	H'FFFFD19E	8,

Abbrevia-

Rev. 5.00 Mar. 06, 2009 Pag

When a pin function is general input, if PBDRH or PBDRL is read, the pin state, not the value, is returned directly. If a value is written to PBDRH or PBDRL, although that value written into PBDRH or PBDRL, it does not affect the pin state. Table 16.4 summarizes p register read/write operations.

• PBDRH (SH7125)

Bit	: 15	14	13	12	11	10	9	8	7	6	5	4	3	2	
[-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Initial value	: 0	0	0	0	0	0	0	0	0	0	0	0	0	0	
R/W	: R	R	R	R	R	R	R	R	R	R	R	R	R	R	

Bit	Bit Name	Initial Value	R/W	Description
15 to 1	_	All 0	R	Reserved
				These bits are always read as 0. The write val always be 0.
0	PB16DR	0	R/W	See table 16.4.

PBDRL (SH7125) Bit: 15

14

12

11

10

Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R	R	R	R	R	R/W	R	R/W	R/W
			In	itial										
Bit	Bit I	Name	V	alue	R/	W	Des	criptio	n					
15 to 6	_		Al	Ι0	R		Rese	erved						
								e bits ys be		lways	s read	as 0.	The v	vrite va
5	PB5	DR	0		R/	W	See	table	16.4.					
4			0		R		Rese	erved						
								bit is a	_	s read	d as 0.	The	write	value s
3	PB3	DR	0		R/	W	See	table	16.4.					
2	PB2	DR	0		R/	W	_							
1	PB1	DR	0		R/	W	_							
0	_		0		R		Rese	erved						
							This	bit is	alway	s read	d as 0.	The	write	value s

always be 0.

3

PB3 DR

5

PB5 DR

2

PB2 DR

PB5DR	0	R/W	See table 16.4.
_	0	R	Reserved
			This bit is always read as 0. The write value shalways be 0.
PB3DR	0	R/W	See table 16.4.
_	0	R	Reserved
			This bit is always read as 0. The write value shalways be 0.
PB1DR	0	R/W	See table 16.4.
_	0	R	Reserved
			This bit is always read as 0. The write value shalways be 0.

Table 16.4 Port B Data Register (PBDR) Read/Write Operations

Read

Pin state

Pin state

PBDRH or

• PBDRH Bit 0 and PBDRL Bits 5 and 3 to 1

Pin Function

General input

Other than

general input

Rev. 5.00 Mar. 06, 2009 Page 564 of 770

General output

	PBDRL value	·
Other than general output	PBDRH or PBDRL value	Can write to PBDRH and PBDRL, but it hat effect on pin state

RENESAS

Write

effect on pin state

effect on pin state

Can write to PBDRH and PBDRL, but it has

Can write to PBDRH and PBDRL, but it has

Value written is output from pin

5

4

PBIOR

0

1

Bit	Bit	: Nam		itial alue	R/	w	Desc	criptio	on					
15 to 1	_		Α	II O	R		Reserved							
								e bits ys be		lways	read	as 0.	The w	rite va
0	PB	16PR	Р	in stat	e R					return e mo		_	ss of	the PF
PBPR Bit:	`	5H712	13	12	11	10	9	8	7	6	5	4	3	2
Γ	-	-	-	-	-	-	<u> </u>	-	-	-	-	-	-	-
Initial value:	0				0	0								

0

0

0

0

0

Initial value: 0

R/W: R

R/W:	R	R	R	R	R	R	R	R	R	R	R	R	R	R
			Ini	tial										
Bit	Bit I	Name	Va	lue	R/	W	Desc	riptio	on					
15 to 0	_		All	0	R		Rese	rved						
							Thes alway			lways	read	as 0.	The w	rite va

0

PB5PR	Pin state P	₹	The pin state is returned regardless of the PFC This bit cannot be modified.
_	0 F	₹	Reserved
			This bit is always read as 0. The write value shalways be 0.
PB3PR	Pin state P	₹	The pin state is returned regardless of the PFC
PB2PR	Pin state R	7	These bits cannot be modified.
PB1PR	Pin state P	7	-
_	0 F	7	Reserved
			This bit is always read as 0. The write value sh

always be 0.

Rev. 5.00 Mar. 06, 2009 Page 566 of 770

always be 0. 3 PB3PR Pin state R The pin state is returned regard. This bit cannot be modified. 2 — 0 R Reserved This bit is always read as 0. The always be 0. 1 PB1PR Pin state R The pin state is returned regard. This bit cannot be modified.	4	_	0	R	Reserved
This bit cannot be modified. 2 — 0 R Reserved This bit is always read as 0. The always be 0. 1 PB1PR Pin state R The pin state is returned regard. This bit cannot be modified.					This bit is always read as 0. The write value s always be 0.
This bit is always read as 0. The always be 0. 1 PB1PR Pin state R The pin state is returned regard. This bit cannot be modified.	3	PB3PR	Pin state	R	The pin state is returned regardless of the PF This bit cannot be modified.
always be 0. 1 PB1PR Pin state R The pin state is returned regard. This bit cannot be modified.	2	_	0	R	Reserved
This bit cannot be modified.					This bit is always read as 0. The write value s always be 0.
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	PB1PR	Pin state	R	The pin state is returned regardless of the PF This bit cannot be modified.
0 — 0 R Reserved	0	_	0	R	Reserved
					This bit is always read as 0. The write value s

always be 0.

5

4

PB5PR

Pin state R

The pin state is returned regardless of the PF This bit cannot be modified.

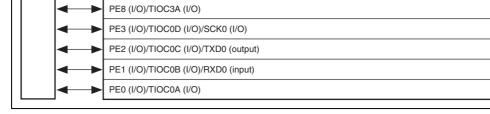

Rev. 5.00 Mar. 06, 2009 Pag

Figure 16.5 Port E (SH7125)

Rev. 5.00 Mar. 06, 2009 Page 568 of 770

Figure 16.6 Port E (SH7124)

Rev. 5.00 Mar. 06, 2009 Pag

16.3.2 Port E Data Register L (PEDRL)

PEDRL is a 16-bit readable/writable register that stores port E data. Bits PE15DR to PE0 correspond to pins PE15 to PE0 (multiplexed functions omitted here) in the SH7125. Bits PE15DR to PE8DR and PE3DR to PE0DR correspond to pins PE15 to PE8 and PE3 to Prespectively (multiplexed functions omitted here) in the SH7124.

When a pin function is general output, if a value is written to PEDRL, that value is output from the pin, and if PEDRL is read, the register value is returned directly regardless of the state.

When a pin function is general input, if PEDRL is read, the pin state, not the register valureturned directly. If a value is written to PEDRL, although that value is written into PEDR does not affect the pin state. Table 16.6 summarizes port E data register read/write operate

Rev. 5.00 Mar. 06, 2009 Page 570 of 770

		-	
12	PE12DR	0	R/W
11	PE11DR	0	R/W
10	PE10DR	0	R/W
9	PE9DR	0	R/W
8	PE8DR	0	R/W
7	PE7DR	0	R/W
6	PE6DR	0	R/W
5	PE5DR	0	R/W
4	PE4DR	0	R/W
3	PE3DR	0	R/W
2	PE2DR	0	R/W
1	PE1DR	0	R/W
0	PE0DR	0	R/W

12	PE12DR	0	R/W
11	PE11DR	0	R/W
10	PE10DR	0	R/W
9	PE9DR	0	R/W
8	PE8DR	0	R/W
7 to 4	_	All 0	R
3	PE3DR	0	R/W

0

0

0

PE2DR

PE1DR

PE0DR

PEDRL Bits 15 to 0

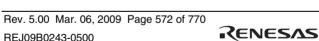
 	_	 _	 - /	

R/W

R/W

R/W

Table 16.6 Port E Data Register L (PEDRL) Read/Write Operations


Pin state

Read

	Other than	Pin state
	general input	
1	General output	PEDRL value
	Other than	PEDRL value
	general output	

Pin Function

General input

Reserved

always be 0. See table 16.6.

Write

state

state

state

These bits are always read as 0. The write val

Can write to PEDRL, but it has no effect

Can write to PEDRL, but it has no effect

Can write to PEDRL, but it has no effect

Value written is output from pin

2

1

0

PEIOR

0

		Initial		
Bit	Bit Name	Value	R/W	Description
15	PE15PR	Pin state	R	The pin state is returned regardless of the PF
14	PE14PR	Pin state	R	These bits cannot be modified.
13	PE13PR	Pin state	R	-
12	PE12PR	Pin state	R	-
11	PE11PR	Pin state	R	-
10	PE10PR	Pin state	R	-
9	PE9PR	Pin state	R	-
8	PE8PR	Pin state	R	_
7	PE7PR	Pin state	R	_
6	PE6PR	Pin state	R	-
5	PE5PR	Pin state	R	-
4	PE4PR	Pin state	R	-
3	PE3PR	Pin state	R	-
2	PE2PR	Pin state	R	-
1	PE1PR	Pin state	R	-
0	PE0PR	Pin state	R	-

R/W: R

R

R

R

R

R

R

R

R

R

R

R

R

12	PE12PR	Pin state	R	-
11	PE11PR	Pin state	R	-
10	PE10PR	Pin state	R	-
9	PE9PR	Pin state	R	-
8	PE8PR	Pin state	R	-
7 to 4	_	All 0	R	Reserved
				These bits are always read as 0. The write valualways be 0.
3	PE3PR	Pin state	R	The pin state is returned regardless of the PFC
2	PE2PR	Pin state	R	These bits cannot be modified.
1	PE1PR	Pin state	R	-
1 0	PE1PR PE0PR		R R	. -

Rev. 5.00 Mar. 06, 2009 Page 574 of 770

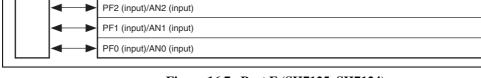


Figure 16.7 Port F (SH7125, SH7124)

16.4.1 Register Descriptions

Port F is an 8-bit input-only port in the SH7125 and SH7124. Port F has the following redetails on register addresses and register states during each processing, refer to section 2 Registers.

Table 16.7 Register Configuration

Register Name	Abbrevia- tion	R/W	Initial Value	Address	Ac
Port F data register L	PFDRL	R	_	H'FFFFD382	8,

Rev. 5.00 Mar. 06, 2009 Pag REJ09 PFDRL (SH7125, SH7124)

13

12 11 10

7 6 5

Write

Bit: 15

	-	-	-	-	-	-	-	-	PF7 DR	PF6 DR	PF5 DR	PF4 DR	PF3 DR	PF2 DR
Initial value:		0	0	0	0	0	0	0	*	*	*	*	*	*
R/W:	R	R	R	R	R	R	R	R	R	R	R	R	R	R
				itial										
Bit	Bit	Nam	e V	alue	R/	W	Desc	cription	on					
15 to 8	_		Α	II O	R		Rese	erved						
								e bits ys be		lways	read	as 0.	The w	rite valı
7	PF	7DR	Р	in stat	e R		See	table	16.8.					
6	PF	6DR	Р	in stat	e R		_							
5	PF	5DR	Р	in stat	e R		_							
4	PF	4DR	Р	in stat	e R		_							
3	PF	3DR	Р	in stat	e R		_							
2	PF	2DR	Р	in stat	e R		•							
1	PF	1DR	Р	in stat	e R		-							
0	PF	0DR	Р	in stat	e R		-							

3

2

Table 16.8 Port F Data Register L (PFDRL) Read/Write Operations

Read

• PFDRL Bits 7 to 0

Pin Function

	11044	***************************************
General input	Pin state	Ignored (no effect on pin state)
ANn input	1	Ignored (no effect on pin state)

Rev. 5.00 Mar. 06, 2009 Page 576 of 770 RENESAS

RENESAS

Rev. 5.00 Mar. 06, 2009 Pag

Rev. 5.00 Mar. 06, 2009 Page 578 of 770

SH71251A. SH71241A: 32 Kbytes

SH71250A. SH71240A: 16 Kbytes

Two on-board programming modes and one off-board programming mode

— On-board programming modes

Boot Mode: This mode is a program mode that uses an on-chip SCI interface. The u can be programmed. This mode can automatically adjust the bit rate between the hos LSI.

User Program Mode: The user MAT can be programmed by using an interface sele the user. This mode cannot be used on the 32 Kbyte and 16 Kbyte flash memory ver

— Off-board programming mode

This mode uses the dedicated socket adapter and PROM programmer. The user MA' programmed.

Programming/erasing interface by the download of on-chip program

This LSI has a dedicated programming/erasing program. After downloading this pro the on-chip RAM, programming/erasing can be performed by setting the argument p

The user branch is also supported.

- User branch

application, verify read, and several other steps. Erasing is performed in one divided units and consists of several steps. The user processing routine can be executed betw steps, this setting for which is called the user branch addition.

Protection modes

There are two protection modes. Software protection by the register setting and hard

protection by the FWE pin. The protection state for flash memory programming/eras

set. When abnormalities, such as runaway of programming/erasing are detected, these m

The program processing is performed in 128-byte units. It consists the program pulse

the error protection state and the programming/erasing processing is suspended.

Rev. 5.00 Mar. 06, 2009 Page 580 of 770

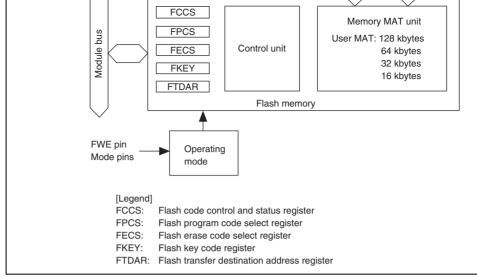


Figure 17.1 Block Diagram of Flash Memory

Rev. 5.00 Mar. 06, 2009 Pag

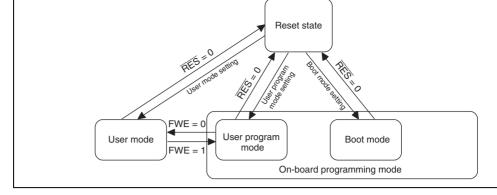


Figure 17.2 Mode Transition of Flash Memory

Table 17.1 Relationship between FWE and MD Pins and Operating Modes

Pin	Reset State	User Mode	User Program Mode	Boot Mode
RES	0	1	1	1
FWE	0/1	0	1	1
MD1	0/1	1	1	0

erasing control	Command method	interface
All erasure	Possible (Automatic)	Possible
Block division erasure	Possible*1	Possible
Program data transfer	From host via SCI	From optional device via RAM
User branch function	Not possible	Possible
Reset initiation MAT	Embedded program	User MAT

Transition to user mode Mode setting change and FWE setting change

storage MAT

reset

Notes: 1. All-erasure is performed. After that, the specified block can be erased.

2. Cannot be used in 32-kbyte on-chip flash memory version.

• The user MAT is all erased in boot mode. Then, the user MAT can be programmed of the command method. However, the contents of the MAT cannot be read until this

REJ09

Possible (
Impossible
Via progra

Impossible

storage M

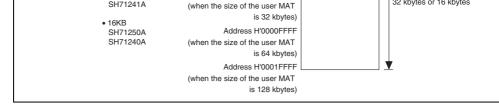


Figure 17.3 Flash Memory Configuration

17.2.5 Block Division

The user MAT is divided into 64 Kbytes (128-kbyte version: one block), 32 Kbytes (one and 4 Kbytes (eight blocks) as shown in figure 17.4. The user MAT can be erased in this block units and the erase-block number of EB0 to EB9 is specified when erasing. It is no on the 32 Kbyte versions of the SH71251A and SH71241A or the 16 Kbyte versions of the SH71250A and SH71240A.

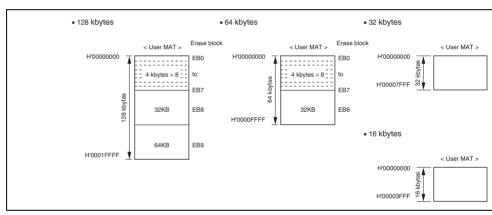


Figure 17.4 Block Division of User MAT

Rev. 5.00 Mar. 06, 2009 Page 584 of 770

RENESAS

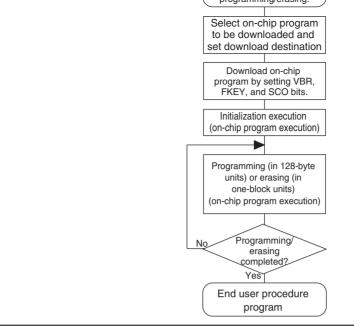


Figure 17.5 Overview of User Procedure Program

(1) Selection of On-Chip Program to be Downloaded and Setting of Download Destinat This LSI has programming/erasing programs and they can be downloaded to the on-RAM. The on-chip program to be downloaded is selected by setting the correspondi the programming/erasing interface registers. The download destination can be specif FTDAR.

Rev. 5.00 Mar. 06, 2009 Pag

- Note that VBR can be changed after download is completed.
- (3) Initialization of Programming/Erasing
- The operating frequency and user branch are set before execution of programming/era The user branch destination must be in an area other than the user MAT area, which i
 - middle of programming and the area where the on-chip program is downloaded. Thes are performed by using the programming/erasing interface parameters.
- (4) Programming/Erasing Execution

To program or erase, the FWE pin must be brought high and user program mode mus entered.

The program data/programming destination address is specified in 128-byte units who

programming. The block to be erased is specified in erase-block units when erasing.

These specifications are set by using the programming/erasing interface parameters as chip program is initiated. The on-chip program is executed by using the JSR or BSR

instruction to perform the subroutine call of the specified address in the on-chip RAM

execution result is returned to the programming/erasing interface parameters. The area to be programmed must be erased in advance when programming flash mem

There are limitations and notes on the interrupt processing during programming/erasing details, see section 17.7.1, Interrupts during Programming/Erasing.

- (5) When Programming/Erasing is Executed Consecutively
- When the processing is not ended by the 128-byte programming or one-block erasure program address/data and erase-block number must be updated and consecutive programming/erasing is required.

Since the downloaded on-chip program is left in the on-chip RAM after the processin download and initialization are not required when the same processing is executed consecutively.

Transmit data	TXD1 (PA4)	Output	Serial transmit data output (u boot mode)
Receive data	RXD1 (PA3)	Input	Serial receive data input (use mode)

17.4 Register Descriptions

17.4.1 Registers

The registers/parameters, which control flash memory when the on-chip flash memory i shown in table 17.4.

There are several operating modes for accessing flash memory, for example, read mode, mode. The correspondence of operating modes and registers/parameters for use is shown 17.5.

Rev. 5.00 Mar. 06, 2009 Pag

Notes: 1. The bits except the SCO bit are read-only bits. The SCO bit is a programming-(The value, which can be read is always 0.)

- 2. The initial value of the FWE bit is 0 when the FWE pin goes low.
- The initial value of the FWE bit is 1 when the FWE pin goes high. 3. All registers can be accessed only in bytes.

Initial

Value

Undefined

Undefined

Undefined

Address

R4 of CPU

R4 of CPU

R5 of CPU

S

8,

8.

8.

8,

8,

8,

8,

R/W

R/W

R/W

R/W

One byte of the start address in the on-chip RAM area specified by FTDAR is

Table 17.4 (2) Parameter Configuration

Name

Flash erase block select

Flash program and erase

Flash user branch address

frequency control

set parameter

Note:

Download pass/fail result	DPFR	R/W	Undefined	On-chip RAM*
Flash pass/fail result	FPFR	R/W	Undefined	R0 of CPU
Flash multipurpose address area	FMPAR	R/W	Undefined	R5 of CPU
Flash multipurpose data destination area	FMPDR	R/W	Undefined	R4 of CPU

Abbreviation

FEBS

FPEFEQ

FUBRA

Rev. 5.00 Mar. 06, 2009 Page 588 of 770

RENESAS

parameters	FPFR	_	V	V	V
	FPEFEQ	_	V	_	_
	FUBRA	_	V	_	_
	FMPAR	_	_	√	_
	FMPDR	_	_	√	_
	FEBS	_	_	_	√
	·	·	·	· ·	·

	FWE	-	-	FLER	-	-	-	scc
Initial value:	1/0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R	R	(R)/\

Bit	Bit Name	Initial Value	R/W	Description
	Dit Haine	value	1 1/ 44	Description
7	FWE	1/0	R	Flash Programming Enable
				Monitors the level which is input to the FWE pin performs hardware protection of the flash memorgramming or erasing. The initial value is 0 caccording to the FWE pin state.
				0: When the FWE pin goes low (in hardware postate)
				1: When the FWE pin goes high
6, 5	_	All 0	R	Reserved
				These bits are always read as 0. The write valual always be 0.

 Flash memory operates normally Programming/erasing protection for flash n (error protection) is invalid.
[Clearing condition]
At a power-on reset
 Indicates an error occurs during programming/erasing flash memory. Programming/erasing protection for flash n (error protection) is valid.

(error protection) is valid.
[Setting condition]
See section 17.6.3. Error Protection

Reserved

always be 0.

R

All 0

3 to 1 —

REJ09

These bits are always read as 0. The write va

after setting this bit to 1.

For interrupts during download, see section 17 Interrupts during Programming/Erasing. For the download time, see section 17.7.2, Other Note Since this bit is cleared to 0 when download is

completed, this bit cannot be read as 1. Download by setting the SCO bit to 1 requires interrupt processing that performs bank switch on-chip program storage area. Therefore, before issuing a download request (SCO = 1), set VB H'84000000. Otherwise, the CPU gets out of c

Once download end is confirmed, VBR can be

1: Request that the on-chip programming/eras program is downloaded to the on-chip RAM

When all of the following conditions are satisfied

to any other value. The mode in which the FWE pin is high must be when using the SCO function.

0: Download of the on-chip programming/erasi program to the on-chip RAM is not executed

[Clearing condition]

When download is completed

generated [Setting conditions]

is written to this bit

- FKEY is written to H'A5
- During execution in the on-chip RAM

Rev. 5.00 Mar. 06, 2009 Page 592 of 770

				These bits are always read as 0. The write va always be 0.
0	PPVS	0	R/W	Program Pulse Single
				Selects the programming program.
				0: On-chip programming program is not select
				[Clearing condition]
				When transfer is completed
				1: On-chip programming program is selected

(3) Flash Erase Code Select Register (FECS)

FECS selects download of the on-chip erasing program.

Bit:	7	6	5	4	3	2	1	0
	-	-	-	-	-	-	-	EPVE
Initial value:	0	0	0	0	0	0	0	0
R/W⋅	R	R	R	R	R	R	R	RΛΛ

Bit	Bit Name	Initial Value	R/W	Description
7 to 1	_	All 0	R	Reserved
				These bits are always read as 0. The write valways be 0.

FKEY is a register for software protection that enables download of the on-chip programme. programming/erasing of flash memory. Before setting the SCO bit to 1 in order to do the on-chip program or executing the downloaded programming/erasing program, the processings cannot be executed if the key code is not written.

Bit:	7	6	5	4	3	2	1	0
K[7:0]								
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/W							

		Initial		
Bit	Bit Name	Value	R/W	Description
7 to 0	K[7:0]	All 0	R/W	Key Code
				Only when H'A5 is written, writing to the SCO by valid. When a value other than H'A5 is written to cannot be written to the SCO bit. Therefore downloading to the on-chip RAM cannot be extended.
				Only when H'5A is written, programming/erasin flash memory can be executed. Even if the on-programming/erasing program is executed, flasmemory cannot be programmed or erased whe value other than H'5A is written to FKEY.
				H'A5: Writing to the SCO bit is enabled (The S cannot be set by a value other than H'A5

H'00: Initial value

H'5A: Programming/erasing is enabled (A valu than H'5A enables software protection s

3
This bit is set to 1 when there is an error in the download start address set by bits 6 to 0 (TD TDA0). Whether the address setting is errore is tested by checking whether the setting of T TDA0 is between the range of H'02 to H'04 at the SCO bit in FCCS to 1 and performing down Before setting the SCO bit to 1 be sure to set FTDAR value between H'02 to H'04 as well at this bit to 0.
0: Setting of TDA6 to TDA0 is normal
1: Setting of TDER and TDA6 to TDA0 is H'0 and H'05 to H'FF and download has been

Transfer Destination Address Setting Error

R/W

7

TDER

0

REJ09

Rev. 5.00 Mar. 06, 2009 Pag

H'04: Download start address is set to H'FFFF H'00, H'01, H'05 to H'7F: Setting prohibited wh downloading by the S with user program m

this value is set, the (bit 7) is set to 1 to al download processing not using user prograsetting H'00 to the TI

problem.

17.4.3 Programming/Erasing Interface Parameters

The programming/erasing interface parameters specify the operating frequency, user brandestination address, storage place for program data, programming destination address, an block and exchanges the processing result for the downloaded on-chip program. This part uses the general registers of the CPU (R4, R5, and R0) or the on-chip RAM area. The initial is undefined.

At download all CPU registers are stored, and at initialization or when the on-chip progra executed, CPU registers except for R0 are stored. The return value of the processing resulting written in R0. Since the stack area is used for storing the registers or as a work area, the smust be saved at the processing start. (The maximum size of a stack area to be used is 12

RENESAS

REJ09B0243-0500

each processing.

Table 17.6 Usable Parameters and Target Modes

Name of	Abbrevia-	Down-	Initiali.	Pro- gram-			Initial
Parameter	tion	load	zation	ming	Erasure	R/W	Value A
Download pass/fail result	DPFR	V	_	_	_	R/W	Undefined (
Flash pass/fail result	FPFR	_	√	√	V	R/W	Undefined F
Flash programming/ erasing frequency control	FPEFEQ	_	√	_	_	R/W	Undefined F
Flash user branch address set	FUBRA	_	√	_	_	R/W	Undefined F
Flash multipurpose address area	FMPAR			V	_	R/W	Undefined F
Flash multipurpose data destination area	FMPDR	_	_	V	_	R/W	Undefined F
Flash erase block select	FEBS	_	_	_	√	R/W	Undefined F

Note: * One byte of start address of download destination specified by FTDAR

performed by setting one byte of the start address of the on-chip RAM area specif FTDAR to a value other than the return value of download (for example, H'FF) be download start (before setting the SCO bit to 1). For the checking method of downresults, see section 17.5.2 (2), Programming Procedure in User Program Mode.

Bit:	7	6	5	4	3	2	1	0
	-	-	-	-	-	SS	FK	SF
Initial value:	-	-	-	-	-	-	-	-
R/W:	R/W							

Bit	Bit Name	Value	R/W	Description
7 to 3	_	Undefined	R/W	Unused
				Return 0.
2	SS	Undefined	R/W	Source Select Error Detect
				The on-chip program which can be downloade specified as only one type. When more than two of the program are selected, the program is no selected, or the program is selected without man error occurs.
				0: Download program can be selected normall
				Download error occurs (Multi-selection or pr which is not mapped is selected)

Initial

Rev. 5.00 Mar. 06, 2009 Page 598 of 770

- 0: Downloading on-chip program has ended r
 - Downloading on-chip program has ended in (no error)
 - 1: Downloading on-chip program has ended a (error occurs)

(2) Programming/Erasing Initialization

The on-chip programming/erasing program to be downloaded includes the initializate program.

The specified period pulse must be applied when programming or erasing. The speci

width is made by the method in which wait loop is configured by the CPU instruction operating frequency of the CPU must be set. Since the user branch function is support user branch destination address must be set.

The initial program is set as a parameter of the programming/erasing program which downloaded these settings.

(2.1) Flash programming/erasing frequency parameter (FPEFEQ: general register R4 of This parameter sets the operating frequency of the CPU.

For the range of the operating frequency of this LSI, see section 21.3.1, Clock Timir

	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial value:		-	-	-	-	-	-	-	-	-	-	-	-	-
R/W:	R/W													
Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2
	E16	E14	E10	E10	E11	E10	EO	Eo	E7	EG	E.E	E4	Eo	Ea

F11 F7 F6 F3 Initial value: R/W: R/W

Rev. 5.00 Mar. 06, 2009 Pag

21

19

R/W

The centuplicated value is converted to the digit and is written to the FPEFEQ paramete (general register R4). For example, when th operating frequency of the CPU is 28.882 M

value is as follows.

- The number to three decimal places of rounded and the value is thus 28.88.
- The formula that $28.88 \times 100 = 2888$ is converted to the binary digit and B'0000 B'0100, B'1000 (H'0B48) is set to R4.
- (2.2) Flash user branch address setting parameter (FUBRA: general register R5 of CPU) This parameter sets the user branch destination address. The user program which has can be executed in specified processing units when programming and erasing.

В	t: 31	30	29	28	27	26	25	24	23	22	21	20	19	18
	UA31	UA30	UA29	UA28	UA27	UA26	UA25	UA24	UA23	UA22	UA21	UA20	UA19	UA18
Initial value	e: -	-	-	-	-	-	-	-	-	-	-	-	-	-
R/V	/: R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
D	. 15	4.4	10	10	4.4	10	0		7		_	4	0	0
В	t: 15	14	13	12	11	10	9	8	7	6	5	4	3	2
	UA15	UA14	UA13	UA12	UA11	UA10	UA9	UA8	UA7	UA6	UA5	UA4	UA3	UA2
Initial value	e: -	-	-	-	-	-	-	-	-	-	-	-	-	-
D 44	I. D. 1.1.	D 444	D 0 4 4	D 444	D 444	D 444	D 0 4 4	D 0 4 4	D 0 4 4	D 0 4 4	D // / /	D 0 4 4	D 0 4 4	D 0 4 4

Rev. 5.00 Mar. 06, 2009 Page 600 of 770

REJ09B0243-0500

RENESAS

program download area and stack area must overwritten. If CPU runaway occurs or the do area or stack area is overwritten, the value of memory cannot be guaranteed.

> The download of the on-chip program, initialize initiation of the programming/erasing program be executed in the processing of the user bra destination. Programming or erasing cannot be guaranteed when returning from the user bra destination. The program data which has alre

> prepared must not be programmed. Store general registers R8 to R15. General re to R7 are available without storing them.

Moreover, the programming/erasing interface must not be written to in the processing of the branch destination.

After the processing of the user branch has e

programming/erasing program must be return using the RTS instruction.

For the execution intervals of the user branch processing, see note 2 (User Branch Process Intervals) in section 17.7.2, Other Notes.

Bit	Bit Name	Initial Value	R/W	Description
31 to 3	_	Undefined	R/W	Unused
				Return 0.
2	BR	Undefined	R/W	User Branch Error Detect
				Returns the check result whether the specified branch destination address is in the area other storage area of the programming/erasing progwhich has been downloaded.
				0: User branch address setting is normal
				1: User branch address setting is abnormal
1	FQ	Undefined	R/W	Frequency Error Detect
1				Returns the check result whether the specified operating frequency of the CPU is in the range supported operating frequency.
				0: Setting of operating frequency is normal
				1: Setting of operating frequency is abnormal
0	SF	Undefined	R/W	Success/Fail
				Indicates whether initialization is completed no
				0: Initialization has ended normally (no error)
				1: Initialization has ended abnormally (error oc

Rev. 5.00 Mar. 06, 2009 Page 602 of 770

data must be in the consecutive space which can be accessed by using the MOV. instruction of the CPU and is not the flash memory space.

When data to be programmed does not satisfy 128 bytes, the 128-byte program of be prepared by embedding the dummy code (H'FF).

The start address of the area in which the prepared program data is stored must b general register R4. This parameter is called FMPDR (flash multipurpose data de area parameter).

Rev. 5.00 Mar. 06, 2009 Pag

R/W

REJ09

For details on the programming procedure, see section 17.5.2, User Program Mo in On-Chip 128-Kbyte and 64-Kbyte ROM Version).

(3.1) Flash multipurpose address area parameter (FMPAR: general register R5 of CPU) This parameter indicates the start address of the programming destination on the use

When an address in an area other than the flash memory space is set, an error occurs The start address of the programming destination must be at the 128-byte boundary. boundary condition is not satisfied, an error occurs. The error occurrence is indicated WA bit (bit 1) in FPFR.

Bit	: 31	30	29	28	27	26	25	24	23	22	21	20	19	18
	MOA31	MOA30	MOA29	MOA28	MOA27	MOA26	MOA25	MOA24	MOA23	MOA22	MOA21	MOA20	MOA19	MOA18
itial value	: - · R/W	- R/W	- R/W	- R/W	- R/W	-	- R/W							
H/VV	: H/VV	H/VV	H/VV	H/VV	H/VV	R/W	H/VV							
Bit	: 15	14	13	12	11	10	9	8	7	6	5	4	3	2
	MOA15	MOA14	MOA13	MOA12	MOA11	MOA10	MOA9	MOA8	MOA7	MOA6	MOA5	MOA4	MOA3	MOA2

R/W

Init

Initial value:

R/W: R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

This parameter indicates the start address in the area which stores the data to be progrin the user MAT. When the storage destination of the program data is in flash memory error occurs. The error occurrence is indicated by the WD bit (bit 2) in FPFR.

			Initi				_								
Initial value:	- R/W	- R/W	- R/W	- R/W	- R/W	- R/W	- R/W	- R/W	- R/W	- R/W	- R/W	- R/W	- R/W	- R/W	ı
	MOD15	MOD14	MOD13	MOD12	MOD11	MOD10	MOD9	MOD8	MOD7	MOD6	MOD5	MOD4	MOD3	MOD2	N
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	
Initial value: R/W:	: - : R/W	- R/W													
	MOD31	MOD30	MOD29	MOD28	MOD27	MOD26	MOD25	MOD24	MOD23	MOD22	MOD21	MOD20	MOD19	MOD18	M
Bitt	31	30	29	28	27	26	25	24	23	22	21	20	19	18	

Bit	Bit Name	Initial Value	R/W	Description
31 to 0	MOD31 to MOD0	Undefined	R/W	MOD31 to MOD0 Store the start address of the area which store program data for the user MAT. The consecutive byte data is programmed to the user MAT start the specified start address.

Bit	Bit Name	Value	R/W	Description
31 to 7	_	Undefined	R/W	Unused
				Return 0.
6	MD	Undefined	R/W	Programming Mode Related Setting Error De
				Returns the check result of whether the signathe FWE pin is high and whether the error prostate is not entered.
				When a low-level signal is input to the FWE perror protection state is entered, 1 is written to the input level to the FWE pin and the error perstate can be confirmed with the FWE bit (bit 7 FLER bit (bit 4) in FCCS, respectively. For coenter the error protection state, see section 1 Error Protection.
				0: FWE and FLER settings are normal (FWE = 0)
				1: FWE = 0 or FLER = 1, and programming c performed

Initial

				0: Programming has ended normally
				 Programming has ended abnormally (progra result is not guaranteed)
4	FK	Undefined	R/W	Flash Key Register Error Detect
				Returns the check result of the value of FKEY the start of the programming processing.
				0: FKEY setting is normal (FKEY = H'5A)
				1: FKEY setting is error (FKEY = value other the
3	_	Undefined	R/W	Unused
				Return 0.
2	WD	Undefined	R/W	Write Data Address Error Detect
				When an address in the flash memory area is as the start address of the storage destination program data, an error occurs.
				0: Setting of write data address is normal
				1: Setting of write data address is abnormal
1	WA	Undefined	R/W	Write Address Error Detect
				When the following items are specified as the address of the programming destination, an eloccurs.
				 The programming destination address is a other than flash memory
				The specified address is not at the 128-byte.

RENESAS

abnormal

boundary (A6 to A0 are not 0)

0: Setting of programming destination address 1: Setting of programming destination address

Rev. 5.00 Mar. 06, 2009 Page 606 of 770

erasing program which is downloaded. This is set to the FEBS parameter (general re One block is specified from the block number 0 to 15.

For details on the erasing procedure, see section 17.5.2, User Program Mode (Only i 128-Kbyte and 64-Kbyte ROM Version).

(4.1) Flash erase block select parameter (FEBS: general register R4 of CPU)

This j	param	ieter s	pecifi	es the	: erase	:-bloc	k nun	ıber.	Severa	al blo	ck nur	mbers	cann	ot be s
Bit:	: 31	30	29	28	27	26	25	24	23	22	21	20	19	18
	-	-	-	-	-	-	-	- '	-	-	-	-	-	-
Initial value: R/W:	: - : R/W	- R/W												

Bit: 15 14

	10		10	14		10	0	0	,	0	0		0	
[-	-	-	-	-	-	-	-				EBS	[7:0]	
al value:	-	-	-	-	-	-	-	-	-	-	-	-	-	

Initial R/W: R/W R/W R/W R/W

0 corresponds to the EB0 block and 8 corresto the EB8 block. An error occurs when a nother than 0 to 8 (H'00 to H'08) is set.

(4.2) Flash pass/fail result parameter (FPFR: general register R0 of CPU)

This parameter returns the value of the erasing processing result.

	Bit:	31	30	29	28	27	26	25	24	23	22	21	20	19	18	
		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Initia	l value: R/W:		- R/W	F												
	11/ VV.	11/ V V	11/ / /	11/ ۷۷	11/00	11/00	11/ / /	11/ VV	11/00	11/00	11/ VV	11/ VV	11/00	11/44	11/ V V	
	Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	
		-	-	-	-	-	-	-	-	-	MD	EE	FK	EB	-	
Initia	l value:	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	F

Bit	Bit Name	Initial Value	R/W	Description
31 to 7	_	Undefined	R/W	Unused
				Return 0.

Rev. 5.00 Mar. 06, 2009 Page 608 of 770 REJ09B0243-0500

RENESAS

: FWE = 0 or FLER = 1, and erasure canr performed
rasure Execution Error Detect
is returned to this bit when the user MAT rased or when flash-memory related regis re partially changed on returning from the rocessing.
this bit is set to 1, there is a high possibil ser MAT is partially erased. In this case, a emoving the error factor, erase the user N
: Erasure has ended normally
: Erasure has ended abnormally (erasure guaranteed)
lash Key Register Error Detect
Returns the check result of FKEY value be ne erasing processing.
T E a a p Iff u re

Undefined R/W

3

EΒ

Error Protection.

= 0)

0: FWE and FLER settings are normal (FWE

0: FKEY setting is normal (FKEY = H'5A) 1: FKEY setting is error (FKEY = value other

0: Setting of erase-block number is normal 1: Setting of erase-block number is abnormal

Erase Block Select Error Detect

Rev. 5.00 Mar. 06, 2009 Pag

Rev. 5.00 Mar. 06, 2009 Page 610 of 770

REJ09B0243-0500

program data transmitted from the host using the on-chip SCI. The tool for transmitting command and program data must be prepared in the host. The SCI communication mod asynchronous mode. When reset start is executed after this LSI's pin is set in boot mode program in the microcomputer is initiated. After the SCI bit rate is automatically adjusted communication with the host is executed by means of the control command method.

Boot mode executes programming/erasing user MAT by means of the control command

The system configuration diagram in boot mode is shown in figure 17.6. For details on t setting in boot mode, see table 17.1. Although NMI and other interrupts are ignored in b do not generate them.

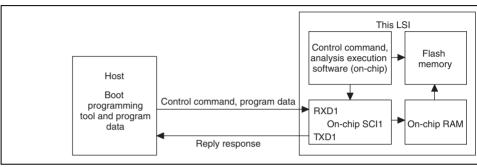


Figure 17.6 System Configuration in Boot Mode

Rev. 5.00 Mar. 06, 2009 Pag

bps.

The system clock frequency, which can automatically adjust the transfer bit rate of the bit rate of this LSI is shown in table 17.7. Boot mode must be initiated in the rang system clock. Note that the internal clock division ratio of $\times 1/3$ is not supported in bo

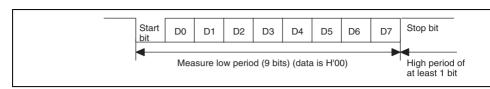


Figure 17.7 Automatic Adjustment Operation of SCI Bit Rate

Table 17.7 Peripheral Clock (Po) Frequency that Can Automatically Adjust Bit Ra

Host Bit Rate	Peripheral Clock (P ϕ) Frequency Which Can Automatically Adjust Bit Rate
9,600 bps	20 to 25 MHz
19,200 bps	20 to 25 MHz

Note: The internal clock division ratio of $\times 1/3$ is not supported in boot mode.

Rev. 5.00 Mar. 06, 2009 Page 612 of 770 REJ09B0243-0500

This LSI

supported devices, etc.

erased.

- Automatic erasure of the entire user MAT
 - After all necessary inquiries and selections have been made and the command fo to the programming/erasure state is sent by the host, the entire user MAT is auto-
 - 4. Waiting for programming/erasure command
- On receiving the programming selection command, the chip waits for data to be programmed. To program data, the host transmits the programming command co followed by the address where programming should start and the data to be program-This is repeated as required while the chip is in the programming-selected state.

terminate programming, H'FFFFFFF should be transmitted as the first address of for programming. This makes the chip return to the programming/erasure comma

- waiting state from the programming data waiting state. — On receiving the erasure select command, the chip waits for the block number of
- be erased. To erase a block, the host transmits the erasure command code follow number of the block to be erased. This is repeated as required while the chip is in erasure-selected state. To terminate erasure, H'FF should be transmitted as the bl number. This makes the chip return to the programming/erasure command waiting from the erasure block number waiting state. Erasure should only be executed when the erasure block number waiting state. specific block is to be reprogrammed without executing a reset-start of the chip a

flash memory has been programmed in boot mode. If all desired programming is

single operation, such erasure processing is not necessary because all blocks are before the chip enters the programming/erasure/other command waiting state. — In addition to the programming and erasure commands, commands for sum chec blank checking (checking for erasure) of the user MAT, reading data from the us and acquiring current state information are provided.

Note that the command for reading from the user MAT can only read data that has been programmed after automatic erasure of the entire user MAT.

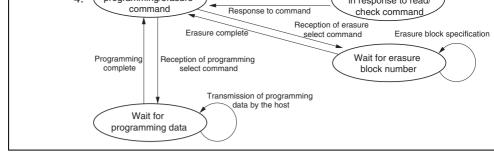


Figure 17.8 State Transitions in Boot Mode

Rev. 5.00 Mar. 06, 2009 Page 614 of 770

REJ09B0243-0500

period, which is longer than the normal 100 µs.

For details on the programming procedure, see the description in section 17.5.2 (2), Proprocedure in User Program Mode. For details on the erasing procedure, see the description section 17.5.2 (3), Erasing Procedure in User Program Mode.

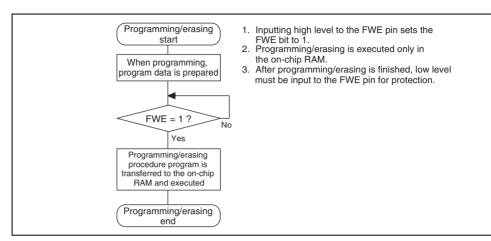


Figure 17.9 Programming/Erasing Overview Flow

Rev. 5.00 Mar. 06, 2009 Pag

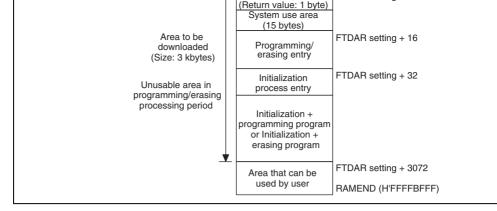


Figure 17.10 RAM Map after Download

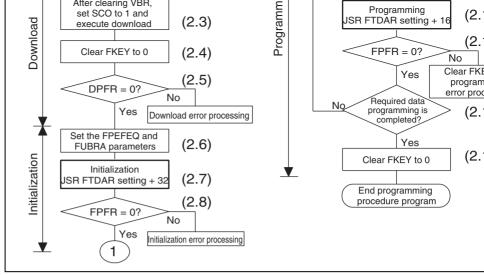


Figure 17.11 Programming Procedure

be executed in an area other than the flash memory to be programmed. Especially the where the SCO bit in FCCS is set to 1 for downloading must be executed in the on-compactive specify 1/4 (initial value) as the frequency division ratios of an internal clock (I ϕ), a

The details of the programming procedure are described below. The procedure program

Specify 1/4 (initial value) as the frequency division ratios of an internal clock ($I\phi$), a ($B\phi$), and a peripheral clock ($P\phi$) through the frequency control register (FRQCR). After the programming/erasing program has been downloaded and the SCO bit is clo

the setting of the frequency control register (FRQCR) can be changed to the desired following description assumes the area to be programmed on the user MAT is erased program data is prepared in the consecutive area. When erasing has not been execute out erasing before writing.

detect (33) bit in the Dri'n parameter. Specify the start address of the download destination by FTDAR.

(2.2) Write H'A5 in FKEY

If H'A5 is not written to FKEY for protection, 1 cannot be written to the SCO bit for

download request. (2.3) VBR is set to 0 and 1 is written to the SCO bit of FCCS, and then download is exec

VBR must always be set to H'84000000 before setting the SCO bit to 1.

To write 1 to the SCO bit, the following conditions must be satisfied.

- H'A5 is written to FKEY.
 - The SCO bit writing is executed in the on-chip RAM.

When the SCO bit is set to 1, download is started automatically. When execution retu user procedure program, the SCO bit is cleared to 0. Therefore, the SCO bit cannot be

confirmed to be 1 in the user procedure program. The download result can be confirmed only by the return value of the DPFR parameter

the SCO bit is set to 1, incorrect decision must be prevented by setting the DPFR para that is one byte of the start address of the on-chip RAM area specified by FTDAR, to other than the return value (H'FF).

When download is executed, particular interrupt processing, which is accompanied by switch as described below, is performed as an internal microcomputer processing, so need to be set to H'84000000. Four NOP instructions are executed immediately after instructions that set the SCO bit to 1.

After the selection condition of the download program and the address set in F

- The user MAT space is switched to the on-chip program storage area.
- are checked, the transfer processing is executed starting to the on-chip RAM a specified by FTDAR.
- The SCO bits in FCCS, FPCS, and FECS are cleared to 0.
- The return value is set to the DPFR parameter.

before setting the SCO bit to 1.

- (2.4) FKEY is cleared to H'00 for protection.
 - (2.5) The value of the DPFR parameter must be checked to confirm the download result
 - A recommended procedure for confirming the download result is shown below.
 - Check the value of the DPFR parameter (one byte of start address of the dow
 - destination specified by FTDAR). If the value is H'00, download has been pe normally. If the value is not H'00, the source that caused download to fail car investigated by the description below. If the value of the DPFR parameter is the same as before downloading (e.g. I
 - address setting of the download destination in FTDAR may be abnormal. In t confirm the setting of the TDER bit (bit 7) in FTDAR. If the value of the DPFR parameter is different from before downloading, che
 - bit (bit 2) and the FK bit (bit 1) in the DPFR parameter to ensure that the dov program selection and FKEY register setting were normal, respectively.
 - (2.6) The operating frequency is set to the FPEFEQ parameter and the user branch desti
 - set to the FUBRA parameter for initialization. The current frequency of the CPU clock is set to the FPEFEQ parameter (gen register R4). For the settable range of the FPEFEQ parameter, see section 21.
 - Timing. When the frequency is set out of this range, an error is returned to the FPFR of the initialization program and initialization is not performed. For details or frequency setting, see the description in section 17.4.3 (2.1), Flash

programming/erasing frequency parameter (FPEFEQ: general register R4 of

When a programming program is downloaded, the initialization program is also down on-chip RAM. There is an entry point of the initialization program in the area from (6 start address set by FTDAR) + 32 bytes. The subroutine is called and initialization is

MOV.L	#DLTOP+32,R1	; Set entry address to R1
JSR	@R1	; Call initialization routine
NOP		

- The general registers other than R0 are saved in the initialization program.
- R0 is a return value of the FPFR parameter.
- Since the stack area is used in the initialization program, a stack area of maxim bytes must be reserved in RAM.

• Interrupts can be accepted during the execution of the initialization program. I

- the program storage area and stack area in on-chip RAM and register values me be destroyed.
- (2.8) The return value of the initialization program, FPFR (general register R0) is checke (2.9) FKEY must be set to H'5A and the user MAT must be prepared for programming.
- (2.9) FKEY must be set to H'5A and the user MAT must be prepared for programming. (2.10) The parameter which is required for programming is set.
- The start address of the programming destination of the user MAT (FMPAR) is set to register R5. The start address of the program data storage area (FMPDR) is set to gen

register R4.

FMPAR setting

by using the following steps.

FMPAR specifies the programming destination start address. When an address than one in the user MAT area is specified, even if the programming program executed, programming is not executed and an error is returned to the return version.

REJ09B0243-0500

MOV.L	#DLTOP+16,R1	; Set entry address to R1
JSR	@R1	; Call programming routine
NOP		

- The general registers other than R0 are saved in the programming program.
- R0 is a return value of the FPFR parameter.

executed by using the following steps.

- Since the stack area is used in the programming program, a stack area of maximum bytes must be reserved in RAM.
- (2.12) The return value in the programming program, FPFR (general register R0) is che-(2.13) Determine whether programming of the necessary data has finished.
- If more than 128 bytes of data are to be programmed, specify FMPAR and FMPDR byte units, and repeat steps (2.10) to (2.13). Increment the programming destination
 - 128 bytes and update the programming data pointer correctly. If an address which has been programmed is written to again, not only will a programming error occur, but a memory will be damaged.
 - (2.14) After programming finishes, clear FKEY and specify software protection. If this LSI is restarted by a power-on reset immediately after user MAT programmin

finished, secure a reset period (period of RES = 0) that is at least as long as the norm

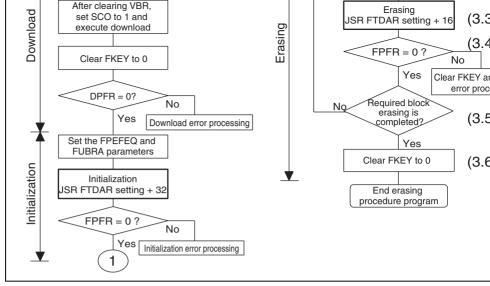


Figure 17.12 Erasing Procedure

The details of the erasing procedure are described below. The procedure program must executed in an area other than the user MAT to be erased.

Especially the part where the SCO bit in ECCS is set to 1 for downloading must be expected.

Especially the part where the SCO bit in FCCS is set to 1 for downloading must be exon-chip RAM.

Specify 1/4 (initial value) as the frequency division ratios of an internal clock ($I\phi$), a $B\phi$), and a peripheral clock ($P\phi$) through the frequency control register (FRQCR).

After the programming/erasing program has been downloaded and the SCO bit is clear the setting of the frequency control register (FRQCR) can be changed to the desired very the downloaded on-chip program area, see the RAM map for programming/erasing in 17.10.

same as those in the programming procedure. For details, see the description in secti (2), Programming Procedure in User Program Mode.

- (3.2) Set the FEBS parameter necessary for erasure

Set the erase block number of the user MAT in the flash erase block select paramete general register R4). If a value other than an erase block number of the user MAT is block is erased even though the erasing program is executed, and an error is returned return value parameter FPFR.

(3.3) Erasure

Similar to as in programming, there is an entry point of the erasing program in the ar (download start address set by FTDAR) + 16 bytes of on-chip RAM. The subrouting and erasing is executed by using the following steps.

MOV.L	#DLTOP+16,R1	;	Set entry address to R1
JSR	@R1	;	Call erasing routine
NOP			

- The general registers other than R0 are saved in the erasing program.
- R0 is a return value of the FPFR parameter.
- must be reserved in RAM.

— Since the stack area is used in the erasing program, a stack area of maximum 128

If more than one block is to be erased, update the FEBS parameter and repeat steps (

- (3.4) The return value in the erasing program, FPFR (general register R0) is checked.
- (3.5) Determine whether erasure of the necessary blocks has finished.
 - (3.5). Blocks that have already been erased can be erased again.
- (3.6) After erasure finishes, clear FKEY and specify software protection.

If this LSI is restarted by a power-on reset immediately after user MAT erasing has a secure a reset period (period of RES = 0) that is at least as long as the normal 100 μ s

RENESAS

parameter.

Table 17.8 Hardware Protection

		Function to be Pr		
Item	Description	Download	Progr Erası	
FWE-pin protection	The input of a low-level signal on the FWE pin clears the FWE bit of FCCS and the LSI enters a programming/erasing-protected state.	_	V	
Reset/standby protection	 A power-on reset (including a power-on reset by the WDT) and entry to standby mode initializes the programming/erasing interface registers and the LSI enters a programming/erasing-protected state. Resetting by means of the RES pin after power is initially supplied will not make the LSI enter the reset state unless the RES pin is held low until oscillation has stabilized. In the case of a reset during operation, hold the RES pin low for the RES pulse width that is specified in the section on AC characteristics. If the LSI is reset during programming or erasure, data in the flash memory is not guaranteed. In this case, execute erasure and then execute programming again. 		1	

300 bit	program, thus making the LSI enter a programming/erasing-protected state.		
Protection by FKEY	Downloading and programming/erasing are disabled unless the required key code is written in FKEY. Different key codes are used for downloading and for programming/erasing.	V	J

17.6.3 **Error Protection**

Error protection is a mechanism for aborting programming or erasure when an error occ form of the microcomputer getting out of control during programming/erasing of the fla memory or operations that are not in accordance with the established procedures for programming/erasing. Aborting programming or erasure in such cases prevents damage flash memory due to excessive programming or erasing.

If the microcomputer malfunctions during programming/erasing of the flash memory, the bit in FCCS is set to 1 and the LSI enters the error protection state, thus aborting progra erasure.

The FLER bit is set to 1 in the following conditions:

- When the relevant bank area of flash memory is read during programming/erasing (i vector read or an instruction fetch)
- When a SLEEP instruction (including software standby mode) is executed during programming/erasing

Error protection is cancelled (FLER bit is cleared) only by a power-on reset.

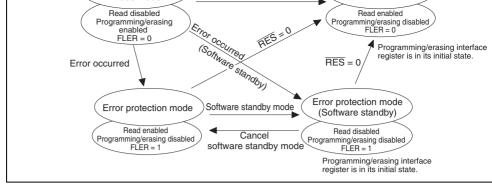
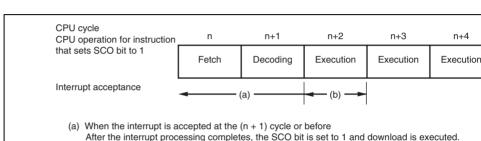


Figure 17.13 Transitions to and from Error Protection State

Rev. 5.00 Mar. 06, 2009 Page 626 of 770

REJ09B0243-0500


or after VBR is changed is referenced may cause an error.

Therefore, for cases where VBR setting change may conflict with interrupt occurren a vector table to be referenced when VBR is H'00000000 (initial value) at the start o MAT.

(1.2) SCO download request and interrupt request

Download of the on-chip programming/erasing program that is initiated by setting the in FCCS to 1 generates a particular interrupt processing accompanied by MAT switch Operation when the SCO download request and interrupt request conflicts is describ

1. Contention between SCO download request and interrupt request Figure 17.14 shows the timing of contention between execution of the instruction the SCO bit in FCCS to 1 and interrupt acceptance.

- (b) When the interrupt is accepted at the (n + 2) cycle or later
 - The interrupt will conflicts with the SCO download request. Ensure that no interrupt is generated

Figure 17.14 Timing of Contention between SCO Download Request and Interru

2. Generation of interrupt requests during downloading

Ensure that interrupts are not generated during downloading that is initiated by the bit.

- 2. Do not rewrite the program data specified by the FMPDR parameter. If new progr
- is to provided by the interrupt processing, temporarily save the new program data another area. After confirming the completion of programming, save the new program in the area specified by FMPDR or change the setting in FMPDR to indicated the area in which the new program data was temporarily saved.
 - 3. Make sure the interrupt processing routine does not rewrite the contents of the flas memory related registers or data in the downloaded on-chip program area. During interrupt processing, do not simultaneously perform download of the on-chip prog an SCO request or programming/erasing.
 - 4. At the beginning of the interrupt processing routine, save the CPU register content returning from the interrupt processing, write the saved contents in the CPU regist 5. When a transition is made to sleep mode or software standby mode in the interrup
 - processing routine, the error protection state is entered and programming/erasing in aborted. If a transition is made to the reset state, the reset signal should only be released after providing a reset input over a period longer than the normal 100 µs to reduce the

flash memory.

Rev. 5.00 Mar. 06, 2009 Page 628 of 770

Table 17.10 Initiation Intervals of User Branch Processing

Processing Name	Maximum Interval		
Programming	Approximately 4 ms		
Erasing	Approximately 25 ms		

However, when operation is done with CPU clock of 50 MHz, maximum value of the until first user branch processing is as shown in table 17.11.

Table 17.11 Initial User Branch Processing Time

Processing Name	Max.
Programming	Approximately 4 ms
Erasing	Approximately 25 ms

3. State in which Interrupts are ignored

In the following modes or period, interrupt requests are ignored; they are not execute interrupt sources are not retained.

— Boot mode

Rev. 5.00 Mar. 06, 2009 Pag REJ09 WDT while taking the programming/erasing time into consideration as required.

Rev. 5.00 Mar. 06, 2009 Page 630 of 770

- 1. Bit-rate matching state
 - In this state, the boot program adjusts the bit rate to match that of the host. When the starts up in boot mode, the boot program is activated and enters the bit-rate matching which it receives commands from the host and adjusts the bit rate accordingly. After matching is complete, the boot program proceeds to the inquiry-and-selection state.
- 2. Inquiry-and-selection state

In this state, the boot program responds to inquiry commands from the host. The dev mode, and bit rate are selected in this state. After making these selections, the boot p enters the programming/erasure state in response to the transition-to-programming/e state command. The boot program transfers the erasure program to RAM and execut of the user MAT before it enters the programming/erasure state.

3. Programming/erasure state

In this state, programming/erasure are executed. The boot program transfers the program programming/erasure to RAM in line with the command received from the host and programming/erasure. It also performs sum checking and blank checking as directed respective commands.

Figure 17.15 shows the flow of processing by the boot program.

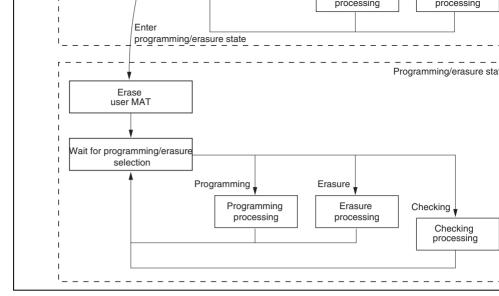


Figure 17.15 Flow of Processing by the Boot Program

Bit-rate matching state

In bit-rate matching, the boot program measures the low-level intervals in a signal carryin data that is transmitted by the host, and calculates the bit rate from this. The bit rate can be changed by the new-bit-rate selection command. On completion of bit-rate matching, the program goes to the inquiry and selection state. The sequence of processing in bit-rate matching in figure 17.16.

Rev. 5.00 Mar. 06, 2009 Page 632 of 770 REJ09B0243-0500

Communications protocol

Formats in the communications protocol between the host and boot program after comp the bit-rate matching are as follows.

- 1. One-character command or one-character response
 - A command or response consisting of a single character used for an inquiry or the A indicating normal completion.
- 2. n-character command or n-character response

A command or response that requires n bytes of data, which is used as a selection coresponse to an inquiry. The length of programming data is treated separately below.

3. Error response

Response to a command in case of an error: two bytes, consisting of the error responserror code.

4. 128-byte programming command

The command itself does not include data-size information. The data length is know response to the command for inquiring about the programming size.

5. Response to a memory reading command

This response includes four bytes of size information.

Rev. 5.00 Mar. 06, 2009 Pag

120-Dyle			Address	Data (n bytes)	
	programming command		— Command		Checksum
	Response to memory read command		Data size	Data	
	,		— Response		Checksum

Figure 17.17 Formats in the Communications Protocol

- Command (1 byte): Inquiry, selection, programming, erasure, checking, etc.
- Response (1 byte): Response to an inquiry
- Size (one or two bytes): The length of data for transfer, excluding the command/recode, size, and checksum.
- Data (n bytes): Particular data for the command or response
- Checksum (1 byte): Set so that the total sum of byte values from the command cochecksum and change lower one byte to H'00.
- Error response (1 byte): Error response to a command
- Error code (1 byte): Indicates the type of error.
- Address (4 bytes): Address for programming
- Data (n bytes): Data to be programmed. "n" is known from the response to the conused to inquire about the programming size.
- Data size (4 bytes): Four-byte field included in the response to a memory reading command.

H'26	Inquiry on erasure blocks	Requests the number of erasure blocks along with start and end addresses.
H'27	Inquiry on programming size	Requests the unit of data for programming.
H'3F	New bit rate selection	Selects a new bit rate.
H'40	Transition to programming/erasure state	On receiving this command, the boot program erauser MAT and enters the programming/erasure s
H'4F	Inquiry on boot program state	Requests information on the current state of boot processing.

Device selection

Inquiry on clock modes

Clock-mode selection

Inquiry on frequency

Inquiry on operating

Inquiry on user MATs

multipliers

frequency

H'10

H'21

H'11

H'22

H'23

H'25

RENESAS

Selects a device code.

Selects a clock mode.

start and end addresses.

respective values.

Requests the number of available clock modes a

Reguests the number of clock signals for which fi

multipliers and divisors are selectable, the number multiplier and divisor settings for the respective c the values of the multipliers and divisors.

Reguests the minimum and maximum values for

frequency of the main clock and peripheral clock.

Requests the number of user MAT areas along w

Rev. 5.00 Mar. 06, 2009 Pag

— Command H'20 (1 byte): Inquiry on supported devices

Response

H'30	Size	No. of devices	
Number of characters	Device code		Product name
:			
SUM			

- Response H'30 (1 byte): Response to the inquiry on supported devices
- and the checksum. Here, it is the total number of bytes taken up by the number of number of characters, device code, and product name fields.

— Size (1 byte): The length of data for transfer excluding the command code, this fie

- Number of devices (1 byte): The number of device models supported by the boot embedded in the microcomputer.
- Number of characters (1 byte): The number of characters in the device code and p name fields.
- Device code (4 bytes): Device code of a supported device (ASCII encoded)
- Product name (n bytes): Product code of the boot program (ASCII encoded)
- SUM (1 byte): Checksum
 This is set so that the total sum of all bytes from the command code to the checksum
 H'00.

Rev. 5.00 Mar. 06, 2009 Page 636 of 770

Response	H'06]	
This		code and is re	onse to device selection eturned when the specified device code matches or
Error response	H'90	ERROR	
— ERR H'11:	OR (1 byte): : Sum-check	Error code	Error response to device selection

(3) Inquiry on clock modes

In response to the inquiry on clock modes, the boot program returns the number of avail modes.

Command H'21

— Command H'21 (1 byte): Inquiry on clock modes

supported devices (ASCII encoded)

- SUM (1 byte): Checksum

Response H'31 Size Mode ... SUM

Rev. 5.00 Mar. 06, 2009 Pag

<u></u>	<u> </u>		
— Command H'11 (1	byte): Clock mode s	selection	
`	• /	the clock-mode field (fixe	ed at 1)

— Mode (1 byte): A clock mode returned in response to the inquiry on clock modes

SUM

Mode

Response H'06

H'11

Size

Command

Response H'06 (1 byte): Response to clock mode selection
 This is the ACK code and is returned when the specified clock-mode matches one available clock modes.

Error response H'91 ERROR

- SUM (1 byte): Checksum

- Error response H'91 (1 byte): Error response to clock mode selection
- ERROR (1 byte): Error code H'11: Sum-check error

H'22: Non-matching clock mode

Rev. 5.00 Mar. 06, 2009 Page 638 of 770

No. of multipliers	Multiplier			
SUM				
	•			

— Response H'32 (1 byte): Response to the inquiry on frequency multipliers

and peripheral operating clocks, the value should be H'02).

- Size (1 byte): The total length of the number of frequency types, number of mult multiplier fields.
- Number of frequency types (1 byte): The number of operating clocks for which is can be selected
 (for example, if frequency multiplier settings can be made for the frequencies of
- Number of multipliers (1 byte): The number of multipliers selectable for the open frequency of the main or peripheral modules
- Multiplier (1 byte):

Multiplier: Numerical value in the case of frequency multiplication (e.g. H'04 for Divisor: Two's complement negative numerical value in the case of frequency di (e.g. H'FE [-2] for $\times 1/2$)

As many multiplier fields are included as there are multipliers or divisors, and combinations of the number of frequency types are repeated as many times as the operating clocks.

— SUM (1 byte): Checksum

SUM		

- Response H'33 (1 byte): Response to the inquiry on operating frequency
- Size (1 byte): The total length of the number of frequency types, and maximum ar minimum values of operating frequency fields.
- Number of frequency types (1 byte): The number of operating clock frequencies r within the device.
 - For example, the value two indicates main and peripheral operating clock frequent Minimum value of operating frequency (2 bytes): The minimum frequency of a fr
- Minimum value of operating frequency (2 bytes): The minimum frequency of a fr multiplied or -divided clock signal.
 The value in this field and in the maximum value field is the frequency in MHz to
 - decimal places, multiplied by 100 (for example, if the frequency is 20.00 MHz, th multiplied by 100 is 2000, so H'07D0 is returned here).
- Maximum value of operating frequency (2 bytes): The maximum frequency of a f multiplied or -divided clock signal.
 - As many pairs of minimum values are included as there are frequency types.
- SUM (1 byte): Checksum

— Resp	onse H'35 (1	byte): Response to	the inquiry	on user MATs			
— Size	- Size (1 byte): The total length of the number of areas and first and last address fi						
— Num	ber of areas	(1 byte): The numb	oer of user M	IAT areas.			
H'01	is returned i	f the entire user M.	AT area is c	ontinuous.			
— First	address of th	he area (4 bytes)					
— Last	address of th	ne area (4 bytes)					
As n	nany pairs of	first and last addre	ess field are	included as there are areas.			
— SUM	1 (1 byte): Cl	hecksum					
(O) I							
(8) Inqui	ry on erasur	e diocks					
In response	to the inquir	y on erasure blocks	s, the boot pi	rogram returns the number of era			
blocks in the	e user MAT	and the addresses v	where each b	block starts and ends.			
		7					
Command	H'26						
— Com	mand H'26 (1 byte): Inquiry on	erasure blo	cks			
Response	H'36	Size	No. of blocks				
	First address o	f the block	•	Last address of the block			
	SUM						
		<u> </u>					

SUM

Rev. 5.00 Mar. 06, 2009 Pag REJ09

Command	H'27			
— Com	mand H'27 (1 byte): Inqu	iiry on programming size	;
Response	H'37	Size	Programming size	SUM

- Response H'37 (1 byte): Response to the inquiry on programming size
- Size (1 byte): The number of characters in the programming size field (fixed at 2)
- Programming size (2 bytes): The size of the unit for programming This is the unit for the reception of data to be programmed.
- SUM (1 byte): Checksum

(10) New bit rate selection

unit for programming.

In response to the new-bit-rate selection command, the boot program changes the bit rate the new bit rate and, if the setting was successful, responds to the ACK sent by the host be returning another ACK at the new bit rate.

The new-bit-rate selection command should be sent after clock-mode selection.

H'3F Size Bit rate Input frequency

No. of multipliers Multiplier 1 Multiplier 2

SUM

Rev. 5.00 Mar. 06, 2009 Page 642 of 770

REJ09B0243-0500

Command

— Number of multipliers (1 byte): The number of selectable frequency multipliers a divisors for the device. This is normally 2, which indicates the main operating frequency and the operati frequency of the peripheral modules.

— Multiplier 1 (1 byte): Multiplier or divisor for the main operating frequency Multiplier: Numerical value of the frequency multiplier (e.g. H'04 for ×4)

Divisor: Two's complement negative numerical value in the case of frequency di (e.g. H'FE [-2] for $\times 1/2$)

— Multiplier 2 (1 byte): Multiplier or divisor for the peripheral operating frequency Multiplier: Numerical value of the frequency multiplier (e.g. H'04 for ×4) Divisor: Two's complement negative numerical value in the case of frequency di (e.g. H'FE [-2] for $\times 1/2$)

— SUM (1 byte): Checksum

H'06 Response

> — Response H'06 (1 byte): Response to the new-bit-rate selection command This is the ACK code and is returned if the specified bit rate has been selected.

- Error response H'BF (1 byte): Error response to new bit rate selection
- ERROR (1 byte): Error code

H'11: Sum-check error

H'24: Bit rate selection error (the specified bit rate is not selectable).

H'25: Input frequency error (the specified input frequency is not within the range minimum to the maximum value).

The value of the received multiplier is checked to see if it matches a multiplier or divi is available for the selected clock mode of the selected device. A value that does not i available ratio generates a frequency multiplier error.

3. Operating frequency

The operating frequency is calculated from the received input frequency and the frequency multiplier or divisor. The input frequency is the frequency of the clock signal supplied LSI, while the operating frequency is the frequency at which the LSI is actually drive following formulae are used for this calculation.

Operating frequency = input frequency × multiplier, or

Operating frequency = input frequency / divisor

The calculated operating frequency is checked to see if it is within the range of the manner of the and maximum values of the operating frequency for the selected clock mode of the se device. A value outside the range generates an operating frequency error.

4. Bit rate

From the peripheral operating frequency (P ϕ) and the bit rate (B), the value (= n) of the select bits (CKS) in the serial mode register (SCSMR) and the value (= N) of the bit r register (SCBRR) are calculated, after which the error in the bit rate is calculated. This checked to see if it is smaller than 4%. A result greater than or equal to 4% generates selection error. The following formula is use to calculate the error.

Error (%) =
$$\left\{ \left[\frac{P\phi \times 10^6}{(N+1)^{12} + P^2 + Q^2 + Q^2)^{-1}} \right] - 1 \right\} \times 10^{-1}$$

Error (%) =
$$\left\{ \left[\frac{P\phi \times 10^6}{(N+1) \times B \times 64 \times 2^{2n-1}} \right] - 1 \right\} \times 100$$

 Response H'06 (1 byte): The ACK code transferred in response to acknowledgen new bit rate

The sequence of new bit rate selection is shown in figure 17.18.

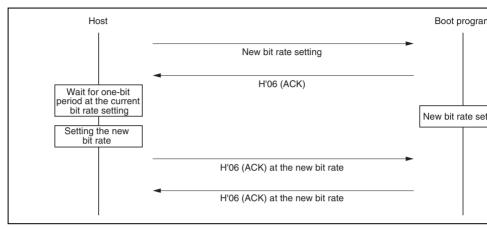


Figure 17.18 Sequence of New Bit Rate Selection

Rev. 5.00 Mar. 06, 2009 Pag

Response	H'06
T	Response H'06 (1 byte): Response to the transition-to-programming/erasure state of this is returned as ACK when erasure of the user MAT has succeeded after transferasure program.
Error	

response H'C0 H'51

Command

H'40

- Error response H'C0 (1 byte): Error response to the transition-to-programming/eracommand
- ERROR (1 byte): Error code
 H'51: Erasure error (Erasure did not succeed because of an error.)

— Command H'40 (1 byte): Transition to programming/erasure state

Rev. 5.00 Mar. 06, 2009 Page 646 of 770

- Command H xx (1 byte): Received command
- Order of Commands

In the inquiry-and-selection state, commands should be sent in the following order.

- 1. Send the inquiry on supported devices command (H'20) to get the list of supported d 2. Select a device from the returned device information, and send the device selection of
- (H'10) to select that device.
- 3. Send the inquiry on clock mode command (H'21) to get the available clock modes.
- 4. Select a clock mode from among the returned clock modes, and send the clock-mode command (H'11).
- 5. After selection of the device and clock mode, send the commands to inquire about fi multipliers (H'22) and operating frequencies (H'23) to get the information required to new bit rate.
- 6. Taking into account the returned information on the frequency multipliers and opera frequencies, send a new-bit-rate selection command (H'3F).
- 7. After the device and clock mode have been selected, get the information required for programming and erasure of the user MAT by sending the commands to inquire abo MAT (H'25), erasure block (H'26), and programming size (H'27).
- 8. After making all necessary inquiries and the new bit rate selection, send the transition programming/erasure state command (H'40) to place the boot program in the programming/erasure state.

1143	programming	Selects transfer of the program for user MAT progr
H'50	128-byte programming	Executes 128-byte programming.
H'48	Erasure selection	Selects transfer of the erasure program.
H'58	Block erasure	Executes erasure of the specified block.
H'52	Memory read	Reads from memory.
H'4B	Sum checking of user MAT	Executes sum checking of the user MAT.

program state

H'4D

H'4F

Blank checking of user Executes blank checking of the user MAT. Requests information on the state of boot process

Programming Programming is performed by issuing a programming-selection command and the 128-by

programming command.

Firstly, the host issues the programming-selection command to select the MAT to be programming-

and programming by the method. Next, the host issues a 128-byte programming command. 128 bytes of data for programm

programming/erasure selection command.

MAT

Inquiry on boot

the method selected by the preceding programming selection command are expected to for command. To program more than 128 bytes, repeatedly issue 128-byte programming con To terminate programming, the host should send another 128-byte programming comman the address H'FFFFFFF. On completion of programming, the boot program waits for the

To then program the other MAT, start by sending the programming select command.

Rev. 5.00 Mar. 06, 2009 Page 648 of 770 RENESAS REJ09B0243-0500

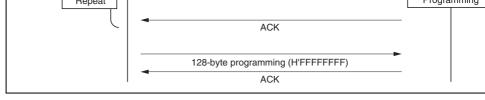


Figure 17.19 Sequence of Programming

(1) Selection of user MAT programming

In response to the command for selecting programming of the user MAT, the boot programsfers the corresponding flash-writing program, i.e. the program for writing to the user

transfers the corresponding frash-writing program, i.e. the program for writing to the us
Command H'43
— Command H'43 (1 byte): Selects programming of the user MAT.
Response H'06
 Response H'06 (1 byte): Response to selection of user MAT programming This ACK code is returned after transfer of the program that performs writing to MAT.

Error response H'C3 ERROR

— Error response H'C3 (1 byte): Error response to selection of user MAT programm

•••			
SUM			

- Command H'50 (1 byte): 128-byte programming
- Address for programming (4 bytes): Address where programming starts
 Specify an address on a 128-byte boundary.

[Example] H'00, H01, H'00, H'00: H'00010000

- Programming data (n bytes): Data for programming
 The length of the programming data is the size returned in response to the program size inquiry command.
- SUM (1 byte): Checksum

Response H'06

— Response H'06 (1 byte): Response to 128-byte programming

The ACK code is returned on completion of the requested programming.

Error response H'D0 ERROR

- Error response H'D0 (1 byte): Error response to 128-byte programming
- ERROR (1 byte): Error code

H'11: Sum-check error

H'2A: Address error (the address is not within the range for the selected MAT)

H'53: Programming error (programming failed because of an error in programmin

Rev. 5.00 Mar. 06, 2009 Page 650 of 770

— Co	mmand H'50 (1 byte): 128-byte programming
— Ad	dress for programming (4 bytes): Terminating code (H'FF, H'FF, H'FF, H'FF)
— SU	M (1 byte): Checksum
Response	H'06

Response H'06

Response H'06 (1 byte): Response to 128-byte programming
 This ACK code is returned on completion of the requested programming.

Error response H'D0 ERROR

- Error response H'D0 (1 byte): Error response to 128-byte programming
- ERROR (1 byte): Error code H'11: Sum-check error

H'53: Programming error

in figure 17.20.

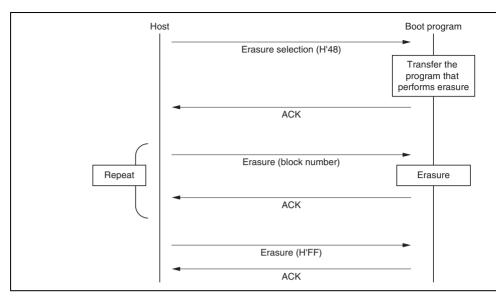


Figure 17.20 Sequence of Erasure

Response H'06 (1 byte): Response to selection of erasure
 This ACK code is returned after transfer of the program that performs erasure.

Error		
response	H'C8	ERROR

- Error response H'C8 (1 byte): Error response to selection of erasure
- ERROR (1 byte): Error code
 H'54: Error in selection processing (processing was not completed because of a t error.)

(2) Block erasure

In response to the block erasure command, the boot program erases the data in a specific the user MAT.

Command	H'58	Size	Block number	SUM

- Command H'58 (1 byte): Erasure of a block
- Size (1 byte): The number of characters in the block number field (fixed at 1)
- Block number (1 byte): Block number of the block to be erased
- SUM (1 byte): Checksum

Response H'06

Response H'06 (1 byte): Response to the block erasure command
 This ACK code is returned when the block has been erased.

Rev. 5.00 Mar. 06, 2009 Pag

Command LUSS Circ Black number CUM

Command	H'58	Size	Block number	SUM	
---------	------	------	--------------	-----	--

- Command H'58 (1 byte): Erasure of a block
- Size (1 byte): The number of characters in the block number field (fixed at 1)
- Block number (1 byte): H'FF (erasure terminating code)
- SUM (1 byte): Checksum

Response H'06

 Response H'06 (1 byte): ACK code to indicate response to the request for termina erasure

To perform erasure again after having issued the command with the block number specific H'FF, execute the process from the selection of erasure.

Memory read

In response to the memory read command, the boot program returns the data from the speaddress.

Command	H'52	Size	Area	First address for reading		
	Amount to read	l		SUM		

- Command H'52 (1 byte): Memory read
- Size (1 byte): The total length of the area, address for reading, and amount to read (fixed value of 9)

Rev. 5.00 Mar. 06, 2009 Page 654 of 770

— Response H'52	(1	hyte)	· Res	nonse to	the	memory	read	commar
— Kesponse n 32	(1	byte)	. Res	ponse to	une	memory	reau	Comman

- Amount to read (4 bytes): The amount to read as specified in the memory read co
- Data (n bytes): The specified amount of data read out from the specified address
- SUM (1 byte): Checksum

response H'D2 ERROF	R

- Error response H'D2 (1 byte): Error response to memory read command
- ERROR (1 byte): Error code

H'11: Sum-check error

H'2A: Address error (the address specified for reading is beyond the range of the H'2B: Size error (the specified amount is greater than the size of the MAT, the last address for reading as calculated from the specified address for the start of and the amount to read is beyond the MAT area, or "0" was specified as the amoread)

- Size (1 byte): The number of characters in the checksum for the MAT (fixed to 4)
 Checksum for the MAT (4 bytes): Result of checksum calculation for the user MAT the total of all data in the MAT, in byte units.
 SUM (1 byte): Checksum (for the transmitted data)
 Blank checking of the user MAT
 In response to the command for blank checking of the user MAT, the boot program check if the whole of the user MAT is blank; the value returned indicates the result.
- Command H'4D
 - Command H'4D (1 byte): Blank checking of the user MAT

Response H'06

Response H'06 (1 byte): Response to blank checking of the user MAT
 The ACK code is returned when the whole area is blank (all bytes are H'FF).

Error response H'CD H'52

Rev. 5.00 Mar. 06, 2009 Page 656 of 770

- Error response H'CD (1 byte): Error response to blank checking of the user MAT
- Error code H'52 (1 byte): Non-erased error

RENESAS

- Response H'5F (1 byte): Response to the inquiry regarding boot-program state
 - Size (1 byte): The number of characters in STATUS and ERROR (fixed at 2)
 - STATUS (1 byte): State of the standard boot program See table 17.14, Status Codes.
 - ERROR (1 byte): Error state (indicates whether the program is in normal operati error has occurred)
 - ERROR = 0: Normal ERROR ≠ 0: Error
 - See table 17.15, Error Codes.
 - SUM (1 byte): Checksum

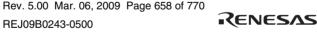
Table 17.14 Status Codes

Code	Description
H'11	Waiting for device selection
H'12	Waiting for clock-mode selection
H'13	Waiting for bit-rate selection
H'1F	Waiting for transition to programming/erasure status (bit-rate selection
H'31	Erasing the user MAT
H'3F	Waiting for programming/erasure selection (erasure complete)
H'4F	Waiting to receive data for programming (programming complete)
H'5F	Waiting for erasure block specification (erasure complete)

H'27	Operating frequency error
H'29	Block number error
H'2A	Address error
H'2B	Data length error (size error)
H'51	Erasure error
H'52	Non-erased error
H'53	Programming error
H'54	Selection processing error
H'80	Command error

17.8.2 Areas for Storage of the Procedural Program and Data for Programming In the descriptions in the previous section, storable areas for the programming/erasing pro-

Bit-rate matching acknowledge error


on-chip RAM, therefore, this area is not available for use.

programs and program data are assumed to be in on-chip RAM. However, the procedure and data can be executed in other areas as long as the following conditions are satisfied. 1. The on-chip programming/erasing program is downloaded from the address set by FT

- 2. The on-chip programming/erasing program will use 128 bytes or more as a stack. Ma this area is reserved.
- 3. Since download by setting the SCO bit to 1 will cause the MATs to be switched, it sh
- executed in on-chip RAM. 4. The flash memory is accessible until the start of programming or erasing, that is, until

H'FF

result of downloading has been decided. When in a mode in which the external address is not accessible, such as single-chip mode, the required procedure programs, interrup

- is accidentally input to the LSI, a longer period in the reset state than usual (100 μs) before the reset signal is released.
- 7. When the program data storage area indicated by the FMPDR parameter in the program processing is within the flash memory area, an error will occur. Therefore, temporar the program data to on-chip RAM to change the address set in FMPDR to an address than flash memory.

Tables 17.16 and 17.17 show the areas in which the program data can be stored and exe according to the operation type and mode.

Table 17.16 Executable MAT

	Initiated Mode	
Operation	User Program Mode	
Programming	Table 17.17 (1)	
Erasing	Table 17.17 (2)	

Pro- gram- ming proce- dure	Writing 1 to SCO in FCCS (download)	$\sqrt{}$	Χ		$\sqrt{}$
	Key register clearing	V	V	1	
	Deciding download result	V	V	√	
	Download error processing	V	V	V	
	Setting initialization parameters	1	$\sqrt{}$	$\sqrt{}$	
	Initialization	1	Χ	$\sqrt{}$	
	Deciding initialization result	V	V	1	
	Initialization error processing	V	V	√	
	Interrupt processing routine	1	Χ	$\sqrt{}$	
	Writing H'5A to key register	V	V	√	
	Setting programming parameters	1	Χ	$\sqrt{}$	
	Programming	V	Х	V	
	Deciding programming result	1	Χ	$\sqrt{}$	
	Programming error processing	1	Χ	$\sqrt{}$	
	Key register clearing	V	Х	√	

Note:

* If the data has been transferred to on-chip RAM in advance, this area can be used.

REJ09B0243-0500

Rev. 5.00 Mar. 06, 2009 Page 660 of 770

Erasing procedure	(download)			
	Key register clearing	V	√	V
	Deciding download result	V	√	V
	Download error processing	V	√	V
	Setting initialization parameters	V	V	V
	Initialization	V	Х	V
	Deciding initialization result	V	√	V
	Initialization error processing	V	√	V
	Interrupt processing routine	V	Х	V
	Writing H'5A to key register	V	√	V
	Setting erasure parameters	V	Х	V
	Erasure	V	Х	V
	Deciding erasure result	V	Х	V
	Erasing error processing	V	Х	V
	Key register clearing	V	Х	V

Rev. 5.00 Mar. 06, 2009 Page 662 of 770

register (RAMCR). For details on the RAM control register (RAMCR), refer to section RAM Control Register (RAMCR).

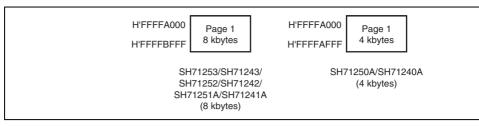


Figure 18.1 On-chip RAM Addresses

When an address error in write access to the on-chip RAM occurs, the contents of the on-RAM may be corrupted.

18.1.3 Initial Values in RAM

After power has been supplied, initial values in RAM remain undefined until RAM is writed as a supplied of the
Rev. 5.00 Mar. 06, 2009 Page 664 of 770 REJ09B0243-0500

This LSI has the following power-down modes.

- Sleep mode
- Software standby mode
- Module standby mode

Table 19.1 shows the methods to make a transition from the program execution state, as the CPU and peripheral module states in each mode and the procedures for canceling each

Rev. 5.00 Mar. 06, 2009 Pag

bit in STBCR1
STBYMD bit in
STBCR6 set to
Set MSTP bits
STRCR2 to ST

and retained) 1

Specified

(contents

retained)

RENESAS

module halts module

Specified

halts

Power-or the RES

Clear MS

Power-or

modules

MSTP bit initial val

OTBOTTO SCI TO 1.			
 Set MSTP bits in STBCR2 to STBCR5 to 1.	Runs	Runs	Held

Note: For details on the states of on-chip peripheral module registers in each mode, refe section 20.3, Register States in Each Operating Mode. For details on the pin state mode, refer to appendix A, Pin States.

REJ09B0243-0500

Rev. 5.00 Mar. 06, 2009 Page 666 of 770

19.3 Register Descriptions

There are following registers used for the power-down modes. For details on the address these registers and the states of these registers in each processing state, see section 20, I Registers.

Table 19.3 Register Configuration

	Abbrevia-				
Register Name	tion	R/W	Initial Value	Address	Ac
Standby control register 1	STBCR1	R/W	H'00	H'FFFFE802	8
Standby control register 2	STBCR2	R/W	H'38	H'FFFFE804	8
Standby control register 3	STBCR3	R/W	H'FF	H'FFFFE806	8
Standby control register 4	STBCR4	R/W	H'FF	H'FFFFE808	8
Standby control register 5	STBCR5	R/W	H'03	H'FFFFE80A	8
Standby control register 6	STBCR6	R/W	H'00	H'FFFFE80C	8
RAM control register	RAMCR	R/W	H'10	H'FFFFE880	8

Rev. 5.00 Mar. 06, 2009 Pag

7	STBY	0	R/W	Standby
				Specifies transition to software standby mo
				Executing SLEEP instruction makes this sleep mode
				 Executing SLEEP instruction makes this software standby mode
6 to 0	_	All 0	R	Reserved

These bits are always read as 0. The write

should always be 0.

Rev. 5.00 Mar. 06, 2009 Page 668 of 770

				1: Clock supply to RAM halted
6	_	0	R/W	Reserved
				This bit is always read as 0. The write valual always be 0.
5 to 3	_	All 1	R/W	Reserved
				These bits are always read as 1. The write should always be 1.
2 to 0	_	All 0	R	Reserved
				These bits are always read as 0. The write should always be 0.

R/W

R/W

Description

Module Stop Bit 7

the RAM is halted. 0: RAM operates

When this bit is set to 1, the supply of the

Rev. 5.00 Mar. 06, 2009 Pag

REJ09

Bit

7

Bit Name

MSTP7

Value

0

RENESAS

7, 6		All 1	R/W	Reserved
				These bits are always read as 1. The write valual always be 1.
5	MSTP13	1	R/W	Module Stop Bit 13
				When this bit is set to 1, the supply of the clock SCI_2 is halted.
				0: SCI_2 operates
				1: Clock supply to SCI_2 halted
4	MSTP12	1	R/W	Module Stop Bit 12
				When this bit is set to 1, the supply of the clock SCI_1 is halted.
				0: SCI_1 operates
				1: Clock supply to SCI_1 halted
3	MSTP11	1	R/W	Module Stop Bit 11
				When this bit is set to 1, the supply of the clock SCI_0 is halted.
				0: SCI_0 operates
				1: Clock supply to SCI_0 halted
2 to 0	_	All 1	R/W	Reserved
				These bits are always read as 1. The write valualways be 1.

Bit

Bit Name

Value

R/W

Description

6	MSTP22	1	R/W	Module Stop Bit 22
				When this bit is set to 1, the supply of the clo MTU2 is halted.
				0: MTU2 operates
				1: Clock supply to MTU2 halted
5	MSTP21	1	R/W	Module Stop Bit 21
				When this bit is set to 1, the supply of the clo
				0: CMT operates
				1: Clock supply to CMT halted
4, 3	_	All 1	R	Reserved
				These bits are always read as 1. The write v always be 1.
2	_	1	R/W	Reserved
				This bit is always read as 1. The write value always be 1.
1	MSTP17	1	R/W	Module Stop Bit 17
				When this bit is set to 1, the supply of the clo A/D_1 is halted.
				0: A/D_1 operates

Bit

7

Bit Name

Value

1

R/W

R/W

Description

always be 1.

This bit is always read as 1. The write value s

Reserved

1: Clock supply to A/D_1 halted

Rev. 5.00 Mar. 06, 2009 Pag

STBCR5 is an 8-bit readable/writable register that controls the operation of modules in p down mode.

Bit:	7	6	5	4	3	2	1	0
	-	-	-	-	-	-	MSTP	[25:24]
Initial value:	0	0	0	0	0	0	1	1
R/W:	R	R	R	R	R	R	R/W	R/W

Bit	Bit Name	Initial Value	R/W	Description
7 to 2	_	All 0	R	Reserved
				These bits are always read as 0. The write valualways be 0.
1, 0	MSTP[25:24]	11	R/W	Module Stop Bit 25 and 24
				When either or both of these bits are set to 1, supply of the clock to the UBC is halted.
				00: UBC operates
				01: Setting prohibited
				10: Setting prohibited
				11: Clock supply to UBC halted

Note: Write an initial value of "11" when programming the 32 Kbyte (SH71251A and SH7 and 16 Kbyte (SH71250A and SH71240A) versions.

Rev. 5.00 Mar. 06, 2009 Page 672 of 770

				Resetting the PC trace unit of UBC is control software.
				Clearing this bit to 0 puts the PC trace unit of module into the power-on reset state.
				0: Puts the PC trace unit of UBC into the rese
				1: Releases reset in the PC trace unit of UBC
				This bit is not supported on 32 Kbyte version (SH71251A, SH71241A) and 16 Kbyte version (SH71250A, SH71240A).
				These bits are always read as 0. The write value always be 0.
6	HIZ	0	R/W	Port High-Impedance
				In software standby mode, this bit selects whe pin state is retained or changed to high-impe
				0: In software standby mode, the pin state is
				1: In software standby mode, the pin state is to high-impedance
5 to 2	_	All 0	R	Reserved
				These bits are always read as 0. The write valways be 0.
1	STBYMD	0	R/W	Software Standby Mode Select
				If this bit is set to 1, executing SLEEP instru the STBY bit in STBCR1 is 1 and makes tra software standby mode.
				0: Setting prohibited
				1: Makes transition to software standby mod
0	_	0	R	Reserved

RENESAS

This bit is always read as 0. The write value s always be 0.

Rev. 5.00 Mar. 06, 2009 Pag

Bit	Bit Name	Value	R/W	Description
7 to 5	_	All 0	R	Reserved
				These bits are always read as 0. The write valual always be 0.
4	RAME	1	R/W	RAM Enable
				This bit enables/disables the on-chip RAM.
				0: On-chip RAM disabled
				1: On-chip RAM enabled
				When this bit is cleared to 0, the access to the RAM is disabled. In this case, an undefined va returned when reading or fetching the data or instruction from the on-chip RAM, and writing t chip RAM is ignored.
				When RAME is cleared to 0 to disable the on-cRAM, an instruction to access the on-chip RAM not be set next to the instruction to write RAMC such an instruction is set, normal access is not guaranteed.
				When RAME is set to 1 to enable the on-chip I instruction to read RAMCR should be set next instruction to write to RAMCR. If an instruction access the on-chip RAM is set next to the instruction to RAMCR, normal access is not guarant
3 to 0		All 0	R	Reserved
				These bits are always read as 0. The write valualways be 0.
				always be u.

Sleep mode is canceled by a reset.

(1) Canceling with Reset

Sleep mode is canceled by a power-on reset with the \overline{RES} pin, a manual reset with the \overline{N} or an internal power-on/manual reset by WDT. Do not cancel sleep mode with an internal

chip peripheral module registers in software standby mode, refer to section 20.3, Register Each Operating Mode. For details on the pin states in software standby mode, refer to apply Pin States.

The procedure for switching to software standby mode is as follows:

- Clear the TME bit in the timer control register (WTCSR) of the WDT to 0 to stop the
 Set the timer counter (WTCNT) of the WDT to 0 and bits CKS2 to CKS0 in WTCSR
- appropriate values to secure the specified oscillation settling time.

 3. After setting the STRV bit in STRCP1 and the STRVMD bit in STRCP6 to 1, exact
- 3. After setting the STBY bit in STBCR1 and the STBYMD bit in STBCR6 to 1, execut SLEEP instruction.
- 4. Software standby mode is entered and the clocks within this LSI are halted.

RENESAS

Rev. 5.00 Mar. 06, 2009 Page 676 of 770

When the priority level of an IRQ interrupt is lower than the interrupt mask level set in register (SR) of the CPU, an interrupt request is not accepted preventing software stands from being canceled.

When falling-edge detection is selected for the NMI pin, drive the NMI pin high before transition to software standby mode. When rising-edge detection is selected for the NM the NMI pin low before making a transition to software standby mode.

Similarly, when falling-edge detection is selected for the IRQ pin, drive the IRQ pin hig making a transition to software standby mode. When rising-edge detection is selected for pin, drive the IRQ pin low before making a transition to software standby mode.

Software standby mode is canceled by a power-on reset with the \overline{RES} pin. Keep the \overline{RES}

Canceling with Power-on Reset (2)

until the clock oscillation settles.

Canceling with Manual Reset

Note that software standby mode cannot be canceled with a manual reset in this LSI.

mode, refer to section 20.5, Register States in Each Operating Mode.

19.6.2 Canceling Module Standby Function

The module standby function can be canceled by clearing the MSTP bits in STBCR2 to S to 0. The module standby function can be canceled by a power-on reset for modules who bit has an initial value of 0.

19.7 Usage Note

19.7.1 Current Consumption while Waiting for Oscillation to be Stabilized

The current consumption while waiting for oscillation to be stabilized is higher than that oscillation is stabilized.

19.7.2 Executing the SLEEP Instruction

Apply either of the following measures before executing the SLEEP instruction to initiate transition to sleep mode or software standby mode.

Measure A: Stop the generation of interrupts from on-chip peripheral modules, IRQ interthe NMI interrupt before executing the SLEEP instruction.

Measure B: Change the value in FRQCR to the initial value, H'36DB, and then dummy-rFRQCR twice before executing the SLEEP instruction.

Rev. 5.00 Mar. 06, 2009 Page 678 of 770

- The numbers of access cycles are given.
 - 2. Register Bit Table
 - Bit configurations are shown in the order of the register address table.
 - As for reserved bits, the bit name column is indicated with —.
 - As for the blank column of the bit names, the whole register is allocated to the count
 - As for 16- or 32-bit registers, bits are indicated from the MSB.
 - 3. Register State in Each Operating Mode
 - Register states are listed in the order of the register address table.
 - Register states in the basic operating mode are shown. As for modules including the states such as reset, see the sections of those modules.

Rev. 5.00 Mar. 06, 2009 Pag

Serial mode register_0	SCSMR_0	8	H'FFFFC000	SCI	8	Pφ refer
Bit rate register_0	SCBRR_0	8	H'FFFFC002	(Channel 0)	8	B: 2
Serial control register_0	SCSCR_0	8	H'FFFFC004	-	8	
Transmit data register_0	SCTDR_0	8	H'FFFFC006	=	8	
Serial status register_0	SCSSR_0	8	H'FFFFC008	-	8	
Receive data register_0	SCRDR_0	8	H'FFFFC00A	-	8	
Serial direction control register_0	SCSDCR_0	8	H'FFFFC00C	-	8	
Serial port register_0	SCSPTR_0	8	H'FFFFC00E	-	8	
Serial mode register_1	SCSMR_1	8	H'FFFFC080	SCI	8	Pφ refer
Bit rate register_1	SCBRR_1	8	H'FFFFC082	(Channel 1)	8	B: 2
Serial control register_1	SCSCR_1	8	H'FFFFC084	=	8	
Transmit data register_1	SCTDR_1	8	H'FFFFC086	-	8	
Serial status register_1	SCSSR_1	8	H'FFFFC088	-	8	
Receive data register_1	SCRDR_1	8	H'FFFFC08A	=	8	
Serial direction control register_1	SCSDCR_1	8	H'FFFFC08C	-	8	
Serial port register_1	SCSPTR_1	8	H'FFFFC08E	-	8	
Serial mode register_2	SCSMR_2	8	H'FFFFC100	SCI	8	Pφ refer
Bit rate register_2	SCBRR_2	8	H'FFFFC102	(Channel 2)	8	B: 2
Serial control register_2	SCSCR_2	8	H'FFFFC104	-	8	
Transmit data register_2	SCTDR_2	8	H'FFFFC106	-	8	
Serial status register_2	SCSSR_2	8	H'FFFFC108	-	8	
Receive data register_2	SCRDR_2	8	H'FFFFC10A	-	8	
Serial direction control register_2	SCSDCR_2	8	H'FFFFC10C	-	8	

H'FFFFC10E

SCSPTR_2 8

Serial port register_2

Timer I/O control register L_4	HONL_4	O	1111110207	0
Timer interrupt enable register_3	TIER_3	8	H'FFFC208	8, 16
Timer interrupt enable register_4	TIER_4	8	H'FFFFC209	8
Timer output master enable register	TOER	8	H'FFFC20A	8
Timer gate control register	TGCR	8	H'FFFFC20D	8
Timer output control register 1	TOCR1	8	H'FFFFC20E	8, 16
Timer output control register 2	TOCR2	8	H'FFFC20F	8
Timer counter_3	TCNT_3	16	H'FFFFC210	16, 32
Timer counter_4	TCNT_4	16	H'FFFC212	16
Timer cycle data register	TCDR	16	H'FFFC214	16, 32
Timer dead time data register	TDDR	16	H'FFFFC216	16
Timer general register A_3	TGRA_3	16	H'FFFFC218	16, 32
Timer general register B_3	TGRB_3	16	H'FFFC21A	16
Timer general register A_4	TGRA_4	16	H'FFFFC21C	16, 32
Timer general register B_4	TGRB_4	16	H'FFFFC21E	16
Timer sub-counter	TCNTS	16	H'FFFC220	16, 32
Timer cycle buffer register	TCBR	16	H'FFFC222	16
Timer general register C_3	TGRC_3	16	H'FFFC224	16, 32
Timer general register D_3	TGRD_3	16	H'FFFC226	16
Timer general register C_4	TGRC_4	16	H'FFFC228	16, 32
Timer general register D_4	TGRD_4	16	H'FFFC22A	16
Timer status register_3	TSR_3	8	H'FFFC22C	8, 16
Timer status register_4	TSR_4	8	H'FFFFC22D	8

H'FFFFC230

8, 16

Rev. 5.00 Mar. 06, 2009 Pag

REJ09

Timer interrupt skipping set register

TITCR

8

Timer A/D converter start request control register	TADCR	16	H'FFFFC240	16
Timer A/D converter start request cycle set register A_4	TADCORA_4	16	H'FFFFC244	16, 32
Timer A/D converter start request cycle set register B_4	TADCORB_4	16	H'FFFFC246	16
Timer A/D converter start request cycle set buffer register A_4	TADCOBRA_4	16	H'FFFFC248	16, 32
Timer A/D converter start request cycle set buffer register B_4	TADCOBRB_4	16	H'FFFFC24A	16
Timer waveform control register	TWCR	8	H'FFFC260	8
Timer start register	TSTR	8	H'FFFFC280	8, 16
Timer synchronous register	TSYR	8	H'FFFFC281	8
Timer read/write enable register	TRWER	8	H'FFFFC284	8
Timer control register_0	TCR_0	8	H'FFFFC300	8, 16, 32
Timer mode register_0	TMDR_0	8	H'FFFFC301	8
Timer I/O control register H_0	TIORH_0	8	H'FFFC302	8, 16
Timer I/O control register L_0	TIORL_0	8	H'FFFFC303	8
Timer interrupt enable register_0	TIER_0	8	H'FFFFC304	8, 16, 32
Timer status register_0	TSR_0	8	H'FFFFC305	8
Timer counter_0	TCNT_0	16	H'FFFFC306	16
Timer general register A_0	TGRA_0	16	H'FFFFC308	16, 32
Timer general register B_0	TGRB_0	16	H'FFFFC30A	16

Rev. 5.00 Mar. 06, 2009 Page 682 of 770 REJ09B0243-0500

Timer control register_1	TCR_1	8	H'FFFFC380	8, 16
Timer mode register_1	TMDR_1	8	H'FFFFC381	8
Timer I/O control register_1	TIOR_1	8	H'FFFFC382	8
Timer interrupt enable register_1	TIER_1	8	H'FFFFC384	8, 16, 32
Timer status register_1	TSR_1	8	H'FFFFC385	8
Timer counter_1	TCNT_1	16	H'FFFFC386	16
Timer general register A_1	TGRA_1	16	H'FFFFC388	16, 32
Timer general register B_1	TGRB_1	16	H'FFFFC38A	16
Timer input capture control register	TICCR	8	H'FFFFC390	8
Timer control register_2	TCR_2	8	H'FFFFC400	8, 16
Timer mode register_2	TMDR_2	8	H'FFFFC401	8
Timer I/O control register_2	TIOR_2	8	H'FFFFC402	8
Timer interrupt enable register_2	TIER_2	8	H'FFFFC404	8, 16, 32
Timer status register_2	TSR_2	8	H'FFFFC405	8
Timer counter_2	TCNT_2	16	H'FFFFC406	16
Timer general register A_2	TGRA_2	16	H'FFFFC408	16, 32
Timer general register B_2	TGRB_2	16	H'FFFFC40A	16
Timer counter U_5	TCNTU_5	16	H'FFFFC480	16, 32
Timer general register U_5	TGRU_5	16	H'FFFFC482	16
Timer control register U_5	TCRU_5	8	H'FFFFC484	8
Timer I/O control register U_5	TIORU_5	8	H'FFFFC486	8
Timer counter V_5	TCNTV_5	16	H'FFFFC490	16, 32
Timer general register V_5	TGRV_5	16	H'FFFFC492	16

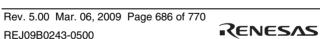
rimer interrupt enable register_5	HEN_3	0	TITTI O4DZ	_	0	
Timer start register_5	TSTR_5	8	H'FFFFC4B4	_	8	
Timer compare match clear register	TCNTCMPCLR	8	H'FFFFC4B6	_	8	
A/D data register 0	ADDR0	16	H'FFFFC900	A/D	16	P∳ refer
A/D data register 1	ADDR1	16	H'FFFFC902	(Channel 0)	16	B: 2, W:
A/D data register 2	ADDR2	16	H'FFFFC904	_	16	
A/D data register 3	ADDR3	16	H'FFFFC906	_	16	
A/D control/status register_0	ADCSR_0	16	H'FFFFC910	_	16	
A/D control register_0	ADCR_0	16	H'FFFFC912	_	16	
A/D data register 4	ADDR4	16	H'FFFFC980	A/D	16	P∳ refer
A/D data register 5	ADDR5	16	H'FFFFC982	(Channel 1)	16	B: 2, W:
A/D data register 6	ADDR6	16	H'FFFFC984	_	16	
A/D data register 7	ADDR7	16	H'FFFFC986	_	16	
A/D control/status register_1	ADCSR_1	16	H'FFFFC990	_	16	
A/D control register_1	ADCR_1	16	H'FFFFC992	=	16	
Flash code control/status register	FCCS	8	H'FFFFCC00	FLASH	8	Pφ refer
Flash program code select register	FPCS	8	H'FFFFCC01	=	8	B: 5
Flash erase code select register	FECS	8	H'FFFFCC02	=	8	
Flash key code register	FKEY	8	H'FFFFCC04	=	8	
Flash transfer destination address register	FTDAR	8	H'FFFFCC06	_	8	

Rev. 5.00 Mar. 06, 2009 Page 684 of 770 REJ09B0243-0500

Compare match constant register_1	CMCOR_1	16	H'FFFFCE0C		8, 16, 32	
Input level control/status register 1	ICSR1	16	H'FFFFD000	POE	8, 16, 32	P∳ ref
Output level control/status register 1	OCSR1	16	H'FFFFD002	_	8, 16	B: 2, V
Input level control/status register 3	ICSR3	16	H'FFFFD008	 "	8, 16	<u></u>
Software port output enable register	SPOER	8	H'FFFFD00A	_	8	<u></u>
Port output enable control register 1	POECR1	8	H'FFFFD00B	_	8	<u></u>
Port output enable control register 2	POECR2	16	H'FFFFD00C	_	8, 16	<u></u>
Port A data register L	PADRL	16	H'FFFFD102	I/O	8, 16	P∳ ref
Port A I/O register L	PAIORL	16	H'FFFFD106	PFC	8, 16	B: 2, \
Port A control register L4	PACRL4	16	H'FFFFD110	_	8, 16, 32	<u></u>
Port A control register L3	PACRL3	16	H'FFFFD112	_	8, 16	
Port A control register L2	PACRL2	16	H'FFFFD114	_	8, 16, 32	
Port A control register L1	PACRL1	16	H'FFFFD116	_	8, 16	
Port A port register L	PAPRL	16	H'FFFFD11E	I/O	8, 16	
Port B data register H	PBDRH	16	H'FFFFD180	_	8, 16, 32	<u></u>
Port B data register L	PBDRL	16	H'FFFFD182	_	8, 16	<u></u>
Port B I/O register H	PBIORH	16	H'FFFFD184	PFC	8, 16, 32	
Port B I/O register L	PBIORL	16	H'FFFFD186	_	8, 16	
Port B control register H1	PBCRH1	16	H'FFFFD18E	_	8, 16	
Port B control register L2	PBCRL2	16	H'FFFFD194	_	8, 16, 32	
Port B control register L1	PBCRL1	16	H'FFFFD196	_	8, 16	
Port B port register H	PBPRH	16	H'FFFFD19C	I/O	8, 16, 32	
Port B port register L	PBPRL	16	H'FFFFD19E	_	8, 16	

H'FFFFD302

PEDRL


16

Port E data register L

Frequency control register	FRQCR	16	H'FFFFE800	CPG	16	Pφ refer
						W: 2
Standby control register 1	STBCR1	8	H'FFFFE802	Power-down	8	P preference
Standby control register 2	STBCR2	8	H'FFFFE804	modes	8	B: 2
Standby control register 3	STBCR3	8	H'FFFFE806	_	8	
Standby control register 4	STBCR4	8	H'FFFFE808	_	8	
Standby control register 5	STBCR5	8	H'FFFFE80A	_	8	
Standby control register 6	STBCR6	8	H'FFFFE80C	_	8	
Watchdog timer counter	WTCNT	8	H'FFFFE810	WDT	8*¹, 16*²	Pφ refer
Watchdog timer control/status register	WTCSR	8	H'FFFFE812	*1: Read	8* ¹ , 16* ²	B: 2*1, V
				*2: Write		
Oscillation stop detection control	OSCCR	8	H'FFFFE814	CPG	8	P∳ refer
register						B: 2
RAM control register	RAMCR	8	H'FFFE880	Power-down	8	P∳ refer
				modes		B: 2
A/D trigger select register_0	ADTSR_0	16	H'FFFFE890	A/D	8, 16	P preference
						B: 2, W:
Interrupt control register 0	ICR0	16	H'FFFFE900	INTC	8, 16	Pφ refer
IRQ control register	IRQCR	16	H'FFFFE902	_	8, 16	B: 2, W:
IRQ status register	IRQSR	16	H'FFFFE904	_	8, 16	
Interrupt priority register A	IPRA	16	H'FFFFE906	_	8, 16	
Interrupt priority register B	IPRB	16	H'FFFFE908	_	8, 16	

H'FFFFE980

16

16

IPRC

Interrupt priority register C

FULL data register L

Interrupt priority register M	IPRM	16	H'FFFFE994		16	
Break address register A*	BARA	32	H'FFFFF300	UBC	32	Вф ге
Break address mask register A*	BAMRA	32	H'FFFFF304		32	B: 2,
Break bus cycle register A*	BBRA	16	H'FFFFF308	_	16	<u> </u>
Break data register A*	BDRA	32	H'FFFFF310		32	
Break data mask register A*	BDMRA	32	H'FFFFF314	_	32	<u> </u>
Break address register B*	BARB	32	H'FFFFF320	_	32	<u>_</u>
Break address mask register B*	BAMRB	32	H'FFFFF324	_	32	
Break bus cycle register B*	BBRB	16	H'FFFFF328		16	
Break data register B*	BDRB	32	H'FFFFF330		32	
Break data mask register B*	BDMRB	32	H'FFFFF334	_	32	
Break control register*	BRCR	32	H'FFFFF3C0	_	32	
Branch source register*	BRSR	32	H'FFFFF3D0	_	32	
Branch destination register*	BRDR	32	H'FFFFF3D4	<u> </u>	32	
Execution times break register*	BETR	16	H'FFFFF3DC		16	

* The UBC registers are not supported on 32 Kbyte versions (SH71251A, SH7 and 16 Kbyte versions (SH71250A, SH71240A).

00000		' '	1 '- '				0.11	_[]	
SCTDR_0									
SCSSR_0	TDRE	RDRF	ORER	FER	PER	TEND	MPB	MPBT	
SCRDR_0									
SCSDCR_0	_	_	_	_	DIR	_	_	_	
SCSPTR_0	EIO	_	_	_	SPB1IO	SPB1DT	SPB0IO	SPB0DT	
SCSMR_1	C/Ā	CHR	PE	O/E	STOP	MP	CKS	S[1:0]	sc
SCBRR_1									(Cł
SCSCR_1	TIE	RIE	TE	RE	MPIE	TEIE	CKI	E[1:0]	
SCTDR_1									
SCSSR_1	TDRE	RDRF	ORER	FER	PER	TEND	MPB	MPBT	
SCRDR_1									
SCSDCR_1	_	_	_	_	DIR	_	_	_	
SCSPTR_1	EIO	_	_	_	SPB1IO	SPB1DT	SPB0IO	SPB0DT	
SCSMR_2	C/Ā	CHR	PE	O/Ē	STOP	MP	CKS	S[1:0]	sc
SCBRR_2									(Cł
SCSCR_2	TIE	RIE	TE	RE	MPIE	TEIE	CKI	E[1:0]	
SCTDR_2									
SCSSR_2	TDRE	RDRF	ORER	FER	PER	TEND	MPB	MPBT	
SCRDR_2									
SCSDCR_2	_	_	_	_	DIR	_	_	_	
SCSPTR_2	EIO	_	_	_	SPB1IO	SPB1DT	SPB0IO	SPB0DT	

Rev. 5.00 Mar. 06, 2009 Page 688 of 770 REJ09B0243-0500

TIOTIL_4		100	[0.0]			100	/[U.U]	
TIER_3	TTGE	_	_	TCIEV	TGIED	TGIEC	TGIEB	TGIEA
TIER_4	TTGE	TTGE2	_	TCIEV	TGIED	TGIEC	TGIEB	TGIEA
TOER	_	_	OE4D	OE4C	OE3D	OE4B	OE4A	OE3B
TGCR	_	BDC	N	Р	FB	WF	VF	UF
TOCR1	_	PSYE	_	_	TOCL	TOCS	OLSN	OLSP
TOCR2	BF[1:0]	OLS3N	OLS3P	OLS2N	OLS2P	OLS1N	OLS1P
TCNT_3								
TCNT_4								
TCDR								
TDDR								
TGRA_3								
TGRB_3								
TGRA_4								
TGRB_4								

TGRC_4								
TGRD_4								
TSR_3	TCFD			TCFV	TGFD	TGFC	TGFB	TGFA
TSR_4	TCFD			TCFV	TGFD	TGFC	TGFB	TGFA
TITCR	T3AEN		3ACOR[2:0]		T4VEN		4VCOR[2:0]	
TITCNT	_		3ACNT[2:0]				4VCNT[2:0]	
TBTER	_	_	_	_	_	_	ВТЕ	[1:0]
TDER	_	_	_	_	_	_	_	TDER
TOLBR	_	_	OLS3N	OLS3P	OLS2N	OLS2P	OLS1N	OLS1P
ТВТМ_3	_	_	_	_	_	_	TTSB	TTSA
TBTM_4	_	_	_	_	_	_	TTSB	TTSA
TADCR	BF[1:0]	_	_	_	_	_	_
	UT4AE	DT4AE	UT4BE	DT4BE	ITA3AE	ITA4VE	ITB3AE	ITB4VE
TADCORA_4								
TADCORB_4								
TADCOBRA_4								
TADCOBRB_4								

Rev. 5.00 Mar. 06, 2009 Page 690 of 770

HORL_0		IOD	[3:0]			100	[3:0]	
TIER_0	TTGE	_	_	TCIEV	TGIED	TGIEC	TGIEB	TGIEA
TSR_0	_	_	_	TCFV	TGFD	TGFC	TGFB	TGFA
TCNT_0								
TGRA_0								
TGRB_0								
TGRC_0								
TGRD_0								
TGRE_0								
TGRF_0								
TIER2_0	TTGE2	_	_	_	_	_	TGIEF	TGIEE
TSR2_0	_	_	_	_	_	_	TGFF	TGFE
TBTM_0	_	_	_	_	_	TTSE	TTSB	TTSA
TCR_1	_	CCLI	R[1:0]	CKE	G[1:0]	TPSC[2:0]		
TMDR_1	_	_	_	_		MD	[3:0]	
TIOR_1		IOB	[3:0]		IOA[3:0]			

TICCR	_	_		_	I2BE	I2AE	I1BE	I1AE
TCR_2	_	CCLF	R[1:0]	CKE	G[1:0] TPSC[2:0]			
TMDR_2	_	_	_	_		MD	[3:0]	
TIOR_2		IOB	[3:0]			IOA	[3:0]	
TIER_2	TTGE	_	TCIEU	TCIEV	_	_	TGIEB	TGIEA
TSR_2	TCFD	_	TCFU	TCFV	_	_	TGFB	TGFA
TCNT_2								
•								
TGRA_2								
•								
TGRB_2								
•								
TCNTU_5								
TGRU_5								
•								
TCRU_5	_	_	_	_	_	_	TPS	C[1:0]
TIORU_5	_	_	_			IOC[4:0]		
TCNTV_5								
TGRV_5								
TCRV_5	_	_	_	_	_	_	TPS	C[1:0]

Rev. 5.00 Mar. 06, 2009 Page 692 of 770

TSR_5	_	_	_	_	_	CMFU5	CIVIEVS	CIVIEVV5	Γ
TIER_5	_	_	_	_		TGIE5U	TGIE5V	TGIE5W	
TSTR_5	_	_	_	_	_	CSTU5	CSTV5	CSTW5	
TCNTCMPCLR	_	_	_	_	_	CMPCLR5U	CMPCLR5V	CMPCLR5W	
ADDR0	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	F
	AD1	AD0	_	_	_	_	_	_	
ADDR1	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	
	AD1	AD0	_	_	_	_	_	_	
ADDR2	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	
	AD1	AD0	_	_	_	_	_	_	
ADDR3	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	
	AD1	AD0	_	_	_	_	_	_	
ADCSR_0	ADF	ADIE	_	_	TRGE	_	CONADF	STC	
	CKSI	L[1:0]	ADM	1[1:0]	ADCS		CH[2:0]		
ADCR_0	_	_	ADST	_	_	_	_	_	
	_	_	_	_	_	_	_	_	
ADDR4	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	A
	AD1	AD0	_	_	_	_	_	_	
ADDR5	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	
	AD1	AD0	_	_		_	_	_	
ADDR6	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	
	AD1	AD0	_	_	1	_	_	_	
ADDR7	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	

AD1

AD0

REJ09

Rev. 5.00 Mar. 06, 2009 Pag

FKEY				ΚĮ	7:0]				
FTDAR	TDER				TDA[6:0]				
CMSTR	_	_	_	_	_	_	_	_	CN
	_	_	_	_	_	_	STR1	STR0	
CMCSR_0	_	_	_	_	_	_	_	_	
	CMF	CMIE	_	_	_	_	CKS	S[1:0]	
CMCNT_0									
CMCOR_0									
CMCSR_1		_	_	_	_	_	_	_	
	CMF	CMIE	_	_	_	_	CKS	S[1:0]	
CMCNT_1									
CMCOR_1									
ICSR1	POE3F	_	POE1F	POE0F	_	_	_	PIE1	РО
	POE3	BM[1:0]	_	_	POE1	M[1:0]	POE	DM[1:0]	
OCSR1	OSF1	_	_	_	_	_	OCE1	OIE1	
	_	_	_	_	_	_	_	_	
ICSR3	_	_	_	POE8F	_	_	POE8E	PIE3	
	_	_	_	_	_	_	POE	BM[1:0]	
SPOER	_	_	_	_	_	_	MTU2CH0HIZ	MTU2CH34HIZ	

Rev. 5.00 Mar. 06, 2009 Page 694 of 770 REJ09B0243-0500

						1
(SH7124)	PA7IOR	PA6IOR	_	PA4IOR	PA3IOR	
PACRL4	_	PA15MD2	PA15MD1	PA15MD0	_	
(SH7125)	_	PA13MD2	PA13MD1	PA13MD0	_	
PACRL4	_	_	_	_	_	
(SH7124)	_	_	_	_	_	
PACRL3	_	PA11MD2	PA11MD1	PA11MD0	_	
(SH7125)	_	PA9MD2	PA9MD1	PA9MD0	_	
PACRL3	_	_	_	_	_	
(SH7124)	_	PA9MD2	PA9MD1	PA9MD0	_	
PACRL2	_	PA7MD2	PA7MD1	PA7MD0	_	
(SH7125)	_	PA5MD2	PA5MD1	PA5MD0	_	
PACRL2	_	PA7MD2	PA7MD1	PA7MD0	_	
(SH7124)	_	_	_	_	_	
PACRL1	_	PA3MD2	PA3MD1	PA3MD0	_	
(SH7125)	_	PA1MD2	PA1MD1	PA1MD0	_	
PACRL1	_	PA3MD2	PA3MD1	PA3MD0	_	
(SH7124)	_	PA1MD2	PA1MD1	PA1MD0	_	
PAPRL	PA15PR	PA14PR	PA13PR	PA12PR	PA11PR	
(SH7125)	PA7PR	PA6PR	PA5PR	PA4PR	PA3PR	
PAPRL	_	_	_	_	_	

PAIORL

(SH7125)

PAIORL

(SH7124)

PA7PR

PA6PR

PAISIOR

PA7IOR

PA 14IOR

PA6IOR

PAISIOR

PA5IOR

PATZIOR

PA4IOR

PATHOR

PA3IOR

PATUIOR

PA2IOR

PA14MD2

PA12MD2

PA10MD2

PA8MD2

PA8MD2

PA6MD2

PA4MD2

PA6MD2

PA4MD2

PA2MD2

PA0MD2

PA0MD2

PA10PR

PA2PR

PASIOR

PA1IOR

PA9IOR

PA1IOR

PA14MD1

PA12MD1

PA10MD1

PA8MD1

PA8MD1

PA6MD1

PA4MD1

PA6MD1

PA4MD1

PA2MD1

PA0MD1

PA0MD1

PA9PR

PA1PR

PA9PR

PA1PR

Rev. 5.00 Mar. 06, 2009 Pag

PASIOR

PA0IOR

PA8IOR

PA0IOR

PA14MD0

PA12MD0

PA10MD0

PA8MD0

PA8MD0

PA6MD0

PA4MD0

PA6MD0

PA4MD0

PA2MD0

PA0MD0

PA0MD0

PA8PR

PA0PR

PA8PR

PA0PR

PA4PR

PA3PR

	_	_	PB5DR	_	PB3DH	_	PRIDK	_	
PBIORH	_	_	_	_			_	_	PF
(SH7125)	_	_	_	_	_	_	_	PB16IOR	
PBIORH	_	_	_	_	_	_	_	_	
(SH7124)	_	_	_	_	_	_	_	_	
PBIORL	_	_	_	_	_	_	_	_	
(SH7125)	_	_	PB5IOR	_	PB3IOR	PB2IOR	PB1IOR	_	
PBIORL	_	_	_	_	_	_	_	_	
(SH7124)	_	_	PB5IOR	_	PB3IOR	_	PB1IOR	_	
PBCRH1	_	_	_	_	_	_	_	_	
(SH7125)	_	_	_	_	_	_	_	PB16MD	
PBCRH1	_	_	_	_	_	_	_	_	
(SH7124)	_	_	_	_	_	_	_	_	
PBCRL2	_	_	_	_	_	_	_	_	
(SH7125)	_	PB5MD2	PB5MD1	PB5MD0	_	_	_	_	
PBCRL2	_	_	_	_	_	_	_	_	
(SH7124)	_	PB5MD2	PB5MD1	PB5MD0	_	_	_	_	
PBCRL1	_	PB3MD2	PB3MD1	PB3MD0	_	PB2MD2	PB2MD1	PB2MD0	
(SH7125)	_	PB1MD2	PB1MD1	PB1MD0	_	_	_	_	
PBCRL1	_	PB3MD2	PB3MD1	PB3MD0	_	_	_	_	
(SH7124)	_	PB1MD2	PB1MD1	PB1MD0	_	_	_	_	

Rev. 5.00 Mar. 06, 2009 Page 696 of 770 REJ09B0243-0500

	_	_	PB5PR	_	PB3PR	_	PBIPR	
PEDRL	PE15DR	PE14DR	PE13DR	PE12DR	PE11DR	PE10DR	PE9DR	PE8DR
(SH7125)	PE7DR	PE6DR	PE5DR	PE4DR	PE3DR	PE2DR	PE1DR	PE0DR
PEDRL	PE15DR	PE14DR	PE13DR	PE12DR	PE11DR	PE10DR	PE9DR	PE8DR
(SH7124)	_	_	_	_	PE3DR	PE2DR	PE1DR	PE0DR
PEIORL	PE15IOR	PE14IOR	PE13IOR	PE12IOR	PE11IOR	PE10IOR	PE9IOR	PE8IOR
(SH7125)	PE7IOR	PE6IOR	PE5IOR	PE4IOR	PE3IOR	PE2IOR	PE1IOR	PE0IOR
PEIORL	PE15IOR	PE14IOR	PE13IOR	PE12IOR	PE11IOR	PE10IOR	PE9IOR	PE8IOR
(SH7124)	_	_	_	_	PE3IOR	PE2IOR	PE1IOR	PE0IOR
PECRL4	_	PE15MD2	PE15MD1	PE15MD0	_	PE14MD2	PE14MD1	PE14MD0
	_	_	PE13MD1	PE13MD0	_	PE12MD2	PE12MD1	PE12MD0
PECRL3	_	PE11MD2	PE11MD1	PE11MD0	_	PE10MD2	PE10MD1	PE10MD0
	_	PE9MD2	PE9MD1	PE9MD0	_	PE8MD2	PE8MD1	PE8MD0
PECRL2	_	PE7MD2	PE7MD1	PE7MD0	_	PE6MD2	PE6MD1	PE6MD0
(SH7125)	_	PE5MD2	PE5MD1	PE5MD0	_	PE4MD2	PE4MD1	PE4MD0
PECRL2	_	_	_	_	_	_	_	_
(SH7124)	_	_	_	_	_	_	_	_
PECRL1	_	PE3MD2	PE3MD1	PE3MD0	_	PE2MD2	PE2MD1	PE2MD0
	_	PE1MD2	PE1MD1	PE1MD0	_	_	PE0MD1	PE0MD0
PEPRL	PE15PR	PE14PR	PE13PR	PE12PR	PE11PR	PE10PR	PE9PR	PE8PR
(SH7125)	PE7PR	PE6PR	PE5PR	PE4PR	PE3PR	PE2PR	PE1PR	PE0PR
PEPRL	PE15PR	PE14PR	PE13PR	PE12PR	PE11PR	PE10PR	PE9PR	PE8PR

(SH7124)

PE3PR

PE2PR

PE1PR

REJ09

PE0PR

STBCR2	MSTP7	_	_	_	_	_	_	_	
STBCR3	_	_	MSTP13	MSTP12	MSTP11	_	_	_	
STBCR4	_	MSTP22	MSTP21	_	_	_	MSTP17	MSTP16	
STBCR5	_	_	_	_	_	_	MSTF	[25:24]	
STBCR6	UBCRST	HIZ	_	_	_	_	STBYMD	_	
WTCNT									WE
WTCSR	TME	WT/IT	RSTS	WOVF	IOVF		CKS[2:0]		
OSCCR	_	_	_	_	_	OSCSTOP	_	OSCERS	СР
RAMCR	_	_	_	RAME	_	_		_	Por
ADTSR_0		TRG1	1S[3:0]			TRG0	1S[3:0]		A/E
		TRG1	S[3:0]			TRG	OS[3:0]		
ICR0	NMIL	_	_	_	_	_	_	NMIE	IN
	_	_	_	_	_	_	_	_	
IRQCR	_	_	_	_	_	_	_	_	
	IRQ31S	IRQ30S	IRQ21S	IRQ20S	IRQ11S	IRQ10S	IRQ01S	IRQ00S	
IRQSR	_	_	_	_	IRQ3L	IRQ2L	IRQ1L	IRQ0L	
	_	_	_	_	IRQ3F	IRQ2F	IRQ1F	IRQ0F	
IPRA	IRQ0	IRQ0	IRQ0	IRQ0	IRQ1	IRQ1	IRQ1	IRQ1	
	IRQ2	IRQ2	IRQ2	IRQ2	IRQ3	IRQ3	IRQ3	IRQ3	
IPRB	_	_	_	_	_	_	_	_	
	_	_	_	_	_	_	_	_	
IPRC	_	_	_	_	_	_	_	_	
1									1

Rev. 5.00 Mar. 06, 2009 Page 698 of 770 REJ09B0243-0500

	_	_	_	_	_	_	_	_
IPRI	_	_	_	_	_	_	_	_
	_	_	_	_	_	_	_	_
IPRJ	CMT_0	CMT_0	CMT_0	CMT_0	CMT_1	CMT_1	CMT_1	CMT_1
	_	_	_	_	WDT	WDT	WDT	WDT
IPRK	A/D_0,1	A/D_0,1	A/D_0,1	A/D_0,1	_	_	_	_
	_	_	_	_	_	_	_	_
IPRL	SCI_0	SCI_0	SCI_0	SCI_0	SCI_1	SCI_1	SCI_1	SCI_1
	SCI_2	SCI_2	SCI_2	SCI_2	_	_	_	_
IPRM	_	_	_	_	_	_	_	_
	_	_	_	_	_	_	_	_
BARA	BAA31	BAA30	BAA29	BAA28	BAA27	BAA26	BAA25	BAA24 l
	BAA23	BAA22	BAA21	BAA20	BAA19	BAA18	BAA17	BAA16
	BAA15	BAA14	BAA13	BAA12	BAA11	BAA10	BAA9	BAA8
	BAA7	BAA6	BAA5	BAA4	BAA3	BAA2	BAA1	BAA0
BAMRA	BAMA31	BAMA30	BAMA29	BAMA28	BAMA27	BAMA26	BAMA25	BAMA24
	BAMA23	BAMA22	BAMA21	BAMA20	BAMA19	BAMA18	BAMA17	BAMA16
	BAMA15	BAMA14	BAMA13	BAMA12	BAMA11	BAMA10	BAMA9	BAMA8
	BAMA7	BAMA6	BAMA5	BAMA4	ВАМАЗ	BAMA2	BAMA1	BAMA0
BBRA	_	_	_	_	_		CPA[2:0]	
	CDA	[1:0]	IDA	[1:0]	RWA	\[1:0]	SZA	\[1:0]

	BDIVIA/	BDIMA6	BDIMA5	BDIVIA4	BDIVIA3	BDIVIA2	RDIMA I	BDMA0
BARB	BAB31	BAB30	BAB29	BAB28	BAB27	BAB26	BAB25	BAB24
	BAB23	BAB22	BAB21	BAB20	BAB19	BAB18	BAB17	BAB16
	BAB15	BAB14	BAB13	BAB12	BAB11	BAB10	BAB9	BAB8
	BAB7	BAB6	BAB5	BAB4	BAB3	BAB2	BAB1	BAB0
BAMRB	BAMB31	BAMB30	BAMB29	BAMB28	BAMB27	BAMB26	BAMB25	BAMB24
	BAMB23	BAMB22	BAMB21	BAMB20	BAMB19	BAMB18	BAMB17	BAMB16
	BAMB15	BAMB14	BAMB13	BAMB12	BAMB11	BAMB10	BAMB9	BAMB8
	BAMB7	BAMB6	BAMB5	BAMB4	BAMB3	BAMB2	BAMB1	BAMB0
BBRB	_	_	_	_	_		CPB[2:0]	
	CDE	B[1:0]	IDB	[1:0]	RWE	B[1:0]	SZE	B[1:0]
BDRB	BDB31	BDB30	BDB29	BDB28	BDB27	BDB26	BDB25	BDB24
	BDB23	BDB22	BDB21	BDB20	BDB19	BDB18	BDB17	BDB16
	BDB15	BDB14	BDB13	BDB12	BDB11	BDB10	BDB9	BDB8
	BDB7	BDB6	BDB5	BDB4	BDB3	BDB2	BDB1	BDB0
BDMRB	BDMB31	BDMB30	BDMB29	BDMB28	BDMB27	BDMB26	BDMB25	BDMB24
	BDMB23	BDMB22	BDMB21	BDMB20	BDMB19	BDMB18	BDMB17	BDMB16
	BDMB15	BDMB14	BDMB13	BDMB12	BDMB11	BDMB10	BDMB9	BDMB8
	BDMB7	BDMB6	BDMB5	BDMB4	BDMB3	BDMB2	BDMB1	BDMB0
BRCR	_	_		_		_		_
	_	_	_	_	UBIDB	_	UBIDA	_
	SCMFCA	SCMFCB	SCMFDA	SCMFDB	PCTE	PCBA	_	_
	DBEA	PCBB	DBEB	_	SEQ	_	_	ETBE

Rev. 5.00 Mar. 06, 2009 Page 700 of 770

	BDA/	BDA6	BDA5	BDA4	BDA3	BDA2	BDAT	BDA	U
BETR		ı	_	ı		BET	[11:8]		
				BET	[7:0]				
NI-1- * 7	EL - LIDO				00 I/I-:	4	(OLIZ4	0544	011

Note: * The UBC registers are not supported on 32 Kbyte versions (SH71251A, SH7 and 16 Kbyte versions (SH71250A, SH71240A).

REJ09

	netaineu	IIIIIalizeu	IIIIIalizeu	netaineu	IIIIIalizeu	3CHDH_0
	Retained	Initialized	Initialized	Retained	Initialized	SCSDCR_0
	Retained	Initialized	Initialized	Retained	Initialized	SCSPTR_0
SC	Retained	Initialized	Initialized	Retained	Initialized	SCSMR_1
(C	Retained	Initialized	Initialized	Retained	Initialized	SCBRR_1
	Retained	Initialized	Initialized	Retained	Initialized	SCSCR_1
	Retained	Initialized	Initialized	Retained	Initialized	SCTDR_1
	Retained	Initialized	Initialized	Retained	Initialized	SCSSR_1
	Retained	Initialized	Initialized	Retained	Initialized	SCRDR_1
	Retained	Initialized	Initialized	Retained	Initialized	SCSDCR_1
	Retained	Initialized	Initialized	Retained	Initialized	SCSPTR_1
SC	Retained	Initialized	Initialized	Retained	Initialized	SCSMR_2
(C	Retained	Initialized	Initialized	Retained	Initialized	SCBRR_2
	Retained	Initialized	Initialized	Retained	Initialized	SCSCR_2
	Retained	Initialized	Initialized	Retained	Initialized	SCTDR_2
	Retained	Initialized	Initialized	Retained	Initialized	SCSSR_2
	Retained	Initialized	Initialized	Retained	Initialized	SCRDR_2
	Retained	Initialized	Initialized	Retained	Initialized	SCSDCR_2
	Retained	Initialized	Initialized	Retained	Initialized	SCSPTR_2
M	Retained	Initialized	Initialized	Retained	Initialized	TCR_3
	Retained	Initialized	Initialized	Retained	Initialized	TCR_4
	Retained	Initialized	Initialized	Retained	Initialized	TMDR_3

Initialized

Initialized

RENESAS

Initialized

Initialized

Retained

Retained

Retained

Retained

REJ09B0243-0500

Initialized

Initialized

TMDR_4

TIORH_3

TOCR2	Initialized	Retained	Initialized	Initialized	Retained
TCNT_3	Initialized	Retained	Initialized	Initialized	Retained
TCNT_4	Initialized	Retained	Initialized	Initialized	Retained
TCDR	Initialized	Retained	Initialized	Initialized	Retained
TDDR	Initialized	Retained	Initialized	Initialized	Retained
TGRA_3	Initialized	Retained	Initialized	Initialized	Retained
TGRB_3	Initialized	Retained	Initialized	Initialized	Retained
TGRA_4	Initialized	Retained	Initialized	Initialized	Retained
TGRB_4	Initialized	Retained	Initialized	Initialized	Retained
TCNTS	Initialized	Retained	Initialized	Initialized	Retained
TCBR	Initialized	Retained	Initialized	Initialized	Retained
TGRC_3	Initialized	Retained	Initialized	Initialized	Retained
TGRD_3	Initialized	Retained	Initialized	Initialized	Retained
TGRC_4	Initialized	Retained	Initialized	Initialized	Retained
TGRD_4	Initialized	Retained	Initialized	Initialized	Retained
TSR_3	Initialized	Retained	Initialized	Initialized	Retained
TSR_4	Initialized	Retained	Initialized	Initialized	Retained
TITCR	Initialized	Retained	Initialized	Initialized	Retained
TITCNT	Initialized	Retained	Initialized	Initialized	Retained
TBTER	Initialized	Retained	Initialized	Initialized	Retained
TDER	Initialized	Retained	Initialized	Initialized	Retained

IIIIIIaiiZeu

IIIIIIaiiZeu

netaineu

TOOM

TOLBR

TBTM_3

Initialized

Initialized

Retained

Retained

IIIIIIaiizeu

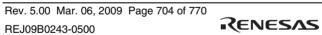
netairieu

Initialized

Initialized

Initialized

Initialized


REJ09

Retained

Retained

Rev. 5.00 Mar. 06, 2009 Pag

10111	IIIIIaiizeu	netaineu	IIIIIalizeu	IIIIIalizeu	Hetained
TSYR	Initialized	Retained	Initialized	Initialized	Retained
TRWER	Initialized	Retained	Initialized	Initialized	Retained
TCR_0	Initialized	Retained	Initialized	Initialized	Retained
TMDR_0	Initialized	Retained	Initialized	Initialized	Retained
TIORH_0	Initialized	Retained	Initialized	Initialized	Retained
TIORL_0	Initialized	Retained	Initialized	Initialized	Retained
TIER_0	Initialized	Retained	Initialized	Initialized	Retained
TSR_0	Initialized	Retained	Initialized	Initialized	Retained
TCNT_0	Initialized	Retained	Initialized	Initialized	Retained
TGRA_0	Initialized	Retained	Initialized	Initialized	Retained
TGRB_0	Initialized	Retained	Initialized	Initialized	Retained
TGRC_0	Initialized	Retained	Initialized	Initialized	Retained
TGRD_0	Initialized	Retained	Initialized	Initialized	Retained
TGRE_0	Initialized	Retained	Initialized	Initialized	Retained
TGRF_0	Initialized	Retained	Initialized	Initialized	Retained
TIER2_0	Initialized	Retained	Initialized	Initialized	Retained
TSR2_0	Initialized	Retained	Initialized	Initialized	Retained
TBTM_0	Initialized	Retained	Initialized	Initialized	Retained
TCR_1	Initialized	Retained	Initialized	Initialized	Retained
TMDR_1	Initialized	Retained	Initialized	Initialized	Retained
TIOR_1	Initialized	Retained	Initialized	Initialized	Retained
TIER_1	Initialized	Retained	Initialized	Initialized	Retained

HON_Z	IIIIIalizeu	Hetaineu	milianzeu	IIIIIalizeu	netaineu	
TIER_2	Initialized	Retained	Initialized	Initialized	Retained	
TSR_2	Initialized	Retained	Initialized	Initialized	Retained	
TCNT_2	Initialized	Retained	Initialized	Initialized	Retained	
TGRA_2	Initialized	Retained	Initialized	Initialized	Retained	
TGRB_2	Initialized	Retained	Initialized	Initialized	Retained	
TCNTU_5	Initialized	Retained	Initialized	Initialized	Retained	
TGRU_5	Initialized	Retained	Initialized	Initialized	Retained	
TCRU_5	Initialized	Retained	Initialized	Initialized	Retained	
TIORU_5	Initialized	Retained	Initialized	Initialized	Retained	
TCNTV_5	Initialized	Retained	Initialized	Initialized	Retained	
TGRV_5	Initialized	Retained	Initialized	Initialized	Retained	
TCRV_5	Initialized	Retained	Initialized	Initialized	Retained	
TIORV_5	Initialized	Retained	Initialized	Initialized	Retained	
TCNTW_5	Initialized	Retained	Initialized	Initialized	Retained	
TGRW_5	Initialized	Retained	Initialized	Initialized	Retained	
TCRW_5	Initialized	Retained	Initialized	Initialized	Retained	
TIORW_5	Initialized	Retained	Initialized	Initialized	Retained	
TSR_5	Initialized	Retained	Initialized	Initialized	Retained	
TIER_5	Initialized	Retained	Initialized	Initialized	Retained	
TSTR5	Initialized	Retained	Initialized	Initialized	Retained	_

Initialized

Initialized

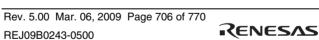
Retained

Rev. 5.00 Mar. 06, 2009 Pag

REJ09

Retained

TCNTCMPCLR Initialized


	Retained	Initialized	Initialized	Retained	Initialized	ADDR6
	Retained	Initialized	Initialized	Retained	Initialized	ADDR7
_	Retained	Initialized	Initialized	Retained	Initialized	ADCSR_1
_	Retained	Initialized	Initialized	Retained	Initialized	ADCR_1
FLA	Retained	Initialized	Initialized	Retained	Initialized	FCCS
	Retained	Initialized	Initialized	Retained	Initialized	FPCS
	Retained	Initialized	Initialized	Retained	Initialized	FECS
	Retained	Initialized	Initialized	Retained	Initialized	FKEY
	Retained	Initialized	Initialized	Retained	Initialized	FTDAR
СМ	Retained	Initialized	Initialized	Retained	Initialized	CMSTR
	Retained	Initialized	Initialized	Retained	Initialized	CMCSR_0
	Retained	Initialized	Initialized	Retained	Initialized	CMCNT_0
	Retained	Initialized	Initialized	Retained	Initialized	CMCOR_0
	Retained	Initialized	Initialized	Retained	Initialized	CMCSR_1
	Retained	Initialized	Initialized	Retained	Initialized	CMCNT_1
	Retained	Initialized	Initialized	Retained	Initialized	CMCOR_1
PO	Retained	_	Retained	Retained	Initialized	ICSR1
	Retained	_	Retained	Retained	Initialized	OCSR1
	Retained	_	Retained	Retained	Initialized	ICSR3
	Retained	_	Retained	Retained	Initialized	SPOER
	Retained	_	Retained	Retained	Initialized	POECR1

IIIIIIaiiZeu

IIIIIIaiiZeu

netaineu

Retained

Retained

ADDING

POECR2

Initialized

IIIIIIaiiZeu

netaineu

Retained

I DIOILE	miduzed	ricianica	Hotaliloa		ricianica
PBCRH1	Initialized	Retained	Retained	_	Retained
PBCRL2	Initialized	Retained	Retained	_	Retained
PBCRL1	Initialized	Retained	Retained	_	Retained
PBPRH	Initialized	Retained	Retained	_	Retained
PBPRL	Initialized	Retained	Retained	_	Retained
PEDRL	Initialized	Retained	Retained	_	Retained
PEIORL	Initialized	Retained	Retained	_	Retained
PECRL4	Initialized	Retained	Retained	_	Retained
PECRL3	Initialized	Retained	Retained	_	Retained
PECRL2	Initialized	Retained	Retained	_	Retained
PECRL1	Initialized	Retained	Retained	_	Retained
PEPRL	Initialized	Retained	Retained	_	Retained
IFCR	Initialized	Retained	Retained	_	Retained
PFDRL	Initialized	Retained	Retained	_	Retained
FRQCR	Initialized*1	Retained	Retained	_	Retained
STBCR1	Initialized	Retained	Retained	_	Retained
STBCR2	Initialized	Retained	Retained		Retained
STBCR3	Initialized	Retained	Retained	_	Retained
STBCR4	Initialized	Retained	Retained	_	Retained

FUUNII

PBDRL

PBIORH

PBIORL

IIIIIIaiiZeu

Initialized

Initialized

Initialized

netaineu

Retained

Retained

Retained

netairieu

Retained

Retained

Retained

REJ09

Rev. 5.00 Mar. 06, 2009 Pag

netaineu

Retained

Retained

Retained

Ы

1/0

Ы

I/C Ы 1/0 С

Р _ m

ICR0	Initialized	Initialized	Retained	_	Retained	INT
IRQCR	Initialized	Initialized	Retained	_	Retained	
IRQSR	Initialized	Initialized	Retained	_	Retained	
IPRA	Initialized	Initialized	Retained	_	Retained	
IPRB	Initialized	Initialized	Retained	_	Retained	
IPRC	Initialized	Initialized	Retained	_	Retained	
IPRD	Initialized	Initialized	Retained	_	Retained	
IPRE	Initialized	Initialized	Retained	_	Retained	
IPRF	Initialized	Initialized	Retained	_	Retained	
IPRH	Initialized	Initialized	Retained	_	Retained	
IPRI	Initialized	Initialized	Retained	_	Retained	
IPRJ	Initialized	Initialized	Retained	_	Retained	
IPRK	Initialized	Initialized	Retained	_	Retained	
IPRL	Initialized	Initialized	Retained	_	Retained	
IPRM	Initialized	Initialized	Retained	_	Retained	
BARA	Initialized	Retained	Retained	Initialized	Retained	UB
BAMRA	Initialized	Retained	Retained	Initialized	Retained	
BBRA	Initialized	Retained	Retained	Initialized	Retained	
BDRA	Initialized	Retained	Retained	Initialized	Retained	
BDMRA	Initialized	Retained	Retained	Initialized	Retained	
BARB	Initialized	Retained	Retained	Initialized	Retained	

Retained

Retained

Initialized

Initialized

Retained

Retained

Retained

Retained

BAMRB

BBRB

REJ09B0243-0500

Initialized

Initialized

- 3. The OSCSTOP bit is initialized.
- 4. The UBC register is not supported on the 32 Kbyte (SH71251A and SH7124 Kbyte (SH71250A and SH71240A) versions.

REJ09

Rev. 5.00 Mar. 06, 2009 Page 710 of 770

REJ09B0243-0500

Item		Symbol	Value
Power supply voltage		V _{cc}	-0.3 to + 7.0
Input voltage (except and	alog input)	V_{in}	-0.3 to $V_{\text{cc}} + 0.3$
Analog power supply vol	tage	AV _{cc}	-0.3 to + 7.0
Analog input voltage		V_{an}	-0.3 to AV $_{\rm cc}$ + 0.3
Operating temperature	Consumer specifications	T_{opr}	-20 to + 85
Industrial specifications			-40 to + 85
Storage temperature		T _{stg}	-55 to + 125
[Operating Precautions]			

[Operating Precautions]

Operating the LSI in excess of the absolute maximum ratings may result in permanent da

than Schmitt	EXTAL						
trigger input voltage)	Analog ports	_	2.2	_	AV _{cc} + 0.3	V	
voltage)	Other input pins		2.2	_	V _{cc} + 0.3	V	
Input low-level voltage (other than Schmitt	RES, MRES, NMI, FWE, MD1, ASEMDO, EXTAL	V _{IL}	-0.3	_	0.5	V	
trigger input voltage)	Other input pins	_	-0.3	_	0.8	V	
Schmitt trigger input voltage	IRQ3 to IRQ0,	V _{T+}	$V_{\text{CC}} - 0.5$	_	_	V	
	POE8, POE3, POE1, POE0,	V_{T-}	_	_	1.0	V	
	TCLKA to TCLKD, TIOC0A to TIOC0D, TIOC1A, TIOC1B, TIOC2A, TIOC2B, TIOC3A to TIOC3D, TIOC4A to TIOC4D, TIC5U, TIC5V, TIC5WS, SCK0 to SCK3, RXD0 to RXD3	V _{T+} -V _{T-}	0.4	_	_	V	V _{cc} 5.5
Input leak current	All input pins (except ASEMD0)	I _{in}	_	_	1.0	μΑ	
Input pull-up MOS current	ASEMDO, POE3	-I _{pu}	_	_	800	μΑ	V_{in}
Tri-state leakage current (OFF state)	Ports A, B, E	l I _{tsi}	_	_	1.0	μΑ	_

 $V_{\text{cc}} - 0.7$

Input high-level RES, MRES, NMI, voltage (other FWE, MD1, ASEMDO,

							Ta = 25°C
Supply current	Normal operation	I _{cc}	_	52	70	mA	Iφ = 50 MHz (SH7125, SI
			_	35	50	mA	Iφ = 50 MHz (SH71251A, SH71250A,
	Sleep	_	_	33	50	mA	Iφ = 50 MHz (SH7125, SI
			_	22	30	mA	Iφ = 50 MHz (SH71251A, SH71250A,
	Software standby		_	_	5	mA	$T_a \le 50^{\circ}C$
			_	_	15	mA	50°C < T _a

 $\mathsf{Al}_{\mathsf{cc}}$

 C_{in}

2. The supply current was measured when V_{H} (Min.) = V_{CC} - 0.5 V, V_{H} (Max.) = 0 all output pins unloaded.

All other output pins

During A/D conversion

Standby

Waiting for A/D conversion

All input pins

Input

capacitance

Analog power

supply current

[Operating Precautions]

3

5

2

15

0.6

0.44

0.4

20

٧

٧

рF

 $I_{01} = 10 \text{ mA},$ $V_{cc} = 4.5 \text{ V t}$

 $I_{01} = 8 \text{ mA},$ $V_{cc} = 4.5 \text{ V t}$ $I_{OL} = 1.6 \text{ mA}$

 $V_{in} = 0 V$

f = 1 MHz

The value pe

The value pe

1. When the A/D converter is not used, do not leave the ${\rm AV}_{\rm cc}$ and ${\rm AV}_{\rm ss}$ pins ope

mA

mA

μΑ

REJ09

Rev. 5.00 Mar. 06, 2009 Pag

[Operating Precautions]

To assure LSI reliability, do not exceed the output values listed in table 21.3.

 $I_{OL} = 15 \text{ mA (Max.)/}{-}I_{OH} = 5 \text{ mA (Max.)}$ for pins PE9 and PE11 to PE15. However least three pins are permitted to have simultaneously $I_{OL}/-I_{OH} > 2.0$ mA among pins.

AC Characteristics 21.3

Signals input to this LSI are basically handled as signals in synchronization with a clock. setup and hold times for input pins must be followed.

Table 21.4 Maximum Operating Frequency

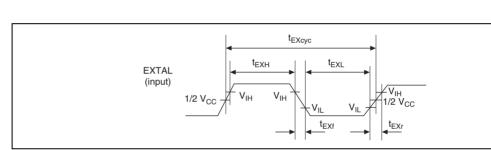
Conditions: $V_{cc} = AV_{cc} = 4.0 \text{ V}$ to 5.5 V, $V_{ss} = PLLV_{ss} = AV_{ss} = 0 \text{ V}$,

 $T_a = -20$ to +85°C (consumer specifications),

 $T_a = -40 \text{ to } +85^{\circ}\text{C} \text{ (industrial specifications)}$

Item		Symbol	Min.	Тур.	Max.	Unit
Operating	* * * * * * * * * * * * * * * * * * * *	f	10	_	50	MHz
frequency	Peripheral module (P)		10	_	40	

EXTAL clock input cycle time	t _{EXcyc}	80	100	ns
EXTAL clock input low pulse width	$\mathbf{t}_{\scriptscriptstyle{EXL}}$	20	_	ns
EXTAL clock input high pulse width	$\mathbf{t}_{\scriptscriptstyle{EXH}}$	20	_	ns
EXTAL clock input rising time	\mathbf{t}_{EXr}	_	5	ns
EXTAL clock input falling time	$t_{\scriptscriptstyleEXf}$	_	5	ns
CK (Bφ) clock frequency (reference values)	f_{OP}	10	40	MHz
CK (Bφ) clock cycle time (reference values)	$t_{\scriptscriptstylecyc}$	25	100	ns
Power-on oscillation stabilization time	t _{osc1}	10	_	ms


Oscillation stabilization time on return t_{osc3} 10 from standby 2

Depends on the frequency control register (FRQCR).

Oscillation stabilization time on return

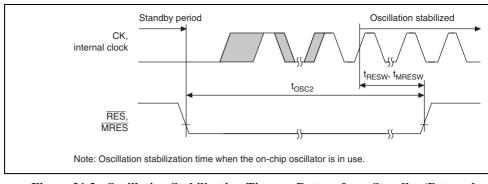
from standby 1

Note:

 \mathbf{t}_{osc2}

Figure 21.1 Timing of EXTAL Input Clock Signal

10


Figure

Figure

Figure

ms

ms

Figure~21.3~~Oscillation~Stabilization~Time~on~Return~from~Standby~(Return~by

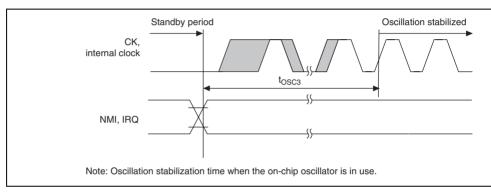


Figure 21.4 Oscillation Stabilization Time on Return from Standby (Return by NMI or IRQ)

Rev. 5.00 Mar. 06, 2009 Page 716 of 770 REJ09B0243-0500

RES hold time (reference values)	t _{resh}	15	_	ns
MRES pulse width	t _{MRESW}	20* ³	_	t _{Bcyc} * ⁴
MRES setup time*1 (reference values)	t _{MRESS}	25	_	ns
MRES hold time (reference values)	t _{mresh}	15	_	ns
MD1, FWE setup time	t _{MDS}	20	_	t _{Bcyc} * ⁴
NMI setup time*1 (reference values)	t _{nmis}	60	_	ns
NMI hold time (reference values)	t _{nmih}	10	_	ns
IRQ3 to IRQ0 setup time* ¹ (reference values)	t _{IRQS}	35	_	ns

 t_{IRQH}

 t_{IRQOD}

35

(reference values) Notes: 1. The RES, MRES, NMI, and IRQ3 to IRQ0 signals are asynchronous signals. setup time is satisfied, change of signal level is detected at the rising edge of If not, the detection is delayed until the rising edge of the clock.

IRQ3 to IRQ0 hold time

IRQOUT output delay time

(reference values)

2. In standby mode, $t_{RESW} = t_{OSC2}$ (10 ms).

- 3. In standby mode, $t_{MRESW} = t_{OSC2}$ (10 ms).
- 4. $t_{\text{\tiny Bcyc}}$ indicates the bus clock cycle time (B ϕ = CK).

Figure 21 Figure 21

Figure 21

ns

ns

100

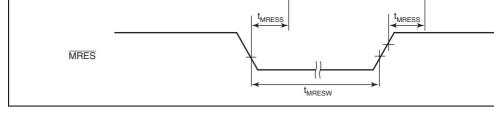


Figure 21.5 Reset Input Timing

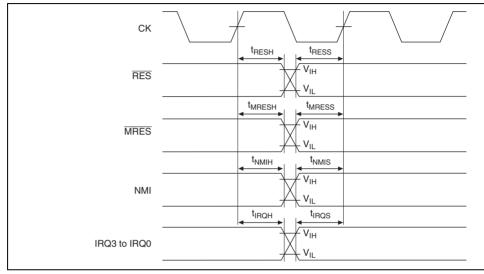


Figure 21.6 Interrupt Signal Input Timing

Rev. 5.00 Mar. 06, 2009 Page 718 of 770

REJ09B0243-0500

Rev. 5.00 Mar. 06, 2009 Pag

(reference values)					
Input capture input setup time (reference values)	t _{TICS}	20	_	ns	_
Input capture input pulse width (single edge)	t _{ticwh/L}	1.5	_	t _{MPcyc}	_
Input capture input pulse width (both edges)	t _{TICWH/L}	2.5	_	t _{MPcyc}	_
Timer input setup time (reference values)	t _{TCKS}	20	_	ns	Figui
Timer clock pulse width (single edge)	t _{TCKWH/L}	1.5	_	t _{MPcyc}	_
Timer clock pulse width (both edges)	t _{TCKWH/L}	2.5	_	t _{MPcyc}	_
Timer clock pulse width (phase counting mode)	t _{TCKWH/L}	2.5	_	t _{MPcyc}	

Note: t_{MPcyc} indicates the MTU2 clock (MP ϕ) cycle.

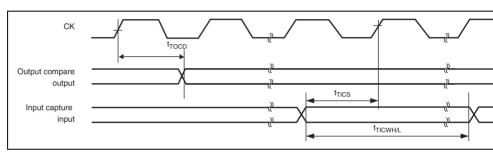


Figure 21.8 MTU2 Input/Output Timing

Rev. 5.00 Mar. 06, 2009 Pag

(reference values)				
Port input low pulse width	t _{PRWL}	2	_	t _{Pcyc}
Port input high pulse width	t _{ppw}	2	_	t _{Pove}

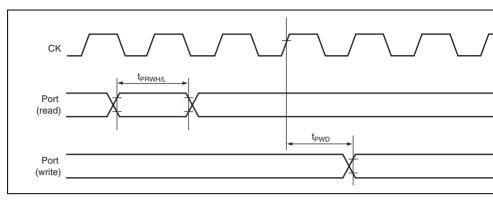


Figure 21.10 I/O Port Input/Output Timing

REJ09B0243-0500

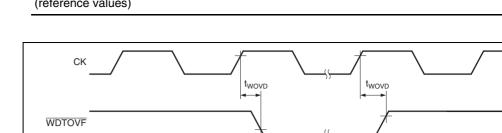


Figure 21.11 WDT Timing

Rev. 5.00 Mar. 06, 2009 Pag

REJ09

input clock cycle (clock synchronous)		T _{scyc}	б	_	I _{pcyc}	
Input clock pulse width		t _{sckw}	0.4	0.6	t _{scyc}	
Input clock rising time		t _{sckr}	_	1.5	t _{pcyc}	
Input clock falling time		t _{sckf}	_	1.5	t _{pcyc}	
Transmit data delay time	Asynchronous	t _{TXD}	_	4 t _{pcyc} + 10	ns	F
Receive data setup time		t _{RXS}	4 t _{pcyc}	_	ns	2
Receive data hold time		t _{RXH}	4 t _{peye}	_	ns	
Transmit data delay time	Clock	t _{TXD}	_	3 t _{pcyc} + 10	ns	
Receive data setup time	synchronous	t _{RXS}	2 t _{pcyc} + 5	50 —	ns	
Receive data hold time		t _{RXH}	2 t _{pcyc}	_	ns	

Note: t_{pcyc} indicates the peripheral clock (P ϕ) cycle.

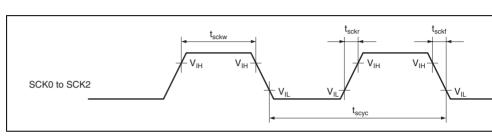
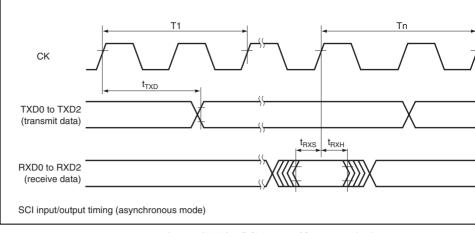



Figure 21.12 Input Clock Timing

Rev. 5.00 Mar. 06, 2009 Page 724 of 770

SCI input/output timing (clock synchronous mode)

Figure 21.13 SCI Input/Output Timing

Rev. 5.00 Mar. 06, 2009 Pag

REJ09

(reference values)				
POE input pulse width	t _{POEW}	1.5	_	t _{pcyc}

Note: t_{poyc} indicates the peripheral clock (P ϕ) cycle.

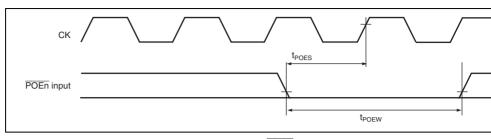
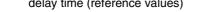



Figure 21.14 POE Input Timing

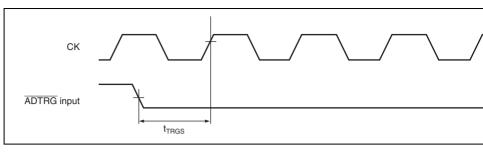
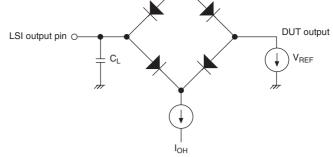



Figure 21.15 External Trigger Input Timing

REJ09

Notes: 1. C_L is the total value that includes the capacitance of the measurement instrument and is set as follows for the respective pins.

30pF: All other output pins

2. $I_{OL} = 1.6$ mA and $I_{OH} = -200$ mA in the test conditions.

Figure 21.16 Output Load Circuit

Rev. 5.00 Mar. 06, 2009 Page 728 of 770

REJ09B0243-0500

Permitted analog signal source impedance	_	_	1* ² /3* ¹
Non-linear error	_	_	$\pm 3.0*^{1}/\pm 5.0*^{2}$
Offset error	_	_	$\pm 3.0*^{1}/\pm 5.0*^{2}$
Full-scale error	_	_	±3.0*1/±5.0*2
Quantization error	_	_	±0.5
Absolute error		_	+4 0*1/+6 0*2

Notes: 1. It is assumed that A/D conversion time \geq 4.0 μ s.

Analog input capacitance

2. It is assumed that A/D conversion time $<4.0\ \mu s.$

20

					block
		_	600	1500	ms/64 block
Programming time	Σt _P	_	1.2	3	s/128 l
(total) *1*2*4		_	0.6	1.5	s/64 K
Erase time (total) *1*2*4	$\Sigma t_{\rm E}$	_	1.3	3.5	s/128 l
		_	0.7	2	s/64 K
Programming and erase time (total) *1*2*4	Σt_{PE}	_	2.5	6.5	s/128 l
		_	1.3	3.5	s/64 K
Reprogramming count	N _{wec}	100* ³	_	_	Times

300

800

block

ms/32

Notes: 1. Programming/erasure time is data-dependent.

- 2. Programming/erasure time does not include data transfer time.
- 3. Minimum number to guarantee all the characteristics after reprogramming. (Gu within the range from 1 to min. value)
- 4. Characteristics when reprogramming is performed within the specified number including min. value.

External power-supply stabilizing capacitor

One capacitor ranging from 0.1 to 0.47 μF

V_{CL}

V_{SS}

V_{CL}

One capacitor ranging from 0.1 to 0.47 μF

Note: Do not apply any power supply voltage to the V_{CL} pin.

Use multilayer ceramic capacitors (one capacitor ranging from 0.1 to 0.47 μF for each V_{CL} pin), which should be located near the pin.

Figure 21.17 Connection of V_{CL} Capacitor

Rev. 5.00 Mar. 06, 2009 Page 732 of 770

REJ09B0243-0500

control	ASEMD0	I*3	I*3	I*3
	FWE	ı	1	1
Interrupt	NMI	I	1	1
	IRQ0 to IRQ3	Z	1	1
	IRQOUT	Z	0	Z
MTU2	TCLKA to TCLKD	Z	1	Z
	TIOC0A to TIOC0D	Z	I/O	K*1
	TIOC1A, TIOC1B	Z	I/O	K*1
	TIOC2A, TIOC2B	Z	I/O	K*1
	TIOC3A, TIOC3C	Z	I/O	K*1
	TIOC3B, TIOC3D	Z	I/O	Z
MTU2	TIOC4A to TIOC4D	Z	I/O	Z
	TIC5U, TIC5V, TIC5W	Z	I	Z
POE	POE0, POE1, POE8	Z	1	Z

|*³

Type

Clock

System control

Operating mode MD1

Pin Name

XTAL

EXTAL

RES

MRES

POE3

WDTOVF

Reset State

Power-On Manual

0

ı

I

ı

0

ı

0

ı

I

Z

ı

O*2

|*³

I I

|*³

Power-Down State

Sleep

0

1

I

ı

0

ı

|*³

1

ı

ı

0

1

I/O

I/O

Software

Standby

L

ı

ı

Z

0

ı

1/0

I/O I/O I/O Z I/O Z I/O

I/O I/O

Oscillation

0

ı

1

Z

0

ı

|*3

ı

ı

I Z

ı

I

I

|*³

Rev. 5.00 Mar. 06, 2009 Pag

Stop Detected Us

Р

0

ı

ı

I

0

ı

|*

I

ı ı

0

ı

Z

1/0

1/0

Z

Z

I

I

|*

REJ09

I/O

RENESAS

Z

[Legend]	

Input

I:

O: Output H:

High-level output L: Low-level output

PAU IO PA IS

PB1 to PB3,

PB5, PB16

PE0 to PE3

PF0 to PF7

PE4 to PE8, PE10

PE9, PE11 to PE15

Z: High-impedance

K: Input pins become high-impedance, and output pins retain their state.

Notes: 1. Output pins become high-impedance when the HIZ bit in standby control regis

(STBCR6) is set to 1.

2. Becomes input during a power-on reset. Pull-up to prevent erroneous operatio down with a resistance of at least 1 $M\Omega$ as required.

_

Ζ

Z

Ζ

Z

z

1/0

I/O

I/O

I/O

I/O

ı

1/0

I/O

I/O

I/O

I/O

 K^{*1}

 K^{*1}

 K^{*1}

Z

z

1/0

I/O

I/O

I/O

Z

ı

1/0

I/O

Ζ

I/O

Z

3. Pulled-up inside the LSI when there is no input.

Rev. 5.00 Mar. 06, 2009 Page 734 of 770

	TIOC0A to TIOC0D	Z	I/O	K*1	I/O
	TIOC3A, TIOC3C	Z	I/O	K*1	I/O
	TIOC3B, TIOC3D	Z	I/O	Z	I/O
	TIOC4A to TIOC4D	Z	I/O	Z	I/O
	TIC5U, TIC5V, TIC5W	Z	1	Z	1
POE	POE0, POE1, POE8	Z	1	Z	I
SCI	SCK0, SCK2	Z	I/O	Z	I/O
	RXD0 to RXD2	Z	1	Z	I
	TXD0 to TXD2	Z	0	O*1	0
A/D Converter	AN0 to AN7	Z	1	Z	1

 O^{*^2}

ı

|*³

ı

ı

Z

Z

Z

0

ı

|*³

ı

ī

I

0

0

ı

|*3

ı

Τ

ı

Z

Z

0

ı

|*³

ı

ı

ı

0

I

0

ı

|*³

ı

ı

ı

Z

I/O

I/O

Z

Z

I

ı

I/O

ı

0

ı

WDTOVF

ASEMD0 FWE

IRQ1 to IRQ3

TCLKA to TCLKD

IRQOUT

NMI

Operating mode MD1

control

Interrupt

MTU2

Rev. 5.00 Mar. 06, 2009 Pag

0

ı

|*

ı

ı

ı

0

ı

Z

I/C

Ζ

Z

I

I

1/0

I

0

REJ09

H:	High-level output
L:	Low-level output
Z:	High-impedance
K:	Input pins become high-impedance, and output pins retain their state.
Notes:	 Output pins become high-impedance when the HIZ bit in standby control regis (STBCR6) is set to 1.
	2. Becomes input during a power-on reset. Pull-up to prevent erroneous operatio

1

Z

I

ı

down with a resistance of at least 1 $M\Omega$ as required.

Z

PF0 to PF7

[Legend] I:

O:

Input

Output

3. Pulled-up inside the LSI when there is no input.

Rev. 5.00 Mar. 06, 2009 Page 736 of 770

		Consumer product	R5F71252N50NP	VQFN-64 (TNI
		Industrial product	R5F71252D50NP	
	Flash memory version	Consumer product	R5F71251AN50FA	QFP-64 (FP-6
	(on-chip 32-kbyte)	Industrial product	R5F71251AD50FA	_
		Consumer product	R5F71251AN50FP	LQFP-64 (FP-
		Industrial product	R5F71251AD50FP	=
		Consumer product	R5F71251AN50NP	VQFN-64 (TN
		Industrial product	R5F71251AD50NP	_
	Flash memory version	Consumer product	R5F71250AN50FA	QFP-64 (FP-6
	(on-chip 16-kbyte)	Industrial product	R5F71250AD50FA	=
		Consumer product	R5F71250AN50FP	LQFP-64 (FP
		Industrial product	R5F71250AD50FP	=
		Consumer product	R5F71250AN50NP	VQFN-64 (TN
		Industrial product	R5F71250AD50NP	_
SH7124	Flash memory version	Consumer product	R5F71243N50FP	LQFP-48 (FP-
	(on-chip 128-kbyte)	Industrial product	R5F71243D50FP	
		Consumer product	R5F71243N50NP	VQFN-52
		Industrial product	R5F71243D50NP	

Industrial product

Consumer product

Industrial product

R5F71252D50FP

R5F71252N50FA

R5F71252D50FA

QFP-64 (FP-64

Rev. 5.00 Mar. 06, 2009 Pag

REJ09

(on-chip 64-kbyte)

RENESAS

Flash memory version	Consumer product	R5F71240AN50FP	LQFP-48 (FP-48
(on-chip 16-kbyte)	Industrial product	R5F71240AD50FP	_
	Consumer product	R5F71240AN50NP	VQFN-52
	Industrial product	R5F71240AD50NP	

REJ09B0243-0500

Rev. 5.00 Mar. 06, 2009 Page 738 of 770

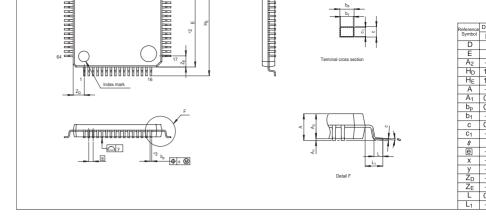


Figure C.1 LQFP-64

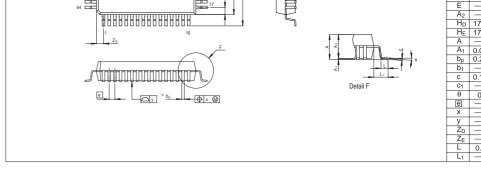


Figure C.2 QFP-64

Rev. 5.00 Mar. 06, 2009 Page 740 of 770

REJ09B0243-0500

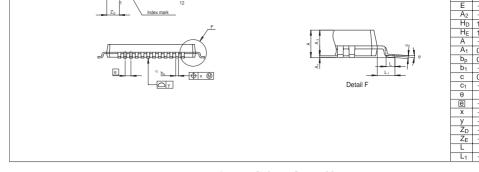


Figure C.3 LQFP-48

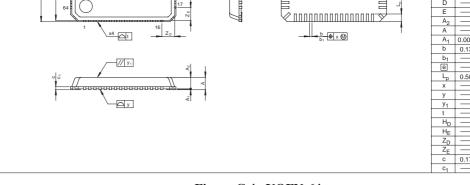


Figure C.4 VQFN-64

Rev. 5.00 Mar. 06, 2009 Page 742 of 770

REJ09B0243-0500

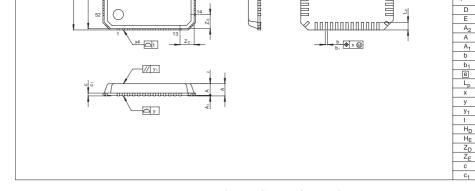


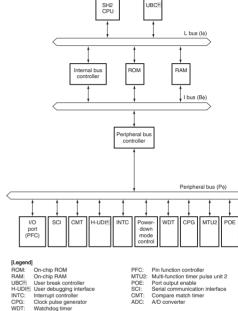
Figure C.5 VQFN-52

REJ09

Rev. 5.00 Mar. 06, 2009 Page 744 of 770

REJ09B0243-0500

3	rable amend	iea
	Items	Specification
	User debugging interface (H-UDI)*	E10A emulator support

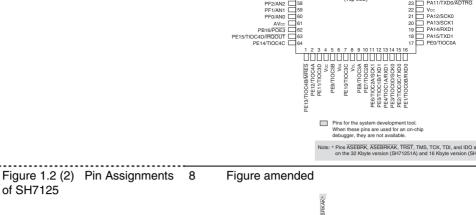

5 Note added

> Note: * The 32 Kbyte (SH71251A and SH71. 16 Kbyte (SH71250A and SH71240A are not supported.

1.2 Block Diagram

Figure 1.1 Block Diagram

6 Figure amended



CPG: WDT: CPU: Clock pulse generator Watchdog timer Central processing unit

Note: * The 32 Kbyte (SH71251A and SH71241A) and 16 Kbyte (SH71250A and SH71240A) vers

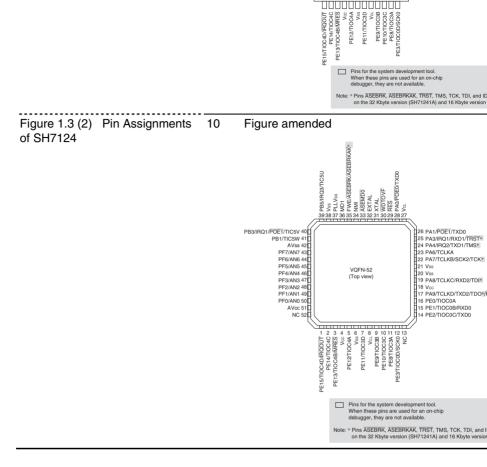
RENESAS

Rev. 5.00 Mar. 06, 2009 Pag REJ09

PB3/R01/PDET/TICSV 40

PB1/R01/PDET/TICSV 40

Rev. 5.00 Mar. 06, 2009 Page 746 of 770


REJ09B0243-0500

Pins for the system development tool.

When these pins are used for an on-chip debugger, they are not available.

Note: * Pins ASEBRK, ASEBRKAK, TRST, TMS, TCK, TDI, and IDO on the 32 Kbyte version (SH71251A) and 16 Kbyte version (S

PF1/AN1 46 PF0/AN0 47

AVcc 48

RENESAS

Rev. 5.00 Mar. 06, 2009 Pag

REJ09

15 PE0/TIOC0A
14 PE1/TIOC0B/RXD0
13 PE2/TIOC0C/TXD0

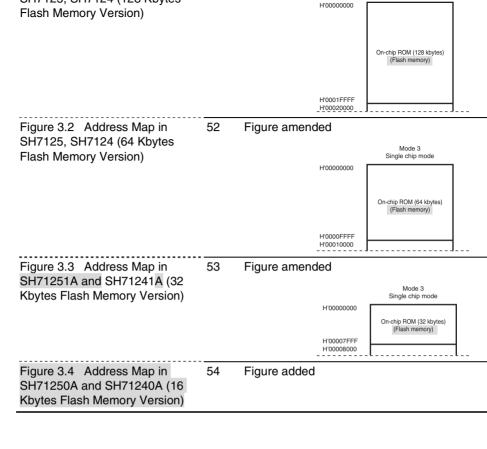
				ground (0 V) correctly
User debugging interface (H-UDI)*1	TCK	I	Test clock	Test-clock input pin
	TMS	I	Test mode select	Inputs the test-mode
	TDI	I	Test data input	Serial input pin for inst
	TDO	0	Test data output	Serial output pin for it data
	TRST	I	Test reset	Initialization-signal in
Table amen	ded			

15

Symbol

TOA Interface	ASEIVIDU* I	ASE mode	Sets the ASE mode.
			When a low-level sig this pin, the MCU en When a high-level si MCU enters normal operation mode or o memory programmir Emulator-specific fu available in ASE mo signal is input, this p internally.
			If only normal mode up the pin by connec
	ASEBRK*2 I	Break request	E10A emulator brea
	ASEBRKAK*2 O	Break mode acknowledge	Indicates that the E1 entered its break mo

Function


15 Note added

Notes: *1 This pin function is not supported of Kbyte (SH71250A and SH71240A) Kbyte (SH71251A and SH71241A)

ASEBRKAK.

*2 On 32 Kbyte versions (SH71251A, SH71241A) and 16 Kbyte versions (SH71250A, SH71240A), connect A to V_{cc} via a resistor and fix it high. N

these versions do not support ASE

		11010 444	-
		Note: *	The UBC is not supported on 32 Kb versions (SH71251A, SH71241A) a Kbyte versions (SH71250A, SH712
5.1.1 Types of Exception Handling and Priority Table 5.1 Types of Exceptions and Priority	73	Table am Exception Interrupt Interrupt Note adde Notes: 3.	Exception Source User break (break before instruction execution) User break (break after instruction execution or operand I NMI IRQ On-chip peripheral modules
5.1.3 Exception Handling Vector Table Table 5.3 Vector Numbers and Vector Table Address Offsets		Table am Exception Hand	NMI
	76	Note adde	ed Reserved on the 32 Kbyte (SH7125 SH71241A) and 16 Kbyte (SH7125 SH71240A) versions.

81

Note added

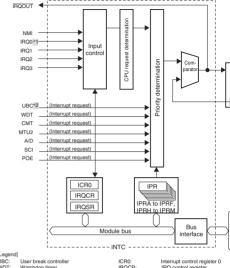
Rev. 5.00 Mar. 06, 2009 Page 750 of 770

Table amended

Request Source
User break controller (UBC)

5.4.1 Interrupt Sources

Table 5.7 Interrupt Sources


The doct break interrupt to not get the 32 Kbyte (SH71251A and SH7 and 16 Kbyte (SH71250A and SH

6.1 Features

Figure 6.1 Block Diagram of

6.4.3 User Break Interrupt*

92 Figure amended

UBC: WDT: Watchdog timer
Compare match timer
Serial communication interface
Multi-function timer pulse unit 2 CMT:

SCI: MTU2: A/D converter

ICR0: IRQCR: IRQSR: IPRA to IPRF, IPRH to IPRM: IRQ control register Interrupt priority registers A to F

Note: *1 Supported only by the SH7125. *2 The 32 Kbyte (SH71251A and SH71241A) and 16 Kbyte (SH71250A and SH71240A) version

105 Note added

Note: *

The user break interrupt is not ger the 32 Kbyte (SH71251A and SH7 and 16 Kbyte (SH71250A and SH

versions.

Rev. 5.00 Mar. 06, 2009 Pag REJ09

Table 0.1 Address Map			Size			
	Address	Type of Memory	128 Kbytes Version	64 Kbytes Version	32 Kbytes Version	16 Vei
	H'00000000 to H'00003FFF	On-chip	128 Kbytes	64 Kbytes	32 Kbytes	16
	H'00004000 to H'00007FFF	FLASH				Res
	H'00008000 to H'0000FFFF	_			Reserved	
	H'00010000 to H'0001FFFF	_		Reserved		
	H'00020000 to H'FFFF9FFF	Reserved				
	H'FFFFA000 to H'FFFFAFFF	On-chip	8 Kbytes	8 Kbytes	8 Kbytes	8 K
	H'FFFFB000 to H'FFFFBFFF	RAM				Res
	H'FFFFC000 to H'FFFFFFF	On-chip peripheral I/O	128 Kbytes	64 Kbytes	64 Kbytes	64
9.7.22 Simultaneous Capture of 349	Description amer	nded				
9.7.22 Simultaneous Capture of 349 TCNT_1 and TCNT_2 in Cascade Connection	Description amen The MTU2 has a capture of TCNT capture input as t of the 32-bit coun are captured at the	new fu _1 and he trigo ter suc	TCNT_2 ger. This h that T	2 with a	a singl on allo	e i

capture input as the
of the 32-bit counter

Interrupt Flag

POE8F

Abbrevia

SCSPTR_0 R/W

SCSPTR_1 R/W

SCSPTR 2 R/W

Condition

Initial Value

H'0x

H'0x

H'0x

PIE3 • POE8F

H'FFFFC0

H'FFFFC0

H'FFFFC1

			(TICCR), for details.
10.5	Interrupt	401	Table amended

Table 10.5 Interrupt Sources Interrupt Source and Conditions OEI3 Output enable interrupt 3

11.5.1	Overflow	412	Title added
11.5.2	WDTOVF Signal	412	Newly added

11.5.2 WDTOVF Signal	412	Newly added
Connection		

Conn	ection		·
12.3	Register Descriptions	416	Table amende

12.3	Register Descriptions	416	l able amended
			Chan-

Register Name

Serial port register_0

Serial port register_1

Serial port register_2

Ω

Rev. 5.00 Mar. 06, 2009 Page 752 of 770

12.4.5 Multiprocessor Serial Data Transmission

Figure 12.16 Sample Multiprocessor Serial Transmission Flowchart

Figure amended

467

- [1] SCI initialization: Set the TXD pin us After the TE bit is for one frame, and enabled. However
- transmitted.

 [2] SCI status check a write:
 Read SCSSR and
- TDRE flag is set to transmit data to \$X MPBT bit in SCSS clear the TDRE flat After initializing the is written to SCTD transmit the ID, da transferred, and th set to 1. The MPB because the ID is

the TXD pin at this

TDRE flag is set to following the ID is clear the MPBT bit

To continue serial

sure to read 1 fron

bit in the serial por

(SCSPTR) to 0, th

in SCSCR to 0 and select the TXD pin

REJ09

- [3] Serial transmission procedure:
- confirm that writing write data to SCTI the TDRE flag to 0

 [4] Break output at the transmission:
 To output a break transmission, first

PA7 I/O (port)	TCLKB input (MTU2)	SCK2 I/O (SCI)	TCK input (H-UDI) ^{e2}	-
PA8 I/O (port)	TCLKC input (MTU2)	RXD2 input (SCI)	TDI input (H-UDI)*2	
 PA9 I/O (port)	TCLKD input (MTU2)	TXD2 output (SCI)	POE8 input (POE)	7

516 Note added

Notes: 1. During A/D conversion, the AN input is enabled.

> TDO) are not supported on the 32 kg versions (SH71251A and SH71241. Kbyte versions (SH71250A and SH

These functions (TRST, TMS, TCK,

Pins

Table 15.2 SH7124 Multiplexed 517

Table amended

Port	Function 1 (Related Module)	Function 2 (Related Module)	Function 3 (Related Module)	Function 4 (Related Module)
Α	PA0 I/O (port)	POE0 input (POE)	RXD0 input (SCI)	
	PA1 I/O (port)	POE1 input (POE)	TXD0 output (SCI)	
	PA3 I/O (port)	IRQ1 input (INTC)	RXD1 input (SCI)	TRST input (H-UDI)*2
	PA4 I/O (port)	IRQ2 input (INTC)	TXD1 output (SCI)	TMS input (H-UDI) ^{e2}
	PA6 I/O (port)	TCLKA input (MTU2)		
	PA7 I/O (port)	TCLKB input (MTU2)	SCK2 I/O (SCI)	TCK input (H-UDI) ⁶²
	PA8 I/O (port)	TCLKC input (MTU2)	RXD2 input (SCI)	TDI input (H-UDI) ⁶²
	PA9 I/O (port)	TCLKD input (MTU2)	TXD2 output (SCI)	POF8 input (POE)

518 Note added

Notes: 1. During A/D conversion, the AN input is enabled.

> 2. These functions (TRST, TMS, TCK, TDO) are not supported on the 32 kg versions (SH71251A and SH71241, Kbyte versions (SH71250A and SH

Rev. 5.00 Mar. 06, 2009 Page 754 of 770

REJ09B0243-0500

Notes: I. Fixed to TMS, TRST, TDI, TDO, T ASEBRKAK/ASEBRK when using (in $\overline{ASEMD0} = low$). 2. E10A cannot be used on the 32 Ki

Pin Name

Single-Chip Mode (MCU Mode 3)

Pin Name Single-Chip Mode (MCU Mode 3) PFC Selected Function Possibilities

PFC Selected Function Possibilities

(SH71251A and SH71241A) and 1 (SH71250A and SH71240A) version

Table amended

Initial Function

FWF/(ASFBRKAK/

ASEBRK®1) PA3/(TRST*1)

PA4/(TMS*1)

PA7/(TCK®1) PA8/(TDI®1)

PA9/(TDO*1)

Note added Notes: 1.

RENESAS

Table amended

FWF

PA3/IRQ1/RXD1

PA4/IRO2/TXD1 PA6/TCLKA

PA7/TCLKB/SCK2

PA8/TCLKC/RXD2

(in $\overline{ASEMD0} = low$).

PA9/TCLKD/TXD2/POE8

Fixed to TMS, TRST, TDI, TDO, T ASEBRKAK/ASEBRK when using

E10A cannot be used on the 32 Ki (SH71251A and SH71241A) and 1 (SH71250A and SH71240A) version

Rev. 5.00 Mar. 06, 2009 Pag

REJ09

Pin No.

20

521

522

Table 15.4 SH7124 Pin Functions in Each Operating

Mode

				001: TCLKC input (MTU2) 110: RXD2 input (SCI) Other than above: Setting prohibited
Note	e added			
Note	(8	SH712	51A	be used on the 32 Kby and SH71241A) and 16 and SH71240A) version
Tab	le amend	led		
Bit	Bit Name	Initial Value	R/W	Description
14	PA7MD2	0	R/W	PA7 Mode
13	PA7MD1	0	R/W	Select the function of the PA7/TCLKB
12	PA7MD0	0	R/W	When the E10A* is in use (ASEMD0 = is fixed to TCK input. 000: PA7 I/O (port)
				001: TCLKB input (MTU2)
	Tab	Table amend	Note: * E10A ca (SH712 (SH712) Table amended Initial Initial	Note: * E10A cannot (SH71251A a (SH71250A a Table amended Bit Bit Name Initial Value R/W 14 PA7MD2 0 R/W 13 PA7MD1 0 R/W 13 PA7MD1 0 R/W 14 PA7MD1 0 R/W 15 PA7MD1 0 R/W 16 PA7MD1 0 R/W 17 PA7MD1 0 R/W 17 PA7MD1 0 R/W 18 PA7MD1 0 R/W 18

PA8MD0

529 Table amended

Bit	Bit Name	Initial Value	R/W	Description
2	PA4MD2	0	R/W	PA4 Mode
1	PA4MD1	0	R/W	Select the function of the PA4/IRQ2/T
0	PA4MD0	0	R/W	When the E10A* is in use (ASEMD0 = is fixed to TCK input.
				000: PA4 I/O (port)
				001: TXD1 output (SCI)
				111: IRQ2 input (INTC)
				Other than above: Setting prohibited

When the E10A* is in use (ASEMD0: is fixed to TDI input. 000: PA8 I/O (port)

Other than above: Setting prohibited

Note added

Note: * E10A cannot be used on the 32 Kby (SH71251A and SH71241A) and 16 (SH71250A and SH71240A) version

RENESAS

Description PA9 Mode Select the function of the PA9/TCLKD/TXD2/TDO/POE8 pin. is in use (ASEMD0 = low), function

output. 000: PA9 I/O (port) 001: TCLKD input (MTU2) 110: TXD2 output (SCI) 111: POE8 input (POE) Other than above: Setting prohibite

Port A Control Register L3 (PACRL3)

531 Table amended

Bit	Bit Name	Value	R/V
6	PA9MD2	0	R/V
5	PA9MD1	0	R/V
4	PA9MD0	0	R/V

Initial

0

0

Table amended

Bit Name

PA8MD2

PA8MD1

532

2

1

NI-+-				
				Other than above: Setting prohibit
				110: RXD2 input (SCI)
				001: TCLKC input (MTU2)
				000: PA8 I/O (port)
0	PA8MD0	0	R/W	When the E10A* is in use (ASEM is fixed to TDI input.

R/W

R/W

R/W

Note added Note: *

E10A cannot be used on the 32 Ki (SH71251A and SH71241A) and 1 (SH71250A and SH71240A) version

Description

Select the function of the PA8/TCLF

PA8 Mode

RENESAS

Rev. 5.00 Mar. 06, 2009 Pag REJ09

		0	PA4MD0	0	R/W	When the E10A* is in use (ASEMDO = is fixed to TMS input. 000: PA4 I/O (port) 001: TXD1 output (SCI) 111: IRQ2 input (INTC) Other than above: Setting prohibited
 Port A Control Register L2 	L2 533 Note added					
(PACRL2)	(PACRL2)			SH712	51A	be used on the 32 Kby and SH71241A) and 16 and SH71240A) version
Port A Control Register L1	534	Tabl	e amend	led		
(PACRL1)				Initial		
		Bit	Bit Name	Value	R/W	Description
		14	PA3MD2	0	R/W	PA3 Mode
		13	PA3MD1	0	R/W	Select the function of the PA3/IRQ1/R
		12	PA3MD0	0	R/W	When the E10A* is in use (ASEMD0 = is fixed to TRST input.

Bit

2

Note: *

111: IRQ1 input (INTC) Other than above: Setting prohibited

Value

PA4MD2

PA4MD1

R/W

R/W

R/W

Description

Select the function of the PA4/IRQ2/T

PA4 Mode

000: PA3 I/O (port) 001: RXD1 input (SCI)

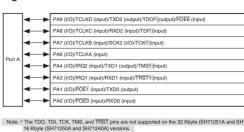
Note added

(SH71250A and SH71240A) version

E10A cannot be used on the 32 Kby

(SH71251A and SH71241A) and 16

Rev. 5.00 Mar. 06, 2009 Page 758 of 770


REJ09B0243-0500

RENESAS

Note: * The TDO, TDI, TCK, TMS, and TRST pins are not supported on the 32 Kbyte (SH71251A and SH7 16 Kbyte (SH71250A and SH71240A) versions.

Figure 16.2 Port A (SH7124) 554 Figure amended

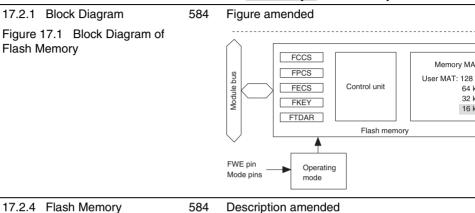
Newly added

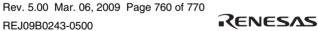
577

579

- 16.5 Usage Notes
 - 16.5.1 Handling of Unused Pins
- 17. Flash Memory (ROM)

Description amended


This LSI has 128-Kbyte, 64-Kbyte, 32-Kbyte, Kbyte on-chip flash memory. The flash memo following features.



Boot Mode: This mode is a program mode an on-chip SCI interface. The user MAT car programmed. This mode can automatically the bit rate between the host and this LSI.

This LSI's flash memory is configured by the 12 64-Kbyte, 32-Kbyte, or 16-Kbyte user MAT.

User Program Mode: The user MAT can b programmed by using an interface selected user. This mode cannot be used on the 32 and 16 Kbyte flash memory versions.

Configuration

Mode

Renesas specification.

REJ09

A PROM programmer can be used to perform programming/erasing via a socket adapter. Us PROM programmer that supports the propriet

Note that before using a PROM programmer t the MCU, the MAT should initially be erased of

the 32 Kbyte (SH71251A and SH71241 16 Kbyte (SH71250A and SH71240A) v

R/W Description

R/W UBC Software Reset

19.3.6	Standby Control Register	673	
6 (STB)	CR6)		

Table amended

UBCRST

This bit is not supported on 32 Kbyte ve (SH71251A, SH71241A) and 16 Kbyte v
1: Releases reset in the PC trace unit of
0: Puts the PC trace unit of UBC into the
Clearing this bit to 0 puts the PC trace u module into the power-on reset state.
Resetting the PC trace unit of UBC is co software.

20.1 Register Address Table (In 687 the Order from Lower Addresses)

Table amended

Register Name	Abbreviation	Number of Bits	Address	Module	Access Size
Break address register A	BARA	32	H'FFFFF300	UBC	32
Break address mask register A*	BAMRA	32	H'FFFFF304	_	32
Break bus cycle register A®	BBRA	16	H'FFFFF308	_	16
Break data register A	BDRA	32	H'FFFFF310	_	32
Break data mask register As	BDMRA	32	H'FFFFF314	_	32
Break address register B*	BARB	32	H'FFFFF320	_	32
Break address mask register B	BAMRB	32	H'FFFFF324	_	32
Break bus cycle register B*	BBRB	16	H'FFFFF328	_	16
Break data register B*	BDRB	32	H'FFFFF330	_	32
Break data mask register B*	BDMRB	32	H'FFFFF334	_	32
Break control register*	BRCR	32	H'FFFFF3C0	_	32
Branch source register*	BRSR	32	H'FFFFF3D0	_	32
Branch destination register*	BRDR	32	H'FFFFF3D4	_	32
	DETE		LUESESSADA	_	

Note added

Note: *

The UBC registers are not supporte Kbyte versions (SH71251A, SH712

16 Kbyte versions (SH71250A, SH7

Rev. 5.00 Mar. 06, 2009 Page 762 of 770

REJ09B0243-0500

		Note added						
		Note:		The UBC re Kbyte versi 16 Kbyte v	ions (SI	171251A	, SH71	
20.3 Register States in Each Operating Mode	708	Table amended						
		Register Abbreviation	Power-on i	reset Manual reset	Software Standby	Module Standby	Sleep	
		BARA	Initialized	Retained	Retained	Initialized	Retained	
	709	Table amended						
		Register			Software	Module		

Note added Notes: 4.

REJ09

31/23/15/7 | 30/22/14/6 | 29/21/13/5 | 28/20/12/4 | 27/19/11/3 | 26/18/10/2 | 25/17/9/1

The UBC registers are not support Kbyte versions (SH71251A, SH71 16 Kbyte versions (SH71250A, SH

E	5.	۲	ro	αι	ıct	Code	Lineup	

/3/								
101	ıα	v	┖	aı	ne	יוו	u١	ᆫ

Product 7	Гуре		Product Code	Packag
SH7125	Flash memory version	Consumer product	R5F71252N50NP	VQFN-6
	(on-chip 64-kbyte)	Industrial product	R5F71252D50NP	-
	Flash memory version	Consumer product	R5F71251AN50FA	QFP-64
((on-chip 32-kbyte)	Industrial product	R5F71251AD50FA	-
		Consumer product	R5F71251AN50FP	LQFP-6
		Industrial product	R5F71251AD50FP	-
		Consumer product	R5F71251AN50NP	VQFN-6
		Industrial product	R5F71251AD50NP	-
	Flash memory version	Consumer product	R5F71250AN50FA	QFP-64
(on-chip 16-kbyte)	(on-chip 16-kbyte)	Industrial product	R5F71250AD50FA	-
		Consumer product	R5F71250AN50FP	LQFP-6
		Industrial product	R5F71250AD50FP	_
		Consumer product	R5F71250AN50NP	VQFN-6
		Industrial product	R5F71250AD50NP	_
SH7124	Flash memory version	Consumer product	R5F71243N50NP	VQFN-
	(on-chip 128-kbyte)	Industrial product	R5F71243D50NP	_

738 Table amended

Product Type			Product Code	Packa
SH7124	Flash memory version Consumer product		R5F71240AN50FP	LQFP
(on-chip 16-kbyte)		Industrial product	R5F71240AD50FP	_
		Consumer product	R5F71240AN50NP	VQFN
		Industrial product	B5E71240AD50NP	_

Rev. 5.00 Mar. 06, 2009 Page 764 of 770 REJ09B0243-0500

AC Characteristics ineasurement	
conditions	D
Address error	Data transfer instructions
Addressing modes26	DC Characteristics
Arithmetic operation instructions 39	Dead time compensation
Asynchronous mode	Divider
В	E
Boot mode611	Error protection
Branch instructions	Exception handling
Break comparison conditions115	Exception handling state
Break detection and processing 474	External clock input method
Break on data access cycle137	External pulse width measuremen
Break on instruction fetch cycle 137	External trigger input timing
Bus state controller (BSC) 149	
	${f F}$
C	Features of instructions
Calculating exception handling vector table	Flash Memory
addresses	Flash memory characteristics
Changing frequency67	Flash memory configuration
Clock (MP ϕ) for the MTU2 module 57	Flow of the user break operation
Clock frequency control circuit59	Full-scale error
Clock operating mode61	Function for detecting oscillator s
Clock pulse generator (CPG)57	

Absolute accuracy......498

Absolute maximum ratings......711 AC characteristics......714

CPU..... Crystal oscillator

Rev. 5.00 Mar. 06, 2009 Pag

REJ09

1	M-14:-1 d1-4i-4
I/O ports	Multiply and accumulate registers
Illegal slot instructions	(MACH and MACL)
Immediate data formats	Multiprocessor communication
Influences on absolute accuracy 501	function
Initial user branch processing time 629	
Initial values of control register21	
Initial values of general register21	\mathbf{N}
Initial values of system register21	NMI interrupt
Initiation intervals of user branch	Nonlinearity error
processing	Note on Changing Operating Mode
Instruction formats	Note on crystal resonator
Instruction set	Notes on board design
Interrupt controller (INTC)91	Notes on connecting V _{CL} capacitor
Interrupt exception handling	Notes on noise countermeasures
vector table 106	Notes on register access (WDT)
Interrupt priority 82	Notes on slot illegal instruction
Interrupt response time 113	exception handling
Interrupt sequence	
Interrupts81	
IRQ interrupts104	O
	Off-board programming mode
	Offset error
L	On-board programming mode

REJ09B0243-0500

L

On-chip peripheral module interrup

Operating clock for each module...

List of registers 679

Logic operation instructions 41

Rev. 5.00 Mar. 06, 2009 Page 766 of 770

Program counter (PC)21	FMPAR
Program execution state	FMPDR
	FPCS
	FPEFEQ
Q	FPFR60
Quantization error	FRQCR
	FTDAR
	FUBRA
R	ICR0
RAM 663	ICSR1
Range of analog power supply and	ICSR3
other pin settings	IFCR
Register	IPRA to IPRF and IPRH to IPR
ADCR484	IRQCR
ADCSR	IRQSR
ADDR0 to ADDR7481	OCSR1
ADTSR	OSCCR
BAMRA118	PACRL1
BAMRB	PACRL2
BARA	PACRL3
BARB	PACRL4
BBRA119	PADRL
BBRB	PAIORL
BDMRA	PAPRL
BDMRB	PBCRH1
BDRA	PBCRL1
	Rev. 5.00 Mar. 06, 2009 Pag
PENE	C / C

Procedure register (PR)......21

Product code lineup737

REJ09

FEBS.....

FECS..... FKEY.....

	PEIORL PEPRL PFDRL POECR1 POECR2 RAMCR	573 576 395	TICCRTIERTIORTITCNT
	PFDRLPOECR1POECR2PAMCR	576 395	TIOR TITCNT
	POECR1 POECR2 RAMCR	395	TITCNT
	POECR2RAMCR		
	RAMCR	396	mrm on
			TITCR
		674	TMDR
	SCBRR (SCI)	433	TOCR1
	SCRDR	417	TOCR2
	SCRSR (SCI)	417	TOER
	SCSCR (SCI)	421	TOLBR
	SCSDCR	432	TRWER
	SCSMR (SCI)	418	TSR
	SCSPTR (SCI)	430	TSTR
	SCSSR	424	TSYR
	SCTDR	418	TWCR
	SCTSR (SCI)	417	WTCNT
	SPOER	393	WTCSR
	STBCR1	668	Register address table
	STBCR2	669	(in the order from lower addresses)
	STBCR3	670	Register bit list
	STBCR4	671	Register data format
	STBCR5	672	Register states in each operating m
	STBCR6	673	Reset state
	TADCOBRA_4	210	Reset-synchronized PWM mode
	TADCOBRB_4	210	RISC-type
	TADCORA_4	210	
	TADCORB_4	210	
	TADCR	207	
R	ev. 5.00 Mar. 06, 2009 Page 768 of 770		
R	EJ09B0243-0500	RENES	SAS

TGR

PEDRL 570

Software standby mode
Stack after interrupt exception
nandling 112
Stack states after exception
nandling ends86
Status register (SR)
System control instructions
T

Target pins and conditions for highimpedance control......398

 \mathbf{W}

RENESAS

address offsets.....

Vector numbers and vector table

Using watchdog timer mode

Vector-base register (VBR)

Watchdog timer (WDT).....

Rev. 5.00 Mar. 06, 2009 Pag

REJ09

 \mathbf{V}

Rev. 5.00 Mar. 06, 2009 Page 770 of 770

REJ09B0243-0500

Renesas 32-Bit RISC Microcomputer Hardware Manual SH7125 Group, SH7124 Group

Publication Date: Rev.1.00, March 25, 2005

Rev.5.00, March 6, 2009

Published by: Sales Strategic Planning Div.

Renesas Technology Corp.

Edited by: Customer Support Department

Global Strategic Communication Div.

Renesas Solutions Corp.

© 2009. Renesas Technology Corp., All rights reserved. Printed in Japan.

RENESAS SALES OFFICES

http://www.rei

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Boume End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor. North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong

Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: -655- 6213-0200, Fax: -655- 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, M: Tel: <603 - 7955-9301, Fax: <603 - 7955-9510

SH7125 Group, SH7124 Group Hardware Manual

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for 8-bit Microcontrollers - MCU category:

Click to view products by Renesas manufacturer:

Other Similar products are found below:

CY8C20524-12PVXIT CY8C28433-24PVXIT MB95F012KPFT-G-SNE2 MB95F013KPMC-G-SNE2 MB95F263KPF-G-SNE2 MB95F263KPF-G-SNE2 MB95F264KPFT-G-SNE2 MB95F398KPMC-G-SNE2 MB95F398KPMC-G-SNE2 MB95F636KWQN-G-SNE1 MB95F696KPMC-G-SNE2 MB95F698KPMC1-G-SNE2 MB95F698KPMC1-G-SNE2 MB95F698KPMC2-G-SNE2 MB95F698KPMC-G-SNE2 MB95F698KPMC1-G-SNE2 MB95F698KPMC2-G-SNE2 MB95F698KPMC-G-SNE2 MB95F698KPMC1-G-SNE2 MB95F698KPMC2-G-SNE2 MB95F631ECDFBV0 C8051F389-B-GQ C8051F392-A-GMR ISD-ES1600_USB_PROG 901015X SC705C8AE0VFBE STM8TL53G4U6 PIC16F877-04/P-B R5F10Y17ASP#30 CY8C3MFIDOCK-125 403708R MB95F354EPF-G-SNE2 MB95F564KPFT-G-SNE2 MB95F564KWQN-G-SNE1 MB95F636KP-G-SH-SNE2 MB95F636KPMC-G-SNE2 MB95F694KPMC-G-SNE2 MB95F778JPMC1-G-SNE2 MB95F818KPMC-G-SNE2 MC908QY8CDWER MC9S08PT16AVLD MC9S08PT32AVLH MC9S08PT60AVLC MC9S08PT60AVLH C8051F500-IQR LC87F0G08AUJA-AH CP8361BT STM8S207C6T3 CG8421AF