MCOT128064H1V-WM	128×64	White	OLED Module
Specification			
Version: 1	Date: 07/06/2017		
Revision			

Display Features			
Resolution	128×64		
Appearance	White on Black		-18
Logic Voltage	3 V		-
Interface	Parallel / SPI / I2C		plian
Module Size	$60.50 \times 37.00 \times 2.15 \mathrm{~mm}$		
Operating Temperature	$-40^{\circ} \mathrm{C} \sim+80^{\circ} \mathrm{C}$	Box Quantity	Weight / Display
Construction	TAB	---	---

Display Accessories	
Part Number	Description
MPBV6	FFC to cable. Supports up to 40 way. Any driver board that supports 1mm pitch SHDR-40V-S-B receptacle.
MCIB12	UC32 Breakout Board with SD card and LED back light driver. Used in conjunction with MPBV6.

Optional Variants	
Appearance	Voltage
Green on Black Yellow on Black Blue on Black	

Mechanical Specifications					
Module Size	$60.50 \times 37.00 \times 2.15$ (With Backlight)				$\mathrm{W} \times \mathrm{H} \times \mathrm{D} \mathrm{mm}$
Active Area	55.01×27.49	$\mathrm{~W} \times \mathrm{H} \mathrm{mm}$	Hole-to-Hole	---	$\mathrm{W} \times \mathrm{H} \mathrm{mm}$
Dot Size	0.40×0.40	$\mathrm{~W} \times \mathrm{H} \mathrm{mm}$	Dot Pitch	0.43×0.43	$\mathrm{~W} \times \mathrm{H} \mathrm{mm}$

MCOT128064H1V-WM	128×64		White
	Specification	OLED Module	
Version: 1	Revision		

Pin layout			
Pin	Symbol	Description	Remarks
1	NC(Ground)	No Connection (ground).	
2	VSS	Ground Pin. Connect to external ground.	
3~10	NC	No Connection.	
11	VDD	Power Supply Pin for core logic operation.	
12	BS1	MCU bus interface selection pins. Select appropriate logic settings: Note: " 0 " is connected to VSS and " 1 " is connected to VDD. I2C = BS1: 1 BS2: 0 4-Wire SPI = BS1: 0 BS2: 0 8-bit 6800 Parallel = BS1:0 BS2:1 8 -bit 8080 Parallel = BS1: 1 BS2: 1	
13	BS2		
14	NC	No Connection.	
15	CS\#	Chip Select Input, connecting to MCU. Chip is enabled for MCU communication when CS\# is pulled Low.	
16	RES\#	Reset Signal Input. Initialisation for chip is executed when pulled Low. Keep pulled High during normal operation.	
17	D/C\#	Data / Command control pin connecting to the MCU. Pin pulled High= Data at $D(7: 0)$ will be interpreted as data. Pin pulled Low= Data at $\mathrm{D}(7: 0)$ will be transferred to a command register. I2C Mode= Pin acts as SAO for slave address selection. 3 -wire SPI Serial= This pin must be connected to VSS.	
18	R/W\#	Read / Write control input pin connecting to the MCU interface. 6800 Mode $=$ This pin will be used as Read/Write (R/W\#). Read will be carried out when pin pulled High and Write mode when pulled Low. 8080 Mode= This pin will be the Write (WR\#) input. Data Write initiated when on pulled Low and chip selected. I2C or SPI= Must connect to VSS.	
19	E/RD\#	MCU Interface Input. 6800 Mode $=$ Pin will be used as $\mathrm{E}(\mathrm{E})$ signal. Read/Write operation initiated when pin is pulled High and chip selected. 8080 Mode= Pin receives Read (RD\#) signal. Read operation initiated when pin pulled Low and chip selected. I2C or SPI= Must connect to VSS.	
20~27	D0~D7	Bi-directional data bus connecting to MCU data bus. Unused pints to tie Low. SPI Mode= D0 will be Serial Clock input (SCLK), D1 will be Serial Data input (DIN) and D2 to be kept NC. I2C Mode= D2 and D1 tied to be tied together and serve as SDAout , SDAin application and DO is Serial Clock input (SCL).	
28	IREF	Segment Output Current Reference pin. IREF supplied externally. A Resistor to be connected between this pin and VSS to maintain $10 \mu \mathrm{~A}$ current.	
29	VCOMH	COM Signal deselected voltage Level. Capacitor connected between this pin and VSS.	
30	VCC	Power Supply for Panel Driving Voltage.	
31	NC(Ground)	No Connection (ground).	

Absolute Maximums Ratings					
Item	Symbol	Minimum	Typical	Maximum	Unit
Supply Voltage for Logic	VDD	-0.30	--	4.00	V
Supply Voltage for Display	VCC	0.00	--	15.00	V
Operating Temperature	TOP	-40	--	70	${ }^{\circ} \mathrm{C}$
Storage Temperature	TSTG	-40	---	80	${ }^{\circ} \mathrm{C}$

Electronic Characteristics							
Item	Symbol	Condition	Minimum	Typical	Maximum	Unit	
Input High Voltage	VIH	---	$0.80 \times$ VDD	---	VDD	V	
Input Low Voltage	VIL	---	GND	---	$0.20 x$ VDD	V	
Output High Voltage	VOH	---	$0.90 x$ VDD	---	VDD	V	
Output Low Voltage	VOL	---	GND	---	$0.10 x$ VDD	V	
Supply Voltage for Logic	VDD	---	2.80	3.00	3.30	V	
Supply Voltage for Display	VCC	---	12.00	13.00	15.00	V	
50% Checkboard	IDD	VDD $=13 \mathrm{~V}$	15	18	22	mA	
Operating Current.	---	(CIE1931)	0.26	0.28	0.30	---	
CIEx(White)	---	(CIE1931)	0.30	0.32	0.34	---	
CIEy(White)	--						

OLED Characteristics						
Item	Symbol	Condition	Minimum	Typical	Maximum	Unit
Viewing Angle	(V) θ	---	160	---	---	Deg
	$(\mathrm{H}) \varphi$	---	160	--	---	Deg
Contrast Ratio	CR	Dark	$2000: 1$	--	---	--
Response Time	T Rise	---	---	10	---	$\mu \mathrm{s}$
	T Fall	---	---	10	---	$\mu \mathrm{s}$
Display with 50\% Checkboard Brightness		70	90	---	$\mathrm{cd} / \mathrm{m}^{2}$	

OLED Life Time			
Item	Conditions	Typical	Remark
Operating Life Time	$\mathrm{Ta}=25^{\circ} \mathrm{C}$. Initial checkboard brightness, 50%.	50,000 Hours	---

MCOT128064H1V-WM	128×64		White	OLED Module
Version: 1	Specification	Date: $07 / 06 / 2017$		
		Revision		

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for midas manufacturer:
Other Similar products are found below :
MCT070LA12W1024600LML MCOT128064BY-WM MCOB21609AV-EWP MCIB-16-LVDS-CABLE MC42004A6W-SPTLY MC22008B6W-SPR MC11605A6WR-SPTLY-V2 MCOT048064A1V-YI MCT101E0CW1280800LMLIPS MCT104A0W1024768LML MCT070Z0W800480LML MC41605A6W-FPTLA-V2 MC42004A6WK-SPTLY-V2 MCOT128064UA1V-WM MCT101E0TW1280800LMLIPS MCT150B0W1024768LML MCT050HDMI-A-RTP MCT050HDMI-A-CTP

MCT070Z0TW1W800480LML MCT050ACA0CW800480LML MC42005A12W-VNMLY MC42005A12W-VNMLG MCT052A6W480128LML MC21605A6WK-BNMLW-V2 MC21605B6WD-BNMLW-V2 MCOT256064A1A-BM MCOT22005A1V-EYM MCT024L6W240320PML MC20805A12W-VNMLG MC22405A6WK-BNMLW-V2 MC41605A6WK-FPTLW-V2 MCT101HDMI-A-RTP MCCOG21605D6W-FPTLWI MC21605A6WD-SPTLY-V2 MC22005A6WK-BNMLW-V2 MC24005AA6W9-BNMLW-V2 MC11609A6W-SPTLY-V2 MC21605H6WR-SPTLY-V2 MC128064A6W-BNMLW-V2 MCOT064048A1V-YM MCOT128064BY-BM MCCOG128064B12W-FPTLRGB MC11609A6W-SPR-V2 MC21605H6WK-BNMLW-V2 MCOT128064E1V-BM MCT070HDMI-B-RTP $\underline{\text { MDT5000C MCOT128128AZ-RGBM MCCOG42005A6W-BNMLWI MC11605A12W-VNMLB }}$

