ANALOG MULTIMETER KIT

MODEL M-1250K

Assembly and Instruction Manual

Elenco ${ }^{\text {m" }}$ Electronics, Inc.

PARTS LIST

If you are a student, and any parts are missing or damaged, please see instructor or bookstore.
If you purchased this meter kit from a distributor, catalog, etc., please contact Elenco ${ }^{\text {TM }}$ Electronics (address/phone/e-mail is at the back of this manual) for additional assistance, if needed.

RESISTORS				
Qty.	Symbol	Value	Color Code	Part \#
$\square 1$	R10	. 04Ω	Shunt Wire	100269
$\square 1$	R9	. $97 \Omega 1 \% 1 / 2 W$	black-white-violet-silver-brown	109731
$\square 1$	R27	$4.5 \Omega 1 \% 1 / 4 \mathrm{~W}$	yellow-green-black-silver-brown	114530
$\square 1$	R11	$10 \Omega 1 \%$ 1/4W	brown-black-black-gold-brown	121030
$\square 1$	R22	18.5 ${ }^{\text {1 }}$ \% 1/4W	brown-gray-green-gold-brown	121832
$\square 1$	R12	102ת 1\% 1/4W	brown-black-red-black-brown	131034
$\square 1$	R21	200 1 1 1/4W	red-black-black-black-brown	132030
$\square 1$	R7	240 1% 1/4W	red-yellow-black-black-brown	132430
$\square 1$	R20	2.08k Ω 1\% 1/4W	red-black-gray-brown-brown	142034
$\square 1$	R13	3k Ω 1\% 1/4W	orange-black-black-brown-brown	143033
$\square 1$	R6	$5 \mathrm{k} \Omega 1 \% 1 / 4 \mathrm{~W}$	green-black-black-brown-brown	145030
$\square 1$	R31	$5.6 \mathrm{k} \Omega 1 \% 1 / 4 \mathrm{~W}$	green-blue-black-brown-brown	145630
$\square 1$	R32	$8.2 \mathrm{k} \Omega 1 \% 1 / 4 \mathrm{~W}$	gray-red-black-brown-brown	148230
$\square 1$	R25	$18 \mathrm{k} \Omega 1 \% 1 / 4 \mathrm{~W}$	brown-gray-black-red-brown	151830
$\square 2$	R35, R36	$24 \mathrm{k} \Omega 1 \% 1 / 4 \mathrm{~W}$	red-yellow-black-red-brown	152430
$\square 1$	R26	$31 \mathrm{k} \Omega 1 \% 1 / 4 \mathrm{~W}$	orange-brown-black-red-brown	153130
$\square 1$	R19	$34 \mathrm{k} \Omega 1 \% 1 / 4 \mathrm{~W}$	orange-yellow-black-red-brown	153430
$\square 1$	R5	40k Ω 1\% 1/4W	yellow-black-black-red-brown	154030
$\square 1$	R23	$44 \mathrm{k} \Omega$ 1\% 1/4W	yellow-yellow-black-red-brown	154430
$\square 1$	R17	83.3k Ω 1\% 1/4W	gray-orange-orange-red-brown	158330
$\square 1$	R34	100k 1% 1/4W	brown-black-black-orange-brown	161030
$\square 1$	R4	150k ${ }^{\text {c }}$ 1\% 1/4W	brown-green-black-orange-brown	161533
$\square 1$	R33	165k 1% 1/4W	brown-blue-green-orange-brown	161630
$\square 1$	R18	195k 1% 1/4W	brown-white-green-orange-brown	161930
$\square 1$	R30	260k ${ }^{\text {1\% 1/4W }}$	red-blue-black-orange-brown	162630
$\square 1$	R16	360k 1% 1/4W	orange-blue-black-orange-brown	163630
$\square 1$	R3	800k ${ }^{\text {1\% }} 1 / 4 \mathrm{~W}$	gray-black-black-orange-brown	168030
$\square 1$	R29	820k $31 \% 1 / 4 \mathrm{~W}$	gray-red-black-orange-brown	168230
$\square 1$	R15	1.8M $21 \% 1 / 2 \mathrm{~W}$	brown-gray-black-yellow-brown	171831
$\square 1$	R28	$3 \mathrm{M} \Omega 1 \% 1 / 2 \mathrm{~W}$	orange-black-black-yellow-brown	173031
$\square 1$	R2	4M Ω 1\% 1/2W	yellow-black-black-yellow-brown	174031
$\square 1$	R14	$6.75 \mathrm{M} \Omega 1 \% 1 / 2 \mathrm{~W}$	blue-violet-green-yellow-brown	176731
$\square 1$	R1	15M ${ }^{\text {1 }}$ \% 1/2W	brown-green-black-green-brown	181531
$\square 1$	R24	10k Ω Potentiometer		191508
$\square 1$	R8	680 ${ }^{\text {Potentiometer }}$		191660

* NOTE: All fixed resistors are 1% tolerance (last stripe, brown). In some cases, resistors with a $.5 \%$ tolerance (last stripe, green) may be used in place of the 1% resistors.

		CAPACITORS AND INDUCTORS		
Qty.	Symbol	Value	Marking	Part \#
$\square 1$	C 4	$.001 \mu \mathrm{~F}$ Discap	(102)	231036
$\square 1$	C 3	$.047 \mu \mathrm{~F}$ Discap	(473)	234710
$\square 1$	C 1	$.047 \mu \mathrm{~F}, 400 \mathrm{~V}$ Mylar	(473)	245028
$\square 1$	L 1	57.4 mH	Coil	455577

Note: C2 is not used.

SEMICONDUCTORS

Qty.	Symbol	Value
$\square 2$	D1, D2	$2 C Z$
$\square 1$	Q2	A1015
$\square 2$	Q1, Q3	C1815

MISCELLANEOUS

Qty.	Description Part \#
$\square 1$	
$\square 1$	Fuse 0.5A, 250V... 533004
$\square 2$	
$\square 1$	
$\square 1$	
* $\square 1$	
* $\square 1$	
* $\square 1$	
$\square 1$	
$\square 1$	
$\square 2$	
$\square 4$	
$\square 6$	
* $\square 1$	
* $\square 1$	
$\square 1$	
$\square 2$	
$\square 1$	
$\square 2$	Wire 30AGW Stranded, 90mm (3.5") Red... 828220
$\square 1$	
$\square 1$	Wire 30AGW Stranded, 65mm (2.5") Violet .. 828270
$\square 2$	Wire 30AGW Stranded, 90mm (3.5") White.. 828290
$\square 1$	
$\square 1$	Solder Tube..9ST4
$\square 1$	
*The	rts are part of the main rotary switch assembly. This may come preassembled by the factory.
Specifications	

Measurement	Ranges	Accuracy	Remarks
DC Voltage (DCV)	$\begin{gathered} \text { All ranges } \\ 1,000 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \pm 3 \% \mathrm{FS} \\ & \pm 5 \% \mathrm{FS} \end{aligned}$	Input impedance 20k $/ \mathrm{V}$
DCV Null Meter	$0- \pm 5 \mathrm{~V} \quad 0- \pm 25 \mathrm{~V}$	$\pm 5 \%$ FS	Zero centering meter type input impedance $40 \mathrm{k} \Omega / \mathrm{V}$
DC Current	$50 \mu \mathrm{~A}-2.5 \mathrm{~mA}-25 \mathrm{~mA}-250 \mathrm{~mA}{ }_{10 \mathrm{~A}}(50 \mu \mathrm{~A}$ at the DC 0.1 V position)	$\begin{aligned} & \pm 3 \% \text { FS } \\ & \pm 5 \% \mathrm{FS} \end{aligned}$	Terminal Voltage drop:250 mV $100 \mathrm{mV} \ldots 50 \mu \mathrm{~A}$
AC Voltage	$\begin{gathered} \hline 0-10 \mathrm{~V}-50 \mathrm{~V}-250 \mathrm{~V} \\ 1,000 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{aligned} & \hline \pm 4 \% \mathrm{FS} \\ & \pm 5 \% \mathrm{FS} \\ & \hline \end{aligned}$	Input impedance 9k $/ \mathrm{V}$
AF Output (dB)	$-10 \mathrm{~dB} \sim+22 \mathrm{~dB}(\mathrm{AC} 10 \mathrm{~V}) \sim+62 \mathrm{~dB}$ $0 \mathrm{~dB} / 0.775 \mathrm{~V}(1 \mathrm{~mW}$ through 600Ω impedance circuit)		Input impedance $9 \mathrm{k} \Omega / \mathrm{V}$ for output terminal.
Resistance	All ranges	$\pm 3 \%$ of arc	Internal batteries: (2) 1.5 V " AA ", (1) 9 V
Buzzer	Conduct indicator (buzzer is emitted at 20Ω or less.)		Same Ω range, Power supply optional.
Battery Test (BATT)	GOOD - ? - BAD Color Coded Scale		Load current 250 mA
Leakage Current (Iceo) (LI)	$0-150 \mu \mathrm{~A}$ at X 1 k range $0-15 \mathrm{~mA}$ at X 10 k range $0-1.5 \mathrm{~mA}$ at X 100 range $0-15 \mathrm{~mA}$ at X 1 range		Current across terminals.
Terminal to Terminal Voltage (LV)	Common to each Ω range 3V-0V (Reverse of LI scale)		Voltage applied across terminal while Ω is measured.
DC Current Amplification Factor (h_{FE})	$\begin{gathered} \text { Transistor } \mathrm{h}_{\text {FE }}: 0-1000 \\ \text { (in } \times 10 \Omega \text { range) } \\ \hline \end{gathered}$		Insert $\mathrm{h}_{\text {FE }}$ terminal (on scale) directly.
Size $-6 \times 37 / 8 \times 11 / 2$ inches Weight - 0.62 pounds			

CONSTRUCTION

Introduction

Assembly of your M-1250 Analog Multimeter Kit will prove to be an exciting project and give you much satisfaction and personal achievement. If you have experience in soldering and wiring techniques, then you should have no problem with the assembly of this kit. Care must be given to identifying the proper components and in good soldering habits. Above all, take your time and follow these easy step-by-step instructions. Remember, "An ounce of prevention is worth a pound of cure". Avoid making mistakes and no problems will occur.

CAUTION: WEAR SAFETY GLASSES WHEN ASSEMBLING THIS KIT.

Safety Procedures

- Wear eye protection when soldering.
- Locate soldering iron in an area where you do not have to go around it or reach over it.
- Do not hold solder in your mouth. Solder contains lead and is a toxic substance. Wash your hands thoroughly after handling solder.
- Be sure that there is adequate ventilation present.

Assemble Components

In all of the following assembly steps, the components must be installed on the top side of the PC board unless otherwise indicated. The top legend shows where each component goes. The leads pass through the corresponding holes and the board is turned to solder the component leads on the foil side. Solder immediately unless the pad is adjacent to another hole which will interfere with the placement of the other component. Cut excessive leads with a diagonal cutter. Then, place a check mark in the box provided next to each step to indicate that the step is completed. Be sure to save the extra leads for use as jumper wires if needed.

Soldering

The most important factor in assembling your Analog Multimeter is good soldering techniques. Using the proper soldering iron is of prime importance. A small pencil type soldering iron of $25-40$ watts is recommended. The tip of the iron must be kept clean at all times and well tinned. Many areas on the PC board are close together and care must be given not to form solder shorts. Size and care of the tip will eliminate problems.
For a good soldering job, the areas being soldered must be heated sufficiently so that the solder flows freely. Apply the solder simultaneously to the component lead and the component pad on the PC
board so that good solder flow will occur. Be sure that the lead extends through the solder smoothly indicating a good solder joint. Use only rosin core solder of 60/40 alloy.
DO NOT USE ACID CORE SOLDER! Do not blob the solder over the lead because this can result in a cold solder joint.

1. Solder all components from the copper foil side only. Push the soldering iron tip against both the lead and the circuit board foil.

2. First apply a small amount of solder to the iron tip. This allows the heat to leave the iron and onto the foil. Immediately apply solder to the opposite side of the connection, away from the iron. Allow the heated component and the circuit foil to melt the solder.
3. Allow the solder to flow around the connection. Then, remove the solder and the iron and let the connection cool. The solder should have flowed smoothly and not lump around the wire lead.

4. Here is what a good solder connection looks like. Cut off excess leads.

Example 1

Poor solder connections occur when the lead is not heated sufficiently. The solder will not flow onto the lead as shown. To correct, reheat the connection and, if necessary, apply a small amount of additional solder to obtain a good connection.

Solder does not flow onto the lead. A hard rosin bead surrounds and insulates the

Soldering iron positioned incorrectly.

Example 2

A solder bridge occurs when solder runs between circuit paths and creates a short circuit. This is usually caused by using too much solder. To correct this, simply drag your soldering iron across the solder bridge as shown.

IDENTIFYING RESISTOR VALUES

Use the following information as a guide in properly identifying the value of resistors.

BAND 1	
1st Digit	
Color	Digit
Black	0
Brown	1
Red	2
Orange	3
Yellow	4
Green	5
Blue	6
Violet	7
Gray	8
White	9

BAND 2 2nd Digit	
Color	Digit
Black	0
Brown	1
Red	2
Orange	3
Yellow	4
Green	5
Blue	6
Violet	7
Gray	8
White	$\mathbf{9}$

Multiplier	
Color	Multiplier
Black	1
Brown	10
Red	100
Orange	1,000
Yellow	10,000
Green	100,000
Blue	$1,000,000$
Silver	0.01
Gold	0.1

Reslstance Tolerance	
Color	Tolerance
Silver	$\pm 10 \%$
Gold	$\pm 5 \%$
Brown	$\pm 1 \%$
Red	$\pm 2 \%$
Orange	$\pm 3 \%$
Green	$\pm .5 \%$
Blue	$\pm .25 \%$
Violet	$\pm .1 \%$

IDENTIFYING CAPACITOR VALUES

Capacitors will be identified by their capacitance value in pF (picofarads), nF (nanofarads), or $\mu \mathrm{F}$ (microfarads). Most capacitors will have their actual value printed on them. Some capacitors may have their value printed in the following manner.
The letter M indicates a tolerance of $+20 \%$
The letter K indicates a tolerance of $\pm 10 \%$

The letter J indicates a tolerance of $\pm 5 \%$ | Note: The letter "R" may be used at times |
| :--- |
| to signify a decimal point; as in $3 R 3=3.3$ |

ASSEMBLE COMPONENTS TO THE PC BOARD

After each step, put a check in the box located next to the step that you have completed.
\square Place the PC board on a table with the copper side facing up and insert the four input sockets into the PC board holes as shown in Figure A. Note that there is a lip on one end of the input socket. Solder the input sockets to the PC board as shown in Figure A. Apply enough heat to allow the solder to flow around the input socket.
\square Insert the six transistor sockets into the PC board as shown in Figure 1 and then solder into place.

ASSEMBLE COMPONENTS TO THE PC BOARD

After each step, put a check in the box located next to the step that you have completed.

Figure F
Mount and bend the mylar capacitor as shown. Solder and cut off the excess leads.

ASSEMBLE COMPONENTS TO THE PC BOARD

After each step, put a check in the box located next to the step that you have completed.

Figure I
Solder the battery snap wires as follows:
Red wire to 9V+
Black wire to 9V-

Figure J
Use the 65 mm bare wire (27AGW) as a jumper wire and mount it flush against the PC board as shown.

Figure K
Mount the fuse clips to the location shown on the PC board. Make sure that the tabs are in the direction shown below. Solder and cut off the excess leads. Insert the fuse.

ASSEMBLE THE BUZZER

\square Tin the buzzer in the three locations shown in Figure La.
\square Tin both ends of the 3.5" red, white, and green wires as shown in Figure Lb.
\square Solder the red, white, and green wires to the buzzer (see Figure Lc).
\square Place the buzzer into the holder and snap together (see Figure M).

Figure M

SOLDER BUZZER AND BATTERY CLIP WIRES TO PC BOARD

\square Solder the red buzzer wire to point R on the PC board.
\square Solder the white buzzer wire to point BU on the PC board.
\square Solder the green buzzer wire to point BK on the PC board.Tin both ends of the $3.5^{\prime \prime}$ red wire and solder to point $3 \mathrm{~V}+$ on the PC board.

-7-

SOLDER METER MOVEMENT WIRES TO PC BOARD

\square Tin the ends of the meter wires. Solder the red meter wire to $\mathrm{M}+$ and the black wire to $\mathrm{M}-$ on the foil side of the PC board (see Figure O).

Figure 0

Buzzer Assembly

-8-

INSTALL BATTERY CLIPS

\square Install the PC board into the case (see Figure P).
\square Align the buzzer holder over the two posts and press it down in place (see Figure P).Install the two single and one double battery clip as shown in Figure P .
\square Solder the red and white wires from the PC board locations $3 \mathrm{~V}+$ and $3 \mathrm{~V}-$ to the single battery contacts (see Figure Q).

-9-

CALIBRATION

Batteries

Install the following parts:

1. Install the 9 V and the two $1.5 \mathrm{~V}(\mathrm{AA})$ batteries as shown in Figure 1. Be sure to observe the polarity markings on the bottom of the battery compartment.
2. Place the thumb wheel knob onto the 0Ω ADJ pot located at the lower right side of the meter dial.

Meter Calibration (See Operating and Testing the Multimeter Section for meter operating instructions).

1. Before starting tests, set the meter needle to zero. The zero adjust screw is located on the meter face next to the base of the needle. With no test leads connected, slowly turn this screw until the needle points to zero on the 0-10 scale immediately below the meter mirror.
2. Obtain a voltage source of 0.4 V as measured by an accurate voltmeter. The circuit of Figure 2 will work fine.
3. Set the range switch to 0.5 VDC .
4. Connect the test leads as shown in Figure 2.
5. Adjust R8 for a reading of 0.4 V (40 on 50 scale) on the $\mathrm{M}-1250$ meter.

If a DC power supply or an accurate voltmeter is not available, then use a fresh 1.5 V battery and adjust R 6 to read 1.55 V on the 2.5 V scale (155 on 250 V scale).

Figure 1

Shunt Wire Calibration

To calibrate the shunt wire, you will need a 5A current source like a 5 V power supply and a $1 \Omega 25$ watt resistor. If a 5A source is not available, you can use a lower current (2A). If no supply is available, it is not important to do this test. Set the range switch to 250A/10A position and connect the red and black test leads as shown in Figure 3. Read the current on the $0-10$ scale immediately below the meter mirror. If the meter reads high, resolder the shunt wire so that there is less wire between the two mounting holes (move the shunt wire closer to the PC board). If the meter reads low, resolder the shunt wire so that there is more wire between the two mounting holes (move the shunt wire away from the PC board).

Figure 2

Figure 3

INSTALL BACK COVER AND 0Ω ADJ KNOB

\square Remove the backing on the rubber strip and attach it to the bottom case as shown in Figure R.

- Install the bottom case and mount into place with an M4×10 screw as shown in Figure R.
\square Place the 0Ω ADJ knob onto the front of the unit on the upper right of the panel.

Figure \mathbf{R}

TROUBLESHOOTING CHART

This chart lists the condition and possible causes of several malfunctions. If a particular part is mentioned as a possible cause, check that part to see if it was installed correctly. Also, check that part and the parts connected to it for good solder connections.

PROBLEM	POSSIBLE CAUSE
No DC voltage reading Refer to Figure 2 for a better understanding of how the meter works.	1. Check for open fuse. 2. Check resistors R1-R8, R13 for correct values and good solder connections. 3. Check that the PC board is seated properly and that the three board clamps are engaged. 4. Check the meter movement. Unsolder the red wire from the meter movement to the PC board. Place a $75 \mathrm{k} \Omega$ resistor between the red wire and the positive side of a 1.5 V battery. Connect the negative side of the battery to the black wire from the meter movement. The meter should read a little over half scale.
Wrong meter readings	1. Check resistors R1-R7, R13, R24 \& R25 for correct values and good solder connections.
No AC voltage reading Refer to Figure 3 for a better understanding of how the meter works.	1. Check for open fuse. 2. Check diodes D1, D2 for opens and shorts. 3. Check resistors R8, R14-R17 for correct values and good solder connections.
No DC current reading Refer to Figure 4 for a better understanding of how the meter works.	1. Check for open fuse. 2. Check resistors R7-R13 for correct values and good solder connections.
Ohms Refer to Figure 5 for a better understanding of how the meter works.	1. If meter cannot be zeroed: A. Check for open fuse. B. Check for weak or improperly installed batteries. C. Check that the battery snap and battery contacts are installed correctly. D. Check resistors R23-R25 for correct value and good solder connections. 2. If meter does not read correctly: A. Check R18-R25 for correct value and good solder connections.
No hfe reading Refer to Figure 6 for a better understanding of how the meter works.	1. Check resistors R21, R23-R25, R35, and R36.
Buzzer not working.	1. Check the following components: R31-R34, Q2, Q3, C4, L1, and the fuse for correct values and good solder connections.
Null not working.	1. Check the following components: R3-R6, R28-R30, Q1, and C3 for correct values and good solder connections.

OPERATING AND TESTING THE MULTIMETER

CAUTION: When measuring an unknown voltage or current, always start with the range switch set to the highest scale. Then, if necessary, move the range switch down until the meter reads in the middle or right half of the dial.

Checking your multimeter for proper operation is fairly easy. Of prime importance is knowing which scale is read for each setting of the range switch. DC voltage is read on the dial immediately below the meter mirror. This dial is marked with three scales with full scale readings of 10,50 and 250 . The $0-10$ scale is used for DC voltage ranges of $.1,10$ and 1000VDC. The $0-50$ scale is used for DC voltage ranges of .5 and 50VDC and the 0-250 scale is used for DC voltage ranges of 2.5 and 250VDC. The readings taken on these scales must be multiplied by the proper scale factor. For example, when the range switch is in 2.5 VDC , a full scale reading on the 0-250 scale is actually 2.5 volts. You should therefore multiply your reading by .01 (move the decimal point 2 places to the left). DCmA are read using the same three scales as DC volts.

AC volts are read on the red dial marked ACV using the same $0-10,0-50$ and $0-250$ scales as used for DC volts. $A C$ volts may also be read in decibels using the dB scale. The reference voltage (0 dB) for the dB scale is .775 volts. This voltage across 600 ohms dissipates 1 mW of power. When dBs are read with the range switch at 10 ACV , the dB scale is read directly to 22 dB . With the range switch at 50 ACV add 14 dB . With the range switch at 250 ACV add 28 dB and at 1000 ACV add 40 dB . The maximum dB readable is $22+40=62(\mathrm{~dB})$ measured on the 1000ACV scale.

Ohms are read on the top scale. Multiply the reading by the appropriate factor $1,10,1 \mathrm{k}$ or 10 k as indicated by the range switch.

If you are new to reading analog meter scales, assemble and try the Dial Scale Reading Exercise included with this kit.

Before starting tests, set the meter needle to zero. The zero adjust screw is located on the meter face next to the base of the needle. With no test leads connected, slowly turn this screw until the needle points to zero on the $0-10$ scale immediately below the meter mirror. We will now test each meter function. If the meter should fail to perform as indicated, refer to the troubleshooting section for assistance.

DC Voltage Test

1) Plug the red test lead into the positive (+) socket, and the black lead into the -COM socket.
2) Set the range switch to 2.5 VDC .
3) Connect the red lead to the positive side of a 1.5 V battery (you may remove and use one of the 1.5 V batteries from the meter). Connect the black lead to the negative side of the battery. The meter should read about 150 on the $0-250$ scale. Move the decimal point 2 places to the left to obtain 1.5VDC.
4) Set the range switch to 10 VDC . The meter should read 1.5 on the $0-10$ volt scale.
5) Set the range switch to 50VDC. The meter should move about $11 / 2$ small divisions on the $0-50$ volt scale.

Ohms Test

CAUTION: When measuring ohms, be sure that there is no voltage across the circuit being tested.

1) Plug the red test lead into the positive (+) socket, and the black lead into the -COM socket.
2) If you removed the 1.5 volt battery from the multimeter for the DC voltage test, replace it now.
3) Set the range selector switch to X1.
4) Short the test leads together and adjust the 0Ω ADJ pot for a zero reading on the ohms (top) scale.
5) Connect the test leads to a known resistor between 1 and 100 ohms and observe the meter reading. Multiply by the scale factor to obtain the resistance.
6) Set the range switch to X 10 and repeat steps 4 and 5 using a 10 to 1 k ohm resistor.
7) Set the range switch to X 100 and repeat steps 4 and 5 using a 1 k to 10k ohm resistor.
8) Set the range switch to X 1 k and repeat steps 4 and 5 using a 10 k to 100 k ohm resistor.
9) Set the range switch to X 10 k and repeat steps 4 and 5 using a 100 k to 1 M ohm resistor.

AC Voltage Test

In reading AC voltage, it is necessary to obtain a known source of AC. A 12 volt transformer is preferred. If one is not available, use the 120VAC line.

CAUTION: Be very careful when working with 120VAC. Be sure that the range switch is in the 250 or 1000VAC position before connecting the test leads to 120VAC.

1) Plug the red test lead into the + socket, and the black lead into the -COM socket.
2) Set the range switch to the appropriate ACV position. Touch the test leads to the power source and observe the meter reading. Then, multiply by the appropriate scale factor.

DC Current Test

The DC current circuit is protected by a 0.5 amp fuse. Be sure that the test current is below this level. Obtain a $68 \mathrm{k} \Omega$ resistor and a 1.5 volt battery (you may again use one of the 1.5 V meter batteries).
Proceed as follows:

1) Plug the red test lead into the + socket and the black lead into the -COM socket.
2) Set the range switch to the 50μ ADC position.
3) Connect the $68 \mathrm{k} \Omega$ resistor to the positive side of the battery. Connect the red test lead to the other side of the resistor. Connect the black test lead to the negative side of the battery. The meter should read about 22 on the $0-50$ scale. This converts directly to $22 \mu \mathrm{~A}$.
4) Set the range switch to the 2.5 mADC position. Repeat step 3 using a $1 \mathrm{k} \Omega$ resistor. The meter should read about 150 on the $0-250$ scale. Move the decimal point two places to the left to obtain 1.5 mADC .
5) Check the remaining scales using a power supply and suitable resistors.
6) See Calibration Section for 10 amp range.

hfe Test

The hfe of a transistor is read using the six small input sockets. To measure the hfe (beta) of an NPN transistor, proceed as follows.

1) If you removed the 1.5 volt battery from the multimeter, replace it now.
2) Set the range switch to the ohms X10 position.
3) Adjust the $0 \Omega A D J$ pot for a zero reading on the ohms scale.
4) Insert the transistor into the NPN section.
5) Read the $h_{\text {FE }}$ of the transistor on the blue hFE scale immediately below the BATT (1.5V) scale.
6) To measure a PNP transistor, insert the transistor into the PNP section.

Transistor Leakage Test (Iceo)

1) Plug the red test lead into the $P(+)$ and the black test lead in into $N(-C O M)$ sockets.
2) Set the range switch to the ohm $\mathrm{X} 10(15 \mathrm{~mA})$ position for small size transistors, for X 1 (150 mA) position for large size transistors.
3) Adjust the 0Ω ADJ for a zero reading on the ohms scale.
4) Connect the transistor as follows:

NPN Connect the test lead from the P terminal to the EMITTER (E) of the transistor. Connect the test lead from the N terminal to the COLLECTOR (C) of the transistor.
PNP Connect the test lead from the P terminal to the COLLECTOR (C) of the transistor. Connect the test lead from the N terminal to the EMITTER (E) of the transistor.
5) Read the leakage current on the Iceo scale. If you are on the 150 mA scale, move the decimal point one place to the right.

Battery Test

1. Set the range switch to the BATT position.
2. Plug the red test lead into the positive (+) socket and the black test lead into the -COM socket.

3 . Connect 1.5 V battery to the test leads and read the scale.
Good battery: The pointer stays within the GOOD (BLUE) range.
Low battery: The pointer stays within the ? range. The battery may be only good for low current equipment.
Bad battery: The pointer stays within the BAD (RED) range.

Buzzer Test

1. Set the range switch to the BUZZ position.
2. The buzzer will sound if there are 20Ω or less across the leads.

DCV (NULL) Test

1. Set the range switch to either the ± 5 or ± 25 scale in the DCV (NULL) position.
2. Adjust the 0Ω ADJ pot for a zero center position
3. Plug the red test lead into the positive (+) socket and the black test lead into the -COM socket.
4. Connect voltage to the test leads and read the voltage.

Output Jack Test (allows measurement of AC voltage when superimposed on a DC voltage.)

1. Plug the red lead into the OUTPUT socket and the black lead into -COM.
2. Set the range switch to the appropriate ACV position. Touch the test leads to the power source and observe the reading. Then, multiply by the appropriate scale factor.

Diode Tests

The diode forward current If and reverse current Ir are read LI scale. To check a diode in the forward direction proceed as follows:

1) Plug the red test lead into the + socket and the black lead into the -COM socket.
2) Select the approximate forward current desired $150 \mu \mathrm{~A}, 1.5 \mathrm{~mA}, 15 \mathrm{~mA}$ or 150 mA and set the range switch to this position (blue markings in ohms range).
3) Short the test leads together and adjust the 0תADJ pot for a zero reading on the ohms (top) scale.
4) Connect the red test lead to the cathode (striped end) of the diode and the black test lead to the anode of the diode.
5) Read the forward current on the LI scale. The voltage drop across the diode is shown on the LV scale immediately below the LI scale.

THEORY OF OPERATION

Introduction

Your multimeter is of professional quality using 1% precision resistors throughout the design. The accuracy at full scale reading will be within 3% of full scale DC voltage or current ($1,000 \mathrm{~V}-5 \%, 10 \mathrm{~A}-5 \%$) and 4% of full scale (for $1,000 \mathrm{~V}-5 \%$) AC voltage. The accuracy of the ohms measurement is 3% of arc.
On the DC volts range, the loading impedance of the meter is 20,000 ohms per volt. This means that if the range switch is on the 250 V position, the loading to the circuit under test will be $20,000 \times 250=5 \mathrm{M} \Omega$.
The input loading of the meter is a very important factor to be considered when measuring the voltage of a high resistance circuit. Take the example where two $1 \mathrm{M} \Omega$ resistors are connected in series across a 9 V battery. The voltage at the junction of the resistors will be 4.5 V . When measured on the 10 V scale, the input loading will be about $200 \mathrm{k} \Omega(20,000$ ohms/volt times 10 V$)$. The voltage at the junction will therefore drop to 1.28 V and the meter will read this voltage. If the meter is switched to the 50 V position, the loading will be $1 \mathrm{M} \Omega$ and the meter will read 3 V . For reasonably accurate measurement, the circuit under test should have an impedance of less than $100 \mathrm{k} \Omega$ or you should use the higher ranges. The loading on the 250 V and $1,000 \mathrm{~V}$ ranges will be $5 \mathrm{M} \Omega$ and $20 \mathrm{M} \Omega$ respectively, but it will be hard to read 4.5 V on these ranges.

DC Voltage Measurement

Figure 4 shows a simplified diagram of the DC voltage measuring circuit. Here resistors are switched in series with the meter to provide the desired ranges.

AC Voltage Measurement

Figure 5 shows a simplified diagram of the AC voltage measuring circuit. Two diodes are added to the series resistors to rectify the AC voltage. The input impedance on the AC voltage ranges is $9 \mathrm{k} \Omega$ per volt. On the 250 VAC range, the input impedance is therefore $2 \mathrm{M} \Omega$.

Figure 5

DC Current Measurement

Figure 6 shows a simplified diagram of the DC current measuring circuit. Here the resistors are placed across the meter to shunt the current. On the $50 \mu \mathrm{~A}$ range, the current is fed directly to the meter and the voltage drop across the meter at full scale deflection is .1 volt. On all of the other ranges, the full scale voltage drop across the meter is .25 volts. A .5 amp fuse is added to the circuit for protection against overload.

Figure 6

Resistance Measurement

Figure 7 shows a simplified diagram of the resistance measuring circuit. Here a known 1% resistor, in parallel with the meter and the zero adjust resistors, is compared to the external resistor in a series circuit. The current is supplied by the 3 V battery on the $\mathrm{X} 1, \mathrm{X} 10$ and X 1 k ranges. On the X 10 k range, a 9 V battery is placed in series with the 3 V battery to supply more current to the series circuit. To calibrate the ohms circuit, the external resistor is made zero ohms by shorting the test leads together. This places the full battery voltage across the internal resistors. The current in the meter is adjusted to full scale deflection, or zero reading on the dial. When an external resistor is made equal to the internal resistance, the meter will deflect to half scale and the dial marking will show its value.

Figure 7

hfe Measurement

Figure 8 shows a simplified diagram of the hFE measuring circuit for PNP transistor. Here the range switch is in the X10 ohms position and the transistor circuit takes the place of the external resistor in the ohms measurement. The higher the hFE of the transistor, the more current flows in the external circuit and the lower the effective resistance. The meter reads this resistance and the hfe of the transistor may be read on the hfe scale.

Figure 8

Battery Test

Figure 9 shows a simplified diagram of the battery measuring circuit. The battery voltage is measured under a 0.25 A load.

Figure 9

Buzzer Test

Figure 10 shows a simplified diagram of the audio continuity circuit. When a 20Ω load or less is place across the terminals, transistor Q3 conducts and allows Q3 to oscillate.

Figure 10

DC NULL Test

Figure 11 shows a simplified diagram of the DCV (NULL) circuit. The meter is set to 0 on the DCV (NULL) scale. Positive or negative voltage applied to the terminals causes the meter to swing in either direction.

Figure 11

Elenco ${ }^{\text {TM }}$ Electronics, Inc.

150 W. Carpenter Avenue
Wheeling, IL 60090
(847) 541-3800
http://www.elenco.com
e-mail: elenco@elenco.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for elenco manufacturer:
Other Similar products are found below :
EP130 RK-365 XP-720K SP-1A JW-350 K-37

