

Ultra High Precision Bulk Metal® Z-Foil Surface Mount Power Resistor in TO-220 Configuration with TCR of \pm 0.05 ppm/°C, PCR of \pm 0.005 % (50 ppm)

INTRODUCTION

The Z-Foil technology provides a significant reduction of the resistive component's sensitivity to ambient temperature variations (TCR) and applied power changes (PCR).

Model VPR221SZ is a 4 lead kelvin connected surface mount device which provides high rated power, excellent load life stability, low temperature coefficient (TCR) and low power coefficient (PCR) - all in one resistor. \pm 0.05 ppm/°C absolute TCR removes error due to temperature gradients.

By taking advantage of the overall stability and reliability of Bulk Metal® Z-Foil resistors, designers can significantly reduce circuit errors and greatly improve overall circuit performances.

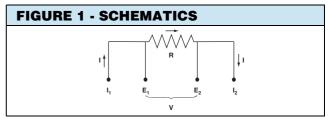
Our application engineering department is available to advise and make recommendations. For non-standard technical requirements and special applications, please contact us.

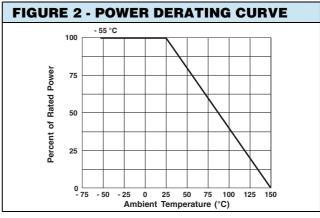
TABLE 1 - TCR AND TOLERANCE				
RESISTANCE RANGE (Ω)	TIGHTEST RESISTANCE TOLERANCE	TYPICAL TCR AND MAX. SPREAD ⁽¹⁾		
0.5 to < 1	± 0.05 %	± 0.2 ppm/°C ± 2.8 ppm/°C		
1 to < 10	± 0.02 %	± 0.2 ppm/°C ± 2.3 ppm/°C		
10 to 500	± 0.01 %	± 0.2 ppm/°C ± 1.8 ppm/°C		

Notes

- $^{(1)}$ MIL-range (- 55 °C to + 125 °C, + 25 °C ref.)
- · Contact applications engineering for other available values
- * Pb containing terminations are not RoHS compliant, exemptions may apply

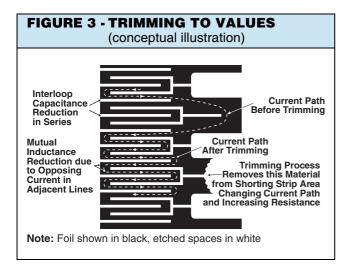
FEATURES

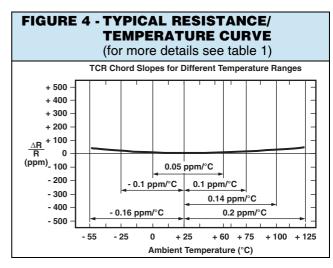

- Temperature coefficient of resistance (TCR):
 ± 0.05 ppm/°C typical (0 °C to + 60 °C)
 - \pm 0.2 ppm/°C typical (- 55 °C to + 125 °C,
 - + 25 °C ref.) (see table 1)

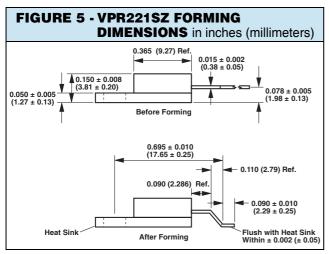

Tolerance: to ± 0.01 %

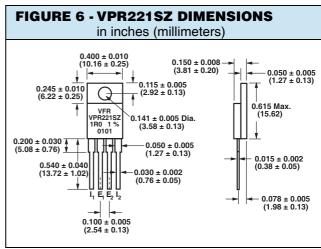
ROHS

- Power coefficient "ΔR due to self heating": 4 ppm/W typical
- Rated power: 8 W chassis mounted (MIL-PRF-39009)
- Load life stability: to ± 0.005 % at 25 °C for 2000 h, at 1.5 W
- Resistance range: 0.5 Ω to 500 Ω
- Foil resistors are not restricted to standard values; specific "as requested" values can be supplied at no extra cost or delivery (e.g. 100R2345 vs. 100R)
- Electrostatic discharge (ESD) up to 25 000 V
- Short time overload ≤ 0.001 % (10 ppm)
- Non-inductive, non-capacitive design
- Rise time: 1 ns effectively no ringing
- Current noise: 0.010 μV_{RMS}/V of applied voltage (< 40 dB)
- Thermal EMF: 0.05 μV/°C typical
- Voltage coefficient < 0.1 ppm/V
- Non-inductive: < 0.08 μH
- Non hot spot design
- Thermal stabilization time < 1 s (nominal value achieved within 10 ppm of steady state value)
- Terminal finish: lead (Pb)-free or tin/lead alloy
- Compliant to RoHS directive 2002/95/EC
- Prototype quantities available in just 5 working days or sooner. For more information, please contact foil@vishaypg.com
- For better performances please contact us






Revision: 16-Aug-12


Vishay Foil Resistors

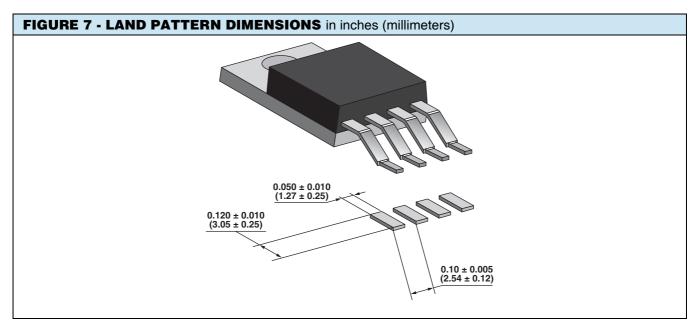


TABLE 2 - SPECIFICATIONS		
Power Rating at + 25 °C	8 W or 3 A ⁽¹⁾ on heat sink ⁽²⁾ 1.5 W in free air Further derating not necessary.	
Current Noise	< 0.010 μV _{RMS} /V of applied voltage (- 40 dB)	
High Frequency Operation Rise Time Inductance (L) (3) Capacitance (C)	0.2 ns at 1 W 0.1 μH maximum: 0.03 μH typical 1.0 pF maximum: 0.5 pF typical	
Voltage Coefficient (4)	< 0.1 ppm/V	
Operating Temperature Range	- 55 °C to + 150 °C	
Maximum Working Voltage	300 V, not to exceed power rating	
Thermal EMF (5)	0.15 μV/°C maximum (lead effect)	
Weight	1.2 g maximum	

Notes

(2) Heat sink chassis dimensions are requirements per MIL-R-39009/1B:

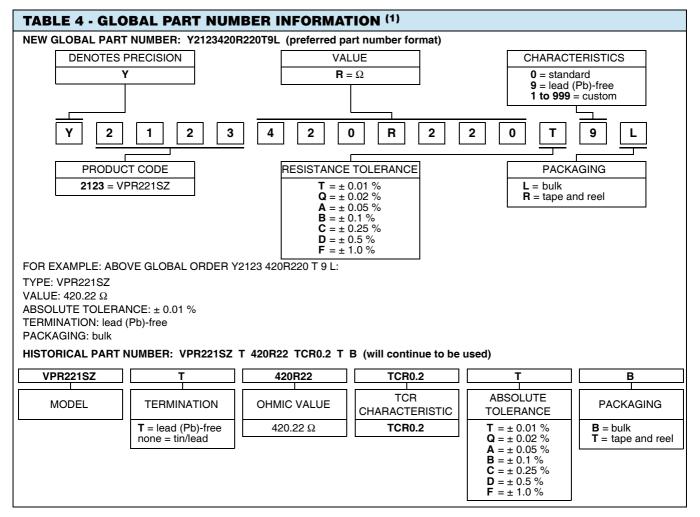
DIMENSIONS	inches	mm	
L	6.00	152.4	
W	4.00	101.6	
н	2.00	50.8	
Т	0.04	1.0	

⁽³⁾ Inductance (L) mainly due to the leads

 $^{^{(5)}~\}mu\text{V}/^{\circ}\text{C}$ relates to EMF due to lead temperature difference

TABLE 3 - PERFORMANCE SPECIFICATIONS (1) MIL-PRF 39009					
TEST OR CONDITION	MIL-PRF 39009	TYPICAL ∆R	MAXIMUM AR		
Low temperature storage 24 h at - 55 °C	± 0.3 % + 0.01 Ω	± 0.001 % (10 ppm)	± 0.002 % (20 ppm)		
Dielectric withstanding voltage 300 V _{AC} at Atm	± 0.2 % + 0.01 Ω	± 0.001 % (10 ppm)	± 0.002 % (20 ppm)		
Dielectric withstanding voltage 200 V _{AC} at Brm	± 0.2 % + 0.01 Ω	± 0.001 % (10 ppm)	± 0.002 % (20 ppm)		
Insulation resistance	$> 10^4\mathrm{M}\Omega$		$> 10^4\mathrm{M}\Omega$		
Low temperature operation	± 0.3 % + 0.01 Ω	± 0.002 % (20 ppm)	± 0.008 % (80 ppm)		
Short time overload 5 x rated power for 5 s (in air)	± 0.3 % + 0.01 Ω	± 0.001 % (10 ppm)	± 0.002 % (20 ppm)		
Moisture resistance + 65 °C to - 10 °C, 90 RH to 98 RH, 10 days	± 0.5 % + 0.01 Ω	± 0.005 % (50 ppm)	± 0.015 % (150 ppm)		
Terminal strength	± 0.2 % + 0.01 Ω	± 0.001 % (10 ppm)	± 0.002 % (20 ppm)		
Load life 8 W at + 25 °C, 2000 h with heat sink	± 1.0 % + 0.01 Ω	± 0.005 % (50 ppm)	± 0.015 % (150 ppm)		
Load life 1.5 W at + 25 °C for 2000 h in free air	± 1.0 % + 0.01 Ω	± 0.005 % (50 ppm)	± 0.015 % (150 ppm)		
High temperature exposure + 150 °C	± 1.0 % + 0.05 Ω	± 0.005 % (50 ppm)	± 0.01 % (100 ppm)		

Note


⁽¹⁾ Whichever is lower

⁽⁴⁾ The resolution limit of existing test requirement (within the measurement capability of the equipment, "essentially zero")

⁽¹⁾ Measurement error ± 0.001 %

Vishay Foil Resistors

Note

(1) For non-standard requests, please contact application engineering

Document Number: 63127 Revision: 16-Aug-12

Legal Disclaimer Notice

Vishay Precision Group, Inc.

Disclaimer

ALL PRODUCTS, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE.

Vishay Precision Group, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "VPG"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

The product specifications do not expand or otherwise modify VPG's terms and conditions of purchase, including but not limited to, the warranty expressed therein.

VPG makes no warranty, representation or guarantee other than as set forth in the terms and conditions of purchase. To the maximum extent permitted by applicable law, VPG disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Information provided in datasheets and/or specifications may vary from actual results in different applications and performance may vary over time. Statements regarding the suitability of products for certain types of applications are based on VPG's knowledge of typical requirements that are often placed on VPG products. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. You should ensure you have the current version of the relevant information by contacting VPG prior to performing installation or use of the product, such as on our website at vpgsensors.com.

No license, express, implied, or otherwise, to any intellectual property rights is granted by this document, or by any conduct of VPG.

The products shown herein are not designed for use in life-saving or life-sustaining applications unless otherwise expressly indicated. Customers using or selling VPG products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify VPG for any damages arising or resulting from such use or sale. Please contact authorized VPG personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Copyright Vishay Precision Group, Inc., 2014. All rights reserved.

Document No.: 63999 Revision: 15-Jul-2014

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for vishay manufacturer:

Other Similar products are found below:

M39006/22-0577H Y00892K49000BR13L VS-12CWQ10FNPBF M8340109M6801GGD03 VS-MBRB1545CTPBF 1KAB100E

CRCW1210360RFKEA VSMF4720-GS08 CRCW04024021FRT7 001789X LT0050FR0500JTE3 CRCW0805348RFKEA

LVR10R0200FE03 CRCW12063K30FKEAHP 009923A CRCW2010331JR02 CRCW25128K06FKEG CS6600552K000B8768 M39003/01
2289 M39003/01-2784 M39006/25-0133 M39006/25-0228 M64W101KB40 M64Z501KB40 CW001R5000JS73 CW0055R000JE12

CW0056K800JB12 CW0106K000JE73 672D826H075EK5C CWR06JC105KC CWR06NC475JC MAL219699001E3

MCRL007035R00JHB00 PTF56100K00QYEK PTN0805H1502BBTR1K RCL12252K20JNEG RCWL1210R130JNEA RH005220R0FE02

RH005330R0FC02 RH010R0500FC02 132B20103 RH1007R000FJ01 RH2503R500FE01 RH254R220FS03 RH-50-40R2-1%-C02

134D336X9075C6 132B00301 135D277X0025F6 DG202BDY-T1-E3 DG9426EDO-T1-GE3