

Custom Engineered Solutions for Tomorrow

www.standexmeder.com

- > Features: High Voltage Relay, Through-Hole / Axial Wire Option, Latching Version, Special Pin-Outs
- > Applications: High Voltage Test Sets, Cable Testers, Medical Equipment & Others
- Markets: Medical, Test and Measurement & Others

Part-Description:	HM_00-	0 X 0 0 - 0 0 0		
Nominal Voltage	Contact QTY	Contact Form	Switch Model	Pin Out
05, 12, 24	1	А, В	69, 83	02, 03, 06, 08, 26, 20-6, 150, 300

Customer Options	Switch	Model	1 Junit
Contact Data	69	83	Unit
Rated Power (max.) Any DC combination of V&A not to exceed their individual max.'s	50	50	W
Switching Voltage (max.) DC or peak AC	10,000	7,500	V
Switching Current (max.) DC or peak AC	3.0	3.0	А
Carry Current (max.) DC or peak AC	5.0	5.0	А
Contact Resistance (max.) @ 0.5V & 50mA	150	150	mOhm
Breakdown Voltage (min.) According to EN60255-5	15	10	kVDC
Operating Time (max.) Incl. Bounce; Measured with w/ Nominal Voltage	3.0	3.0	ms
Release Time (max.) Measured with no Coil Excitation	1.5	1.5	ms
Insulation Resistance (typ.) Rh<45%, 100V Test Voltage	10 ¹²	1012	Ohm
Capacitance (typ.) @ 10kHz across open Switch	1	1	pF

USA: +1 Europe: +2 Asia: +8

+1.866.782.6339 +49.7731.8399.0 +86.21.37820625 | salesusa@standexmeder.com | info@standexmeder.com | salesasia@standexmeder.com

Custom Engineered Solutions for Tomorrow

A Global Leader in the Design, Development, and Manufacture of Sensor and Magnetic Components

Series Datasheet – HM Reed Relays

www.standexmeder.com

Coil	Data		Coil Resistance	Dull In Voltogo	Dren Out Valtage	Nominal Coil Power
Contact Form	Switch Model	Coil Voltage (nom.)	(typ.)	Pull-In Voltage (max.)	Drop-Out Voltage (min.)	(typ.)
Ur	nit	VDC	Ohm	VDC	VDC	mW
		05	30	3.8	0.5	833
	69	12	150	9	1	960
1A		24	600	18	2	960
IA		05	45	3.8	0.5	556
	83	12	250	9	1	576
		24	1,000	18	2	576
		05	60	3.8	0.5	556
	69	12	150	9	1	960
1B		24	1,000	18	2	576
TD		05	45	3.8	0.5	556
	83	12	250	9	1	576
		24	1,000	18	2	576

The Pull-In / Drop-Out Voltage and Coil Resistance will change at rate of 0.4% per °C.

Environmental Data		Unit
Shock Resistance (max.) 1/2 sine wave duration 11ms	50	g
Vibration Resistance (max.)	20	g
Operating Temperature	-20 to 70	°C
Storage Temperature	-35 to 95	°C
Soldering Temperature (max.) 5 sec. max.	260	°C

Handling & Assembly Instructions

- Switching inductive and/or capacitive loads create voltage and/or current peaks, which may damage the relay. Protective circuits need to be used.
- External magnetic fields needs to be taken into consideration, including a too high packing density. This may influence the relays' electrical characteristics.
- Mechanical shock impacts e.g. dropping the relays may cause immediate or post-installation failure.
- Wave soldering: maximum 260°/5 seconds.
- Reflow soldering: Recommendations given by the soldering paste manufacturer need to be considered as well as the temperature limits of other components/processes.

USA: Europe: Asia: +1.866.782.6339 +49.7731.8399.0 +86.21.37820625 | salesusa@standexmeder.com | info@standexmeder.com | salesasia@standexmeder.com

Custom Engineered Solutions for Tomorrow

A Global Leader in the Design, Development, and **Manufacture of Sensor and Magnetic Components**

Series Datasheet – HM Reed Relays

www.standexmeder.com

Glossary	Contact Form		
Form A	NO = Normally Open Contacts SPST = Single Pole Single Throw		
Form B	NC = Normally Closed Contacts SPST = Single Pole Single Throw		
Form C	Changeover SPDT = Single Pole Double Throw	RÉACH	ROHS

Pin Out

Top View

2.5mm [0.098"] pitch grid

HMxx-1Axx

•	I Y I		~	n	~	•																
	r				_		-	-	_	-		-	-	-	-	-	-	_			J	П
					7																	
					`	К																
		6	5			ĸ						 ١							6	Ś.,		
			ľ			ĸ													,	1		
					1	ĸ																
						٢																
																						<i></i>

HMxx-1Axx-03

4	_								_						_	_								_			5
Н	_	⊢	-	⊢	┝	-	┝		-	\vdash	-	⊢			_	_	H					-	⊢			_	H
Ħ		F			F		F						4	Ŝ,													П
Н	-	┢	-	┝	┝	⊢	┝		-	1	F	┝		Ř	-	_						-	⊢	-	>	Η	H
Ħ		F			F								-	Ķ													T
Н	_	⊢		┝	┝	⊢	⊢	Η	-	\vdash	┝	⊢			-	_	H	Η			Η		⊢			Η	H
1	_							-	_						_	_		-	_	-	-	_		-		-	2

HMxx-1Axx-06

			f			
H + + + + +	++++		b + + +	++++		
HI-@	++++	-	Ď I I I I	++++	\vdash	 ⊕
H + + + + + + + + + + + + + + + + + + +	++++	++++		++++		++++
						нн
						ΗΨ

HMxx-1Axx-150

Locking Pin	
X	R
	Ħ
	Н
	H
••••••••••••••••••••••••••••••••••••••	Ħ
	Н

2.54mm [0.100"] pitch grid

Н	N	١x	X	-1	A	x	x-	0	2																			
Γ	Γ	Г	Γ																									\Box
С	1	Τ	Γ		E																						D	
	Ш													4	6													Ц
⊢	#	⊢	⊢	⊢	⊢	⊢	-	⊢						<u> </u>	ħ.	-	Н						\vdash		-		н	н
⊢	₩	⊢	⊢	H	⊧	⊢	-	⊢	H		-	1	F	⊢	B-	-	Н			_			-	•	-	H	H	н
⊢	₩	⊢	⊢	⊢	⊢	⊢	-	⊢	H		-	Н	⊢	⊢	Ð	-	Н	H	-			H	Н	H	-	H	H	н
⊢	H	⊢	⊢	⊢	⊢	⊢	-	⊢	H	H	-	Н	⊢	H	Þ-	-	Н	H	H		H	Н	Н	H	-	H	H	Н
F	tt		t		t																						U	н
F	F	Г	Г	Г	Г	Г							Г														-	Н

2.5mm [0.098"] pitch grid

HMxx	(-'	1 E	3x	X	-0	6														
										4	4									2
Ш									-	- `	Ľ									Щ
									╘		4									щ
Шæ							-	\langle	П		Ķ.	\square						-	5	щ
ШŤ									⊢		Ķ.	\square						Ц	r I	щ
									⊢		Ľ	\square						\square		щ
									⊢	- (<u> </u>	\square								щ
4			_						⊨	H	-	⊨			-		-	=		4

HMxx-1Bxx-105

H+++	┼┼╅┟┼┼	++++++	+++++	+++++++
шн				
				+++++
				+++++
HIII -	H 1 ¥ 1 1			
19 11		++++++		+++++

Locking Pin

HMxx-1Axx-08

HMxx-1Axx-04

++++++

	++++		++++	
116111	++++		+++++	
H	++++	+++++	+++++	
H + + + + +		HAMM		
H + + + + +	++++	+++++	+++++	

+1.866.782.6339 +49.7731.8399.0 +86.21.37820625

salesusa@standexmeder.com info@standexmeder.com | salesasia@standexmeder.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for standexmeder manufacturer:

Other Similar products are found below :

MK18-B-500W DIP05-1A72-12L CRF05-1AS HE06-1B83-150 HE24-1A83 MK02/0-1A66-1000W SHV12-1A85-78L3K KT12-1A-BV88589 SIL05-1A72-71QHR NDFEB 8X15MM BE12-2A85-BV420 MK04-1A66B-500W DIP05-1A72-13L HM24-1A69-20-6 HM12-1A83-06-UL H12-1B83 KT12-1A-40L-THT SIL05-1A31-71L MK06-4-C L105-1A85 NDFEB 10X5X1.9MM LS01-1A66-PP-500W M11/M8 LS02-1A66-PP-500W HM24-1A69-300 LS02-1A66-PA-500W KT05-1A-40L-THT MK21M-1A66C-500W DIP24-1C90-51D SIL24-1A72-71D SIL24-1A75-71L DIP12-1A72-12L ORD211-1015 DIP12-2A72-21L H24-1A83 MK17-C-3 SHV12-1A85-78L4K ALNICO500; 10X40MM HE24-1A83-02 MS05-1A87-75DHR DIL05-2C90-63L DIP24-1A72-12L HM24-1A69-06 DIP24-1A31-16D HE06-1A16 MK03-1A66E-500W LS01-1A66-PA-500W ORD228VL-2030 DIP05-1C90-51L ALNICO500 5X22MM