
Rev. 1.0, 12-Jul-16

1 For technical questions, contact: <u>sensorstechsupport@vishay.com</u>

High Resolution Digital Biosensor for Wearable Applications with I²C Interface

IR cathode

www.vishay.com

DESCRIPTION

The VCNL4020C is a fully integrated biosensor and ambient light sensor. Fully integrated means that the infrared emitter is included in the package. It has 16 bit resolution. It includes a signal processing IC and features standard I²C communication interface. It features an interrupt function.

APPLICATIONS

- Wearables
- Health monitoring
- Pulse oximetry

FEATURES

- Package type: surface mount
- Package form: SMD
- Dimensions (L x W x H in mm): 4.90 x 2.40 x 0.83
- Integrated modules: infrared emitter (IRED), ambient light sensor (ALS), photo diode (PD), and signal conditioning IC
- Interrupt function
- Supply voltage range V_{DD}: 2.5 V to 3.6 V
- Supply voltage range IR anode: 2.5 V to 5 V
- Communication via I²C interface
- I²C bus H-level range: 1.7 V to 5 V
- Floor life: 72 h, MSL 4, according to J-STD-020
- Low stand by current consumption: 1.5 μA
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

OPTICAL BIOSENSORS FUNCTION

- Built-in infrared emitter and broader sensitivity photodiode allows to also work with green and red LEDs
- 16 bit effective resolution ensures excellent cross talk immunity
- Programmable LED drive current from 10 mA to 200 mA in 10 mA steps
- Excellent ambient light suppression through signal modulation

AMBIENT LIGHT FUNCTION

- Built-in ambient light photo-pin-diode with close-to-human-eye sensitivity
- 16 bit dynamic range from 0.25 lx to 16 klx
- 100 Hz and 120 Hz flicker noise rejection

PRODUCT SUMMARY											
PART NUMBER	OPERATING VOLTAGE RANGE (V)	I ² C BUS VOLTAGE RANGE (V)	LED PULSE CURRENT ⁽¹⁾ (mA)	AMBIENT LIGHT RANGE (lx)	$\begin{array}{c} \text{SPECTRAL} \\ \text{BANDWIDTH} \\ \text{RANGE} \\ \lambda_{0.5} \text{ (nm)} \end{array}$	OUTPUT CODE	ADC RESOLUTION BIOSENSOR / AMBIENT LIGHT SENSOR				
VCNL4020C	2.5 to 3.6	1.7 to 5	10 to 200	0.25 to 16 383	550 to 970	16 bit, I ² C	16 bit / 16 bit				

Note

⁽¹⁾ Adjustable through I²C interface

Vishay Semiconductors

GREEN (5-2008)

Vishay Semiconductors

ORDERING INFORMATION									
ORDERING CODE	PACKAGING	VOLUME ⁽¹⁾	REMARKS						
VCNL4020C-GS08	Tape and reel	MOQ: 3300 pcs	4.90 mm x 2.40 mm x 0.83 mm						
VCNL4020C-GS18	rape and reel	MOQ: 13 000 pcs	4.90 mm x 2.40 mm x 0.65 mm						
SENSORSTARTERKIT ⁽²⁾	-	MOQ: 1 pc	-						

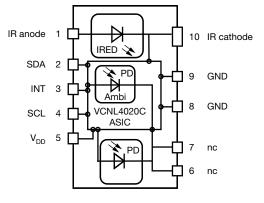
Notes

⁽¹⁾ MOQ: minimum order quantity

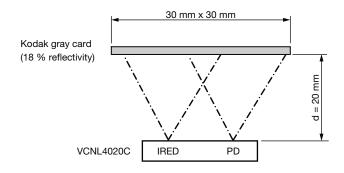
(2) A sensor starter kit is available, along with an add-on demo board for each of the sensors.

Please visit <u>www.vishay.com/moreinfo/vcnldemokit/</u> for more information. Contact any catalog distributor or a local Vishay sales representative to purchase the sensor starter kit and contact sensorstechsupport@vishay.com to receive an add-on sensor board.

ABSOLUTE MAXIMUM	ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)											
PARAMETER	TEST CONDITION	SYMBOL	MIN.	MAX.	UNIT							
Supply voltage		V _{DD}	-0.3	5.5	V							
Operation temperature range		T _{amb}	-25	+85	°C							
Storage temperature range		T _{stg}	-25	+85	°C							
Total power dissipation	$T_{amb} \le 25 \ ^{\circ}C$	P _{tot}	-	50	mW							
Junction temperature		Tj	-	100	С°							

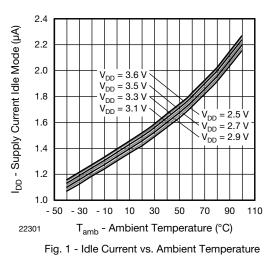

PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage V _{DD}			2.5	-	3.6	V
Supply voltage IR anode			2.5	-	5	V
I ² C bus H-level range			1.7	-	5	V
INT H-level range			1.7	-	5	V
INT low voltage	3 mA sink current		-	-	0.4	V
Current consumption	Standby current, no LED-operation		-	1.5	2	μA
	2 measurements per second, LED current 20 mA		-	5	-	μA
Current consumption	250 measurements per second, LED current 20 mA		-	520	-	μA
pulse mode incl. LED (averaged)	2 measurements per second, LED current 200 mA		-	35	-	μA
	250 measurements per second, LED current 200 mA		-	4	-	mA
	2 measurements per second averaging = 1		-	2.5	-	μA
Current consumption ambient	8 measurements per second averaging = 1		-	10	-	μA
light mode	2 measurements per second averaging = 64		-	160	-	μA
	8 measurements per second averaging = 64		-	640	-	μA
Ambient light resolution	Digital resolution (LSB count)		-	0.25	-	lx
Ambient light output	E _V = 100 lx averaging = 64		-	400	-	counts
I ² C clock rate range		f _{SCL}	_	-	3400	kHz

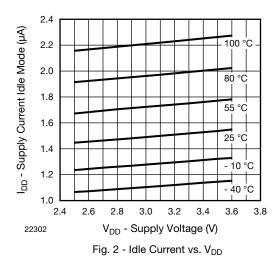
2

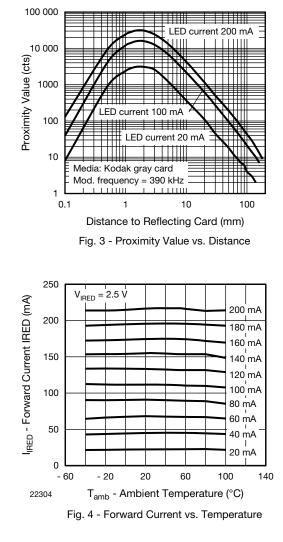

CIRCUIT BLOCK DIAGRAM

ISHA

www.vishay.com


TEST CIRCUIT




Note

 nc must not be electrically connected Pads 6 and 7 are only considered as solder pads

BASIC CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

Rev. 1.0, 12-Jul-16

3

Document Number: 84350

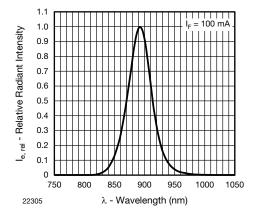


Fig. 5 - Relative Radiant Intensity vs. Wavelength

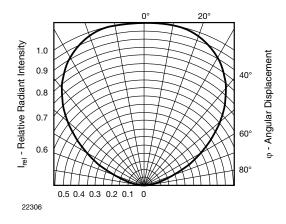


Fig. 6 - Relative Radiant Intensity vs. Angular Displacement

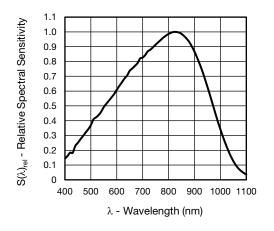


Fig. 7 - Relative Spectral Sensitivity vs. Wavelength (Biosensor)

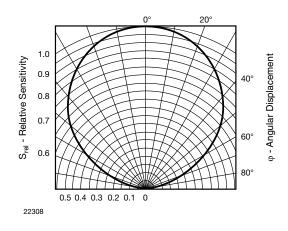


Fig. 8 - Relative Radiant Sensitivity vs. Angular Displacement (Proximity Sensor)

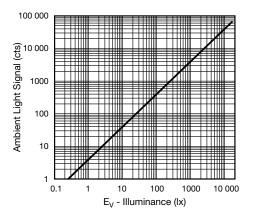


Fig. 9 - Ambient Light Value vs. Illuminance

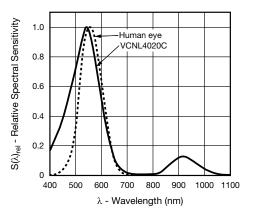


Fig. 10 - Relative Spectral Sensitivity vs. Wavelength (Ambient Light Sensor)

4

Document Number: 84350

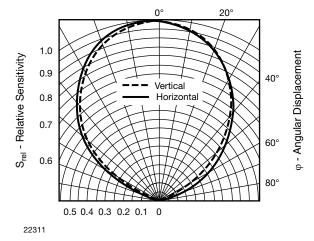
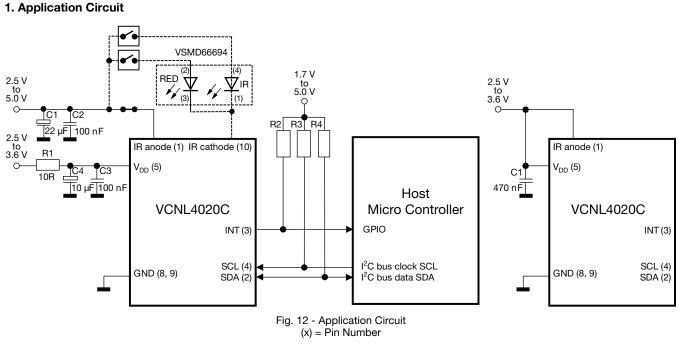



Fig. 11 - Relative Radiant Sensitivity vs. Angular Displacement (Ambient Light Sensor)

APPLICATION INFORMATION

The digital biosensor VCNL4020C needs just one decoupling-C at V_{DD} if connected to a regulated power supply.

IR cathode needs no external connection as the connection to the driver is done internally, but this allows also for adding external LEDs / IREDs to the driver.

Note

The interrupt pin is an open drain output. The needed pull-up resistor may be connected to the same supply voltage as the application controller and the pull-up resistors at SDA / SCL. Proposed value R2 should be >1 kΩ, e.g. 10 kΩ to 100 kΩ.
 Proposed value for R3 and R4, e.g. 2.2 kΩ to 4.7 kΩ, depend also on the I²C bus speed.

For detailed description about set-up and use of the interrupt as well as more application related information see AN: "Designing VCNL4020C into an Application".

Vishay Semiconductors

2. I²C Interface

The VCNL4020C contains seventeen 8 bit registers for operation control, parameter setup and result buffering. All registers are accessible via I²C communication. Figure 13 shows the basic I²C communication with VCNL4020C.

The built in I²C interface is compatible with all I²C modes (standard, fast and high speed).

 I^2C H-level range = 1.7 V to 5 V.

Please refer to the I²C specification from NXP for details.

Send byte Write command to VCNL4020C

S	Slave address	Wr	А	Register address	А	C	Data byte	А	Ρ	
Rece										
S	Slave address	Р								
S	Slave address	Rd A Data byte A				Р				
S = start condition Host action P = stop condition										
	cknowledge									
	Fig	. 13	- Sei	nd Byte/Receive B	yte F	rotoco	bl			

Device Address

The VCNL4020C has a fix slave address for the host programming and accessing selection. The predefined 7 bit I^2C bus address is set to 0010 011 = 13h. The least significant bit (LSB) defines read or write mode. Accordingly the bus address is set to 0010 011x = 26h for write, 27h for read.

Register Addresses

VCNL4020C has seventeen user accessible 8 bit registers. The register addresses are 80h (register #0) to 90h (register #16).

REGISTER FUNCTIONS

Register #0 Command Register

Register address = 80h

The register #0 is for starting ambient light or biosensor measurements. This register contains 2 flag bits for data ready indication.

TABLE 1 -	TABLE 1 - COMMAND REGISTER #0												
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0						
config_lock	als_data_rdy	bs_data_rdy	als_od	bs_od	als_en	bs_en	selftimed_en						
			Descr	ription									
config_lock Read only bit. Value = 1													
als_data_rdy Read only bit. Value = 1 when ambient light measurement data is available in the result registers. Th will be reset when one of the corresponding result registers (reg #5, reg #6) is read.							registers. This b						
bs_da	ita_rdy	Read only bit. Value = 1 when biosensor measurement data is available in the result registers. This bit will be reset when one of the corresponding result registers (reg #7, reg #8) is read.											
als	_od	R/W bit. Starts a single on-demand measurement for ambient light. If averaging is enabled, starts a sequence of readings and stores the averaged result. Result is available at the end of conversion for reading in the registers #5(HB) and #6(LB).											
bs_	_od	R/W bit. Starts a single on-demand measurement for biosensor. Result is available at the end of conversion for reading in the registers #7(HB) and #8(LB).											
als	_en	R/W bit. Enables periodic als measurement											
bs	_en	R/W bit. Enables periodic biosensor measurement											
selftim	ned_en	R/W bit. Enables state machine and LP oscillator for self timed measurements; no measurement is performed until the corresponding bit is set											

Note

With setting bit 3 and bit 4 at the same write command, a simultaneously measurement of ambient light and biosensor is done. Beside als_en and / or bs_en first selftimed_en needs to be set. On-demand measurement modes are disabled if selftimed_en bit is set. For the selftimed_en mode changes in reading rates (reg #4 and reg #2) can be made only when b0 (selftimed_en bit) = 0. For the als_od mode changes to the reg #4 can be made only when b4 (als_od bit) = 0; this is to avoid synchronization problems and undefined states between the clock domains. In effect this means that it is only reasonable to change rates while no selftimed conversion is ongoing.

Vishay Semiconductors

Register #1 Product ID Revision Register

Register address = 81h. This register contains information about product ID and product revision.

Register data value of current revision = 21h.

TABLE 2 -	TABLE 2 - PRODUCT ID REVISION REGISTER #1											
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
	Prod	uct ID		Revision ID								
			Descr	iption								
Prod	uct ID	Read only bits.	Value = 2									
Revis	Revision ID Read only bits											

Register #2 Rate of Biosensor Measurement

Register address = 82h.

TABLE 3 - BIOSENSOR RATE REGISTER #2												
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
		n/a		Rate of biosensor Measurement (no. of measurements per second)								
Description												
Bioser	isor rate	R/W bits. 000 - 1.95 mea: 001 - 3.90625 m 010 - 7.8125 m 011 - 16.625 m 100 - 31.25 mea 101 - 62.5 meas 110 - 125 meas 111 - 250 meas	AULT)									

Note

• If self_timed measurement is running, any new value written in this register will not be taken over until the mode is actualy cycled.

Register #3 LED Current Setting for Biosensor Mode

Register address = 83h. This register is to set the LED current value for biosensor measurement.

The value is adjustable in steps of 10 mA from 0 mA to 200 mA.

This register also contains information about the used device fuse program ID.

TABLE 4 -	TABLE 4 - LED CURRENT REGISTER #3											
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
Fuse prog ID LED current value												
	Description											
Fuse	orog ID	Read only bits. Information about fuse program revision used for initial setup/calibration of the device.										
LED cur	rent value	R/W bits. LED current = Value (dec.) x 10 mA. Valid Range = 0 to 20d. e.g. 0 = 0 mA, 1 = 10 mA,, 20 = 200 mA (2 = 20 mA = DEFAULT) LED Current is limited to 200 mA for values higher as 20d.										

Register #4 Ambient Light Parameter Register

Register address = 84h.

TABLE 5 -	AMBIENT LI	GHT PARAM	ETER REGIS	TER #4						
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
Cont. conv. mode		als_rate		Auto offset compensation		Averaging function r of measurements				
			Desc	ription						
Cont. conve	ersion mode	R/W bit. Continuous conversion mode. Enable = 1; Disable = 0 = DEFAULT This function can be used for performing faster ambient light measurements. This mode should only be used with ambient light on-demand measurements. Do not use with self-timed mode. Please refer to the application information chapter 3.3 for details about this function.								
Ambient light m	easurement rate	R/W bits. Ambie 000 - 1 samples 001 - 2 samples 010 - 3 samples 011 - 4 samples 100 - 5 samples 101 - 6 samples 110 - 8 samples 111 - 10 samples	s/s = DEFAULT s/s s/s s/s s/s s/s	ment rate						
Auto offset c	compensation	R/W bit. Automatic offset compensation. Enable = 1 = DEFAULT; Disable = 0 In order to compensate a technology, package or temperature related drift of the ambient light values there is a built in automatic offset compensation function. With active auto offset compensation the offset value is measured before each ambient light measurement and subtracted automatically from actual reading.								
Averagin	g function	R/W bits. Averaging function. Bit values sets the number of single conversions done during one measurement cycle. Result is the average value of all conversions. Number of conversions = 2 ^{decimal_value} e.g. 0 = 1 conv., 1 = 2 conv, 2 = 4 conv.,7 = 128 conv. DEFAULT = 32 conv. (bit 2 to bit 0: 101)								

Note

• If self_timed measurement is running, any new value written in this register will not be taken over until the mode is actualy cycled.

Register #5 and #6 Ambient Light Result Register

Register address = 85h and 86h. These registers are the result registers for ambient light measurement readings. The result is a 16 bit value. The high byte is stored in register #5 and the low byte in register #6.

TABLE 6 - AMBIENT LIGHT RESULT REGISTER #5										
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
	Description									
Read only bits. High byte (15:8) of ambient light measurement result										

TABLE 7 -	TABLE 7 - AMBIENT LIGHT RESULT REGISTER #6										
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
			Descr	iption							
Read only bits. Low byte (7:0) of ambient light measurement result											

www.vishay.com

Vishay Semiconductors

Register #7 and #8 Biosensor Measurement Result Register

Register address = 87h and 88h. These registers are the result registers for biosensor measurement readings. The result is a 16 bit value. The high byte is stored in register #7 and the low byte in register #8.

TABLE 8 - BIOSENSOR RESULT REGISTER #7									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
	Description								
Read only bits. High byte (15:8) of biosensor measurement result									

TABLE 9 - BIOSENSOR RESULT REGISTER #8									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
	Description								
	Read only bits. Low byte (7:0) of biosensor measurement result								

Register #9 Interrupt Control Register

Register address = 89h.

ABLE 10	- INTERRUP	T CONTROL	REGISTER #	9			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	Int count exceed		n/a	INT_BS_ ready_EN	INT_ALS_ ready_EN	INT_THRES_EN	INT_THRES_ SEL
			Descr	iption			
Int count	t exceed	R/W bits. These threshold 000 - 1 count = 001 - 2 count 010 - 4 count 011 - 8 count 100 -16 count 101 - 32 count 110 - 64 count 111 - 128 count	DEFAULT	number of consec	utive measureme	nts needed above/	below the
INT_BS_r	ready_EN	R/W bit. Enable	s interrupt genera	tion at biosensor	data ready		
INT_ALS_	ready_EN	R/W bit. Enable	s interrupt genera	tion at ambient da	ata ready	_	
INT_THE	RES_EN	R/W bit. Enable	s interrupt genera	tion when high or	low threshold is e	exceeded	
INT_THF	RES_SEL		resholds are applie are applied to als		easurements		

Register #10 and #11 Low Threshold

Register address = 8Ah and 8Bh. These registers contain the low threshold value. The value is a 16 bit word. The high byte is stored in register #10 and the low byte in register #11.

TABLE 11 - LOW THRESHOLD REGISTER #10								
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Description								
	R/W bits. High byte (15:8) of low threshold value							

TABLE 12	- LOW THRE	SHOLD REG	STER #11						
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
	Description								
	R/W bits. Low byte (7:0) of low threshold value								

Register #12 and #13 High Threshold

Register address = 8Ch and 8Dh. These registers contain the high threshold value. The value is a 16 bit word. The high byte is stored in register #12 and the low byte in register #13.

TABLE 13	- HIGH THRE	SHOLD REG	ISTER #12						
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
	Description								
	R/W bits. High byte (15:8) of high threshold value								

TABLE 14 - HIGH THRESHOLD REGISTER #13									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
	Description								
R/W bits. Low byte (7:0) of high threshold value									

Register #14 Interrupt Status Register

Register address = 8Eh. This register contains information about the interrupt status for either biosensor or ALS function and indicates if high or low going threshold exceeded.

TABLE 15	TABLE 15 - INTERRUPT STATUS REGISTER #14								
Bit 7	Bit 6	Bit 5	Bit 4	Bit 4 Bit 3 Bit 2 Bit 1 Bit 0					
	n	/a		int_bs_ready	int_als_ready	int_th_low	int_th_hi		
	Description								
int_bs	_ready	R/W bit. Indicat	es a generated in	terrupt for biosens	sor				
int_als	_ready	R/W bit. Indicat	es a generated in	terrupt for als					
int_t	int_th_low R/W bit. Indicates a low threshold								
int_	th_hi	R/W bit. Indicat	R/W bit. Indicates a high threshold exceed						

Note

• Once an interrupt is generated the corresponding status bit goes to 1 and stays there unless it is cleared by writing a 1 in the corresponding bit. The int pad will be pulled down while at least one of the status bit is 1.

Register #15 Biosensor Modulator Timing Adjustment

Register address = 8Fh.

	- BIOSENSO			ADJUJIMEN			1
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2 Bit 1 Bit		
I	Modulation delay ti	me	Biosenso	r frequency	M	odulation dead tir	ne
			Desc	ription			
Modulatio	on delay time	This function is	for compensation rent proximity sig	etween LED signal n of delays from LE nal frequency. Cor	D and photo diod	e. Also in respect	to the possibilit
Biosenso	or frequency		neasurement is u Hz (DEFAULT) z Hz	est signal frequenc sing a square sign		nt signal. Four diff	erent values are
Modulatio	on dead time	This function is	for reducing of p	evaluation of LED source of LED source of the second second second second second second second second second se	e effects.	es of the signal. (D	EFAULT = 1)

Note

• The settings for best performance will be provided by Vishay. With first samples this is evaluated to:

Delay time = 0; dead time = 1 and BS frequency = 00. With that register #15 should be programmed with 1 (= default value).

Register #16 Ambient IR Light Level Register

Register address = 90h.

This register is not intended to be used by customer.

3. IMPORTANT APPLICATION HINTS AND EXAMPLES

3.1 Receiver standby mode

In standby mode the receiver has the lowest current consumption of about 1.5 µA. In this mode only the I²C interface is active. This is always valid, when there are no measurement demands executed. Also the current sink for the LED is inactive, so there is no need for changing register #3 (LED current).

3.2 Data Read

In order to get a certain register value, the register has to be addressed without data like shown in the following scheme. After this register addressing, the data from the addressed register is written after a subsequent read command.

Rece	Receive byte Read data from VCNL4020C									
S	Slave address	Wr	А	Register address	А	Ρ				
	-									
S	Slave address	Rd	A	Data byte	А	Р				
S = start condition Host action P = stop condition VCNL4020C response										
	Fig. 14 - Send	Byte	/ Rec	eive Byte Protocol						

The stop condition between these write and read sequences is not mandatory. It works also with a repeated start condition.

Note

For reading out 2 (or more) subsequent registers like the result registers, it is not necessary to address each of the registers separately. After
one read command the internal register counter is increased automatically and any subsequent read command is accessing the next
register.

Vishay Semiconductors

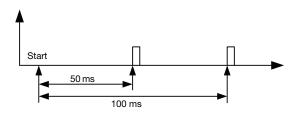
www.vishay.com

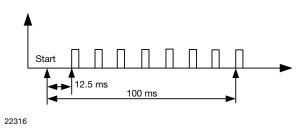
Example: read register "Ambient Light Result Register" #5 and #6:

Addressing:command: 26h, 85h (VCNL4020C_l²C_Bus_Write_Adr., Ambient Light Result Register #5 [85])

Read register #5:command: 27h, data (VCNL4020C_l²C_Bus_Read_Adr., {High Byte Data of Ambient Light Result register #5 [85])}

Read register #6:command: 27h, data (VCNL4020C_I²C_Bus_Read_Adr., {Low Byte Data of Ambient Light Result register #6 [86])}


3.3 Continuous Conversion Mode in Ambient Light Measurement


In the following is a detail description of the function "continuous conversion" (bit 7 of register #4)

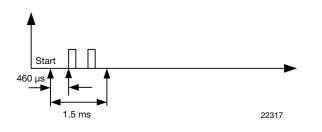
Standard mode (bit 7 of reg #4 = 0):

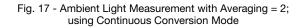
In standard mode the ambient light measurement is done during a fixed time frame of 100 ms. The single measurement itself takes actually only appr. 300 µs.

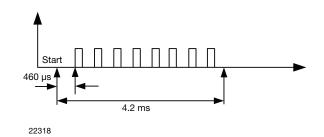
The following figures show examples of this measurement timing in standard mode using averaging function 2 and 8 as examples for illustration (possible values up to 128).

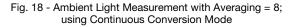
22315

Fig. 15 - Ambient Light Measurement with Averaging = 2; Final Measurement Result = Average of these 2 Measurements Fig. 16 - Ambient Light Measurement with Averaging = 8; Final Measurement Result = Average of these 8 Measurements


Note


• \geq Independent of setting of averaging the result is available only after 100 ms.


Continuous conversion mode (bit 7 of register #4 = 1):


In continuous conversion mode the single measurements are done directly subsequent after each other.

See following examples in figure 17 and 18

12

0.685

0.65

0.78

0.15

0.69

2

Drawing-No.: 6.550-5319

Not indicated tolerances ± 0.1

PACKAGE DIMENSIONS in millimeters

4x0.685=2.74

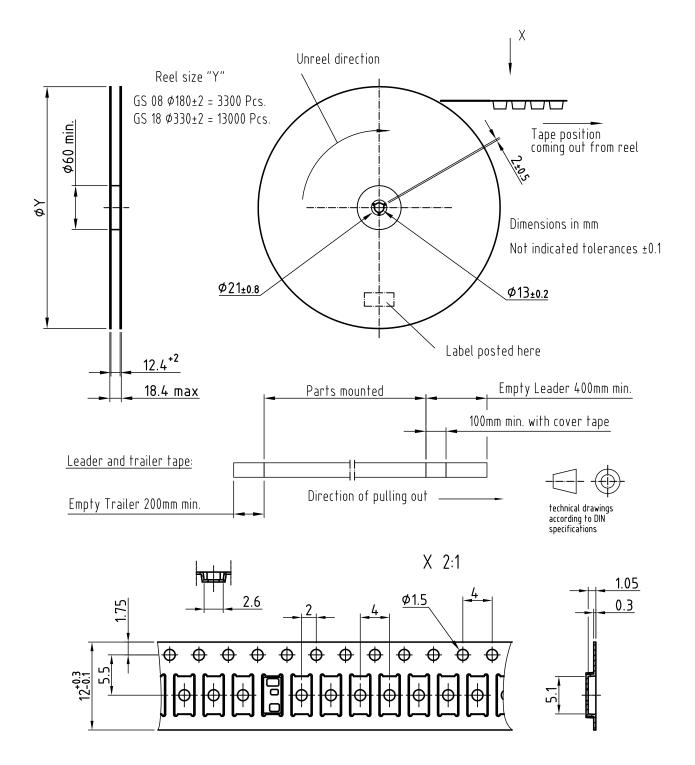
0.95

4.15

4.9

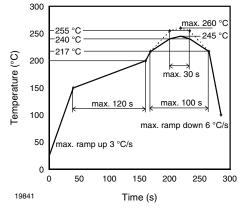
2.03

1.49


1

0.73

Pinning Bottom view Anode Emitte SDA 00 SCL F 55 0.3 $\overline{}$ Cathode PD Cathode Emitter VSS 0.24 0.98 Pinning Top view .62 Cathode PD Cathode Emitter technical drawings /SS according to DIN specifications Γ٦ ٢٦ 0.83 VDD Anode Emitter SDA Ł SCL Proposed PCB Footprint (4.9)0.4 1.75 1.1 0.83 0.25 0.4 0.37 0.28 ∞ Ö 4 S. N ~ c (2.4) Ö 2 C ω 0.45 0.4 o. 4x 0.685=2.74


TAPE AND REEL DIMENSIONS in millimeters

Drawing-No.: 9.700-5387.01-4

SOLDER PROFILE

www.vishay.com

Fig. 19 - Lead (Pb)-free Reflow Solder Profile acc. J-STD-020

DRYPACK

Devices are packed in moisture barrier bags (MBB) to prevent the products from moisture absorption during transportation and storage. Each bag contains a desiccant.

FLOOR LIFE

Floor life (time between soldering and removing from MBB) must not exceed the time indicated on MBB label:

Floor life: 72 h

Conditions: T_{amb} < 30 °C, RH < 60 %

Moisture sensitivity level 4, acc. to J-STD-020.

DRYING

In case of moisture absorption devices should be baked before soldering. Conditions see J-STD-020 or label. Devices taped on reel dry using recommended conditions 192 h at 40 °C (+ 5 °C), RH < 5 %.

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for vishay manufacturer:

Other Similar products are found below :

 M39006/22-0577H
 Y00892K49000BR13L
 VS-12CWQ10FNPBF
 M8340109M6801GGD03
 VS-MBRB1545CTPBF
 1KAB100E

 CRCW1210360RFKEA
 VSMF4720-GS08
 CRCW04024021FRT7
 001789X
 LT0050FR0500JTE3
 CRCW0805348RFKEA

 LVR10R0200FE03
 CRCW12063K30FKEAHP
 009923A
 CRCW2010331JR02
 CRCW25128K06FKEG
 CS6600552K000B8768
 M39003/01

 2289
 M39003/01-2784
 M39006/25-0133
 M39006/25-0228
 M64W101KB40
 M64Z501KB40
 CW001R5000JS73
 CW0055R000JE12

 CW0056K800JB12
 CW0106K000JE73
 672D826H075EK5C
 CWR06JC105KC
 CWR06NC475JC
 MAL219699001E3

 MCRL007035R00JHB00
 PTF56100K00QYEK
 PTN0805H1502BBTR1K
 RCL12252K20JNEG
 RCWL1210R130JNEA
 RH005220R0FE02

 RH005330R0FC02
 RH010R0500FC02
 132B20103
 RH1007R000FJ01
 RH2503R500FE01
 RH254R220FS03
 RH-50-40R2-1%-C02

 134D336X9075C6
 132B00301
 135D277X0025F6
 DG202BDY-T1-E3
 DG9426EDQ-T1-GE3
 MC