

Vishay Siliconix

Precision CMOS Analog Switches

DESCRIPTION

The DG417, DG418, DG419 monolithic CMOS analog switches were designed to provide high performance switching of analog signals. Combining low power, low leakages, high speed, low on-resistance and small physical size, the DG417 series is ideally suited for portable and battery powered industrial and military applications requiring high performance and efficient use of board space.

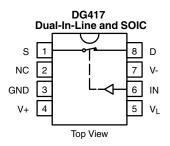
To achieve high-voltage ratings and superior switching performance, the DG417 series is built on Vishay Siliconix's high voltage silicon gate (HVSG) process. Break-beforemake is guaranteed for the DG419, which is an SPDT configuration. An epitaxial layer prevents latchup.

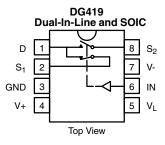
Each switch conducts equally well in both directions when on, and blocks up to the power supply level when off.

The DG417 and DG418 respond to opposite control logic levels as shown in the Truth Table.

FEATURES

- ± 15 V analog signal range
- On-resistance R_{DS(on)}: 20 Ω
- Fast switching action t_{ON}: 100 ns
- Ultra low power requirements P_D: 35 nW
- TTL and CMOS compatible
- MiniDIP and SOIC packaging
- 44 V supply max. rating
- 44 V supply max. rating
- Compliant to RoHS directive 2002/95/EC


BENEFITS


- · Wide dynamic range
- Low signal errors and distortion
- Break-before-make switching action
- · Simple interfacing
- Reduced board space
- Improved reliability

APPLICATIONS

- Precision test equipment
- Precision instrumentation
- Battery powered systems
- Sample-and-hold circuits
- Military radios
- Guidance and control systems
- Hard disk drives

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE						
DG417	DG418					
ON	OFF					
OFF	ON					
	DG417 ON					

Logic "0" \leq 0.8 V Logic "1" \geq 2.4 V

TRUTH TABLE DG419						
Logic	SW ₁	SW ₂				
0	ON	OFF				
1	OFF	ON				

 $\begin{array}{l} \text{Logic "0"} \leq 0.8 \ \text{V} \\ \text{Logic "1"} \geq 2.4 \ \text{V} \end{array}$

* Pb containing terminations are not RoHS compliant, exemptions may apply

Vishay Siliconix

ORDERING INFORM Temp. Range	Package	Part Number
DG417, DG418	Fachage	
	0 Dia Diastia MisiDID	DG417DJ DG417DJ-E3
	8-Pin Plastic MiniDIP	DG418DJ DG418DJ-E3
- 40 °C to 85 °C	0 Die Newen 2010	DG417DY DG417DY-E3 DG417DY-T1 DG417DY-T1-E3
	8-Pin Narrow SOIC	DG418DY DG418DY-E3 DG418DY-T1 DG418DY-T1-E3
DG419	·	
	8-Pin Plastic MiniDIP	DG419DJ DG419DJ-E3
- 40 °C to 85 °C	8-Pin Narrow SOIC	DG419DY DG419DY-E3 DG419DY-T1 DG419DY-T1-E3

ABSOLUTE MAXIMUM RATINGS						
Parameter (Voltages referenced	to V-)	Limit	Unit			
V+		44				
GND		25				
VL		(GND - 0.3) to (V+) + 0.3	V			
Digital Inputs ^a , V _S , V _D		(V-) - 2 to (V+) + 2 or 30 mA, whichever occurs first				
Current, (Any Terminal) Continue	DUS	30	mA			
Current, S or D (Pulsed at 1 ms,	10 % Duty Cycle)	100				
Storage Temperature	(AK Suffix)	- 65 to 150	°C			
Storage remperature	(DJ, DY Suffix)	- 65 to 125				
	8-Pin Plastic MiniDIP ^c	400				
Power Dissipation (Package) ^b	8-Pin Narrow SOIC ^d	400	mW			
	8-Pin CerDIP ^e	600				

Notes:

a. Signals on S_X, D_X, or IN_X exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.

b. All leads welded or soldered to PC board.

c. Derate 6 mW/°C above 75 °C.

d. Derate 6.5 mW/°C above 75 °C.

e. Derate 12 mW/°C above 75 °C.

Vishay Siliconix

SCHEMATIC DIAGRAM Typical Channel

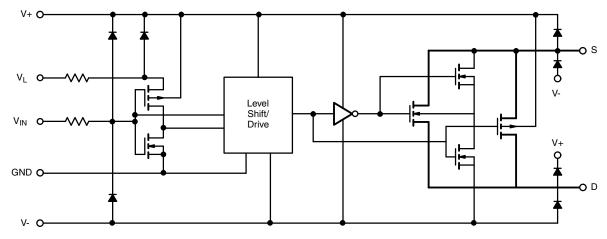


Figure 1.

SPECIFICATION	Sa									
		Test Conditions Unless Otherwise Spec V+ = 15 V, V- = - 15 V					uffix o 125 °C	D S - 40 °C	uffix to 85 °C	
Parameter	Symbol	$V_{\rm L} = 5 \text{ V}, V_{\rm IN} = 2.4 \text{ V}, 0.$		Temp. ^b	Typ. ^c	Min. ^d	Max. ^d	Min. ^d	Max. ^d	Unit
Analog Switch	-					1	1		1	1
Analog Signal Range ^e	V _{ANALOG}			Full		- 15	15	- 15	15	V
Drain-Source On-Resistance	R _{DS(on)}	I _S = - 10 mA, V _D = ± 12 V+ = 13.5 V, V- = - 13.5		Room Full	20		35 45		35 45	Ω
	I _{S(off)}	V+ = 16.5. V- = - 16.5 V		Room Full	- 0.1	- 0.25 - 20	0.25 20	- 0.25 - 5	0.25 5	
Switch Off Leakage Current	I _{D(off)}	$V_{\rm D} = \pm 15.5 \text{ V}$ $V_{\rm S} = \pm 15.5 \text{ V}$	DG417 DG418	Room Full	- 0.1	- 0.25 - 20	0.25 20	- 0.25 - 5	0.25 5	
	·D(on)	V _S = ± 15.5 V	DG419	Room Full	- 0.1	- 0.75 - 60	0.75 60	- 0.75 - 12	0.75 12	nA
Channel Off Leakage	I _{D(on)}	V+ = 16.5 V, V- = - 16.5 V	DG417 DG418	Room Full	- 0.4	- 0.4 - 40	0.4 40	- 0.4 - 10	0.4 10	
Current	-D(OII)	$V_{S} = V_{D} = \pm 15.5 V$	DG419	Room Full	- 0.4	- 0.75 - 60	0.75 60	- 0.75 - 12	0.75 12	
Digital Control										
Input Current V _{IN} Low	۱ _{IL}			Full	0.005	- 0.5	0.5	- 0.5	0.5	μA
Input Current V _{IN} High	I _{IH}			Full	0.005	- 0.5	0.5	- 0.5	0.5	μ, ι
Dynamic Characteristi	cs					-				
Turn-On Time	t _{ON}	$R_L = 300 \Omega, C_L = 35 pF$ $V_S = \pm 10 V$	DG417 DG418	Room Full	100		175 250		175 250	
Turn-Off Time	t _{OFF}	See Switching Time Test Circuit	DG417 DG418	Room Full	60		145 210		145 210	
Transition Time	t _{TRANS}	$R_L = 300 \Omega, C_L = 35 pF$ V _{S1} = ± 10 V, V _{S2} = ± 10 V	DG419	Room Full			175 250		175 250	ns
Break-Before-Make Time Delay (DG403)	t _D	R _L = 300 Ω, C _L = 35 pF V _{S1} = V _{S2} = ± 10 V	DG419	Room	13	5		5		
Charge Injection	Q	$C_L = 10 \text{ nF}, V_{gen} = 0 \text{ V}, R_{gen}$	n = 0 Ω	Room	60					рС

Vishay Siliconix

SPECIFICATION	Sa									
		Test Conditions Unless Otherwise Specified				-	uffix o 125 °C	-	uffix to 85 °C	
Parameter	Symbol	V+ = 15 V, V- = - 15 V _L = 5 V, V _{IN} = 2.4 V, 0		Temp. ^b	Typ. ^c	Min. ^d	Max. ^d	Min. ^d	Max. ^d	Unit
Dynamic Characteristi	cs			-						•
Source Off Capacitance	C _{S(off)}	f _ 1 MHz \/ _ 0 \/		Room	8					
Drain Off Capacitance	C _{D(off)}	f = 1 MHz, V _S = 0 V	DG417 DG418	Room	8					pF
Channel On	C _{D(on)}	f = 1 MHz, V _S = 0 V	DG417 DG418	Room	30					
Capacitance	~ /	-	DG419	Room	35					
Power Supplies				-	•					•
Positive Supply Current	l+			Room Full	0.001		1 5		1 5	
Negative Supply Current	I-	V+ = 16.5 V, V- = - 16.5 V V _{IN} = 0 or 5 V Fu Roo Roo		Room Full	- 0.001	- 1 - 5		- 1 - 5		
Logic Supply Current	Ι _L			Room Full	0.001		1 5		1 5	μA
Ground Current	I _{GND}			Room Full	- 0.0001	- 1 - 5		- 1 - 5		

SPECIFICATIONS ^a for Unipolar Supplies									
		Test Conditions Unless Otherwise Specified				uffix o 125 °C		uffix to 85 °C	
Parameter	Symbol	V+ = 12 V, V- = 0 V V _L = 5 V, V _{IN} = 2.4 V, 0.8 V ^f	Temp. ^b	Typ. ^c	Min. ^d	Max. ^d	Min. ^d	Max. ^d	Unit
Analog Switch									
Analog Signal Range ^e	V _{ANALOG}		Full		0	12	0	12	V
Drain-Source On-Resistance	R _{DS(on)}	$I_{S} = -10 \text{ mA}, V_{D} = 3.8 \text{ V}$ V+ = 10.8 V	Room	40					Ω
Dynamic Characteristi	cs		•	•	•	•	•	•	
Turn-On Time	t _{ON}	R_L = 300 Ω, C_L = 35 pF, V_S = 8 V	Room	110					
Turn-Off Time	t _{OFF}	See Switching Time Test Circuit	Room	40					ns
Break-Before-Make Time Delay	t _D	DG419 Only R _L = 300 Ω, C _L = 35 pF	Room	60					110
Charge Injection	Q	${\sf C}_{\sf L}$ = 10 nF, ${\sf V}_{\sf gen}$ = 0 V, ${\sf R}_{\sf gen}$ = 0 Ω	Room	5					рС
Power Supplies									
Positive Supply Current	l+		Room	0.001					
Negative Supply Current	l-	V+ = 13.2 V, V _L = 5.25 V	Room	- 0.001					μA
Logic Supply Current	ΙL	V _{IN} = 0 or 5 V	Room	0.001					μΑ
Ground Current	I _{GND}		Room	- 0.001					

Notes:

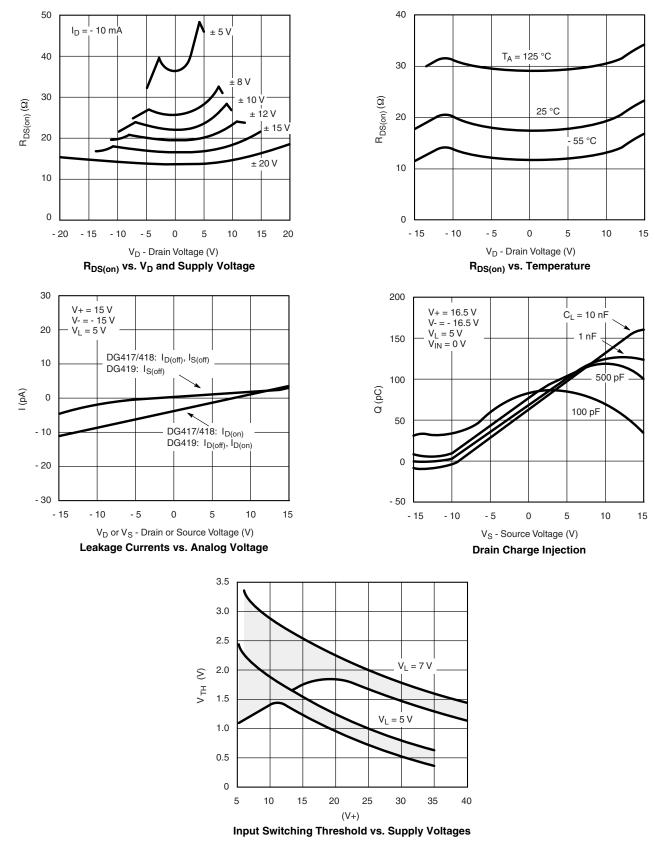
a. Refer to Process Option Flowchart.

b. Room = 25 °C, Full = as determined by the operating temperature suffix.

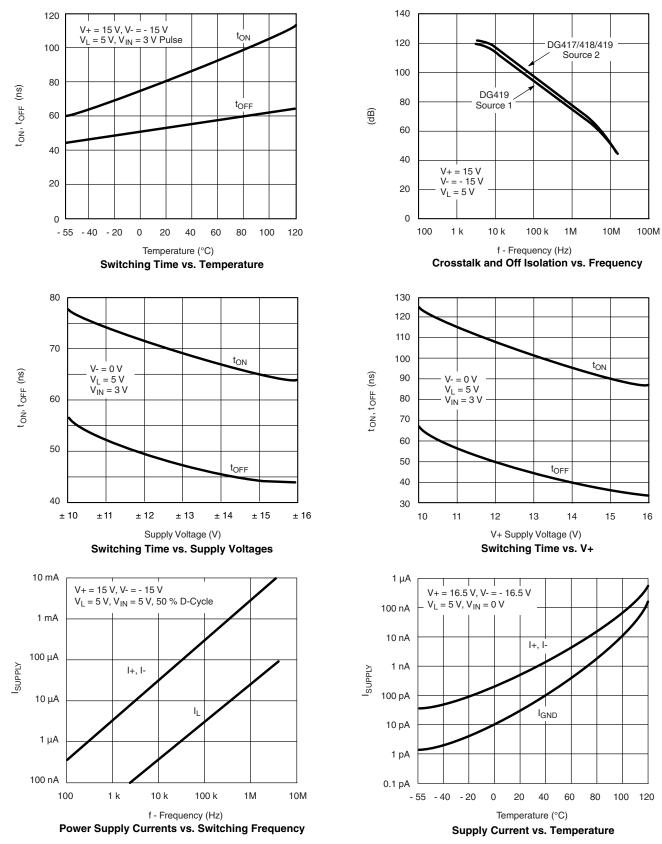
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.

e. Guaranteed by design, not subject to production test.


f. V_{IN} = input voltage to perform proper function.

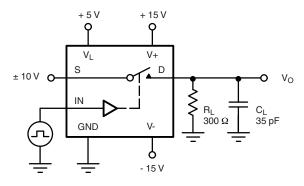
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

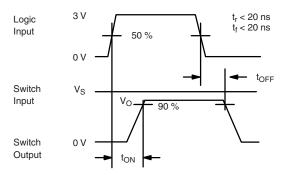

Vishay Siliconix

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

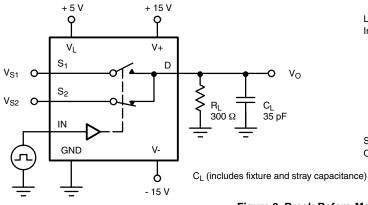
Vishay Siliconix

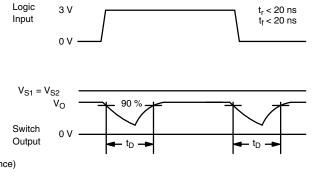
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted




TEST CIRCUITS

 V_{O} is the steady state output with the switch on.


C_L (includes fixture and stray capacitance)


$$V_{O} = V_{S}$$
 $\frac{R_{L}}{R_{L} + r_{DS(on)}}$

Note: Logic input waveform is inverted for switches that have the opposite logic sense.

3 V

0 V

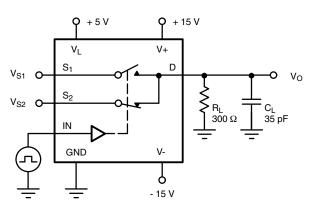
 V_{S1}

V₀₁

 V_{S2}

50 %

- t_{TRANS}


V₀₂

Logic

Input

Switch

Output

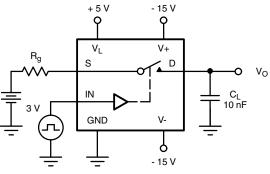
CL (includes fixture and stray capacitance)

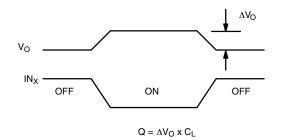
$$V_{O} = V_{S} \qquad \frac{R_{L}}{R_{L} + r_{DS(on)}}$$

Figure 4. Transition Time (DG419)

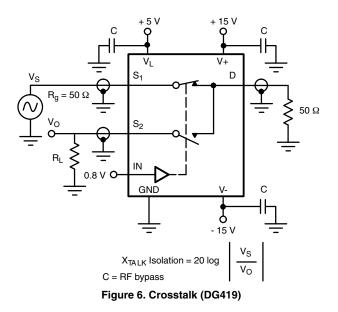
t_r < 20 ns

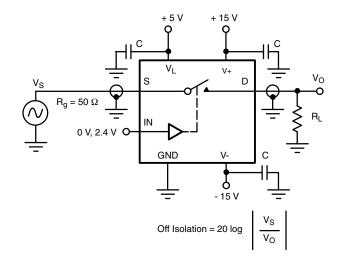
t_f < 20 ns

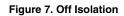

t_{TRANS}

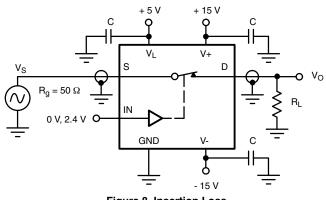

90 %

10 %


Vishay Siliconix


TEST CIRCUITS





Vishay Siliconix

TEST CIRCUITS

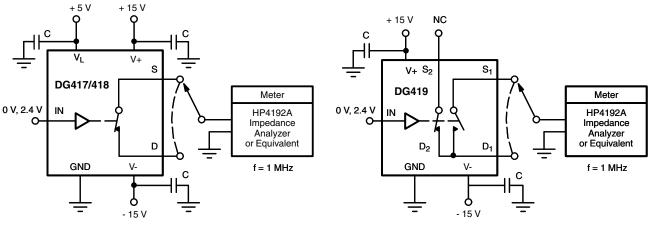


Figure 9. Source/Drain Capacitances

APPLICATIONS

Switched Signal Powers Analog Switch

The analog switch in Figure 10 derives power from its input signal, provided the input signal amplitude exceeds 4 V and its frequency exceeds 1 kHz.

This circuit is useful when signals have to be routed to either of two remote loads. Only three conductors are required: one for the signal to be switched, one for the control signal and a common return. A positive input pulse turns on the clamping diode D₁ and charges C₁. The charge stored on C₁ is used to power the chip; operation is satisfactory because the switch requires less than 1 μ A of stand-by supply current. Loading of the signal source is imperceptible. The DG419's on-resistance is a low 100 Ω for a 5 V input signal.

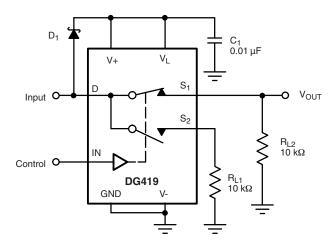


Figure 10. Switched Signal Powers Remote SPDT Analog Switch

Vishay Siliconix

APPLICATIONS

Micropower UPS Transfer Switch

When V_{CC} drops to 3.3 V, the DG417 changes states, closing SW₁ and connecting the backup cell, as shown in Figure 10. D₁ prevents current from leaking back towards the rest of the circuit. Current consumption by the CMOS analog switch is around 100 pA; this ensures that most of the power available is applied to the memory, where it is really needed. In the stand-by mode, hundreds of A are sufficient to retain memory data.

When the 5 V supply comes back up, the resistor divider senses the presence of at least 3.5 V, and causes a new change of state in the analog switch, restoring normal operation.

Programmable Gain Amplifier

The DG419, as shown in figure 11, allows accurate gain selection in a small package. Switching into virtual ground reduces distortion caused by $R_{DS(on)}$ variation as a function of analog signal amplitude.

GaAs FET Driver

The DG419, as shown in figure 12 may be used as a GaAs FET driver. It translates a TTL control signal into - 8 V, 0 V level outputs to drive the gate.

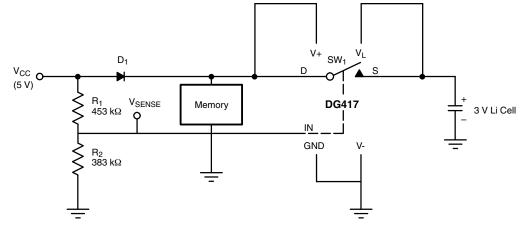
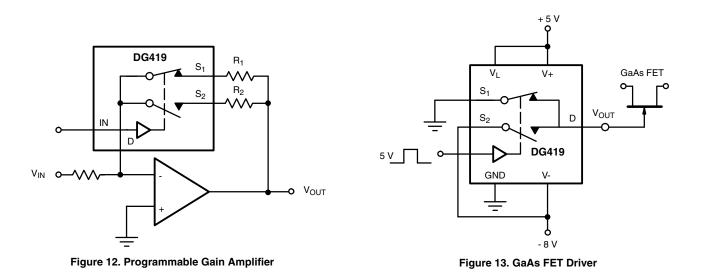
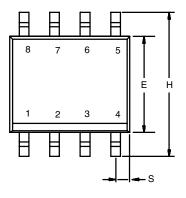
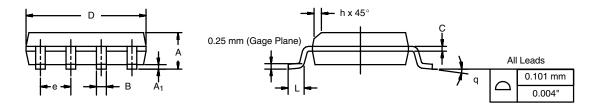



Figure 11. Micropower UPS Circuit

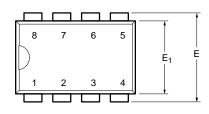

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?70051.

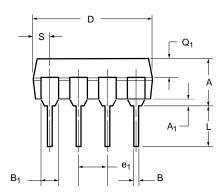


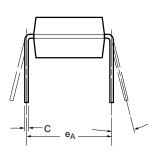
Package Information

Vishay Siliconix

SOIC (NARROW): 8-LEAD JEDEC Part Number: MS-012




	MILLIM	IETERS	INC	HES	
DIM	Min	Мах	Min	Max	
A	1.35	1.75	0.053	0.069	
A ₁	0.10	0.20	0.004	0.008	
В	0.35	0.51	0.014	0.020	
С	0.19	0.25	0.0075	0.010	
D	4.80	5.00	0.189	0.196	
E	3.80	4.00	0.150	0.157	
е	1.27	BSC	0.050	BSC	
н	5.80	6.20	0.228	0.244	
h	0.25	0.50	0.010	0.020	
L	0.50	0.93	0.020	0.037	
q	0°	8°	0°	8°	
S	0.44	0.64	0.018	0.026	
ECN: C-06527-Rev. I, 11-Sep-06 DWG: 5498					



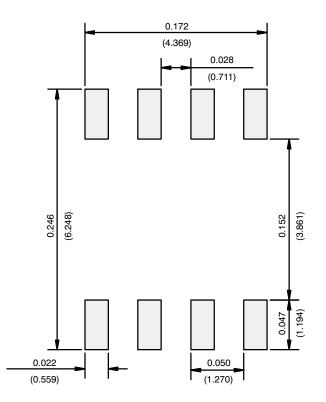
Package Information Vishay Siliconix

PDIP: 8-LEAD

15° MAX

	MILLIN	IETERS	INC	HES	
Dim	Min	Max	Min	Max	
Α	3.81	5.08	0.150	0.200	
A ₁	0.38	1.27	0.015	0.050	
В	0.38	0.51	0.015	0.020	
B ₁	0.89	1.65	0.035	0.065	
С	0.20	0.30	0.008	0.012	
D	9.02	10.92	0.355	0.430	
Е	7.62	8.26	0.300	0.325	
E ₁	5.59	7.11	0.220	0.280	
e ₁	2.29	2.79	0.090	0.110	
e _A	7.37	7.87	0.290	0.310	
L	2.79	3.81	0.110	0.150	
Q 1	1.27	2.03	0.050	0.080	
S	0.76	1.65	0.030	0.065	
ECN: S-03946—Rev. E, 09-Jul-01 DWG: 5478					

NOTE: End leads may be half leads.


1

Application Note 826

Vishay Siliconix

RECOMMENDED MINIMUM PADS FOR SO-8

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Analogue Switch ICs category:

Click to view products by Vishay manufacturer:

Other Similar products are found below :

FSA3051TMX NLVAS4599DTT1G MAX4992EVB+T MAX4684ETB+T BCM6522IPBG BCM65300IFSBG MAX14764ETA+T TMUX1113RSVR TMUX1112RSVR ADG1436TRUZ-EP BL4684C PE423422A PE42359SCAA PE42540F RS550YUCM12 ADGS1414DBCCZ ADG658YRUZ-REEL7 RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 SP2526A-1EN-L/TR FSA4157P6X BA7603F-E2 MAX4702EUE+ MAX4617CUE+ MAX4599EUT+T MAX4066ESD+ MAX4052ACSE+ MAX396CAI+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ MAX4051AEEE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR TS3A4751PWR NCN1154MUTAG DG444DY-E3 NLAS4157DFT2G NLAS4599DFT2G NLAS7242MUTBG NLASB3157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG403DY-T1-E3 MAX4714EXTT MAX392CPE BGSX22G2A10E6327XTSA1 ADG1611BRUZ-REEL7